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Abstract References to objects in our physical environment are common especially
in language about wayfinding. Advanced wayfinding systems that interact with the
pedestrian by means of (spoken) natural language therefore need to be able to re-
solve references given by pedestrians (i.e. understand what entity the pedestrian
is referring to). The contribution of this paper is a probabilistic approach to refer-
ence resolution in a large-scale, real city environment, where the context changes
constantly as the pedestrians are moving. The geographic situation, including infor-
mation about objects’ location and type, is represented using OpenStreetMap data.

Key words: pedestrian navigation, wayfinding, data-driven methods, reference res-
olution, natural language processing, OpenStreetMap, probabilistic approach

1 Introduction

When humans give wayfinding instructions to each other, they are extensively using
referring expressions, phrases that are referring to objects and actions about which
they want to convey information. The hearer needs to link the words to representa-
tions of these entities, making several choices along the way, and taking different
sources of information into account: Is the speaker talking about a landmark in the
immediate vicinity? Is he referring to something that has recently been mentioned?
Which of the objects match his descriptions and which one is most likely to be the
correct target?

If the conversation involves solving a task such as finding the way in an unknown
area, it is not enough to understand the meaning of the word “bakery” in an instruc-
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tion like “Turn left at the bakery with the blue sign” in a general way. Not only
does the hearer need to know what a bakery is in a general sense, he also needs to
identify the target object, in this case the particular bakery in his environment in
order to carry out the task successfully. That means he needs to ground the meaning
of the word ‘bakery’ in the real world (or some representation of it). Methods that
automate the understanding and grounding of referring expressions in the physical
environment are required for a number of applications in which robots need to carry
out actions of various kinds, such as grasping particular objects (Matuszek et al.
2014) or following route directions (MacMahon et al. 2006).

In this work, we focus on reference resolution for pedestrian wayfinding. Wayfind-
ing instructions typically involve many references to landmarks (Denis 1997), i.e. to
objects in the environment of the pedestrian. At each point along a route in a city
environment, there are many geographical objects of different types, such as build-
ings and streets, that a pedestrian can refer to. Automatically understanding exactly
which objects someone is referring to is an important part of interactive wayfinding
systems. The pedestrian might ask clarification questions such as “Do you mean the
red building to the right?” or signal problems of understanding such as “I cannot
see any church, but I can see a shop straight ahead.” Situations in which the sys-
tem refers to a landmark that the pedestrian cannot identify are unavoidable, and
lengthy sub-dialogs where the system “tries” the next-best landmarks can instead
be replaced by letting the user choose a landmark, e.g. by asking an open-ended
question like “What can you see?”.

The contribution of this paper is to show how a probabilistic approach to refer-
ence resolution can successfully be applied to difficult real-life situations. We base
our research on a corpus of route instructions, that are given by pedestrians while
they are walking along a path (Götze & Boye 2016b). In this setting, the environ-
ment is rich in geographical objects of various kinds that a pedestrian could possibly
refer to, and it changes continuously as they are moving. We show how the words-
as-classifiers method applied by (Kennington & Schlangen 2015) to a toy domain
can be applied to our data on the basis of the OpenStreetMap representation of the
pedestrians’ environment. We then explain how we extend the original method to
deal with frequently occurring phenomena in this context: that the referring expres-
sion has no or several target objects.

2 Reference Resolution Method

Whenever the pedestrian uses a referring expression (RE), we want to identify the
target object(s), the object or objects that the pedestrian intended to refer to when
saying the words in the RE. In a probabilistic framework, we want to find the o
that maximizes P(o|r) for some set of objects, i.e. the object o that most likely was
referred to by the set of words r in the RE.

In the domain we consider, the pedestrians are walking along a route and are
primarily referring to objects in their immediate environment. As they are moving
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“I continue in a southwesterly direction down the steps [RE1] towards the arch at the bottom [RE2]”

u1 : ‘I continue in a southwesterly direction down the steps towards the arch at the bottom’
RE1 : “down the steps”, ot1 = {o1,o5}
RE2 : “towards the arch at the bottom”, ot2 = {o2}
candidate set cs1 : {o1 . . .ok}

Fig. 1 Example utterance containing 2 REs.

along the path, objects are appearing and disappearing from their view: the set of
objects that are possible referents for their descriptions – the candidate set – changes
constantly. This means that in addition to the words, we need to consider the pedes-
trian’s position p. Furthermore, we assume that dialog context information c about
what the pedestrian has previously referred to during his walk also plays a role.
Therefore, what we really want to model are the probabilities P(o|r, p,c). Techni-
cally, however, we will encode the position p and the dialog context c as part of the
object properties (see Section 3.3). Thus, we want to estimate P(o|r), where o is a
geographical object as seen from position p, and referred to in a context c.

