
Contextual Reasoning in Multimodal Dialogue Systems:
Two Case Studies

Johan Boye, Mats Wirén and Joakim Gustafson

Voice Technologies
TeliaSonera Sweden

{Johan.Boye|Mats.Wiren|Joakim.Gustafson}@teliasonera.com

Abstract

This paper describes an approach to con-
textual reasoning for interpretation of
spoken multimodal dialogue. The ap-
proach is based on combining recency-
based search for antecedents with an ob-
ject-oriented domain representation in
such a way that the search is highly con-
strained by the type information of the
antecedents. By furthermore representing
candidate antecedents from the dialogue
history and visual context in a uniform
way, a single machinery (based on -
reduction in lambda calculus) can be used
for resolving many kinds of underspeci-
fied utterances. The approach has been
implemented in two highly different do-
mains.

1 Introduction

This paper describes an approach to contextual
reasoning and its application to two radically dif-
ferent domains, both of which make use of spo-
ken multimodal dialogue. The first system is
ADAPT, which allows the user to look for apart-
ments for sale in central Stockholm (Bell et al.
2001). Apartments are represented in a relational
database and are displayed as icons on an interac-
tive map. The second system is the NICE fairytale
game, in which the user collaborates with an
animated character to solve a problem in an im-
mersive 3D world (Gustafson et al. 2004a).

Both domains are, each in its own way, suffi-
ciently restricted that no serious problems are
posed by lexical or structural ambiguity. Like-

wise, the use of quantification is limited and only
rarely leads to ambiguity problems. In contrast,
interaction in both domains abound with deictic
and anaphoric expressions such as pronouns,
definite descriptions and ellipses. These expres-
sions refer to things in the visual surrounding as
well as to objects that have been mentioned in the
previous dialogue. Thus, all utterances have to be
interpreted by way of reasoning about the objects
in the combined dialogue and visual context.

Although naïve reference resolution methods
— such as preferring the most recent grammati-
cally compatible antecedent — may perform re-
markably well (see Hobbs 1978, Mitkov 1998),
dialogue applications typically must bring more
knowledge into play in order to perform well.
Often some logic-based reasoning using a repre-
sentation of the task and domain is adopted. An
early example of this is the focus representation
of Grosz (1977), based on the partitioned seman-
tic networks of Hendrix (1975). Another example
is the resolution component of the CLE (Alshawi
1992). However, there is a computational price to
be paid for the general semantic reasoning-based
methods. Particularly for limited domains, it
seems that it would be useful to find a less com-
plex approach.

The approach described here replaces general-
purpose semantic reasoning with a much more
restricted type system. By combining this with
the recency principle — thus looking for the most
recently referred object of a compatible type —
we obtain a highly efficient but still accurate
search strategy. This approach works well in two
fairly complex domains to be further described
below. Moreover, by representing candidate an-
tecedents from the dialogue history and visual

context in a uniform way, the same machinery
can be used for resolving many kinds of under-
specified utterances.

2 Systems and domains

2.1 The ADAPT system

The graphical user interface of the apartment da-
tabase system ADAPT is shown in Figure 1. The
system features an animated talking agent provid-
ing the user with information about apartments
currently for sale. The system also displays the
geographic locations of apartments under discus-
sion as clickable icons with distinct colours on a
map. Graphical input and the textual result from
the speech recognizer are jointly interpreted by
the system.

Figure 1. The graphical interface of the ADAPT system.

The following is a typical dialogue fragment with
the ADAPT system.

A1. User: Are there any two-room apartments on the

South Side that cost less than 2 million?
A2. System: Do you have any other requirements?
A3. User: A balcony would be nice.
A4. System: [Displays colored icons on the map]

There are seven such apartments. They are shown
on the map.

A5. User: I see… The green apartment… how much
does it cost?

A6. System: The green apartment costs 1.5 million.
A7. User: What about the red one?
A8. System: The red apartment costs 1.9 million.
A9. User: Okay… Is there anything cheaper?

Note that even this short dialogue contains a fair
variety of anaphora: pronouns, definite descrip-
tions (often using the distinct colours of the dis-
played icons), elliptic questions (utterance A7)
and elliptic answers to questions (A3). Also,
graphical pointing actions (of which there are no
instances in the particular dialogue here) are of-
ten accompanied by deictic noun phrases.

