
Negotiative Spoken-Dialogue Interfaces to Databases

Johan Boye and Mats Wir én
Voice Technologies
TeliaSonera Sweden

Johan.Boye@teliasonera.com, Mats.Wiren@teliasonera.com

Abstract

The aim of this paper is to develop a principled
and empirically motivated approach to robust,
negotiative spoken dialogue with databases. Ro-
bustness is achieved by limiting the set of repre-
sentable utterance types. Still, the vast majority
of utterances that occur in practice can be han-
dled.1

1 Introduction

The need for spoken dialogue with databases
is rapidly increasing as more and more non-
technical people access information through their
PCs, PDAs and mobile phones. The related re-
search area of natural-language (text-based) in-
terfaces to databases has a long tradition, going
back at least to around 1970. Still, a kind of cul-
mination of this research occurred already in the
1980s (for an excellent overview, see Androut-
sopoulos et al. 1995). The high-end systems of this
time, for example,TEAM (Grosz et al. 1985),LO-
QUI (Binot et al. 1991) andCLE/CLARE (Alshawi
1992, Alshawi et al. 1992) used linguistically-
based syntactic analysis and powerful interme-
diary languages for semantic representation, and
were able to engage in continuous dialogue in-
volving complex phenomena such as quantifica-
tion, anaphora and ellipsis. In part, this was pos-
sible because the systems were alleviated from the

1The authors would like to thank the Adapt group at Telia-
Sonera and KTH for discussions and feedback, and the par-
ticipants at a presentation of this material at Göteborg Uni-
versity for valuable comments. This work was supported by
the EU/HLT-funded project NICE (IST-2001-35293).

kind of noisy input generated by speech recogni-
tion, since text-based input was the only realistic
option at the time.

Although some of today’s commercial spoken-
language information services also provide access
to databases, they do not aim at being general
database interfaces in the sense of the systems
mentioned above. Rather, they provide a limited
view of the database which is relevant to a par-
ticular task, for example, finding a train trip that
fulfills certain constraints. This restricts the user
to asking certain types of question that are com-
patible with the task, whereas other types are not
allowed. In many cases, the system also keeps the
initiative to itself by treating the user as an answer-
supplier.

An advantage of this cautious approach to spo-
ken dialogue with databases is that it allows a very
simple semantic representation of user utterances,
typically as flat slot–filler structures representing
the propositional contents. For example, the utter-
ance “I’d like a two-room apartment on the South
Side” could be represented as [numberof rooms
= 2, area = southside]. Hence, robust methods
like phrase-spotting can be used for extracting the
meaning even from noisy input.

However, progress in speech recognition and
robust parsing during the last decade opens up the
possibility of constructing more general spoken-
dialogue database interfaces. In this paper, we will
investigatenegotiativespoken-dialogue interfaces
to relational databases. “Negotiative” here means
that the user is able to discuss and compare several
alternative solutions to a problem (Larsson 2002).



More specifically, the goal of the paper is to find
an empirically based trade-off between robustness
and expressiveness in spoken database dialogue:
On the one hand, by deliberately restricting the
expressiveness of the semantic representation for-
malism (keeping it suitably coarse-grained), we
make it apt for robust parsing. On the other
hand, the representation must be sufficiently fine-
grained tocapture the distinctions actually made
in spoken database dialogue. We present a for-
malism that meets these goals, as well as a robust
parsing algorithm for mapping speech recognizer
output to this representation. The approach has
been used successfully in Adapt (Bell et al. 2001),
a multimodal dialogue system in an apartment do-
main.

2 Negotiative dialogue

The following piece of dialogue with the Adapt
system provides an illustration of the kind of ne-
gotiative dialogue we are aiming to handle.

