
Asynchronous Dialogue Management: Two Case-Studies

Johan Boye�, Beth Ann Hockey�, Manny Rayner���

� Telia Research
S-123 86 Farsta, Sweden
johan.boye@trab.se

�RIACS
Mail Stop 19–39, NASA Ames Research Center

Moffett Field, CA 94035-1000, USA
bahockey@riacs.edu

�netdecisions
Wellington House, East Road

Cambridge CB1 1BH, UK
manny.rayner@netdecisions.co.uk

Abstract
Much of the human-machine dialogue research in the literature tacitly assumes a “synchronous” dialogue model; user talks, system acts,
system replies. In particular, the user is not supposed to interrupt the system, neither when it talks nor acts. In this paper, we argue
that the synchronous model is not appropriate for most interesting real-life applications, but there is a need for asynchronous dialogue
models where the user has the possibility to interrupt the system at any time. By referring to two implemented asynchronous dialogue
systems, we try to pinpoint what implementation requirements such a dialogue model entails, and we also outline some of the theoretical
implications of asynchronous dialogue management.

1. Introduction

The standard model for dialogue management in spo-
ken language interfaces is based on the assumption of turn-
taking: user utterances and system utterances will proceed
in alternation. In the literature, this assumption is often
made so automatically that one isn’t even aware of it. Turn-
taking typically extends not just to utterances but also to
actions. If the system is capable of performing an action
(for example, looking up information in a database) in re-
sponse to a user command, then it is common to assume
that the system’s turn includes the relevant actions, and that
the user will not speak until they are complete. That is,
what is often assumed is something we will call the “syn-
chronous dialogue model”: user talks, system acts, system
replies.

Although this assumption is popular, there are plenty
of reasons for doubting that it is in general appropriate.
Empirical investigations show that the strict turn-taking
model often agrees badly with data from real conversations
(Thompson, 1996). As far as practical system-building is
concerned, it is now the case that many systems allow at
least a limited ability to break the synchronous dialogue
convention, and support so-called “barge-in” functionality:
the user is allowed to speak before the system has finished
talking, breaking it off in mid-stream.

In this paper, we will argue that “barge-in”, far from
being an isolated exception, is just the most common in-
stance of a range of obviously reasonable dialogue strate-
gies which break the synchronous convention. We will re-
fer to such strategies as “asynchronous”. We motivate our
arguments with two case-studies drawn from implemented

dialogue systems, each of which allows some degree of
asynchrony. The basic questions we are asking are the fol-
lowing:

� What practical reasons are there for wanting to support
asynchronous dialogue strategies in spoken language
dialogue systems?

� What demands does asynchronous dialogue manage-
ment place on system architecture?

In particular, we have found that the synchronous dia-
logue model does not account well for situations in which
users are talking to a system that takes any appreciable time
to do things. For instance, the system might be searching
for information over the Internet, or the system might be a
robot moving about in the physical world. In these cases,
situations will arise where the human wants to interrupt the
system not only when it is talking, but also when it is act-
ing. There are at least two good reasons why this might
happen1. The first is obvious: the human may not like what
the system is doing, and want it to do something else in-
stead. In particular, the human may want the the system to
switch to a new behavior, or they may want it temporarily
to suspend operations while it executes a new task.

The second reason is slightly more subtle, but becomes
apparent as soon as one starts experimenting with a prac-
tical spoken language system. Humans get bored easily:
even if the system is busy, they would still prefer to talk to
it if they can find something useful to say. For example,

1A third, which we will not discuss further, is that the human
may not even be aware that they are interrupting.



they may want to give the system a new task that can be
executed in parallel with the current one, or after it.

The two points meet up when we consider how to or-
ganize confirmation strategies. There is generally a tension
here between two conflicting goals; telling the user what
you intend to do decreases the risk of a misunderstanding,
but carries the penalty of slowing down the dialogue and
consequently the execution of the task. An asynchronous
dialogue architecture allows the possibility of a compro-
mise, since the system can start executing the task and tell
the user what it is going to do simultaneously. As long
as choosing the wrong task is not actively dangerous, this
tends to be a good way to operate: the user relies on being
able to interrupt the system if necessary and correct it, but
loses no time if the system understood correctly.

Conversely, the system may want to interrupt the hu-
man. Something may come up which it considers more
important than its current task; alternately, it may be doing
several things at once, and need to keep the user informed
about their relative progress.

The rest of the paper is structured as follows. Section
2 describes our two sample applications, focusing on the
question of how they realize some of the functionalities
discussed above. Section 3 relates our findings to other
established frameworks for dialogue management and con-
cludes.

