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Abstract 

This paper presents an algorithm for domain-dependent 
parsing of utterances in negotiative dialogue. To 
represent such utterances, the algorithm outputs 
semantic expressions that are more expressive than 
propositional slot-filler structures. It is very fast and 
robust, yet precise and capable of correctly combining 
information from different utterance fragments. 

1. Introduction 

The rapidly increasing number of spoken-dialogue 
systems have led to numerous robust parsers for limited 
domains having been constructed during the last decade. 
By “parsing” we here mean a mapping from the input 
utterance to a context-independent semantic 
representation. By “robust” we mean that the parser will 
give a reasonable result even on very noisy input.  

In simple spoken-dialogue applications, parsing can 
be interleaved with speech recognition (if the language 
model is grammar-based). The vast majority of launched 
commercial systems fall into this category. However, 
spoken-dialogue systems aiming at less system control 
and more user initiative usually have a statistical n-gram 
recogniser, due to the difficulties of constructing a 
grammar with sufficient coverage. In this case (which is 
what we consider in this article), a separate parser is 
needed to transform the output from the recogniser into 
a semantic representation. 

Generally speaking, these robust parsers have been 
highly successful. Distinguishing features are: very fast 
execution, short development times (down to a few 
person weeks), and performance as good as or better 
than state-of-the-art parsers based on large-coverage 
grammars. Such robust parsers are usually based on 
phrase-spotting, and output slot–filler structures 
representing the propositional contents of the input 
utterance. Thus, precision is traded for robustness, 
execution speed and ease of development. 

However, propositional slot–filler structures are not 
sufficient in cases where more user initiative is involved, 
such as negotiative dialogue (for example, travel 
planning, appointment scheduling, or apartment 
browsing). In this paper, starting from a domain model 
in the form of a relational database, we derive a richer 
semantic representation formalism suitable for 
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iative dialogue. Furthermore, we describe and 
ate a parsing algorithm for mapping speech-
nition output to this representation. The parsing 
ithm is very fast, yet precise and capable of 
ctly combining information from different utterance 
ents. It has been used successfully in Adapt (Bell 
[1]), a multimodal dialogue system in an apartment 
in. A forerunner was used in the travel-planning 

 SmartSpeak (Boye et al. [2]). 

. Negotiative spoken dialogue systems 

ollowing piece of dialogue with Adapt [1] provides 
ustration of negotiative dialogue: 

. User: Are there any two-room apartments on 
the South Side that cost less than two million? 

. System: Do you have any other requirements? 

. User: A balcony would be nice. 

. System: There are seven such apartments. 
They are shown on the map. 

. User: I see... this apartment on Horn street... 
how much does it cost? 

. System: The apartment on Horn street costs 
1,900,000 kronor. 

. User: Ok... is there anything cheaper? 

tinguishing factor, compared to most system-driven 
gue systems, is that the dialogue may concern 
al objects simultaneously, allowing the user to 
are their relative merits, as in utterance 5 and 7 
. This means, to begin with, that the system must 
le to represent objects (that can be referred to) and 
st properties of objects, as shown in utterance 5. 

ermore, the system must be able to distinguish what 
ed for (the cost) from what is given (the apartment 
orn street). In the rest of the paper, we explore the  
cations of these additional requirements for both 
g and semantic representation. 

3. Back-end: Relational database 

ssume that the domain information is represented 
 least representable) as a relational database. Figure 
ws a relation “apartment” (which is a simplified 
n of the domain model of Adapt [1]). 

e assume that each attribute is typed, so that e.g. the 
ute price has the type money, size has the type 



Figure 1: A domain model represented
 

square meters, etc. Types are arranged in a hierarchy, so 
that e.g. both money and square meters are subtypes of 
integer (which entails that values in both the price 
column and the size column may be compared 
numerically). Some attributes have types which consist 
of an enumeration of all possible values, e.g. the type of 
street name is an enumeration of all the street names in 
Stockholm. 