Figure 1 shows an example utterance u from the data we use. The pedestrian uses
two REs to refer to three objects. RE1 (“down the stairs”) refers to two objects, RE2
(“towards the arch at the bottom”) refers to one object. When applying the classifiers
to a new RE, each word determines whether the expression can refer to an object in
the new candidate set. Usually, objects are described by noun phrases. However,
we expect that more information than just the noun phrase will contribute to the
correct resolution of an RE. For example, the classifier for the preposition along
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will learn to associate itself with objects of type street or building, but not
with type shop. Therefore, we define an RE rather loosely as any substring from
the utterance that contains information about an object. Specifically, we included
spatial prepositions like along and through and transitive motion verbs like cross.
Relevant REs are annotated manually. In the particular situation in Figure 1, there
are n objects o the pedestrian could refer to. Every object oi is represented as a
vector of features, encoding information about what kind of object it is, how it is
positioned with respect to the pedestrian, and whether it has been mentioned before.

The task is then, given each of the REs and the set of candidate objects, to find the
target set of objects o that the words in r are most likely referring to. We approach
this task following Kennington & Schlangen (2015), who addressed the problem of
reference resolution in a small-scale puzzle piece scenario.

The objects are represented as vectors of numerical features that encode, for ex-
ample, their type (see Section 3.3). We train individual word classifiers c that, when
applied to the vector representation of a geographical entity oi = (x1, . . . ,xn), com-
pute the probability that the word r j refers to oi. That is, cr j(oi) = P(oi|r j), where
cr j is the classifier for the word r j. Each cr j is a logistic regression classifier.

In general, for a referring expression r consisting of several words r1 . . .rm, we
compute the probability that r refers to each of the objects in the candidate set as a
function of the probabilities for each word:

P(oi|r = r1...m) = f (cr1(oi) . . .crm(oi)) (1)

Following Kennington & Schlangen, we let f be the arithmetic average of all
cr j(oi). Then, objects with a higher probability value are more likely to be the in-
tended targets of the RE.

Using the data we describe in Section 3, we train these logistic regression classi-
fiers that compute an object’s suitability as a referent based on the object’s features.
For every RE, the target object o is a positive example for each word in the RE. As
negative examples for each of the words, we randomly choose another object from
the candidate set. If an RE has more than one target in a candidate set, one positive
example (and one negative example) is added for each target. During training, the
information about how many targets an RE refers to is not represented explicitly.

Intuitively, the classifier for the word ‘building’ will learn to associate high prob-
ability to objects that represent buildings (because they appeared as positive exam-
ples), and lower probabilities to other objects, such as streets. The classifier for the
word ‘the’ on the other hand is likely to associate equal probabilities to buildings
and streets, because speakers use it with both kinds of objects.

Table 1 shows a small example of how the word classifiers are used. In this scene,
the candidate set contains 5 objects. The pedestrian utters the words “towards the
arch at the bottom”. The method then takes each word r of the utterance, com-
putes the probability P(o|r) for each object o in the candidate set (Step a), and then
computes a final probability score for each object o by averaging over all word prob-
abilities for that object (Step b), as given by Equation 1. If no classifier is available
for a word (because it has not appeared in the training data), the word is ignored.
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In Step c, the method picks the object with the highest probability as answer, i.e. it
assumes that this object is the target object. In the example, it returns object o2.

Table 1 Example application
of word classifiers. If no
classifier is available, the
word is ignored.