2. Two case studies
In this section, we present two case studies of sys-

tems that use asynchronous dialogue management strate-
gies. SMARTSPEAK (Boye et al., 1999) is a travel planning
system that fetches information from a web-server. Since
this takes appreciable time (typically around 20 seconds to
a minute), people want to be able to talk to the system while
they are waiting for the web-server to return. This means
that in general the system is in the middle of a new conver-
sation by the time the web-server gets back.

The Personal Satellite Assistant PSA (PSA, 1999;
Rayner et al., 2000) is a simulated version of a semi-
autonomous speech-enabled robot intended for deployment
on the International Space Station. The robot acts as a mo-
bile sensor: it can go to different places and measure sta-
tus variables such as temperature and pressure. Since the
robot, once again, takes non-trivial time to carry out com-
mands, the possibility arises that the user may want to in-
terrupt them. We now describe the architectures of these
two systems.

2.1. SMARTSPEAK
The architecture of the SMARTSPEAK system is based

on having a set of independent modules (or agents) com-
municate asynchronously by message passing. In particu-
lar this entails that the agents have no a priori decided ex-
ecution order; an agent starts executing when it receives a
message, and as soon as it has finished executing it is ready
to process the next message, regardless of the current state
of the other agents. Hence in principle all the agents could
run in parallel in different processes.2

2In the current implementation there are four constantly run-
ning processes, which handle speech recognition, speech synthe-

The Dialogue Manager (DM) is the heart of the system.
It can receive messages from the language analysis agents
(parsed utterances), and from the database agent (database
query results). The DM can send messages to the speech
synthesizer (system utterances) and to the database agent
(database queries). The DM maintains a dialogue state,
which is transformed as a result to each incoming message.
How the DM uses its dialogue state to interpret user utter-
ances, resolve references, select system utterances, etc., is
described in Boye et al. (1999).

The database agent (DA) receives messages (database
queries) from the DM. The DA first checks its local state
to see whether the query has been processed before, so that
the results are cached. If so, the DA immediately sends a
message back to the DM containing the results. If not, the
DA sends a message to the DM indicating that the query
will take some time to process, and then spawns a process
that contacts the travel database web server via the Internet.
When the search process returns its results to the DA, the
DA will send the results in a message to the DM.

The asynchronous communication between the DM and
the DA has several implications, most notably that it is pos-
sible that search results do not return to the DM in the same
order the queries were sent (e.g. when the results of the
second query were cached, but the results of the first query
were not). This of course creates complications for the DM,
but on the other hand the system can cope with dialogues
like the following:

(a) U: I want to go from Stockholm to Gothenburg on
Monday morning.

(b) S: I’m searching the database – it will take about 30
seconds. Do you want a single or a return trip?

(c) U: A return trip.

(d) S: When do you want to go from Gothenburg to Stock-
holm?

(e) U: On Tuesday afternoon.

(f) S: I have received information about trips from Stock-
holm to Gothenburg. There is a train at . . .

(g) U: Fine, I want to book that please.

(h) S: I have booked a train on Monday at . . . I have re-
ceived information about trips from Gothenburg to
Stockholm. There is a train at . . .

As concerns the communication between the agents, the
following points are worth noting.

1. The user utterance (a) makes the DM send off a search
query to the DA.

2. The DA sends back a message that the search will take
some time, which triggers the DM to generate the first
sentence of utterance (b). The DM then initiates a con-
versation about a second topic (the return trip).

sis, database access, and everything else, respectively (where “ev-
erything else” essentially means language analysis and dialogue
management). In addition the database agent will spawn short-
lived processes; see the main text.



3. The user utterance (e) makes the DM send off a second
query to the DA.

4. At some point between (b) and (f), the results con-
cerning the outbound trip are sent from the DA to the
DM. (The DM will not present the result as soon as
they come in, but will wait until it thinks the moment
is right.)

5. At some point between (e) and (h), the results con-
cerning the return trip are sent from the DA to the DM.

Figure 1 shows the communication between the differ-
ent agents in graphical form.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Dialogue
ManagerUser

take time”

Utt. (a)

Utt. (b)

Utt. (c)

Utt. (d)

Utt. (e)

Query 1

Query 2

Search
process 1”Query 1 will

take time”

Results 1

”Query 2 will

Utt. (f)

Results 2

Utt. (h)

Utt. (g)

process 2
Search

Agent
Database

Figure 1: Agent communication in the Smartspeak example

2.2. PSA

The PSA system is configured as a set of independent
agents connected using the SRI Open Agent Architecture
OAA (Martin et al., 1998). In accordance with the usual
OAA design philosophy, each agent is an independent pro-
cess which maintains its own state. Agents communicate
by means of calls in Interagent Communication Language
(ICL), an extension of Prolog. Calls can be either syn-
chronous (execution of the calling agent suspends until the
call is complete, returning a value) or asynchronous (ex-
ecution of the calling process continues, and no value is

necessarily returned). The agents that are of interest to us
here are the following:3

Speech recognition and parsing (SRP) The agent at-
tempts to recognize input speech, and if successful
produces an output semantic representation, which
is sent as an asynchronous message to the dialogue
manager agent.