1. User: Are there any two-room apartments on
the South Side that cost less than two mil-
lion?

2. System: Do you have any other require-
ments?

3. User: A balcony would be nice.

4. System: There are seven such apartments.
They are shown on the map.

5. User: I see . . . this apartment on Horn street
. . . how much does it cost?

6. System:The apartment on Horn Street costs
1,900,000 kronor.

7. User: Ok . . . is there anything cheaper?

8. System: The apartment on Blekinge street
costs 1,500,000 kronor.

9. User: Hmm . . . please tell me more about that
apartment.

In utterances 1 and 3, the user homes in on the kind
of apartment he wants to consider (thespecifica-
tion phase). The system briefly presents a num-
ber of results (in utterance 4) by indicating their

position on the map, after which the user starts
asking questions about the individual apartments,
comparing their relative merits (utterances 5, 7, 9).
Thisnegotiationphase is what distinguishes nego-
tiative dialogue systems from simpler systems.

To handle negotiative dialogue, the system must
be able to distinguish specification utterances like
“I’d like an apartment with a balcony” from utter-
ances seeking information about a particular apart-
ment, like “Does that apartment have a balcony?”.
The system must also be able to handle refer-
ences to different objects in the same utterance,
like “Is there anything cheaper than that apartment
on King’s street?”.

3 Domain models

From the user’s point of view, the purpose of a dia-
logue as exhibited above is to retrieve information
about a set of interrelated objects, such as apart-
ments, prices and addresses. The set of all such
objects in the domain, together with their rela-
tions, constitutes thedomain modelof the system.
From the system’s point of view, the goal is then to
translate each user utterance into an expression de-
noting a subset of the domain model (namely, the
subset that the user is asking for), and to respond
by either presenting that subset or ask the user to
change the constraints in case the subset cannot be
readily presented.2

We will assume that each object in the do-
main model is typed, and to this end we will as-
sume the existence of a set oftype symbols, e.g.apartment; integer;money; street name etc., and
a set oftype variablest1; t2; : : : ranging over the
set of type symbols. Each type symboldenotesa
set of objects in an obvious way, e.g.apartment
denotes the set of apartments. Both type symbols
and type variables will be written with asans serif
font, to distinguish them from symbols denoting
individual objects and variables ranging over indi-
vidual objects, which will be written using anital-
icized font. The expressiont : x is taken to mean
the assertion “x is of typet”.

Objects are either simple, scalar or structured.

2Naturally, this is somewhat idealized, as there are meta-
utterances, social utterances, etc. that are not translatable to
database queries. Still, 96 % of the utterances in our Adapt
corpus correspond to database queries (compare Section 6).



Objects representable as numbers or strings are
simple (such as objects of the typemoney orstreet name). Scalar objects are sets of simple ob-
jects, whereas structured objects have a number of
attributes, analogous to C structures or Java refer-
ence objects. Typically, structured objects corre-
spond to real-world phenomena on which the user
wants information, such as apartments in a real-
estate domain, or flights and trains in a travel plan-
ning domain.

We will use the notationx:a to refer to at-
tribute a of object x. For example, an apart-
ment has the attributessize, number of rooms ,price, street name , accessories , etc., with the
respective typessquare meters, integer, money,street name, set(accessory), etc. Hence ifapartment : x is a true assertion, then so issquare meters : (x:size).

Thus, a (structured) objecto1 might be re-
lated to another (simple, scalar or structured) ob-
ject o2 by letting o2 be the value of an attribute
of o1. For instance, an apartmenta is related
to “King’s street” by letting a:street name =Kings street . There is a standard transformation
from this kind of domain models into relational
database schemes (see e.g. Ullman 1988, p. 45),
but domain models can also be represented by
other types of databases.

We will further assume that types are arranged
in a subtype hierarchy. The typet1 is a subtype oft2 (written ast1 � t2) if t2 : x is a true assertion
whenevert1 :x is a true assertion.

4 Semantic representation formalism

In this section, we describe expressions called “ut-
terance descriptors”, which constitute the seman-
tic representation formalism used internally in the
Adapt system.

