
1

Constraint Manipulation and Visualization in a
Multimodal Dialogue System

Joakim Gustafson1,2, Linda Bell1,2, Johan Boye1, Jens Edlund2 & Mats Wirén1

1Telia Research, Vitsandsgatan 9, S-12386 Farsta, Sweden

2Centre for Speech Technology, Drottning Kristinas väg 31, S-10044 Stockholm, Sweden

Abstract

 When interacting with spoken and multimodal dialogue systems, it is often difficult for users
to understand and influence how their input is processed by the system. In this paper, we
describe how these problems were addressed in the multimodal real-estate dialogue system
AdApt. During the course of a dialogue, the user's contraints are translated into symbolic
icons that are visualized on the screen and can be manipulated by drag-and-drop operations.
Users are thus given a clear picture of how their utterances are understood, and are given a
transparent means of controlling the interaction with the system.

1. INTRODUCTION

Spoken dialogue and multimodal dialogue interfaces are increasingly
being used as intelligent front-ends to databases. Such interfaces
allow non-experts to solve complicated search problems, as the user
has access to spoken natural language and graphical operations instead
of having to learn a query language such as SQL. Furthermore, the user
can incrementally refine and modify his search queries by means of an
ongoing dialogue with the system, rather than having to construct
entire queries in one go. This article describes how such search problems are
handled in AdApt, a multimodal dialogue system. AdApt lets the user look
for apartments for sale in downtown Stockholm, Sweden. The apartment
domain is complex, with a large number of factors that can be independently
varied (from the user's point of view), such as price, monthly fee,
size, number of rooms, location, the presence/absence of things such as an
elevator, a balcony, fireplace, or tiled stove in the apartment, and so on.

2 Joakim Gustafson, Linda Bell, Johan Boye, Jens Edlund, & Mats Wirén

The structure of the resulting dialogue is both surprisingly simple
and potentially very complex, depending on the level one looks at. At
the lowest level, the vast majority of single utterances correspond to
straightforward database queries in the sense that users ask specific
questions regarding concrete properties, one at a time. In contrast,
people rarely ask general questions involving subjective criteria that
have non-trivial mappings to database queries, such as “I want a light
and cozy apartment in a quiet surrounding”. Thus, the level of single
utterances typically does not exhibit great complexity. In practice,
this means that processing can be done with a shallow parser and,
furthermore, that the relation between semantic representation and
database query is straightforward and has a direct mapping.

At the level of continuous dialogue, however, it is clear that the
succession of simple queries just provides a means to fulfill a much
more complex task that rather corresponds to browsing: Users rarely
come with an a priori set conception of what they are looking for;
rather, they refine and modify their stated needs in an incremental
fashion in the course of the dialogue, partly depending on what
apartments are available, and partly depending on new features that
spring to mind based on previous examination of objects.

Thus, to allow users to properly navigate the database, the
possibility of both adding and retracting constraints is essential. In
particular, if the set of solutions to a specific query is large, the
user may want to add constraints to limit the solution set, instead of
examining the members of the larger set one by one. If the set of solutions is
empty, on the other hand, the system might automatically
retract constraints until a solution is found (unless this task is left to
the user). However, as the user and system keep retracting and adding
constraints, the current set of constraints becomes less and less
transparent. To efficiently convey the current set of constraints to
the user, thereby achieving the necessary grounding, AdApt takes advantage
of multimodality by visualizing the current search constraints as small icons.
The user can retract constraints either by dragging the corresponding icon
and dropping it in the “Trashcan”, or by pointing to an icon and saying
”forget this” or some similar phrase, for example: “If you forget
about the balcony, what apartments can you find?”.

In this paper, we will describe how the AdApt system was incrementally
developed to handle such advanced constraint manipulation and
visualization.