(a) Word-to-object classification P(oi|r j)

Candidate objects o1...n
Words r1...m o1 o2 o3 o4
r1=towards → 0.11 0.99 0.89 0.26
r2=the → 0.59 0.90 0.76 0.76
r3=arch → 0.19 0.88 0.95 0.19
r4=at → 0.29 0.89 0.87 0.90
r5=the → 0.59 0.90 0.76 0.76
r6=bottom → − − − −

(b) Composition ↓ ↓ ↓ ↓

∑
m
j=1 P(oi|r j)

m 0.35 0.91 0.85 0.57

(c) Selecting the target ↓

argmax P(o|r) o2

In practice, not every RE refers to exactly one object. It is possible that an RE
refers to two or more objects (as in the example in Figure 1), or that it refers to
no object in the candidate set. As mentioned in Section 1, we assume that an RE
refers to an object in the pedestrian’s environment. It is however possible that the
target object is not part of the candidate set. The target object may not exist in the
database, or it was not considered as a candidate in the given situation, e.g. because
it was not considered visible given the pedestrian’s position. Furthermore (as will
be described in more detail in Section 3), number information in the RE itself, i.e.
whether it is a plural or a singular RE, does not necessarily correspond to the size of
the expected target object set.

We therefore extend the method presented above to incorporate these additional
cases. In the following section, we explain the data and features we use. We then
first look at the case of simple references in which one RE corresponds to one tar-
get object and show how our data achieves results comparable to Kennington &
Schlangen (2015). We then suggest an extension of the method, capable of dealing
with the cases when there are 0, 1, or more target objects for a given RE, and present
results from experiments on our data.
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3 Data

3.1 The SPACEREF data

The data that we are studying and that is described in (Götze & Boye 2015, 2016b)
contains transcriptions of pedestrians describing their environment while walking
along a given path. Referring expressions are annotated with the identifier(s) of their
target referent as represented in the map (see Section 3.2). Positional information in
the form of GPS coordinates was automatically logged.

The corpus contains a total of 1,303 referring expressions that are annotated
with one or more target referents or tagged as having no referent object in the map.
559 (42.9%) REs have exactly one target object, 218 (16.7%) have more than one
target (3 on average), and 526 (40.4%) of the REs having no target referent in their
respective candidate set. The candidate set contains on average 33 objects.

3.2 The geographic representation

To represent the city environment in which the pedestrians are moving, we choose
OpenStreetMap (Haklay & Weber 2008). OpenStreetMap represents objects such
as buildings, streets, and shops in a way that is suitable for this task: all objects
have information about their position associated with them in the form of GPS lati-
tude/longitude coordinates and the map covers about 96% of the objects mentioned
by the pedestrians. This makes it possible to automatically compute a candidate set
on the basis of the pedestrian’s position.

As described in (Götze & Boye 2015), the way that OpenStreetMap segments
space into objects does not always correspond to how a pedestrian views his en-
vironment. In OpenStreetMap, streets are cut up into many small segments, each
with their own specification of speed limits or access restrictions. Likewise, plurals
do not necessarily have more than one target object, e.g. a block of buildings can
be represented as one object, but perceived and referred to as “the buildings”. We
address how to make the choice of how many objects to return as referents in Sec-
tion 5. We modify the selection step in a way that it returns all the relevant objects
as correct target referents.

3.3 Features

In order to train the word classifiers, we need to represent the objects in each can-
didate set using suitable features that capture a part of the word’s meaning. Most
REs contain descriptions of the objects’ type. Therefore, an object’s features should
contain a notion of their type, i.e. whether the object is a street, a building, or a
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bench. As mentioned earlier, we use OpenStreetMap to compute the candidate set
on the basis of the pedestrian’s position: all objects that are in view at the time
of using each word are computed as described by Boye et al. (2014). In addition
to positional information, OpenStreetMap provides semantic tags for each object,
specifying information like names, types, opening hours or other access informa-
tion.

OpenStreetMap is a crowd-sourced database. It defines the usage of many tags
and their values,1 but contributors are in no way restricted in what tags they assign
to an entity. As in (Götze & Boye 2016a), we derive 427 binary type features from
the OpenStreetMap annotation. If an entity is of a certain type, it has value 1 for this
feature, otherwise 0. We base the derivation of features only on such tags that are
defined in OpenStreetMap’s wiki. That means that other, user-defined tags that also
carry non-relevant information, are not excluded from the feature set and introduce
a fair amount of noise to our object representations. We will show in Section 5 that
these features, that we obtain with only little processing of the original data, perform
well when computing word meanings.