2.2 The NICE fairy-tale game

The NICE fairy-tale game system lets the user
enter into an animated 3D world and communi-
cate with a number of animated characters by
means of spoken dialogue. So far, the first scene
of the game has been implemented, featuring a
single character, called Cloddy Hans (inspired by
one of the characters of an H C Andersen fairy-
tale). This first scene takes place in Andersen’s
authoring laboratory, where the key device is a
fairytale machine. The machine has a magic qual-
ity, namely, that if one inserts objects into its des-
ignated slots (for “magic things”, “dangerous
things”, and so on) and pulls a lever, it creates a
new fairytale in which the objects come to life.
Since Cloddy Hans would like to create a fairy-
tale of his own, he needs help from the user in
understanding where to put different things. The
first scene therefore develops into a collaborative
“put that there” task, where Cloddy Hans and the
user have to agree on what to do. Figure 2 shows
a screen shot from the game.

Figure 2. A screen shot from the NICE system. Cloddy
Hans is standing in front of the fairy-tale machine,
next to the shelf with objects.

The following fragment is from a dialogue
with an eleven-year old user.

N1. User: I want you to go to the shelf.
N2. Cloddy Hans: Okay. [Walks over to the shelf.]

What do you want me to do now?
N3. User: I want you to pick up the bag.
N4. Cloddy Hans: Do you want me to pick up the

money sachet?
N5. User: Yes, pick up the sachet. [Clicks on the

money sachet.]
N6. Cloddy Hans: [Picks up the sachet.] That went

well!
N7. User: Then I want you to go to the slots.
N8. Cloddy Hans: Okay. [Walks over to the ma-

chine.]
N9. User: Now I want you to put the money sachet in

the farthest slot.

Both systems allow users to refer to objects
graphically by a mouse-compatible device. How-
ever, while users of ADAPT can scroll the map as
they please, users of the NICE system cannot ma-
nipulate the camera at will. Rather, the camera
follows Cloddy Hans as he moves around, and
hence situations will arise where graphical refer-
ence is not possible.

2.3 Corpora

The ADAPT corpus is based on one Wizard-of-Oz
collection with 16 subjects (Bell et al 2001), and
one independent data collection with 24 subjects
using the fully functional system (Edlund and
Nordstrand 2002). The user tasks were to find an
apartment obeying certain constraints (in the
former case) and to find ones that the subject
might want to live in (in the latter case).

The current NICE corpus is based on a semi-
automated Wizard-of-Oz collection with 10 chil-
dren aged 11–15 (Gustafson et al. 2004). The
subjects were informed about the scenario de-
scribed in the previous section and were in-
structed to collaborate with Cloddy Hans to put
some (unspecified) things into the machine. (We
have not yet collected any data using the existing,
fully functional system corresponding to this sce-
nario.)

All corpora examples in this paper have been
translated from Swedish to English by the au-
thors.

3 Referential phenomena

3.1 Knowledge sources

One way of studying referring expressions for the
purpose of developing focus management and
reference resolution is to look at what knowledge
sources are needed to interpret them.

Perhaps the most obvious knowledge source in
a graphics-based multimodal system is the visual
context. Two examples of this are utterances A5
(” the green apartment”) and N9 (” the slot furthest
away”) in the dialogue fragments in Section 2.
As can be seen, definite descriptions include both
visually salient properties and (in NICE) the rela-
tive position of 3D objects. Descriptions of the
latter often include complex ordinal and direc-
tional expressions, like “ the third tube from the
left” or “ the hole which is second from the right” .
(Whereas currently each object in the shelf is
unique, the four slots in the machine have to be
distinguished by means of some other property.)

Another obvious knowledge source is the pre-
ceding dialogue, for example, utterance A9
(” anything cheaper”). Here the user expresses a
desire which refers to the price of a previous
apartment (presumably the green one).

Sometimes a record of past events is also
needed to resolve a reference, as shown by the
following example from the NICE corpus:

N10. User: Where we put the magic wand… there

you can put it.

Here the clause ” Where we put the magic wand”
is referring to a slot of the fairytale machine via
its relation to a previous action.

Finally, a model of the domain is needed, as
shown in the following example:

N11. User: I want you to take the hammer.
N12. Cloddy Hans: Okay. [Takes the hammer.]
N13. User: Then I want you to go to the machine…

And put it in the first tube.

Here, it is obvious that “ it” in utterance N13
corresponds to the hammer because of the way
the particular objects and actions are related in
this domain. However, a naive recency-based

model without this information would rather as-
sociate ” it” with the machine.1

Summing up, all of the above knowledge
sources frequently come into play in ADAPT and

NICE, with the exception of past events that are
only rarely used.

