
Robust Parsing of Utterances i

Johan Boye and Mats

Telia Research
johan.boye@teliasonera.com, mats.w

1 Address: Vitsandgatan 9B, 12386 Farsta, Sweden

Abstract

This paper presents an algorithm for domain-dependent
parsing of utterances in negotiative dialogue. To
represent such utterances, the algorithm outputs
semantic expressions that are more expressive than
propositional slot-filler structures. It is very fast and
robust, yet precise and capable of correctly combining
information from different utterance fragments.

1. Introduction

The rapidly increasing number of spoken-dialogue
systems have led to numerous robust parsers for limited
domains having been constructed during the last decade.
By “parsing” we here mean a mapping from the input
utterance to a context-independent semantic
representation. By “robust” we mean that the parser will
give a reasonable result even on very noisy input.

In simple spoken-dialogue applications, parsing can
be interleaved with speech recognition (if the language
model is grammar-based). The vast majority of launched
commercial systems fall into this category. However,
spoken-dialogue systems aiming at less system control
and more user initiative usually have a statistical n-gram
recogniser, due to the difficulties of constructing a
grammar with sufficient coverage. In this case (which is
what we consider in this article), a separate parser is
needed to transform the output from the recogniser into
a semantic representation.

Generally speaking, these robust parsers have been
highly successful. Distinguishing features are: very fast
execution, short development times (down to a few
person weeks), and performance as good as or better
than state-of-the-art parsers based on large-coverage
grammars. Such robust parsers are usually based on
phrase-spotting, and output slot–filler structures
representing the propositional contents of the input
utterance. Thus, precision is traded for robustness,
execution speed and ease of development.

However, propositional slot–filler structures are not
sufficient in cases where more user initiative is involved,
such as negotiative dialogue (for example, travel
planning, appointment scheduling, or apartment
browsing). In this paper, starting from a domain model
in the form of a relational database, we derive a richer
semantic representation formalism suitable for

negot
evalu
recog
algor
corre
fragm
et al.
doma
system

2

The f
an ill

1

2
3
4

5

6

7

A dis
dialo
sever
comp
above
be ab
not ju
Furth
is ask
on H
impli
parsin

We a
(or at
1 sho
versio

W
attrib
n Negotiative Dialogue

 Wirén

1
iren@teliasonera.com

iative dialogue. Furthermore, we describe and
ate a parsing algorithm for mapping speech-
nition output to this representation. The parsing
ithm is very fast, yet precise and capable of
ctly combining information from different utterance
ents. It has been used successfully in Adapt (Bell
[1]), a multimodal dialogue system in an apartment
in. A forerunner was used in the travel-planning

 SmartSpeak (Boye et al. [2]).

. Negotiative spoken dialogue systems

ollowing piece of dialogue with Adapt [1] provides
ustration of negotiative dialogue:

. User: Are there any two-room apartments on
the South Side that cost less than two million?

. System: Do you have any other requirements?

. User: A balcony would be nice.

. System: There are seven such apartments.
They are shown on the map.

. User: I see... this apartment on Horn street...
how much does it cost?

. System: The apartment on Horn street costs
1,900,000 kronor.

. User: Ok... is there anything cheaper?

tinguishing factor, compared to most system-driven
gue systems, is that the dialogue may concern
al objects simultaneously, allowing the user to
are their relative merits, as in utterance 5 and 7
. This means, to begin with, that the system must
le to represent objects (that can be referred to) and
st properties of objects, as shown in utterance 5.

ermore, the system must be able to distinguish what
ed for (the cost) from what is given (the apartment
orn street). In the rest of the paper, we explore the
cations of these additional requirements for both
g and semantic representation.

3. Back-end: Relational database

ssume that the domain information is represented
 least representable) as a relational database. Figure
ws a relation “apartment” (which is a simplified
n of the domain model of Adapt [1]).

e assume that each attribute is typed, so that e.g. the
ute price has the type money, size has the type

Figure 1: A domain model represented

square meters, etc. Types are arranged in a hierarchy, so
that e.g. both money and square meters are subtypes of
integer (which entails that values in both the price
column and the size column may be compared
numerically). Some attributes have types which consist
of an enumeration of all possible values, e.g. the type of
street name is an enumeration of all the street names in
Stockholm.

This kind of type information is essential for the
semantic representation of utterances, and indeed for the
parsing algorithm (see Section 5).