Dialogue manager (DM) The dialogue manager is the
central agent: it receives semantic representation mes-
sages from the SRP, and decides on the next dialogue
action. There are a number of possibilities, of which
the most important are the following. (1) Convert
the semantic representation into an executable form (a
“script”), and pass it to the Action Manager as an asyn-
chronous message; (2) Send a request to the Action
Manager specifying a modification to the executing
script; (3) Send a request to the Generation agent to
create a confirmation question (this can be combined
with (1)), a clarification question, or some other verbal
response.

The Dialogue Manager’s behavior is explained in de-
tail in Rayner et al. (2000).

Action manager (AM) The Action Manager consists of
two interrelated pieces of functionality. The Execu-
tive subsystem receives scripts from the DM and exe-
cutes them. Scripts are complex structures composed
of atomic actions; execution is ultimately performed
by sending synchronous atomic action messages to
ROBOT.

The Action Manager also includes a second subsys-
tem, the Interrupt Blackboard, which is used to hold
state relevant to processing of interrupts and related re-
quests. Other agents can write to and read from the In-
terrupt Blackboard at any time, irrespective of whether
the Executive is busy.

Simulated PSA Agent (ROBOT) The back-end simulated
PSA application, which executes the action messages
produced by the AM.

Generation and speech synthesis (GSS) Turns abstract
representations of utterances into speech.

The following simple dialogue illustrates how process-
ing works.

(a) U: Go to flight deck.

(b) S: I am going to flight deck. [Simultaneously starts
moving towards flight deck]

(c) U: Stop. [Robot stops]

(d) U: Measure temperature.

3In the interests of expositional clarity, we have omitted some
agents and collapsed others into single agents. In particular, the
Action Manager, which conceptually forms a single unit, is con-
cretely realized as two OAA agents.



(e) S: The temperature at the current location is 19 degrees
Celsius.

(f) U: Continue. [Robot resumes moving to flight deck]

In terms of message traffic between agents, the critical
points are the following.

1. The user says (a). This causes SRP to send an asyn-
chronous message to the DM, which in turn sends mes-
sages to AM (the script to execute) and GSS (the con-
firmation question to ask). Both messages are asyn-
chronous, so SRP and DM are free to process new mes-
sages while AM and GSS are active.

2. The message sent to GSS causes it to say (b). AM sends
a synchronous message to ROBOT to start the simu-
lated move command.

3. When (c) is uttered, DM updates the state of AM’s In-
terrupt Blackboard to ask for an interrupt. ROBOT,
which is continually monitoring this blackboard, aban-
dons processing of its current command and returns
control to AM. Since the Blackboard has a stop mes-
sage posted, AM pauses and waits for further instruc-
tions.

4. The user utters (d). DM now sends a new script to AM.
Since AM is in a stopped state, it recursively invokes
a new copy of the command interpretation loop from
the interrupted point in the current execution. This ex-
ecutes the script (causing GSS to say (e)), and on com-
pletion returns control to the previous stopped state.

5. When the user utters (f), DM changes the state ofAM’s
Interrupt Blackboard from “stop” to “resume”. This
causes AM to continue from the stopped execution
state.

Figure 2 presents the processing described above in
graphical form; in order to highlight the correspondences
with Figure 1, we have hidden SRP and GSS, which do no
more than relay messages between the user and the other
agents.

In the next section, we compare the architectures of the
SMARTSPEAK systems and PSA systems with others de-
scribed in the literature, and attempt to draw some general
conclusions.

3. Conclusions: Architectures for
Asynchronous Dialogue Management

To sum up, asynchronous dialogue management allows
for the construction of spoken dialogue system that can act
and talk at the same time. In particular, such systems are
able to execute a command from the user, and at the same
time receive the user’s next command. We want to em-
phasize that this is not just a cute twist or a question of
efficiency, but is rather a fundamental requirement when
equipping real-time systems (like robots) with a spoken di-
alogue user interface. In many such applications, it will
be unavoidable that the system is busy doing something
when the user talks to it; hence for such applications the

�

�

�

�

�

��

�

�

�

�

�

�

�

�

.

�

User
Dialogue
Manager

Action
Manager Robot

Utt. (a)

Utt. (b)

Utt. (c)

Utt. (d)

Utt. (e)

Utt. (f)

Robot is
idle

Robot
moves

Robot is
idle

Robot
measures

Robot is
idle

Robot
moves

instruction
Move

Interrupt

Measure

Result

Move
instruction

instruction

Interrupt
command

Resume
command

Script 1

Script 2

Result

Figure 2: Agent communication in the PSA example

“synchronous” dialogue model tacitly assumed in much di-
alogue research is helplessly inappropriate.