3.2 Referential usage

A problem which is complementary to the one
above is how referential expressions are con-
structed depending on which knowledge source is
involved. In particular, how do people refer to
objects that are present in the visual display but
that have not yet been referred to in the dialogue?
Also, to what extent are objects outside of the
current visual display referred to? This is impor-
tant for the purpose of determining how the cur-
rent focus should be updated with respect to
objects from the visual environment.

As for the first question, people frequently use
definite descriptions to refer to visually displayed
objects right from the first turn of the dialogues,
without the objects ever having been mentioned.
Both in ADAPT and NICE, there is a variety of
characteristic properties that can be combined to
describe objects — for example, in ADAPT the
colour of the icon, the number of rooms and the
street of the apartment, etc.

Pronouns are sometimes used without previous
mentioning of the referred object in the dialogue,
but then only in combination with a graphical
pointing action:

N14. User: Go to the shelf.

[Cloddy Hans confirms and walks up to the
shelf.]

N15. User: [Graphical pointing at diamond.] Take it.

As for objects outside of the visual display (the

second question above), and looking first at
ADAPT, it is clear that the set of apartment icons
provides an extremely strong cue for the mutu-
ally grounded context: Although users frequently
change their desired apartment constraints back
and forth as they explore the search space, there
is no instance of a user going back and referring
verbally to a particular apartment that is no
longer displayed on the map. Thus, in our data

1 In Swedish, “ hammer” and “ machine” have identical gen-
der, and hence the pronoun agrees grammatically with both
of them.

the objects under discussion are always those that
are shown on the map. Similarly, there are no
references to previous events (“ Go back to the
area where we were previously”).

In NICE, the situation is different because of
the moving camera and the fact that the set of
objects remains constant except when something
is put into the machine. Here, users do refer to
things currently outside of the visual display, like
the fairytale machine and the shelf. Even objects
that are no longer physically present in the scene
may be referred to, as in utterance N10 above.

4 Contextual interpretation

4.1 The problem

The problem of contextual interpretation can be
divided into three subproblems. First, expressions
that refer to the context must be recognized in the
input. For spoken input, this is not trivial, since
state-of-the-art speech recognizers often fail in
recognizing short (function) words, such as pro-
nouns. Secondly, there is the issue of finding the
set of candidate objects on which the interpreta-
tion of the input can be based — that is, comput-
ing the right context in which to interpret the
utterance. We call this focus management.
Thirdly, there is the issue of combining the con-
textual information with the information con-
veyed in the utterance to produce the final
interpretation. It is well-known that the two last
steps can be arbitrarily difficult (see e.g. Hobbs
1978).

As for the first subproblem, we have shown in
a previous paper how spoken input exhibiting a
large amount of anaphoric and deictic expres-
sions can be efficiently parsed in a limited do-
main (Boye and Wirén 2003a). As for the third
subproblem, our semantic representation is de-
signed so as to let all contextual interpretation be
realized by a uniform process of -reduction in
lambda calculus. This representation is described
in detail in Section 5. The rest of this section
deals mainly with the second subproblem: how to
determine the set of objects that, at each moment,
constitute the possible targets for interpretation of
referring expressions. We call such objects sali-
ent objects.

4.2 Apartment domain

To begin with, the ADAPT system must distin-
guish internally between intensional and exten-
sional objects. Whenever the user starts over by
giving new constraints (as in utterance A1), a
new intensional object is created. This object is
considered to be salient until a set of concrete
apartments is presented to the user (as in utter-
ance A4). These apartments are represented in-
ternally as extensional objects and are considered
salient as long as their icons are displayed on the
map (i.e. until the user has asked for a new set of
apartments). Then a new intensional object is
created, and the whole cycle is repeated. In gen-
eral, this kind of distinction must be made by any
system in which the dialogue begins by specify-
ing an “ ideal” object before matching it with real
ones.

As for displayed objects and their relation to
the current context, it turns out that the basic
mechanism for updating the set of salient object
can be made very simple: As discussed in Sec-
tion 3.2, the set of displayed apartment icons
provides both necessary and sufficient informa-
tion to determine the set of salient apartments.
This approach is the same as the one taken in
Cheyer and Julia (1995).