This kind of type information is essential for the 
semantic representation of utterances, and indeed for the 
parsing algorithm (see Section 5). 

4. Semantic representation formalism 

The semantic output from the parser consists of  
“utterance descriptors”, which are expressions that have 
a natural mapping to a sequence of database operations. 
The by far most applicable kind of utterance descriptor 
is of the form ?x.P (paraphased as “Find x such that P”), 
where P (the body of the expression) is a list of 
constraints, and where x (the head of the expression) 
denotes the sought object. We may write t:x instead of x 
to indicate that x should be of type t. For instance, the 
utterance “I’m looking for an apartment on King’s 
street” would be represented as 

?apartment:x.(x.street = Kings_street) 

Here the type apartment refers to members of the 
database relation with the same name (i.e. rows in the 
table in Figure 1). 

The constraints in the body P specify the desired 
values of database attributes, as well as relations 
between database values and other values. The following 
are all examples of constraints (assuming x denotes an 
apartment): 

• x.street = Kings_street 
• x.price < 2,000,000 
• balcony ∈  x.accessories 

The set of well-formed constraints are completely 
determined by the type information of the back-end 
relational database. For instance, the second constraint 
is well-formed since the price attribute is numerical. 
The third constraint is well-formed since the accessories 
attribute has a list type.  

Utterances may contain explicit or implicit references 
to other objects than the object sought. For instance, “Is 
there a cheaper apartment?” contains an implicit 
reference (“Is there a cheaper apartment than the one 
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1 Curr

ID Street name No Size No of 
rooms 

Price 

31213 Horn street 134 76 2 1,90

61623 King’s street 73 105 4 3,50
... ... ... ... ... 
 by a relational database 

just mentioned?”). Such references are represented 
mbda-bound variables, as in the example: 

λ apartment:y ?apartment:x.(x.price<y.price) 

or an explanation of how to interpret the λ-
ion, see e.g. [5], chapter 15). The idea is that the 
ng processing stages of the dialogue system will 
 what object the user is referring to, and the 
ional semantic expression above can then be 
ed to that object. As an example, consider the 
gue excerpt in Section 2, where the expression 
e is the representation of utterance no 7. Applying 
xpression to the object representing the apartment 

ioned in utterance 6, would result in  

?apartment:x.(x.price < 1,900,000) 

nother example of the use of lambda-bound 
bles is the utterance “How much does it cost”, 
h is represented as: 

λapartment:y ?money:x.(y.price = x) 

nother form of utterance descriptor is used to 
sent superlatives such as “Where is the biggest 
ment?” or “Which is the cheapest?”, but because of 
estricted space we will not discuss these kinds of 
ssions. 

5. Robust parsing algorithm 

robust parsing algorithm consists of two phases, a 
rn matching phase and a rewriting phase. In the 
, heuristic rewrite rules are applied to the result of 
irst phase.  When porting the parser to a new 
in, one has to rewrite the pattern matcher, whereas 
writer can remain unaltered.  

attern matching phase 

e first phase, a string of words1 is scanned left-to-
, and a sequence of constraints and meta-
traints, triggered by syntactic patterns, are 
cted. The constraints will eventually end up in the 
 of the final utterance descriptor, while the purpose 
e meta-constraints is to guide the rewriting phase. 
e syntactic patterns can be arbitrarily long, but of 
e the longer the pattern, the less frequently it will 
r in the input (and the more sensitive it will be to 

                                                   
ently, 1-best output from the speech recogniser is used.  

Monthly 
fee 

Accessories  

0,000 2,830 balcony,  
tiled stove, ... 

... 

0,000 4,113 parquet floor, ... ... 
... ... .... ... 



recognition errors, disfluencies etc.). On the other hand, 
longer syntactic patterns are likely to convey more 
precise information. 