Constraint Manipulation and Visualization in a Multimodal Dialogue System 3

2. BACKGROUND

Previous studies have emphasized the problem of extracting useful
information from large multidimensional search spaces (Burke et al.,1997;
Pu et al., 2000). However, in contrast to our system, the ‘assisted browsing’
strategy of Burke et al. (1997) aims at trying to make the user avoid specific
(concrete) questions by instead presenting suggestions and examples,
thereby leading the user’s search in a direction determined by the system. Pu
et al. (2000) describe a travel-planning application in which user criteria and
preferences are modelled as constraint satisfaction, using a range of
overview displays. Although this seems primarily useful in situations
where users have well-structured a priori ideas of what they are
looking for, it is an interesting approach that might well be adopted
as a complementary strategy.

For users of spoken dialogue systems, understanding how or even if your
input to the system is being processed can be difficult. Telephone-based
information retrieval systems often require users to provide repeated
confirmation prompts as a way of giving feedback on the previous turn and
ascertaining that the dialogue is on the right track. When a problem occurs in
the dialogue, the system has to reprompt the user by requiring her to repeat
or rephrase the previous turn. However, users find sequences of explicit
confirmation prompts and reprompting awkward and tedious. Studies have
shown that repeated confirmation turns give users the impression that the
system is slow and make the human-computer dialogue appear less natural
(Boyce, 1999).

Multimodal dialogue systems, with which the user and system can
interact with two or more modalities, offer to provide the solution to some of
the problems facing speech-only systems. As reported by Lamel et al (2000),
spoken dialogue systems with multimedia interfaces can efficiently display
all the user’s options on the screen instead of conveying this information by
means of dialogue. Similarly, a multimodal system can provide its users with
feedback without requiring a separate dialogue turn by giving graphical
indications of its internal state. Previous studies have shown that an interface
which combined pen and voice was perceived as more efficient than one
which used either speech (Oviatt, 1997) or graphics (Cohen et al, 1998).
Furthermore, users of multimodal systems tend to switch from one input
modality to another if the system fails to understand an initial request (Oviatt
and VanGent, 1996).

According to the theory of grounding (Brennan and Clark, 1996; Clark
and Wilkes-Gibbs, 1986), human discourse should be viewed as a joint
activity where speakers try to establish a common ground between them.
Speakers must continuously make sure that their utterances are received they
way they intended by the other participants in the conversation. However,

4 Joakim Gustafson, Linda Bell, Johan Boye, Jens Edlund, & Mats Wirén

which criteria that are actually required for grounding vary with the context
and situation (Clark and Wilkes-Gibbs, 1986; Clark and Schaefer, 1989).

In human-computer interaction, grounding becomes even more important
while the process itself becomes more complicated. Complex dialogue
systems which allow users to manipulate many different constraints in the
course of their interaction are especially demanding from this point of view.
Brennan (1998) argues that errors that occur in human-computer interaction
often are caused by failures in grounding, since the system and user lack
enough evidence to coordinate their different knowledge states.

In a recent study, it is shown that presenting users with a graphical
representation of the discourse domain and dialogue state of a spoken
dialogue system can be useful (Terken and te Riele, 2001). The study reports
on an experiment in which a unimodal version of a dialogue system was
compared to a multimodal version of the same system. The multimodal
version of the system was rated as being advantageous from the point of
view of efficiency and user satisfaction. In the present study, we discuss how
the feedback strategies of the multimodal AdApt system were improved, so
that users of the system could get a better understanding of how their input
was being processed. The idea was to increase the transparency of the
system’s internal representations and decisions by visualizing user
constraints.

3. THE DEVELOPMENT OF THE ADAPT SYSTEM

AdApt is a Swedish dialogue system that was developed at the Centre for
Speech Technology (CTT), with Telia Research as industrial partner
(Gustafson et al. 2000). AdApt is a multimodal research system that allows
the user to look for an apartment for sale in downtown Stockholm, Sweden.
The apartment domain was chosen because it interests a lot of people, is
complex enough, and encourages multimodal interaction. The system
features a 3D-animated head, developed at KTH, which produces lip-
synchronized synthetic speech (Beskow, 1997). Information about the
location of retrieved apartments is displayed on an interactive map. The
system makes a combined interpretation of the graphical input and the
textual output from the speech recognizer, and sends the result to the
dialogue manager.