To handle implicitly focused items, objects of
the domain are represented by means of a type
hierarchy, motivated by the characteristics of the
domain (this is further described in Section 5).
This allows us to handle utterances like A12 be-
low:

A10. User: How many rooms does the green apart-

ment have?
A11. System: Three rooms.
A12. User: What is the monthly fee?

Here, “ monthly fee” will be associated with an
attribute of the relevant apartment object.

In many cases, referential expressions in the
ADAPT domain turn out to be unambiguous (as in
utterances A5 and A7 in Section 2.1). In those
cases which remain ambiguous, a straightforward
recency principle works in the vast majority of
cases (that is, preferring type-compatible antece-
dents that appear at shorter linear distance back-
wards in the dialogue).

In some easily distinguishable special cases,
other rules apply. An example of this is utterance

A9, where the desired price should be less than
all the previously discussed prices of the apart-
ments in focus.

4.3 Fairy-tale game domain

Looking at the introductory fairy-tale scenario
described in Section 2.2, our data so far indicate
that it is sufficiently restricted to be amenable to
the same basic methods as those used in ADAPT.
First, the set of objects that can be referred to is
limited and can be kept constant from the point
of view of the visual context in which the user’s
utterance is to be understood. (Although objects
disappear from the physical environment when
they are put into the machine, they may still be
referred to as exemplified by N10 above.) Sec-
ondly, the limited amount of moving of the cam-
era also does not require any corresponding
shifting of the visual context, as discussed in Sec-
tion 2.2.

For these reasons (and in contrast to ADAPT),
we do not make use of any mechanism for updat-
ing the visual context, but rather keep all objects
from the scene constantly in the current context.2
This includes the objects initially situated in the
shelf, the shelf itself, the fairy-tale machine as
well as relevant parts and properties of these, like
the slots of the machine and the symbolic label-
lings of each slot.

Clearly, however, this simple strategy will not
be tenable in the succeeding scenes of the game
(currently under implementation). Here, the
changing scenes will require updating of the vis-
ual context as the user freely moves about in the
large 3D world. We will return to this scenario in
a later paper.

5 Representation and implementation

As mentioned above, objects in both the ADAPT

and NICE domains are represented by means of a
type hierarchy in a standard object-oriented fash-
ion, much the same way one would represent the
domain in the Java™ programming language.

2 This seems to be the approach taken also by Lemon et al
(2001), whose system does not use an explicit internal repre-
sentation of the visual context.

Specifically, this means:

• Every object belongs to exactly one type.
• A type may be a direct subtype of exactly

one type.
• An object may have any number of at-

tributes, whose values are objects of the
appropriate types.3

For instance, in the fairy-tale system, objects

that can be moved about belong to the type thing.
Things have an attribute position whose values
should belong to the type location. So, supposing
that hammer and axe are things, and onShelf is a
location, the fact that the hammer is lying on the
shelf is representable, whereas the fact that the
hammer is lying on the axe is not (since the equa-
tion hammer.position = onShelf obeys the type con-
straints whereas hammer.position= axe does not).

A slot (in the fairy-tale machine) is a special
kind of location; hence the type slot is a subtype
of location. This means that hammer.position can be
given values also of type slot.

This object-oriented approach to coding the
domain extends also to actions, events, dialogue
acts, and so on. For instance, the action of pick-
ing up something is represented by an object of
type pickUp having two attributes; agent of type
(fairy-tale) character, and patient of type thing.

5.1 Representation of user utterances

During execution, user utterances are translated
by a parser into typed combinators4 over the do-
main model (see further Boye and Wirén 2003a,
2003b). In the NICE system, utterances are trans-
lated into expressions of type dialogue_act (re-
quest, ask, tell, and so on). As an example,
utterance N3 would be translated into

request(user, cloddy, pickUp(cloddy, bag))

whereas the utterance “ Pick it up” would be
translated into

3 This representation scheme is thus significantly less ex-
pressive than e.g. the partitioned semantic networks by
Hendrix (1975) (used by Grosz, 1977) , which are equiva-
lent to first-order logic.
4 A combinator is a lambda-expression without free vari-
ables (see e.g. Hindley and Seldin 1986). For an approach to
natural language semantics based on combinators, see Ja-
cobson (1999).

λxthing.request(user, cloddy, pickUp(cloddy, x))

Here, superscripts indicate the types of variables.
Thus, the expression above denotes a function
taking a thing as the argument, returning the fully
instantiated request as the result. Here the domain
model is used to infer that the missing informa-
tion (the object x being picked up) is of type
thing.