4. Semantic representation formalism

The semantic output from the parser consists of
“utterance descriptors”, which are expressions that have
a natural mapping to a sequence of database operations.
The by far most applicable kind of utterance descriptor
is of the form ?x.P (paraphased as “Find x such that P”),
where P (the body of the expression) is a list of
constraints, and where x (the head of the expression)
denotes the sought object. We may write t:x instead of x
to indicate that x should be of type t. For instance, the
utterance “I’m looking for an apartment on King’s
street” would be represented as

?apartment:x.(x.street = Kings_street)

Here the type apartment refers to members of the
database relation with the same name (i.e. rows in the
table in Figure 1).

The constraints in the body P specify the desired
values of database attributes, as well as relations
between database values and other values. The following
are all examples of constraints (assuming x denotes an
apartment):

• x.street = Kings_street
• x.price < 2,000,000
• balcony ∈ x.accessories

The set of well-formed constraints are completely
determined by the type information of the back-end
relational database. For instance, the second constraint
is well-formed since the price attribute is numerical.
The third constraint is well-formed since the accessories
attribute has a list type.

Utterances may contain explicit or implicit references
to other objects than the object sought. For instance, “Is
there a cheaper apartment?” contains an implicit
reference (“Is there a cheaper apartment than the one

you
by la

(F
notat
ensui
infer
funct
appli
dialo
abov
that e
ment

A
varia
whic

A
repre
apart
the r
expre

The
patte
latter
the f
doma
the re

5.1. P

In th
right
cons
colle
body
of th

Th
cours
appea

1 Curr

ID Street name No Size No of
rooms

Price

31213 Horn street 134 76 2 1,90

61623 King’s street 73 105 4 3,50
...
 by a relational database

just mentioned?”). Such references are represented
mbda-bound variables, as in the example:

λ apartment:y ?apartment:x.(x.price<y.price)

or an explanation of how to interpret the λ-
ion, see e.g. [5], chapter 15). The idea is that the
ng processing stages of the dialogue system will
 what object the user is referring to, and the
ional semantic expression above can then be
ed to that object. As an example, consider the
gue excerpt in Section 2, where the expression
e is the representation of utterance no 7. Applying
xpression to the object representing the apartment

ioned in utterance 6, would result in

?apartment:x.(x.price < 1,900,000)

nother example of the use of lambda-bound
bles is the utterance “How much does it cost”,
h is represented as:

λapartment:y ?money:x.(y.price = x)

nother form of utterance descriptor is used to
sent superlatives such as “Where is the biggest
ment?” or “Which is the cheapest?”, but because of
estricted space we will not discuss these kinds of
ssions.

5. Robust parsing algorithm

robust parsing algorithm consists of two phases, a
rn matching phase and a rewriting phase. In the
, heuristic rewrite rules are applied to the result of
irst phase. When porting the parser to a new
in, one has to rewrite the pattern matcher, whereas
writer can remain unaltered.

attern matching phase

e first phase, a string of words1 is scanned left-to-
, and a sequence of constraints and meta-
traints, triggered by syntactic patterns, are
cted. The constraints will eventually end up in the
 of the final utterance descriptor, while the purpose
e meta-constraints is to guide the rewriting phase.
e syntactic patterns can be arbitrarily long, but of
e the longer the pattern, the less frequently it will
r in the input (and the more sensitive it will be to

ently, 1-best output from the speech recogniser is used.

Monthly
fee

Accessories

0,000 2,830 balcony,
tiled stove, ...

...

0,000 4,113 parquet floor,
...

recognition errors, disfluencies etc.). On the other hand,
longer syntactic patterns are likely to convey more
precise information.

The solution is to try to apply longer patterns before
shorter patterns. As an example, reconsider the utterance
“I’m looking for an apartment on King’s street, and
suppose that “apartment on S” (where S is a street),
“apartment” and “King’s street” are all patterns used in
the first phase. If the utterance has been correctly
recognised, the first pattern would be triggered.
However, the utterance might have been misrecognised
as “I’m looking for an apartment of King’s street”, or the
user might have hesitated (“I’m looking for an apartment
on ehh King’s street”). In both cases the pattern
“apartment on S” would fail, so the pattern matching
phase would have to fall back on the two separated
patterns “apartment” and “King’s street,” and let the
rewriting phase infer the relationship between them.

5.2. Meta-constraints

The following list enumerates some examples of kinds
of meta-constraints (Var represents a variable):

obj(Type:Var) An object of type Type has

been mentioned.
head_obj(Type:Var) Same as above + the object

denoted by Var is likely to be
the object sought.

Var1 ≠ Var2 Var1 and Var2 denote different
objects.

ambiguous(Var, {a1, a2, ...
an}, default(ai))

Var is one of the objects a1, a2,

... an. If no evidence is against,
Var should be equal to ai.