The system was iteratively constructed with both simulated experiments
and user tests with a fully implemented system. During the development of
the system, the need to give the users means to manipulate the current search
constraints became apparent: This led to the generation of the icon handler
that visualizes the user’s constraints on the screen.

Constraint Manipulation and Visualization in a Multimodal Dialogue System 5

3.1 Wizard-of-Oz experiments
Initially, a Wizard-of-Oz version of the system was developed. The
simulated system accessed a database of genuine apartments for sale,
automatically extracted from a commercial web site. The users primarily
interacted verbally with the animated talking agent, but they could also
provide graphical input by drawing areas or by selecting apartment icons on
an interactive map. A human operator simulated the system’s key
functionalities, i.e. the analysis of the user’s verbal and graphical input,
dialogue management and multimodal response generation. Even though the
system’s verbal and graphical output was generated by means of ready-made
templates, the human acting as wizard used his own intuitions to handle the
turn-taking. The animated agent displayed a ‘listening’ gesture while the
user was talking and then turned to a ‘thinking’ gesture when silence was
detected. 32 subjects were given tasks that involved finding apartments with
certain criteria given to them via pictorial scenarios. The analysis of the
users’ interactions was used to build grammars for the recognizer and parser
as well as in the design of the dialogue manager. Furthermore, the analysis
of the database revealed a large number of fragmented utterances. Most of
these utterances either consisted of feedback on the system’s previous turn
followed by a request or topicalized references to an apartment followed by
a question about the same. To enable the system to make real-time decisions
on how to handle these fragmented user utterances, we introduced an
Input/Output manager to manage the information flow of the system. This
I/O manager only sends the user utterances to the dialogue manager that the
parser considers to be complete (Bell et al, 2001).

3.2 Pilot study
An early version of the fully implemented system was tested as part of a
bullet course in speech technology held at CTT. 15 employees of the CTT
industrial partners interacted with the system in groups of three. Apart from
the ‘thinking’ gestures that had been used in the WoZ experiments, the
animated agent also generated ‘continued attention’ gestures when the parser
had judged an utterance as being non-complete. The analysis of these
interactions showed that it was difficult for the users to interpret some of the
turn-taking gestures and that they also expressed uncertainty as to which
search constraints the system was using at any given time. These problems
lead to a tendency for some users to resort to a command-like language. The
data from the pilot study was used to upgrade the system’s input modules,
dialogue manager and turn-taking gestures. The study also made it obvious
that it would become necessary to give the users continuous feedback on the
system’s search constraints.

6 Joakim Gustafson, Linda Bell, Johan Boye, Jens Edlund, & Mats Wirén

3.3 User study
The upgraded AdApt system was used to investigate the efficiency of two
different feedback strategies to communicate whether the system was
‘listening’ or ‘working’. The first version showed an hourglass to signal that
the system was preparing a response. The second version used updated facial
gestures for ‘continued attention’ and ‘thinking’. In the user study, a version
without any visual feedback to support turn-taking was also used as a
baseline. Each of the three versions was tested by eight users, adding up to a
total of 24 subjects. The subjects did not receive any task other than “try to
get information about apartments that you are interested in”, and were not
informed about the capabilities of the system. However, they were told how
to start a new session in case they got stuck. Each subject interacted with the
system for more than 30 minutes, and the total number of subject utterances
amounts to more than 3000.

An analysis of the effect of the system’s feedback strategies for turn-
taking is reported in another paper in these proceedings (Edlund and
Nordstrand 2002). It was interesting to note that several users explicitly
asked the system to give them feedback on its current search constraints or
told it to remove or change some of its constraints.