Furthermore, although we have emphasized the practi-
cal implementation issues in this paper, asynchronous di-
alogue management also poses some difficult theoretical
problems which we have barely touched upon here (and
to the best of our knowledge, have received little attention
elsewhere). For instance:

� How should the system deal with a user command or-
dering the system to do action A, when it is currently
busy performing action B? There are a number of pos-
sibilities: the system may execute A and B in parallel,
or it may execute B after A is finished (sequential ex-
ecution), or it may abort B, or suspend B (in order to
resume B after A has finished executing). Or, finally,
the system may choose to ignore the user’s command
altogether. The question is under which circumstances
which alternative is preferable, and what criteria the
system can use to decide the appropriate course of ac-
tion.

� Assuming that there are several ongoing and/or sus-
pended activities, how does the system determine the
appropriate context in which to interpret the user’s ut-
terances, what are the preferred reference resolution
strategies, etc.?



� How does the system schedule its utterances, so that
the resulting dialogue is comprehensible for the user?

Although a few researchers pay lip-service to the con-
cept of asynchronous dialogue management or handle some
special cases, there seems to be surprisingly little acknowl-
edgement that it is important. This is highlighted by the
influential DARPA Communicator project DAR (1999),
which is currently being used by a large number of re-
search site in the US and Europe. The current Commu-
nicator architecture derives from GALAXY-II (Seneff et al.,
1998), and organizes the system as a number of stateless
“server” processes, controlled by a “script” run from a cen-
tral “hub” process. This architecture is not aimed towards
asynchronous communication between processes. For ex-
ample, Aberdeen et al. (1999) contrasts Communicator
with OAA as follows:

Both schemes provide for flexible flow of con-
trol. However while flow of control is explicitly
programmed in the Hub, in the OAA it is deter-
mined autonomously by interactions between the
agents . . . In sum, the Communicator allows for
programmable but pre-determined flows of con-
trol while the OAA allows for dynamic but not
pre-determined flows of control.

We are not claiming that the examples in sections 2.1.
and 2.2. are startlingly novel or complex. The point we
want to make is that being able to deal cleanly with this
kind of thing makes certain demands on the architecture
of a spoken language dialogue system. The processing is
relatively simple because we have multiple asynchronously
acting agents, each of which has independent state and is
able to make requests of the other agents. In particular,
we have separate agents which contain dialogue state and
action state respectively. Each of these types of state con-
stitutes a context which needs to be maintained, and which
is essential to the interpretation of commands.

Although it would be possible to implement similar
functionality using a centralized architecture like Commu-
nicator, this would be much less straight-forward: in partic-
ular, we would have to reify action state as an object which
could be passed between the server taking the role of the
Action Manager and the Hub. One could do so, but we
feel that this is really somewhat beside the point. Our ba-
sic argument is that dialogue management is best concep-
tualized as a distributed and asynchronous process; if we
are prepared to grant this, it certainly seems natural to con-
clude that it will be easiest to represent it in a distributed
and asynchronous form.

4. References
J. Aberdeen, S. Bayer, S. Caskey, L. Damianos, A. Gold-

schen, L. Hirschman, D. Loehr, and H. Trappe.
1999. Implementing practical dialogue systems with the
DARPA Communicator architecture. In Proceedings of
the IJCAI’99 Workshop on Knowledge And Reasoning In
Practical Dialogue Systems, pages 81–88.

J. Boye, M. Wirén, M. Rayner, I. Lewis, D. Carter,
and R. Becket. 1999. Language-processing strategies

for mixed-initiative dialogues. In Proceedings of the
IJCAI’99 Workshop on Knowledge And Reasoning In
Practical Dialogue Systems, pages 17–24.

1999. DARPA Communicator Web Page.
http://fofoca.mitre.org. As of 14 February 1999.

D. Martin, A. Cheyer, and D. Moran. 1998. Building
distributed software systems with the open agent ar-
chitecture. In Proceedings of the Third International
Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology, Blackpool, Lan-
cashire, UK.

1999. Personal Satellite Assistant (PSA) Project.
http://ic.arc.nasa.gov/ic/psa/. As of 14 February
1999.

M. Rayner, B.A. Hockey, and F. James. 2000. A compact
architecture for dialogue management based on scripts
and meta-outputs. In Proceedings of Applied Natural
Language Processing (ANLP).

S. Seneff, E. Hurley, C. Pao, P. Schmid, and V. Zue. 1998.
Galaxy-II: A reference architecture for conversational
system development. In Proceedings of the 5th Interna-
tional Conference on Spoken Language Processing, Syd-
ney, Australia.

H. S. Thompson. 1996. Why ‘turn-taking’ is the wrong
way to analyse dialogue: Empirical and theoretical flaws.
In Proceeding of the 1996 International Symposium on
Spoken Dialogue.