4.1 Constraints

Constraints express desired values of variables and
attributes. The following are all examples of con-
straints:� x :street name = King street� x :price < 2; 000; 000� balcony 2 x :accessories� x :street name 2 fKing street ;Horn streetg

4.2 Set descriptors

Set descriptors are expressions denoting subsets of
the domain model. They have the form?t :x (P ),
whereP is a conjunction of constraints in which
the variablex occurs free. Such a set descriptor
denotes the set of all objectsx of type t such thatP is a true assertion ofx. Thus,?apartment :x (x:area = South side^ x:number of rooms = 2)
denotes the set of all apartments whosearea
attribute has the valueSouth side and whosenumber of rooms attribute has the value 2.

We may also add existentially quantified “place-
holder” variables to a set descriptor without
changing its semantics. For instance, the set de-
scriptor above is equivalent to:?apartment :x 9integer :y (x:area = South side^ x:number of rooms = y ^ y = 2)
Thus, set descriptors can also have the form?t1 :x 9t2 : y (P ), whereP is a conjunction of con-
straints in whichx andy occur.

4.3 Representing context

Utterances may contain explicit or implicit ref-
erences to other objects than the set of objects
sought. For example, when the user says “A bal-
cony would be nice” in utterance 3 of the dialogue
fragment of section 2, he further restricts the con-
text (the set of apartments) which was obtained af-
ter his first utterance.

Obviously, an utterance cannot be fully inter-
preted without taking the context into account.
Thus the context-independent interpretation of an
utterance is a function, mapping a dialogue con-
text (in which the utterance is made) to the final
interpretation of the utterance. In our case, a di-
alogue context is always an object or a set of ob-
jects (a subset of the domain model), and the final
interpretation is a set descriptor, denoting the set
of objects that are compatible with the constraints
imposed by the user.

Accordingly, the context-independent interpre-
tation of “A balcony would be nice” is taken to be�S ?apartment :x(balcony 2 x :accessories ^ x 2 S)
whereS is a parameter that can be bound to a
subset of the domain model. Thus the expression



above can be paraphrased “I want an apartment
from S that has a balcony”. The idea is that the
ensuing stages of processing within the dialogue
interface will infer the set of objects belonging to
the context, upon which the functional expression
above can be applied to that set, yielding the fi-
nal answer. In the dialogue example of section 2,S will be bound to the set of apartments obtained
after utterance 1.

An utterance may contain more than one im-
plicit reference to the context. For example, “Is
there a cheaper apartment?” (utterance 7 of the di-
alogue fragment of section 2) contains one implicit
reference to a set of apartments from which the
selection is to be made, and another implicit ref-
erence to an apartment with which the comparison
is made (i.e. “I want an apartment fromS which is
cheaper than the apartmenty”).3 Hence the repre-
sentation is:�apartment :y �S ?apartment :x(x:price < y:price ^ x 2 S)
The contextual reasoning carried out by the Adapt
system then amounts to applying this expression
first to the apartment mentioned in utterance 6, and
then to the set of apartments introduced by utter-
ance 4.

Therefore, we define anutterance descriptorto
be an expression of the form�X1 : : : �Xn U ,
whereXi is either a set variable or a typed vari-
ablet :x , and whereU is a set descriptor in which
the variables ofX1 : : : Xn occur free. Thus, an
utterance descriptor is a function takingn argu-
ments (representing the context), returning as re-
sult a subset of the domain model.

Yet an example is given by the utterance ”How
much does the apartment cost”, which is repre-
sented by�apartment :y ?money :x (y:price = x)

Utterance descriptors can also contain type vari-
ables, when sufficient type information is lacking.
For instance, “How much does it cost?” would be
represented by�t :y ?money :x (y:price = x)

3For comparisons with sets of objects, see section 7.

4.4 Minimization and maximization

In many situations one is interested in the (single-
ton set of the) object which is minimal or maximal
in some regard, for example the “biggest apart-
ment” or the “cheapest ticket”. To this end, we
will further extend the notion of utterance descrip-
tor.

Consider an expression of the form?t1 :x �t2 :y (P )
wheret2 is a numerical type andP is a conjunc-
tion of constraints in whichx andy occur. We will
take such an expression to denote the (singleton)
set obtained by first constructing the set denoted
by ?t1 :x (P ), and then selecting the object whose
value fory is minimal. For instance, the utterance
“Which is the cheapest apartment?” would by rep-
resented as�S ?apartment :x �money :y(x:price = y ^ x 2 S)

When applied to a context setS, the function
above returns an expression denoting the single-
ton set of the apartment inS whose price attribute
has the minimal value. There is also a analogous
maximization operatorM .