In addition to the type features (called OSM in Table 2), we derive positional
information (POS) for each object: the distance and angle relate each object to the
pedestrian’s position. The feature set CONTEXT contains context information on
whether an object has been mentioned before and how recent this mention was in
terms of time or traveled distance. This context feature set is an extension of features
used in (Iida et al. 2011) and is intended to capture and incorporate the meaning of
function words, such as the determiners ‘a’ and ‘the’, ‘that’, ‘this’ etc. For example,
referring expressions of the form ‘a x’ are likely to refer to a new object while
mentioning ‘this x’ is an indication of a previously mentioned object. Table 2 shows
the full list of features.

Feature Values
OSM
type 0/1 The object is of that type (427 features)
POS
dist 2-log distance from the pedestrian’s position to the object
angle Angle between the walking direction and the object direction, measured from

the pedestrian’s position
CONTEXT
mrRE 0/1 The object is referred to by the most recent RE
m10 0/1 The time distance to the last mention of this object is ≤ 10s
m20 0/1 The time distance to the last mention of this object is ≤ 20s and >10s
m20+ 0/1 The time distance to the last mention of this object is > 20s
never 0/1 The object has never been referred to
t50 0/1 The distance to the last mention of this object is ≤ 50m
t100 0/1 The distance to the last mention of this object is ≤ 100m and >50m
t100+ 0/1 The distance to the last mention of this object is >100m

Table 2 The features that describe each candidate object. The first five CONTEXT features corre-
spond to L1-5 in (Iida et al. 2011).

1 http://wiki.openstreetmap.org/map_features
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4 Experiments

4.1 One-to-one references

In this setting, we select from the data only those instances with target set size 1, i.e.
where each RE corresponds to exactly one object identifier in the map. This is the
case in 559 instances. We are training the word classifiers on different combinations
of features, in the way as described in Section 2. Testing is done using 10-fold
cross-validation. Since negative examples are chosen randomly at training time, this
process is repeated 10 times and we report averages in Table 3. We report the First
Hit Success Rate (FHS), i.e. in how many cases the target object was correctly ranked
highest (and thus selected) by the method, and the Mean Reciprocal Rank (MRR),
indicating how high the correct object was ranked on average.2 For comparison, in
the puzzle piece setting in (Kennington & Schlangen 2015), the classifiers found
42% (FHS) of the targets and reached a MRR of 0.61. Table 3 shows that already
when using only the information contained in the OpenStreetMap tags, the FHS Rate
reaches 55% with a MRR of 0.66. Including positional and context information, we
obtain a FHS in 59% of the cases and a MRR of 0.72.

4.2 One-to-many references

The assumption that there is exactly one object that is the correct target referent
does not hold for more than half of the referring expressions in our data. In 40% the
correct target is not among the candidate referents (cf. Section 3), and in another
17% the target corresponds to a set of more than one object in the database.

Using the original method and choosing the most likely object will result in a
wrong answer when there is no correct target, and an insufficient answer when there
is more than one. Instead, when there are several targets, a reference resolution
method should preferably return all these targets, and when there is no target, the
method should return the empty set.

A possible solution is to define a threshold value t, where only the object or
objects that have a probability of at least t will be considered as referents. If the
highest ranked object is below the threshold, no object will be returned.

Table 3 Evaluation for one-
to-one references.

FHS MRR

OSM 54.64 0.66
OSM+POS 58.09 0.70
OSM+POS+CONTEXT 59.17 0.72

2 The Reciprocal Rank measure calculates the reciprocal of the rank. It is 1 if the correct object is
ranked highest, 0.5 if the correct object is ranked second, etc. The Mean Reciprocal Rank (MRR)
is the average across many such calculations.



Reference Resolution for Pedestrian Wayfinding Systems 9

In the next step, we split our data into a training set of 80% (1,025 instances) and
a development and test set of 10% each (132 and 146 instances, respectively3). The
training set is used for training the word classifiers as described previously, whereas
the development set is used for determining a suitable threshold value. The test set
is used for evaluation. Unless otherwise stated, all training and testing is carried out
in 10 iterations, and we report averages (negative examples for the word classifiers
are chosen at random and differ for each training run).