4. CONSTRAINT MANIPULATION

To allow smooth information browsing, the system has to modify, refine and
relax the user's constraints, sometimes in non-obvious ways. In a typical
dialogue, the user begins by stating some constraints on the apartment he
wants to buy. The system prompts for more constraints, while at the same
time showing the current set of apartments in the database matching the
search constraints as colored icons on the map. The user then either gives
more constraints (e.g. “I want to live in the Old Town”), which the system
adds to the search query, or starts asking questions about specific
apartments, e.g. “How much does the red apartment cost?”.

As long as the user keeps adding constraints and the resulting set of
apartments is non-empty, the system’s actions are straightforward. A first
complication arises when the user revises the query. For instance, he might
think that the presented apartments are too expensive, and change or relax
some constraints by saying “Look for two-room apartments instead” or
“Forget about the balcony”. Obviously, the current search query changed as
a result of this utterance, but the question is how. There are several possible
strategies:

Constraint Manipulation and Visualization in a Multimodal Dialogue System 7

 Minimal change. Just modify the constraint that the user is explicitly
referring to, and keep everything else. In the first example above, this
would make the system change the number_of_rooms attribute from 3
to 2. One quickly realizes that this strategy is untenable, since various
attributes can be related to each other (e.g. the street and area
attributes are obviously related in the apartment domain).

 Maximal change. Throw everything away except for the modified
constraint. In the first example above, this would make the system
look for any two-room apartments. This strategy tends to be frustrating
for the user, especially since a recognition error can make the system
throw out all accumulated constraints.

 Minimal change with dependencies. Modify the constraint the user is
explicitly referring to, and everything that is related to it. For instance,
if the user modifies the value of the area attribute by saying ``Look in
the Old Town instead'', the system also clears the street_name, x-
coordinate and y-coordinate attributes. This strategy leads to some
tricky considerations; e.g. there is clearly a relationship between the
size of an apartment (in square meters) and the number of rooms, but
this relationship is not very obvious.

A related situation which is not too uncommon is that the set of database
matches is empty. This situation can arise due to misrecognitions (e.g. “a
one-room apartment” is understood as “a ten-room apartment”), or because
the user has unrealistic expectations on the offering of apartments for sale.
To get out of this dead end, the system has to relax or retract some
constraints from the current query. Again there are several possible
strategies:

 Retract the last constraint. The most obvious strategy is to remove the
constraints added by the last user utterance (after all, adding those
constraints resulted in an empty answer set). The drawback is that this
strategy does not give the user much guidance on how to continue.

 Relax numerical constraints. A straightforward strategy is to relax
exact numerical values to intervals, and to increase the size of
intervals. To some extent this strategy is absolutely necessary, e.g.
instead of searching for apartments that cost two million, the system
must search in a suitable interval around two million.

 Importance ranking. The system tries to guess what attributes are the
most important for the user, and throws out everything but the values
of those attributes. For instance, if the user has stated some desired
properties without having been prompted, the system might guess that
these constraints are the most important for the user.

8 Joakim Gustafson, Linda Bell, Johan Boye, Jens Edlund, & Mats Wirén

 Minimal balanced relaxation. The system relaxes as few constraints
as possible in the search query, until the set of matches in the database
is non-empty. The greatest drawback of this strategy is that it is
complicated to feedback to the user how the search query has been
modified (see more next section).

 Remove unreasonable constraints. The system uses domain-
dependent rules to detect and remove unreasonable constraints (which
usually are due to recognition errors), like apartments with twenty
rooms.

In fact, it is advantageous to let advanced users control the system’s
constraint relaxation strategy. In this domain, a user might want to
distinguish between necessary constraints (e.g. the apartment cannot cost
more than two million) on the one hand, and constraints that express
desirable rather than necessary properties on the other hand (e.g. “balcony”
or “top floor”). The constraint visualization strategy presented in the next
section allows an elegant means of making this distinction. Each constraint
icon can be provided with a ‘lock’ button. By clicking on this lock button,
the user can effectively instruct the system not to relax that particular
constraint, regardless of the relaxation strategy employed.