Resolution of the reference “ it” now corre-
sponds to applying5 the function above to an ex-
pression of the appropriate type, e.g.

(λxthing.request(user, cloddy, pickUp(cloddy, x)) bag)→
request(user, cloddy, pickUp(cloddy, bag))

Thus, the type constraints in the domain model
help ruling out undesired interpretations of refer-
ences in user utterances.

The ADAPT apartment system seeks to translate
all user utterances into the form ?xt(P), which can
be paraphrased as “ Give me x of type t such that
P is true” . Again, lambda abstractions are used to
represent missing information. For instance, ut-
terance A5 would be:

λxapartment ?pmoney (x.price = p & x.color = green)

Supposing that apt1 denotes the apartment the

user is referring to in utterance 5, then contextual
interpretation of this utterance amounts to apply-
ing the functional expression to apt1:

(λxapartment ?pmoney (x.price = p & x.color = green)

apt1) →
?pmoney (apt1.price = p & apt1.color = green)

The resulting expression is paraphrased ``Give

me the price of apt1'', and can be translated
straightforwardly into a database search com-
mand.

One of the nice features of this representation
scheme is that various kinds of anaphora and el-
lipses can be handled the same way. For exam-
ple, in utterance A7 it is evident that the user
wants to know something about the red apart-
ment, but it is not clear (before consulting the
context) exactly what he wants to know. Such

5 Application of the lambda expression f to the argument a,
so-called β-reduction, is denoted (f a). Another commonly
used notation is f@a.

elliptic utterances are represented using higher-
order lambda expressions:

λxapartment λf apartment→dialogue_act (f x[x.color= red])

Here, x[x.color= red] is a constrained variable,

i.e. x can only take values such that x.color= red is
true. In this case, contextual interpretation
amounts to first applying the above expression to
the appropriate apartment (whose icon should be
red), and then applying the resulting expression
to a function f, expressing what to do with the red
apartment. Supposing apt2 denotes the red
apartment the user is referring to, then first
applying the above expression to apt2 yields:

λf apartment→dialogue_act (f apt2)

We will discuss how to find functional antece-
dents in section 5.2; for now we will just stipulate
that the correct antecedent is

λyapartment ?pmoney (y.price = p)
since

(λf apartment→dialogue_act (f apt2)

λyapartment ?pmoney (y.price = p)) →

(λyapartment ?pmoney (y.price = p)) apt2) →

?pmoney (apt2.price = p)

i.e. “ How much does apt2 cost?” .

5.2 Focus management

To keep track of which objects are potential tar-
gets for reference resolution, the ADAPT and NICE
systems use several internal data structures.

The visual context history is a recency-ordered
list of sets of objects, each set corresponding to a
visual context. In ADAPT, each set consists of
apartments whose icons are shown simultane-
ously on the map. Each time some icons are
added or removed, a new visual context is cre-
ated and added to the history. The visual context
is used for resolving definite NPs like “ the green
apartment” , and metonymies like “ King’s street” .

As previously mentioned, the visual context is
kept constant in the first scene of the fairy-tale
system.

The dialogue history is a recency-ordered list
of typed combinators, each combinator represent-
ing a (resolved) user utterance or a system utter-
ance. The dialogue history is mostly used to
resolve pronouns and ellipses, by searching back-
wards in the list for a (sub-)expression of
compatible type. For instance, consider utterance
N13, which is represented as two dialogue acts:

request(user, cloddy, goTo(cloddy, atMachine))

λxthing .request(user, cloddy,

 putDown(cloddy,x,magicSlot))

In order to find an argument of type thing, we
have to go back to the representation of N11:

request(user, cloddy, pickUp(cloddy, hammer))

Here, the expression hammer is of type thing, and
is indeed the expression needed to correctly re-
solve the reference in N13. Thus, the typing of
expressions prevents unwanted resolutions (like
resolving “ it” by “ the machine” in N13).

Resolution of certain kinds of ellipses involves
finding a function of the appropriate type. To
resolve utterance A7 (as discussed in section 5.1)
the system must find a function of type apart-
ment→dialogue_act. This is computed by a tech-
nique reminiscent of Dalrymple et al (1991). First
abstraction (reverse functional application) from
the resolved representation of the preceding user
utterance A5 gives us6:

?pmoney (apt1.price = p & apt1.color = green) →−1

(λyapartment ?pmoney (y.price = p & apt1.color =
green) apt1)

By removing the redundant constraint apt1.color =
green, we can extract the combinator needed to
resolve A7, namely

λyapartment ?pmoney (y.price = p)

6 In this particular case, there are several possible abstrac-
tions; any one or both occurrences of apt1 can be replaced
by the variable y. The particular abstraction shown here is
preferred by the system, since it does not create a constraint
y.color = green. Such a constraint would be inconsistent
with the representation of utterance A7; “ What about the red
one?” .