For evaluation, we now look at how many objects were (in)correctly classified
for each RE. Recall that for each RE, there is an average of 33 candidate objects.
Each object is assigned a probability that it is the correct referent of the referring
expression in question. In finding the threshold value, we use all three feature sets,
and vary the threshold over a range of [.5;.95] in steps of 0.05. All objects that
obtain a probability of at least the threshold value will be returned by the method.

We computed accuracy, precision, recall, and F-measure for each threshold value.
Every target referent is a positive, all other objects are negatives. For an RE without
a target referent in the candidate set, all objects should be classified as negative. For
each RE, there are many more objects that should be classified as negative, i.e. as
not being the correct referent. When classifying all objects as negative, i.e. never
returning a referent, we would obtain an accuracy of 0.97. With the original method
of choosing the object(s) with highest probability, the accuracy on the development
set is also 0.97. Starting at a threshold value of 0.8 the accuracy improves over the
original setting.

Looking at the F-measure, a threshold of around 0.80 is best in terms of both
positives and negatives (F=0.46). For the positive class (objects chosen as refer-
ents), this threshold means a recall of 0.52 and a precision of 0.41. For the negative
class (objects rejected as referents), both precision and recall are close to 1.0 (cf.
Figure 2). In a particular application, it may be desirable to prefer higher precision
over higher recall (being sure that what was found is a correct referent), or vice

Fig. 2 Evaluation for varying thresholds

3 The data is split on the utterance level, where each utterance contains one or more referring
expressions.
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versa (finding as many targets as possible at the expense of including false posi-
tives). Here, we are not making such a choice and set the threshold value at 0.80. At
this threshold, the method also works well in terms of how many targets it finds for
the different conditions: It predicts on average 1 object for the case where there is
only 1 or no target referent and slightly over 2 in the case where there are more.

4.3 Testing on the held-out test set

Table 4 shows the results for applying the learned models on the remaining 10% of
the data (146 instances) with a threshold of 0.80 for selecting referent objects. The
results on this test set are similar to the results on the development set.

Table 4 Evaluation results
for the held-out test data when
selecting objects that have a
probability of at least 0.8

Test Set Dev Set
Measure Pos Neg Pos Neg
Accuracy 0.97 0.97
Precision 0.40 0.98 0.40 0.99
Recall 0.45 0.98 0.48 0.98
F-measure 0.42 0.98 0.44 0.98

4.3.1 Evaluation per Referring Expression

The evaluation measures in Table 4 show what happens within each candidate set.
Table 5 shows how many of the referring expressions the method resolves correctly.
In the strictest setting (in which the method returns all targets and no false positives),
the method resolves 44.3% of the referring expressions correctly.

When there is no target referent, it answers correctly with the empty set in more
than half of the cases. When there is one referent, it answers correctly in one third of
the cases, when there is more than one referent, in one fourth of the cases. Allowing
also false positives in the answer set, it answers correctly about half of the time.
For all cases, the target set of objects obtains a rank of 1.5 (i.e. a MRR of 0.66) on
average. When there are several targets, all of them are ranked high, with an average
MRR of 0.73, i.e. about rank 1.4.

4.4 Results

The results in Section 4.1 show that the basic approach of training word classi-
fiers and applying them to features derived from OpenStreetMap representations of
objects works well. Choosing the most likely object resolves simple one-to-one ref-
erences in almost 60% of the REs. In assessing the success of the method recall that
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Table 5 Evaluation per RE on
the test set (threshold=0.8).
TP:True Pos., FP:False Pos.

Target Set Size s MRR

s=0 Correct (TP=0, FP=0) 59.0% 0.59
s=1 Correct (TP=1, FP=0) 37.0% 0.71

Partly correct (TP=1) 48.4%
s>1 Correct (TP=s , FP=0) 25.9% 0.73

Partly correct (TP=s) 26.8%
Partly correct (TP≥2) 51.4%
Partly correct (TP≥1) 67.3%

Total TP=s, FP=0 44.3% 0.66
TP=s 49.4%

this reference resolution problem is a difficult one – the candidate set contains 33
candidate referents on average.