5. CONSTRAINT VISUALIZATION

Advanced constraint manipulation is needed to facilitate browsing.
However, to prevent the user from feeling a lack of control, the system must
inform the user of what it is doing According to Schneiderman (1997), a
user-friendly computer interface must be comprehensive, predictable and
give the user the notion of being in control. To do this, the system should be
reactive and continuously give the user feedback on what it has received.
The user wants to know that her input was correctly understood and that the
system will perform the intended task. As discussed above, however, speech-
only systems that use repeated confirmation prompts are perceived as
tedious and unnatural (Boyce, 1999).

In the development of the AdApt system, a multimodal confirmation
strategy was used to signal what the system has received and understood.
This approach was chosen to make the dialogue system appear reactive, and
the dialogues more natural and less system-directed. Immediately after a user
has finished an utterance, the system responds with feedback by showing
icons that represent the information units in the recognized and parsed string.
The system also marks the locations of the apartments on a small map. To
indicate that the initiative remains with the user, and that she is free to either
add more constraints or start asking about a specific apartment, the animated

Constraint Manipulation and Visualization in a Multimodal Dialogue System 9

agent shows a facial gesture that encourages the user to continue speaking. If
the user still does not speak within a timeout-period of about a second, the
system takes the initiative by asking the user for one of the feasible
constraints that she has not yet supplied.

The system also displays its inner state, i.e. all the constraints presently
used to perform a query. If the system decides to relax some of the user’s
current constraints before conducting its search, the inner state contains
something different than what the user actually said. If, for instance, the user
requested an apartment for 2 million the system will actually look for
apartments in the price range of 1.5 and 2.5 million. In this case, the
system’s decision to relax the price constraint could be wrong. The user
might have intended for the system to search for apartments that cost less
than 2 million. While this misunderstanding would have been quite tedious
to ground verbally, it is easier to do graphically. The price constraint is
showed graphically with an icon that indicates the price range. This can be
done either with a scale, which is highlighted between 1.5 and 2.5 million, or
with an icon like the one shown in Figure 1 below. The user can select the
icon to change the price range graphically or verbally.

Figure 1. In the agent’s thought balloon, the currently recognized constraint “two
million” is visualized. In the bottom left corner, illustrating the system’s inner state,
there is instead an icon representing the relaxed constraint 1.5-2.5 million.

Visualization of constraints also facilitates browsing in the data set. If the
user had to supply a large number of constraints to get a graspable number of
apartments, it could be difficult to remember under what conditions the
search result was retrieved. In AdApt, the constraints can be displayed
graphically and are thus easily remembered. This approach also makes it
possible for the user to change a specific constraint multimodally. For
instance, the room-constraint can be removed either by dragging the icon to

10 Joakim Gustafson, Linda Bell, Johan Boye, Jens Edlund, & Mats Wirén

the trashcan or by clicking on it and saying “forget this” or changed by
saying “two rooms”. Constraint visualization will also facilitate error
recovery during human-computer miscommunication. During error recovery
in spoken dialogue systems, user utterances tend to get long, complex and
unpredictable. Such utterances are difficult for the system’s recognition
grammar to handle. Instead of saying something like “No no no, didn’t you
hear me, I said I wanted two rooms not ten rooms”, users of AdApt will have
the possibility of selecting the room icon and saying “two”.

6. ENABLING VISUALIZATION OF CONSTRAINTS

Certain aspects of the AdApt system architecture aspects facilitated the
visualization of the inner state of the dialogue manager. This allowed the
system to give the user graphical or verbal feedback throughout the
dialogues. The system is able to give feedback on the previous turn and then
wait for a user reaction before initiating the next turn. In the following
section, we describe the aspects of the system necessary to visualize the
system’s inner state, as well as the modifications necessary to implement the
Icon handler.

6.1 The system architecture
The AdApt system is designed to facilitate user studies in multimodal
settings. The system architecture makes it relatively easy to add system
modules that provide new information channels. For the same reason, the
communication protocols between the modules need to be easily extendable.
Furthermore, the system is developed at two different sites, which makes
flexibility regarding platforms and programming languages important.