5 Robust parsing

The robust parsing algorithm consists of two
phases, pattern matching and rewriting. In the lat-
ter phase, heuristic rewrite rules are applied to the
result of the first phase. When porting the parser
to a new domain, one has to rewrite the pattern
matcher, whereas the rewriter can remain unal-
tered.

5.1 Pattern matching phase

In the first phase, a string of words4 is scanned left-
to-right, and a sequence of constraints and meta-
constraints, triggered by syntactic patterns, are
collected. The constraints will eventually end up
in the body of the final utterance descriptor, while
the purpose of the meta-constraints is to guide the
rewriting phase.

The syntactic patterns can be arbitrarily long,
but of course the longer the pattern, the less fre-
quently it will appear in the input (and the more

4Currently, 1-best output from the speech recognizer is
used.



sensitive it will be to recognition errors, disfluen-
cies etc.). On the other hand, longer syntactic pat-
terns are likely to convey more precise informa-
tion.

The solution is to try to apply longer patterns
before shorter patterns. As an example, recon-
sider the utterance “I’m looking for an apartment
on King’s street”, and suppose that “apartment onS” (whereS is a street), “apartment” and “King’s
street” are all patterns used in the first phase. If the
utterance has been correctly recognized, the first
pattern would be triggered. However, the utter-
ance might have been misrecognized as “I’m look-
ing for an apartment of King’s street”, or the user
might have hesitated (“I’m looking for an apart-
ment on ehh King’s street”). In both cases the
pattern ”apartment onS” would fail, so the pat-
tern matching phase would have to fall back on the
two separated patterns “apartment” and “King’s
street”, and let the rewriting phase infer the rela-
tionship between them.

5.2 Meta-constraints

The pattern matching rules in the pattern matcher
associate a sequence of constraints and meta-
constraints to each pattern. The most commonly
used meta-constraint has the formobj (t :x) which
is added when an objectx of typet has been men-
tioned. For instance, in the Adapt parser, the pat-
tern ”apartment” would yieldobj (apartment :x1)
whereas the pattern ”King’s street” would yieldobj (apartment :x2); x2:street = Kings street
wherex1 andx2 are variables. The existence of
the objectapartment : x2 is inferred, since in
the Adapt domain model, streets can only occur in
the context of thestreet attribute of theapartment
type. If the domain model would include also an-
other type (restaurant, say) that also has an at-
tributestreet , the pattern could instead yield:obj (t :x2); x2:street = Kings street
wheret is a type variable.

The meta-constrainthead obj (t :x) is a variant
of obj (t : x) that conveys the additional informa-
tion thatx is likely to be the object sought. We will
illustrate the use of this and other types of meta-
constraints in section 5.4.

5.3 Rewriting phase

In the rewriting phase, a number of heuristic
rewrite rules are applied (in a fixed order) to the
sequence of constraints and meta-constraints, re-
sulting in a utterance descriptor (after removing all
meta-constraints). The most important rules are:� Unify as many objects as possible.� Identify the object sought.� Identify contextual references.� Resolve ambiguities.

The first rule works as follows: Suppose pattern
matching has resulted in:obj (apartment :x1); obj (t :x2); x2:street = Kings street
Then checking whether the two objectsx1 andx2 are unifiable amounts to checking whether the
typesapartment andt are compatible (which they
are, ast is a variable), and checking whether anapartment has an attributestreet (which is true).
Therefore the result after applying the rule isobj (apartment :x1); x1:street = Kings street

As for the second rule, the object sought is
assumed to be the leftmosthead obj in the se-
quence. Failing that, it is assumed to be the left-
most obj . In the sequence above, that meansapartment : x1, which results in:?apartment :x1 (obj (apartment :x1);x1:street = Kings street )
No more rewrite rules are applicable on this ex-
pression. The final result is obtained by adding the
contextual argumentS and by removing all meta-
constraints:�S ?apartment :x1 (x1:street = Kings street ^ x1 2 S)
5.4 Example