The pattern matching rules in the pattern matcher

associate a sequence of constraints and meta-constraints
to each pattern. For instance, in the Adapt parser[1], the
pattern “apartment” would yield

obj(apartment:x1)

whereas the pattern “King’s street” would yield

obj(apartment:x2), x2.street = Kings_street

where x1 and x2 are variables. The existence of the
object apartment:x2 is inferred, since in the database
domain model, streets can only occur in the context of
the street attribute of the apartment relation. If the
domain model would include also another relation
(restaurant, say) that also has an attribute street, the
pattern could instead yield:

obj(t:x2), x2.street = Kings_street

where t is a variable.

5.3. Rewriting phase

In the rewriting phase, a number of heuristic rewrite
rules are applied (in a fixed order) to the sequence of

const
descr
most

1
2
3
4

5
6

Th
match

o

Th
unifia
apart
varia
attrib
apply

As
to be
it is
above

?a

Sin
result

Th
all th
appli

5.4. E

Co
In the

h
ob

The
unific
referr
phase
resolv
chose
lamb
result

λap

which
raints and meta-constraints, resulting in a utterance
iptor (after removing all meta-constraints). The
important rules are:
. Unify as many objects as possible.
. Identify the object sought
. Identify lambda-bound variables
. Identify minimisation or maximisation

attributes (if any)
. Determine scope of negations (if any)
. Resolve ambiguities
e first rule works as follows: Suppose pattern
ing has resulted in:

bj(apartment:x1), obj(t:x2), x2.street = Kings_street

en checking whether the two objects x1 and x2 are
ble amounts to checking whether the types
ment and t are compatible (which they are, as t is a
ble), and checking whether an apartment has an
ute street (which is true). Therefore the result after
ing the rule is

obj(apartment:x1), x1.street =Kings_street

 for the second rule, the object sought is assumed
 the leftmost head_obj in the sequence. Failing that,
assumed to be the leftmost obj. In the sequence
, that means apartment:x1, which results in:

partment:x1. (obj(apartment:x1), x1.street =Kings_street)

ce no other rewrite rule is applicable, the final
 is obtained by removing all meta-constraints:

?apartment:x1. (x1.street =Kings_street)

e restricted space prevents a detailed discussion of
e rewrite rules. Some more illustration of their

cation is provided in the next section.

xample

nsider the utterance “Is there anything cheaper?”.
 Adapt parser, the pattern “cheaper” would yield

ead_obj(apartment:x1), obj(apartment:x2), x1 ≠ x2 ,
j(money:y1), x1.z = y1, obj(money:y2), x2.z = y2, y1<y2,
ambiguous(z, {price, monthly_fee}, default(price))

meta constraint x1 ≠ x2 is added to prevent
ation of apartment:x1 and apartment:x2 , which are
ing to two different apartments. The rewriting
 can apply three rules: the ambiguity will be
ed (binding z to price), the variable x1 will be
n as the main object, and the variable x2 will be

da-bound. After removing meta-constraints, this
s in:

artment:x2 ?apartment:x1(x1.price=y1 ∧ x2.price=y2 ∧
y1<y2)

 evidently is equivalent to:

λapartment:x2 ?apartment:x1(x1.price<x2.price)

6. Evaluation

To evaluate the parser, we tested it on 300 unseen
utterances from the corpus described in Edlund [3]. The
algorithm proved to be very fast; the average running
time was below 10ms per sentence (on a Pentium 4) .

The accuracy results are summarised in Figure 2.

 Transcriptions Recognitions
Sentence accuracy N/A 36.7%
Word accuracy N/A 62.9%
Match 92.3% 58.7%
Precision 97.0% 81.4%
Recall 95.9% 72.0%
Concept accuracy 95.9% 73.2%

Figure 2: Parser accuracy

The first two rows describe the accuracy of the input
strings. About 37% of the utterances were perfectly
recognised, and the overall word accuracy was about
63% (i.e. the word error rate was about 37%).

The last four rows describe the semantic accuracy, i.e.
to what extent the semantic output from the parser
corresponded to the meaning of the input utterance. The
basic semantic unit is defined to be a constraint in the
body of the utterance descriptor, a λ-bound variable, or a
?-bound variable in the head of the utterance descriptor.
The left column indicates how well the parser performs
given perfect speech recognition, while the right column
shows how well it performs on actual recogniser output.