The system is modular and distributed, with each module running in a
separate process. The modules communicate via a broker using TCP/IP-
sockets, which works well when the system runs on a single computer, but
also allows the system to run in a distributed manner over a number of
computers. The modules can be executed either under Windows or Unix.

Another facilitating feature was the usage of XML encoded messages for
the communication between modules. This made it easy to add new
information parts in the messages without having to rewrite all other
modules. XML also has some other advantages: It is fairly standardized, it is
not tied to any particular platform or language, and it is readily
transformable and expandable. The bulk of the AdApt system is coded in
Java, Prolog and Tcl, all of which are languages that have standard libraries
for parsing and building XML messages. The choice of XML for the inter-
process communication was fairly straightforward. However, the question of

Constraint Manipulation and Visualization in a Multimodal Dialogue System 11

which modules to include is still an open one. Apart from the standard
dialogue modules, i.e. speech recognition, parsing, etc., two additional
modules are used in the AdApt system: the I/O manager and the GUI
manager.

6.2 Robust Parser
The system uses a two-phase robust shallow-processing parsing algorithm to
produce the semantic representation of utterances. In its first phase, the
parser scans the string of words from left-to-right, and the sequence of
graphical events in time-order, collecting a set of indicators triggered by
syntactic patterns. For instance, the word “Hagagatan” would produce
indicators that the user is talking about a street, that this street is most likely
part of an address; thus the user is implicitly referring to an object that has an
address, and since apartments are (currently) the only known kind of objects
that have addresses, the user is implicitly referring to an apartment.

In the second phase, the parser uses heuristics to weigh all this
information together, determining the utterance type (wh-question, yn-
question, acknowledgement...), what the sought object is (an apartment, a
price,...), the appropriate values of database slots, and the referential
information expressed in the utterance. The final output of the parser is a
sequence of semantic expressions of the form previously described in Bell et
al (2001). By parsing verbal fragments and graphical input together, the
system effectively interprets multimodal user input like “I want to live here”
accompanied by the drawing of a region on the map, or “Forget that”
accompanied by a drag-and-drop operation placing a constraint icon in the
trashcan.

6.3 Dialogue Manager
The dialogue manager performs three main tasks: (1) Contextual
interpretation of the user's utterance (2) Dialogue act classification, and (3)
Response generation.

Contextual interpretation involves a number of steps. The explicit
references detected by the parser are resolved, elliptic answers or questions
are interpreted and domain-dependent re-interpretation rules are applied. For
instance, the elliptic answer “two” is understood as “I can pay two Swedish
crowns” if the system's latest question was “How much do you want to pay
for your apartment?” where after “two Swedish crowns” is re-interpreted as
“two million Swedish crowns”. In general, the contextual interpretation
process might generate a set containing several hypotheses representing
possible interpretations of the user's utterance.

12 Joakim Gustafson, Linda Bell, Johan Boye, Jens Edlund, & Mats Wirén

After contextual interpretation, the dialogue manager will produce one
verbal and one symbolic feedback of the user's utterance, as well as a
symbolic representation of the current search constraints used by the system.
This information is then sent to the I/O manager.

The dialogue manager then heuristically classifies each of its hypotheses
as being a certain dialogue act, whereafter the winning hypothesis is selected
by a voting procedure. This classification effectively decides in what way
the constraints C expressed by the user's latest utterance should be combined
with the set A of previously accumulated constraints. For instance, if the
user's utterance is found to be a “preference”, C and A are conjoined; in the
case of a “new_preference”, A is replaced by C, and in the case of a
“change_preference”, parts of A are replaced by C, etc. The resulting set of
constraints will then be modified using the strategies described in section 4.

Finally, the dialogue manager generates the system's response utterance;
paraphrases of the search results, prompts to give more constraint restricting
the solution set, clarification questions, and so on.