The utterance “I’d like an apartment on Horn
Street that is cheaper than the apartment on King’s
street” exemplifies the use of several rewrite rules
in the Adapt system. First of all, “apartment on
Horn Street” yieldsobj (apartment :x1); x1:street = Horn street



The pattern “cheaper” yields the sequencehead obj (apartment :x2); obj (apartment :x3); x2 6= x3;obj (money :y2); x2:z = y2;obj (money :y3); x3:z = y3; y2 < y3;ambiguous(z; fprice ;monthly feeg; default(price))
which is appended to the first sequence. Theambiguous meta-constraint conveys that the
variable z is one of the attributesprice ormonthly fee. If no further clues are against,z will
be bound toprice .

Finally, the pattern “apartment on King’s
Street” appends the sequenceobj (apartment :x4); x4:street = Kings street

In the rewriting phase, objects are first unified
in a left-to-right order. Thusx1 andx2 are uni-
fied, but the meta-constraintx2 6= x3 prevents
unification ofx2 andx3. Instead,x3 andx4 are
unified. The ambiguity is resolved (bindingz toprice). Thereafter, the variablex2 is identified as
the main object, and the implicit contextual refer-
ence argumentS is added.�S ?apartment :x2 (x2:street = Horn streetx2 2 S; obj (money :y2); x2:price = y2;x2 6= x3; x3:street = Kings street ;obj (money :y3); x3:price = y3; y2 < y3)

Finally, the variablex3 is identified as a contex-
tual reference. After removing meta-constraints,
this results in:�apartment :x3 �S ?apartment :x2(x2:street = Horn street ^ x2 2 S^ x3:street = Kings street ^ x2:price < x3:price)
6 Discussion

Given that the goal of this paper is to find an em-
pirically based trade-off between robustness and
expressiveness in spoken database dialogue, there
are two questions that need to be answered:

1. Is the parsing algorithm robust enough?

2. Is the formalism expressive enough?

For an answer to the first question, we refer
to Boye and Wirén (2003). Basically, that paper
demonstrates that the parser is robust in the sense

of outputting utterance descriptors with a signifi-
cantly higher degree of accuracy than the strings
output by the speech recognizer.

To answer the second question, we need to
look at the kinds of utterances thatcannot be
represented by the formalism. To this end,
we have studied two corpora with transcriptions
of database dialogue. One is from the Adapt
apartment-seeking domain (Bell et al. 2000), com-
prising 1 858 user utterances, and the other is from
the SmartSpeak travel-planning domain (Boye et
al. 1999), comprising 3 600 user utterances. Both
corpora are the results of Wizard-of-Oz data col-
lections used for development of the systems. In
both cases the wizard tried to promote user ini-
tiative as well as to simulate near-perfect speech
understanding.

Below we provide a list of utterance types that
are not representable as utterance descriptors, but
instances of which are found in at least one of the
corpora. The list was obtained by manually check-
ing several hundred utterances from each of the
two corpora and, in addition, searching the entire
corpora for a variety of constructions judged to be
critical.

1. Constructions involving a function of more
than one structured object: “How many two-
or three-room apartments are there around
here?”

2. Complex and–or nesting: “A large one-room
apartment or a small two-room apartment.”

3. Selection of elements from a complementary
set: ”Are there any other apartments around
Medborgarplatsen that are about 50 square
meters big and that are not situated at the
ground floor?”

4. Comparatives involving implicit references
where the comparison is made with aset
of objects rather than with a single object.
To illustrate, assume that several flight alter-
natives and their departure times have been
up for discussion previously in the dialogue.
The user then asks: “Is there a later flight?”,
requesting a flight which is later than all the



previously mentioned ones.5

The most common of these types is (1), which
accounts for 0.4 % in the apartment corpus (but
does not show up at all in the travel corpus). In
none of the other cases do the number of occur-
rences exceed 0.05 % of a single corpus. We thus
conclude that the kinds of utterances that are not
representable by our semantic formalism only oc-
cur marginally in our corpora.