The solution is to try to apply longer patterns before 
shorter patterns. As an example, reconsider the utterance 
“I’m looking for an apartment on King’s street, and 
suppose that “apartment on S” (where S is a street), 
“apartment” and “King’s street” are all patterns used in 
the first phase. If the utterance has been correctly 
recognised, the first pattern would be triggered. 
However, the utterance might have been misrecognised 
as “I’m looking for an apartment of King’s street”, or the 
user might have hesitated (“I’m looking for an apartment 
on ehh King’s street”). In both cases the pattern 
“apartment on S” would fail, so the pattern matching 
phase would have to fall back on the two separated 
patterns “apartment” and “King’s street,” and let the 
rewriting phase infer the relationship between them.  

5.2. Meta-constraints 

The following list enumerates some examples of kinds 
of meta-constraints (Var represents a variable): 
 
obj(Type:Var) An object of type Type has 

been mentioned. 
head_obj(Type:Var) Same as above + the object 

denoted by Var is likely to be 
the object sought. 

Var1 ≠ Var2 Var1  and Var2 denote different 
objects. 

ambiguous(Var, {a1, a2, ... 
an}, default(ai)) 

Var is one of the objects a1, a2, 

... an. If no evidence is against, 
Var should be equal to ai. 

 
The pattern matching rules in the pattern matcher 

associate a sequence of constraints and meta-constraints 
to each pattern. For instance, in the Adapt parser[1], the 
pattern “apartment” would yield 

obj(apartment:x1) 

whereas the pattern “King’s street” would yield 

obj(apartment:x2), x2.street = Kings_street 

where x1 and x2 are variables. The existence of the 
object apartment:x2 is inferred, since in the database 
domain model, streets can only occur in the context of 
the street attribute of the apartment relation. If the 
domain model would include also another relation 
(restaurant, say) that also has an attribute street, the 
pattern could instead yield: 

obj(t:x2), x2.street = Kings_street 

where t is a variable. 

5.3. Rewriting phase 

In the rewriting phase, a number of heuristic rewrite 
rules are applied (in a fixed order) to the sequence of 
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raints and meta-constraints, resulting in a utterance 
iptor (after removing all meta-constraints). The 
important rules are: 
. Unify as many objects as possible. 
. Identify the object sought 
. Identify lambda-bound variables 
. Identify minimisation or maximisation 

attributes (if any) 
. Determine scope of negations (if any) 
. Resolve ambiguities  
e first rule works as follows: Suppose pattern 
ing has resulted in: 

bj(apartment:x1), obj(t:x2), x2.street = Kings_street 

en checking whether the two objects x1 and x2 are 
ble amounts to checking whether the types 
ment and t are compatible (which they are, as t  is a 
ble), and checking whether an apartment has an 
ute street (which is true). Therefore the result after 
ing the rule is 

obj(apartment:x1), x1.street =Kings_street 

 for the second rule, the object sought is assumed 
 the leftmost head_obj in the sequence. Failing that, 
assumed to be the leftmost obj. In the sequence 
, that means apartment:x1, which results in: 

partment:x1. (obj(apartment:x1), x1.street =Kings_street) 

ce no other rewrite rule is applicable, the final 
 is obtained by removing all meta-constraints: 

?apartment:x1. (x1.street =Kings_street) 

e restricted space prevents a detailed discussion of 
e rewrite rules. Some more illustration of their 

cation is provided in the next section. 

xample 

nsider the utterance “Is there anything cheaper?”. 
 Adapt parser, the pattern “cheaper” would yield 

ead_obj(apartment:x1), obj(apartment:x2), x1 ≠ x2 , 
j(money:y1), x1.z = y1, obj(money:y2), x2.z = y2, y1<y2, 
ambiguous(z, {price, monthly_fee}, default(price)) 

meta constraint x1 ≠ x2  is added to prevent 
ation of apartment:x1 and apartment:x2 , which are 
ing to two different apartments. The rewriting 
 can apply three rules: the ambiguity will be 
ed (binding z to price), the variable x1 will be 
n as the main object, and the variable x2 will be 

da-bound. After removing meta-constraints, this 
s in: 

artment:x2 ?apartment:x1(x1.price=y1  ∧ x2.price=y2 ∧ 
y1<y2 ) 

 evidently is equivalent to: 