6.4 I/O Manager
The I/O manager was implemented in order to facilitate flexible turn-taking
in the dialogue and to make it possible to merge different input modes. It
also handles the timing in the system. It decides which bits of input go
together (is a click a part of the following utterance or the previous one?)
and how to coordinate verbal and graphical output. In addition it handles
timeout in the system, for instance how long to wait after giving feedback on
the previous user utterance before asking the next system question, thus
giving the user time to react on the feedback.

The I/O manager is responsible for merging input from different channels
into a multimodal message that it sends to the parser and dialogue manager.
It also decomposes the multimodal output message from the Dialogue
manager into commands that is sent to the different output modules.

The output message from the Dialogue manager was extended with two
new parts: A feedback part and a constraint history part. In turn, the
feedback part consists of three subparts: A verbal paraphrase of the
constraints in the user’s latest utterance, a list of names on icons representing
these constraints, and a list of apartments found using the current constraints.
The I/O manager assesses the recognition confidence score to decide which
kind of feedback strategy to use. However, it will always tell the Map
handler to display the current search results as dots on the small overview
map. Hopefully, this system behaviour will allow for less restricted
dialogues, where the user can decide in each turn to keep the initiative by
adding more constraints or start asking about the found apartments, or he can
give the initiative to the system by waiting for it to ask for more constraints.

Constraint Manipulation and Visualization in a Multimodal Dialogue System 13

6.5 GUI Manager
The GUI manager provides a common frame for the different output
modules (animated talking head, map handler, icon handler). The system
consists of a number of separate processes, something which is completely
hidden from the user by this module. The GUI manager creates a main
window with a certain layout, and then lends parts of the windows to the
other modules. A function that makes it possible for all GUI modules to
share the same keyboard input is included, as is the possibility to have
different modules share the same GUI space by using tabbed windows. In
the present implementation, the Map handler and the Icon handler share one
tabbed window, but they both have separate additional windows that are
always visible.

6.6 Icon Handler
The Icon handler visualizes the graphical feedback generated by the
Dialogue manager, in order to ground the constraint manipulations of the
system. In the current version of the system, the graphical feedback is
somewhat crude. Although the system distinguishes between the utterances
“I’d like an apartment with a balcony” and “Does that apartment have a
balcony?” (which would result in completely different answers from the
system), both utterances would be paraphrased with a “balcony” icon. Thus,
the pragmatic function of the utterances are not paraphrased, only the
propositional contents. In order to convey pragmatic functions as well, more
complex icons will needed. At this point, however, it is not clear whether the
use of such complex symbols would really improve the human-computer
interaction in a dialogue system.

Icons are a central part of today’s graphical interfaces, their purpose
being to remind the user of basic functions and to give the user a simple
access to the same. The most important design criteria when developing
icons is that they should be easy to recognize (Martin and Eastman, 1996).
However, they do not necessarily have to resemble what they represent. It is
common to use the ‘metaphor paradigm’ when designing icons. A problem
with using metaphors is that they do not scale well to more complicated
functions and it can also be hard to find a logical metaphor. In the ‘idiomatic
paradigm’ the user instead learns to connect certain icons to functions in the
same way that people use idioms in language (Cooper 1995). This paradigm
is used in road signs where the driver unconsciously learns and uses road
signs all the time without having to actively think about it.

There are two reasons for using icons to give feedback on what a
dialogue system has understood in the user’s utterance. Firstly, since
graphical icons are non-linguistic and do not use the verbal channel they do

14 Joakim Gustafson, Linda Bell, Johan Boye, Jens Edlund, & Mats Wirén

not increase the users’ cognitive load. Secondly, users are good at
automatically picking up the meaning of iconographic symbols if they are
presented to them repeatedly while they are doing other things.

In the development of AdApt, the most important criterion was that the
graphical symbols should be easy to interpret and separate from each other.
Since the learning curve for abstract icons is longer, it seemed preferable to
develop concrete icons that could be used in shorter user studies. Below are
examples of icons with different degrees of abstraction that we have
considered:

Figure 2. Examples of icons of bath tub, freezer and microwave oven with
different degrees of abstraction.