For the general case – where there might be 0, 1, or more correct referents –
the extended method using thresholds resolves 44.3% of the referring expressions
correctly, meaning that it selected exactly the right set of referents, so this is an
even more difficult problem than the one-to-one case. Not surprisingly, the result is
not as good as the one-to-one case, but still higher than the 42% for the one-to-one
references in Kennington & Schlangen’s puzzle piece setting.

When there is one target referent, the extended method produces a completely
correct answer in 33.3% of the REs, and a partly correct answer in 49.2%. The basic
method of choosing the most likely object was correct in 59%. However, we can
now also resolve the other cases without explicitly representing information about
the target set size.

5 Discussion

Given the sparseness of the language data and the crowd-sourced nature of the ge-
ographical data, we consider the results a good step towards incorporating spatial
reference resolution into a real-time system.

Since OpenStreetMap tags most often are plain English words, an obvious al-
ternative idea is to simply look for those words in the input (i.e. if the user men-
tions a “building”, this would translate to OpenStreetMap entities having the tag
building). This is in fact what Götze & Boye (2015) have tried before. However,
that straightforward approach has drawbacks: It is language-dependent, it requires
manual intervention and translation-rule writing (since some words like “street”
have OpenStreetMap tag counterparts that no user would ever say: primary,
secondary etc.), and it presupposes that every reference refers to exactly one
entity. The probabilistic approach presented in this paper has none of these draw-
backs.

Recall that the geographical representation is imperfect in two ways. First, we
cannot be sure that all information in OpenStreetMap is complete and correct. Sec-
ond, the GPS signal of the pedestrian’s position is only an approximation of his real
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position. This situation is however realistic in this domain (Modsching et al. 2006)
and we have therefore not manipulated neither the map representation nor the GPS
signal. The features that represent positional information are noisy, and a closer look
at the classifiers of the words left and right reveals that they have not learned any as-
sociation with these features, their associated weights are close to 0, i.e. they do not
influence the object rank. We expect that a more accurate GPS signal will improve
the results (cf. Misu et al. 2014).

On the other hand, semantic information about an object’s type or appear-
ance correlates well with type features that we would expect. For example, the
classifier for the noun building associates the highest weight with the feature
building yes and one of the lowest weights to the feature highway.

Table 6 shows the highest and lowest weighted features for the nouns road and
building.

Table 6 Semantic (OSM)
features correlate well with
types: extract of the word
classifiers for road and build-
ing

croad cbuilding
feature weight feature weight
highway 1.8894 building=yes 1.3778
name 1.6214 website 1.1827
secondary 0.8873 t50 0.5660
bus stop −0.5856 waste basket−0.2552
distal −0.7588 highway −0.9854
never −0.8692 distal −1.6728

Context information about whether an object has been mentioned before, within
a certain time span, or a certain distance traveled, also shows the expected cor-
relations. For the modifier same, the corresponding classifier learns high weights
for features indicating that the object has been recently mentioned and the lowest
weights to features that indicate that an object has not recently been mentioned as
shown for the words same and this in Table 7.

Table 7 Context features in
function words: extract of the
word classifiers for this and
same. (cf. Table 2)

cthis csame
feature weight feature weight
highway 1.0784 t100 1.1097
mrRE 0.7123 m10 0.9109
secondary 0.6251 secondary 0.6382
track −0.2252 never −0.1744
angle −0.3001 distal −0.5068
distal −1.5258 mrRE −0.7048

The size of the vocabulary that the pedestrians use to describe their environment
is relatively small. From our training set, we obtain about 280 word classifiers, most
of them have seen only few examples. In the complete data set of (313 distinct to-
kens), the average number of examples per classifier is 63.3, the median is 31.5.
Only 73 words occur at least 10 times, 45 occur at least 20 times. With the train-
ing set that we have used, at least 90% of the words in an RE had classifiers and
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60% have classifiers that were trained on at least 20 examples. Figure 3 shows the
classifier coverage for different training set sizes.

Fig. 3 Words per RE that have classifiers

6 Related Work

How the meaning of words can be grounded in perceptive information has recently
become an active area of research (Roy 2005, Mooney 2008). When dealing with
the problem of Reference Resolution, mainly visual information is considered to
model the meaning of words and phrases (Kruijff et al. 2006, Matuszek et al. 2014,
Kennington & Schlangen 2015).