It is also interesting to consider utterance types
that we cannot handle and thatdon’t appear in our
current corpora. For example,TEAM (Grosz et al.
1985) handles constructions such as “Is the small-
est country the least populous” (comparison in-
volving two superlatives) and “For the countries in
North America, what are their capitals?” (“each”
quantification). Although it may be argued that
these particular sentences are not typical of spo-
ken negotiative dialogue, session data from other
spoken database interfaces are certainly useful for
the purpose of testing the formalism.

We set out by claiming that negotiative dialogue
requires that we go beyond flat slot–filler struc-
tures. Indeed, even a quick look at the corpora
reveals that a substantial part of the utterancesdo
require the added expressiveness. Thus, in addi-
tion to trivial specification utterances such as “I’d
like a two-room apartment on the South Side”, one
encounters numerous instances like the following
that can be represented by our formalism, but not
in general by flat slot–filler structures:

1. Specifications such as “I’d like an apartment
with a balcony” as opposed to seeking infor-
mation about a particular aspect of an apart-
ment, like “Does that apartment have a bal-
cony?”.

2. Comparative constructions involving explicit
references to different objects in the same
utterance, such as “I’d like an apartment at
Horn street which is cheaper than the apart-
ment at King’s street.”.

5To determine whether such a comparison is made with a
set of objects or with a single object, it is in general not suf-
ficient to look only at the last utterance. Thus, to handle this,
the context-independent representation of the utterance must
cater for both possibilities, thereby allowing the contextual
analysis to make the final verdict (see further Section 7).

3. Comparatives involving implicit references,
such as “Is there anything cheaper?”.

4. Superlatives: “The cheapest apartment near
Karlaplan.”

5. Combinations of a comparative and selection
of a minimal element: “When is the next
flight?”, which can be paraphrased as “Give
me the earliest flight that departs after the
flight that you just mentioned.”

7 Future work

The current Adapt parser assumes certain contex-
tual references to refer to a single object rather
than a set of objects (e.g. see the representation of
“I want a cheaper apartment” in section 4.3). Ob-
viously, a more general representation would be�S2 �S1 ?apartment :x 8apartment :y(x:price < y:price ^ x 2 S1 ^ y 2 S2)
(“I want apartments fromS1 cheaper than all the
apartments inS2”). It would then be the task of
the contextual reasoning component to infer the
setS2. In the same vein, a more general form of
representing “How much do the apartments cost”
would be�S ?money :x 9apartment :y (y:price = x ^ y 2 S)
(i.e. “I want the prices of the apartments inS”). As
is clear from these examples, such an extension,
allowing the user to refer to sets of objects, would
require the parsing algorithm to infer which vari-
ables are bound by universal quantifiers and which
are bound by existential quantifiers6.

This extension can be realized by introduc-
ing two new meta-constraintsall obj (t : x) andsome obj (t : x). The pattern “cheaper” would
then yield:head obj (apartment :x2); all obj (apartment :x3);x2 6= x3; obj (money :y2); x2:z = y2;obj (money :y3); x3:z = y3; y2 < y3;ambiguous(z; fprice;monthly feeg; default(price))
signalling thatx3 should be universally quantified.
Similarly, “How big” would yield:head obj (square meters :y);some obj (apartment :x); x:size = y

6The current approach avoids this issue by allowing ref-
erences only to individual objects, in which case the differ-
ence between universal quantification and existential quan-
tification disappears.



signalling thaty should be existentially quantified.
Future work involves implementing and evalu-

ating the need and robustness of this extension.

8 Related work

Approaches to handling spoken dialogue with
databases can be largely divided into two types:

1. General-purpose linguistic rules and power-
ful semantic formalisms: not robust enough;
overly expressive.

2. Pattern matching and flat slot–filler lists: ro-
bust but not expressive enough.

Several attempts at synthesizing these approaches
have been made, either by “robustifying” (1) (for
example, van Noord et al. 1999) or by extending
(2) with the capability of handling general linguis-
tic rules (Milward and Knight 2001). However, the
semantic representations produced are still limited
to that of flat slot–filler lists, and as a result they
are not suitable for negotiative dialogue.