Users can either manipulate the icon constraints graphically by dragging
them to a trashcan or multimodally by selecting them at the same time as
speaking. The Icon handler will in both cases send the semantic meaning of
the graphical operation to the I/O manager, which will join it with the output
from the recognizer and then send this to the multimodal parser.

7. CONCLUDING REMARKS

The presented approach to constraint visualization and manipulation gives
users a better insight into how the system has understood their input, as well
as supplying them with a transparent means of controlling the interaction
with the system. The modular, highly asynchronous architecture of the
Adapt system enabled a smooth implementation of the ideas. Ongoing work
includes a comparative user study, assessing the effectiveness of the
proposed constraint visualization technique, compared to that of a more
traditional verbal feedback method.

abstract

concrete

Constraint Manipulation and Visualization in a Multimodal Dialogue System 15

8. REFERENCES

Bell, L, Boye, J, and Gustafson, J. 2001. Real-time Handling of Fragmented Utterances,
Proceedings of NAACL.

Beskow, J. 1997. Animation of Talking Agents, In Proceedings of AVSP'97, ESCA Workshop
on Audio-Visual Speech Processing, Rhodes,Greece, September 1997.

Boyce, S. 1999. Spoken natural language dialogue systems: User interface issues for the
future. In Gardner-Bonneau, (ed) Human Factors and Voice Interactive Systems, p. 37-62.

Brennan, S. E. 1998. The grounding problem in conversations with and through computers. In
Fussell, S. R. and Kreutz, R. J. (eds.) Social and Cognitive Psychological Approaches to
Interpersonal Communication, 201-225.

Brennan, S. E. and Clark, H. H. 1986. Conceptual pacts and lexical choice in conversation.
Journal of Experimental Psychology: Learning, Memory and Cognition 22(6):1482-1493

Burke, R. D., Hammond, K. J, and Young, B. J. 1997. The FindMe Approach to Assisted
Browsing. IEEE Expert, 12(4): 32-40.

Clark, H. H. and Schaefer, E. W. 1989. Contributing to discourse. Cognitive Science 13: 259-
294

Clark, H.H. and Wilkes-Gibbs, D. 1986. Referring as a collaborative process. Cognition 22:
1-39

Cohen, P. R., Johnston, M., McGee, D., Oviatt, S. L., Clow, J., Smith, I. 1998. The efficiency
of multimodal interaction: A case study. Proceedings of ICSLP ‘98

Cooper, A. 1995. About face: The Essentials of User Interface Design. New York: Hungry
Minds

Gustafson, J, Bell, L, Beskow, J, Boye, J, Carlson, R, Edlund, J, Granström, B, House, D and
Wirén M. 2000. AdApt – a multimodal conversational dialogue system in an apartment
domain. Proceedings of ICSLP.

Edlund, J. and Nordstrand, M. 2002. Turn-taking gestures and hour-glasses in a multi-modal
dialogue system, In this volume

Lamel, L., Rosset, S. and Gauvin, J-L. 2000. Considerations in the design and evaluation of
spoken dialogue systems. Proceedings of ICSLP

Martin, A. and Eastman, D. 1996. The User Interface Design Book. New York: Wiley & Sons
Oviatt, S. 1997. Multimodal interactive maps: Designing for Human Performance. Human

Computer Interaction 12: 93-129
Oviatt, S. and VanGent, R. 1996. Error resolution during multimodal human-computer

interaction. Proceedings of ICSLP’96, 204-207.
Pu, P. and Faltings, B. 2000. Enriching buyers' experiences: the SmartClient approach, in

Proceedings of ACM CHI'2000, ACM Press.
Terken, J. and te Riele, S. 2001. Supporting the construction of a user model in speech-only

interfaces by adding multi-modality. Proc. of Eurospeech, 2177-2180.
Schneiderman, B. 1997. Direct Manipulation for Comprehensible, Predictable, and

Controllable User Interfaces. Proceedings of IUI97, 33-39.