λapartment:x2 ?apartment:x1(x1.price<x2.price) 



6. Evaluation 

To evaluate the parser, we tested it on 300 unseen 
utterances from the corpus described in Edlund [3]. The 
algorithm proved to be very fast; the average running 
time was below 10ms per sentence  (on a Pentium 4) .  

The accuracy results are summarised in Figure 2.  
 
 Transcriptions Recognitions 
Sentence accuracy N/A 36.7% 
Word accuracy N/A 62.9% 
Match 92.3% 58.7% 
Precision 97.0% 81.4% 
Recall 95.9% 72.0% 
Concept accuracy 95.9% 73.2% 

Figure 2: Parser accuracy 
 

The first two rows describe the accuracy of the input 
strings. About 37% of the utterances were perfectly 
recognised, and the overall word accuracy was about 
63% (i.e. the word error rate was about 37%). 

The last four rows describe the semantic accuracy, i.e. 
to what extent the semantic output from the parser 
corresponded to the meaning of the input utterance. The 
basic semantic unit is defined to be a constraint in the 
body of the utterance descriptor, a λ-bound variable, or a 
?-bound variable in the head of the utterance descriptor. 
The left column indicates how well the parser performs 
given perfect speech recognition, while the right column 
shows how well it performs on actual recogniser output. 

The “Match” column shows the number of sentences 
which were completely correctly analysed. “Precision” 
is the number of produced correct semantic units divided 
by the number of produced semantic units. “Recall” is 
the number of produced correct semantic units divided 
by the number of correct semantic units. “Concept 
accuracy” is the semantic equivalent of word accuracy 
(for a definition, see e.g. van Noord et al [8]). 

Finally, we would like to comment on the robustness 
of the approach. The parser manages to deliver perfectly 
correct results for 59% of the input sentences, although 
only 37% of them were perfectly recognised. Another 
indication of the robustness is the fact that the concept 
accuracy of the output was 73%, although the word 
accuracy was only 63%. 

7. Discussion and related work 

Approaches to domain-dependent robust parsing for 
spoken input can be largely divided into two types. One 
approach is based on general-purpose linguistic rules, 
"robustified" by homing in on the largest grammatical 
fragment [2], or the smallest set of grammatical 
fragments that span the whole utterance [6, 8]. The other 
approach is based on pattern matching, 
extracting information-carrying units of the utterance 
based on domain-dependent patterns (which may or may 
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rrespond to a complete grammatical phrase) [4]. 
hybrid systems have been built [2].  
 interesting attempt at synthesising these 
aches is provided by Milward and Knight [7]. 
 parser makes use of linguistically motivated rules, 
senting the analysis as a chart structure. Semantic 
retation is carried out by mapping rules that 
te directly on the chart. These rules incorporate 
pecific as well as structural (linguistic) and 
xtual information. By giving preference to mapping 
that are more specific (in the sense of satisfying 

 constraints), grammatical information can be used 
ever available. 
r approach shares the trait of being able to 
ize the combination of constraints from many 

ents of the utterance. However, this is achieved 
general procedure (unifying objects whose type 
ation is compatible), rather than by using lots of 

al-purpose mapping rules. Because our algorithm 
not engage any complex grammatical analysis, it is 
very fast. Furthermore, we have shown that it is 
ble to go beyond propositional slot-filler structures 
ut having to revert to grammar-based analysis. In 
 words, we have demonstrated that the applicability 
bust, concept-spotting parsers is wider than one 
t have thought. 
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