In our domain of pedestrian wayfinding, direct visual input is hard to obtain.
Some studies rely on photographs (Baltaretu et al. 2015), but in a working real-time
wayfinding system, photographs will be insufficient as pedestrians are not restricted
in their movement and can quickly turn around to face another direction.

Works that do not rely in visual information, but on a direct representation of
the physical environment typically work on a domain that is considerably smaller
than ours, with 10 candidate objects or fewer and where objects are of only few
distinctive types (Gorniak & Roy 2005, Schütte et al. 2010, Funakoshi et al. 2012).
In (Kennington & Schlangen 2015), the set of objects is comparable in size to ours.
They process the set of puzzle pieces using computer vision methods. However, all
objects are clearly distinct from each other and all are of the same type. Instead of
direct perceptual input, we rely on a crowd-sourced map representation of the en-
vironment that covers the study area well and use features from the semantic tags
associated to the objects and that are also crowd-sourced. The Pursuit corpus (Blay-
lock 2011), in which car drivers are also describing while they are moving along a
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path, is in principle suitable for this task as well, but the area is not very well cov-
ered in OpenStreetMap at this point and the object annotation contains references to
several different databases, and no information on other candidate objects.

Misu et al. (2014) have attempted to resolve spatial references with good success
in a similar setting. Instead of descriptions, car drivers pose queries about Points of
Interest (POI). Like in the data we use, they use information about the speaker posi-
tion and the POI positions and types. Additionally, they have access to the drivers’
head pose when speaking and an analysis of the data showed that directional in-
formation (left/right) aligned well with the speakers’ mentions of directions, even
though they also report errors in the GPS information. In this work however, knowl-
edge about the referent candidates is assembled manually. They also explicitly ex-
clude context information such as dialog history.

How to segment the context into objects is an active area of research. Context
segmentation is typically done independently for each modality and the information
then fused. Kruijff et al. (2006) have proposed a framework to incorporate this step
into a rule-based reference resolution algorithm, and Bruni et al. (2014) fuse infor-
mation from the linguistic and visual context to obtain an integrated representation
of meaning. For context representations based on visual input, computer vision al-
gorithms are applied with good results for small domains and where the objects are
clearly distinct from each other (Matuszek et al. 2012, Kennington & Schlangen
2015). Krishnamurthy & Kollar (2013) and Malinowski & Fritz (2014) perform this
segmentation on photographs that depict rather everyday scenes and Malinowski &
Fritz (2014) account for uncertainty in the image segmentation by utilizing the as-
sociated confidence scores. All of these approaches do however assume that every
object (or segment) corresponds to a referent (unless the RE is a plural).

In OpenStreetMap, objects do have clear boundaries, but as we have described
in Section 3.2, this segmentation does not align with the objects that the pedestrians
in the data refer to. We handle this discrepancy by resolving REs to sets of objects
based on the probability distribution returned by the word classifiers. An alternative
approach is to structure the context representation beforehand, i.e. decide which sets
of entities are available for reference and modify the candidate set accordingly. Fu-
nakoshi et al. (2012) use Reference Domain Theory (Salmon-Alt & Romary 2009),
grouping tangram pieces based on proximity to determine which reference domains,
i.e. sets of objects, can be referred to. There is good evidence for how humans per-
ceptually group objects (Thórisson 1994), e.g. based on proximity. However, in our
domain and with the geographic representation at hand, it remains unclear how to
represent a set of objects based on the features of the individual objects. This is a
known issue in research using OpenStreetMap (Ballatore et al. 2013) and we leave
this as a question for future research.

Finally, in an interactive wayfinding system, references to landmarks are also an
essential part of the generation process. There are at least two steps involved in this
process. The first one decides which landmark to choose, usually on the basis of
the current routing situation and some calculation of which objects are most salient
(e.g. Raubal & Winter 2002, Götze & Boye 2016a). The second step decides how to
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translate the object representation into a suitable referring expression (e.g. Garoufi
& Koller 2011, Paraboni & van Deemter 2014).

7 Conclusion

We have presented a method for situated reference resolution in a large-scale envi-
ronment where the context changes with the speaker’s movement. Using an existing,
crowd-sourced geographic database that represents objects at different granularities
than the speakers refer to them. We have shown a way to extend current methods
to allow for cases where the correct set of target objects is empty or contains more
than one object.
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