Finally, an event history will be added to the
NICE system to be able to resolve references like
the one in utterance N10.

6 Discussion

This paper describes an approach to contextual
reasoning for the interpretation of spoken multi-
modal dialogue which refrains from general-
purpose reasoning and instead uses a much more
restricted type system. By combining type infor-
mation with a recency principle, we obtain a
search strategy which is both highly efficient and
accurate. By driving interpretation with respect to
both the dialogue history and visual context by a
process of -reduction, we obtain a single, uni-
form machinery for contextual interpretation
which is applicable to the resolution of many
kinds of underspecified utterances, such as deic-
tical expressions, anaphora and ellipses. Put dif-
ferently, the search strategy amounts to finding
correct arguments for the typed combinators rep-
resenting user utterances.

Current work is mainly directed towards ex-
tending the NICE system to include the subse-
quent scenario taking place in the virtual fairy-
tale world. To this end, the approach described
here will have to be generalized. In particular, the
visual context will require frequent updating as
the user freely moves around in the large 3D
world instead of being confined to a single room.
There might also be a need for keeping track of
the visual context at the time of previous utter-
ances in order to correctly determine antecedents.
We expect to report more on these aspects as part
of future work.

References

Alshawi, H. (1992) The Core Language Engine. The
MIT Press.

Bell, L., Boye, J. and Gustafson, J. (2001) Real-time
handling of fragmented utterances. Proc. NAACL
workshop on adaptation in spoken dialogue sys-
tems.

Boye, J. and Wirén, M. (2003a) Robust parsing of
utterances in negotiative dialogue. Proc. Euro-
speech.

Boye J. and Wirén, M. (2003b) Negotative spoken-
dialogue interfaces to databases. Proc. Diabruck,
7th workshop on the pragmatics and semantics of
dialogue.

Cheyer, A. and Julia, L. (1995) Multimodal Maps: An
Agent-based Approach. International Conference
on Cooperative Multimodal Communication
(CMC/95), 24–26 May 1995, Eindhoven, The
Netherlands.

Dalrymple, M., Shieber, S. and Pereira, F. (1991) El-
lipsis and higher-order unification. Linguistics and
Philosophy, vol. 14, no. 4, pp. 399–452.

Edlund, J. and Nordstrand, M. (2002) Turn-taking
Gestures and Hour-Glasses in a Multi-modal Dia-
logue System. ISCA workshop on Multimodal Dia-
logue in Mobile Environments, Kloster Irsee.

Grosz, B. (1977): The representation and use of focus
in a system for understanding dialogs. Proc. IJCAI,
pp. 67–76.

Gustafson, J., Bell, L., Boye, J., Lindström, A. and
Wirén, M. (2004a) The NICE fairy-tale game sys-
tem. Proc. SIGDIAL.

Gustafson, J., Boye, J., Bell, L., Wirén, M., Martin,
J.-C., Buisine, S. and Abrilian, S. (2004 b). Collec-
tion and analysis of multimodal speech and gesture
data in an edutainment application. NICE Deliver-
able D2.2b. http://www.niceproject.com.

Hendrix, G. (1975) Expanding the utility of semantic
networks through partitioning. Proc. IJCAI, pp.
115−121.

Hindley, R. and Seldin, J. (1986) Introduction to com-
binators and λ-calculus. Cambridge University
Press.

Hobbs, J. (1978) Resolving pronoun references, Lin-
gua, vol. 44, pp. 311−338.

Jacobson, P. (1999) Towards a variable-free seman-
tics. Linguistics and Philosophy 22, pp. 117–184.

Lemon, O., Bracy, A., Gruenstein A., and Peters, S.
(2001) Information states in a multi-modal dialogue
system for human-robot conversation. Proc. Bi-
Dialog, 5th workshop on formal semantics and
pragmatics of dialogue , pp. 57–67.

Mitkov, R. (1998) Robust pronoun resolution with
limited knowledge. Proc. COLING/ACL’98, pp.
869−875.