We have shown empirically that the subclass of
questions handled by our approach is a useful one.
In a similar vein, Popescu et al. (2003) define a
class of “semantically tractable questions” to their
PRECISE system. The idea is that each seman-
tically tractable question provably yields a cor-
rect answer, whereas questions outside of the de-
fined class are answered with an “error message”
which allows the user to reformulate her question.
Hence, thePRECISEsystem is “robust” in a con-
servative way, since it guarantees that no incorrect
answer will ever be produced. On the other hand,
PRECISE is text-based and has no dialogue capa-
bilities, and thereby circumvents the problems in-
troduced by speech-recognition errors and under-
specified utterances.

9 Conclusion

The aim of this paper has been to develop a prin-
cipled and empirically motivated approach to ro-
bust, negotiative spoken dialogue with databases.
Key to our approach is the choice of semantic
representation formalism. On the one hand, it is
more expressive than today’s commonly used, flat
slot–filler lists that are limited to representing the
propositional contents of utterances. On the other

hand, it is still strongly restricted to make it com-
patible with the kind of robust parsing needed for
spoken dialogue. While more empirical investiga-
tion is needed, experience with our current corpora
indicates that the robustness–expressiveness trade-
off described here is a reasonable first approxima-
tion.

References
Alshawi, H. The Core Language Engine. The MIT

Press, 1992.
Alshawi, H., Carter, D., Crouch, R., Pulman, S.,

Rayner, M. and Smith, A.CLARE — A Contex-
tual Reasoning and Cooperative Response Frame-
work for the Core Language Engine. Final report,
SRI International, 1992.

Androutsopoulos, I., Ritchie, G. and Thanish, P. Nat-
ural Language Interfaces to Databases — An Intro-
duction,Journal of Natural Language Engineering
1(1), pp. 29–85, 1995.

Bell, L., Boye, J., Gustafson J. and Wirén, M. Modal-
ity Convergence in a Multimodal Dialogue System.
Proc. Götalog, pp. 29–34, 2000.

Bell, L., Boye, J. and Gustafson J. Real-time Handling
of Fragmented Utterances.Proc. NAACL Workshop
on Adaptation in Dialogue Systems, 2001.

Binot, J-L., Debille, L., Sedlock, D. and Vandecapelle
D. Natural Language Interfaces: A New Philosophy.
SunExpert Magazine, pp. 67–73, January 1991.

Boye, J., Wirén, M., Rayner, M., Lewin, I., Carter, D.
and Becket, R. Language Processing Strategies and
Mixed-Initiative Dialogues. InProc. IJCAI work-
shop on Knowledge and Reasoning in Practical Di-
alogue Systems, 1999.

Boye, J. and Wirén, M. Robust Parsing of Utterances
in Negotiative Dialogue.Proc. Eurospeech, 2003.

Grosz, B., Appelt, D., Martin, P. and Pereira, F.TEAM:
An Experiment in the Design of Transportable
Natural-Language Interfaces. Technical note 356,
SRI International, 1985.

Larsson, S. Issue-based Dialogue Management. Ph.D.
Thesis, Göteborg University, ISBN 91-628-5301-5,
2002.

Milward, D. and Knight, S. Improving on Phrase Spot-
ting for Spoken Dialogue Processing.Proc. WISP,
2001.

van Noord, G., Bouma, G., Koeling, R. and Nederhof,
M-J. Robust Grammatical Analysis for Spoken Dia-
logue Systems.Journal of Natural Language Engi-
neering, 5(1), pp. 45–93, 1999.

Popescu, A., Etzioni, O. and Kautz, H. Towards a The-
ory of Natural Language Interfaces to Databases. In
Proc. International Conference on Intelligent User
Interfaces (IUI-2003), Miami, Florida, 2003.

Ullman, J. Database and Knowledge-base Systems,
Volume I. Computer Science Press, 1988.