The “Match” column shows the number of sentences
which were completely correctly analysed. “Precision”
is the number of produced correct semantic units divided
by the number of produced semantic units. “Recall” is
the number of produced correct semantic units divided
by the number of correct semantic units. “Concept
accuracy” is the semantic equivalent of word accuracy
(for a definition, see e.g. van Noord et al [8]).

Finally, we would like to comment on the robustness
of the approach. The parser manages to deliver perfectly
correct results for 59% of the input sentences, although
only 37% of them were perfectly recognised. Another
indication of the robustness is the fact that the concept
accuracy of the output was 73%, although the word
accuracy was only 63%.

7. Discussion and related work

Approaches to domain-dependent robust parsing for
spoken input can be largely divided into two types. One
approach is based on general-purpose linguistic rules,
"robustified" by homing in on the largest grammatical
fragment [2], or the smallest set of grammatical
fragments that span the whole utterance [6, 8]. The other
approach is based on pattern matching,
extracting information-carrying units of the utterance
based on domain-dependent patterns (which may or may

not co
Also

An
appro
Their
repre
interp
opera
task-s
conte
rules
more
when

Ou
maxim
fragm
by a
inform
speci
does
also
possi
witho
other
of ro
migh

Ackn
group
Edlun
descri
projec

[1] B
o
A

[2] B
B
I

[3] E
H
w
E

[4] J
“
D
M

[5] J
P

[6] K
“
1

[7] M
S

[8] v
“
S

rrespond to a complete grammatical phrase) [4].
hybrid systems have been built [2].
 interesting attempt at synthesising these
aches is provided by Milward and Knight [7].
 parser makes use of linguistically motivated rules,
senting the analysis as a chart structure. Semantic
retation is carried out by mapping rules that
te directly on the chart. These rules incorporate
pecific as well as structural (linguistic) and
xtual information. By giving preference to mapping
that are more specific (in the sense of satisfying

 constraints), grammatical information can be used
ever available.
r approach shares the trait of being able to
ize the combination of constraints from many

ents of the utterance. However, this is achieved
general procedure (unifying objects whose type
ation is compatible), rather than by using lots of

al-purpose mapping rules. Because our algorithm
not engage any complex grammatical analysis, it is
very fast. Furthermore, we have shown that it is
ble to go beyond propositional slot-filler structures
ut having to revert to grammar-based analysis. In
 words, we have demonstrated that the applicability
bust, concept-spotting parsers is wider than one
t have thought.

owledgements: The authors like to thank the Adapt
 at Telia Research and KTH. Special thanks to Jens
d et al for letting us use their test corpus. The work
bed in this paper was supported by the EU/HLT funded
t NICE (IST-2001-35293).

8. References

ell, L., Boye, J. and Gustafson, J. “Real-time Handling
f Fragmented Utterances”, NAACL Workshop on
daptation in Dialogue Systems, 2001.
oye, J., Wirén, M., Rayner, M., Lewin, I, Carter, D. and
ecket, R. “Language Processing Strategies and Mixed-

nitiative Dialogues”, IJCAI Dialogue Workshop, 1999.
dlund, J. and Nordstrand, M. “Turn-taking Gestures and
our-Glasses in a Multi-modal Dialogue System”. ISCA
orkshop on Multimodal Dialogue in Mobile
nvironments, Kloster Irsee, 2002.
ackson, E., Appelt, D., Bear, J., Moore, R. Podlozny, A.
A Template Matcher for Robust NL Interpretation”.
ARPA Speech and Natural Language Workshop,
organ Kaufmann, 1991.

urafsky, D. and Martin, J. “Speech and Language
rocessing”', Prentice-Hall, 2000.
asper, W., Kiefer, B., Krieger, H., Rupp C., Worm, K.

Charting the depth of robust speech processing”, ACL,
999.
ilward, D. and Knight, S. “Improving on Phrase

potting for Spoken Dialogue Processing”, WISP, 2001.
an Noord, G., Bouma, G., Koeling, R., Nederhof, M.
Robust Grammatical Analysis for Spoken Dialogue
ystems”. Journal of NLE, 5(1), 1999, pp. 45—93.

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	New Search
	Next Search Hit
	Previous Search Hit
	Search Results

	No Other Papers by the Author

	headREa1: EUROSPEECH 2003 - GENEVA
	pagenumber1: 1
	headREa2: EUROSPEECH 2003 - GENEVA
	Radio:
	pagenumber2: 2
	headREa3: EUROSPEECH 2003 - GENEVA
	pagenumber3: 3
	headREa4: EUROSPEECH 2003 - GENEVA
	pagenumber4: 4

