
DD2477: Search Engines and
Information Retrieval Systems

Johan Boye*
KTH

Lecture 2

* Many slides inspired by Manning, Raghavan and Schütze

The Boolean search model

A first IR example .

• Which plays by Shakespeare
contain the words ”Brutus” AND
”Caesar” but NOT ”Calpurnia”?

• Suggestion:

– Search for ”Brutus” in all plays → resulting set R1

– Search for ”Caesar” i R1 → resulting set R2

– Search in R2 and return plays that do not contain
”Calpurnia”

• Is there something wrong with this solution?

Term-document matrix

Antony and
Cleopatra

Julius
Caesar

Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 0 1 1 1

citizen 1 1 0 0 1 0

1 if the play contains
the term, 0 otherwise

Boolean search

• The terms can be represented by bit vectors:

– Brutus: 110100, Caesar: 110111, Calpurnia: 010000,
NOT Calpurnia 101111

– Bitwise AND: 110100 & 110111 & 101111 = 100100

– The answer is the first and fourth column of the matrix:
Antony and Cleopatra and Hamlet

Boolean search: Advantages

• Simple model to understand and implement

• A Boolean query has a (a mathematically) precise
meaning

• Works well for expert users working with a well-
defined document collection (e.g.librarians)

Boolean search: Problems

• Many users have difficulties formulating search
queries

• Often returns too many or too few results

– ”zyxel P-660h” → 192 000 results

– ”zyxel P-660h” ”no card found” → 0 results

• Requires skill to formulate a search query returning a
managable number of results

• No rankning of results

• All terms equally important

Boolean search in Google

• marathon -sparta

– looks for documents containing ”marathon” but NOT
”sparta”

• The ”Advanced Search” menu offers more
possibilities

The index

• Conceptually: the term-document matrix

aardvak

zyxel

1 n

Practical indexing

• We need a sparse matrix representation.

• In the computer assignments we use:
– a hashtable for the dictionary

– arraylists for the rows

• Rows are called postings lists.

caesar

brutus

calpurnia

1 2 4 5 6

1

2

2 4

Quiz

We want to build a term-document matrix from these documents:

How many columns will the matrix have? How many rows?

Hamlet: to be or not to be

Sartre: to be is to do

Kant: to do is to be

Sinatra: do be do be do

ABBA: I do I do I do I do I do

Quiz

Sartre Kant Sinatra Hamlet ABBA

to 1 1 0 1 0

be 1 1 1 1 0

is 1 1 0 0 0

do 1 1 1 0 1

or 0 0 0 1 0

not 0 0 0 1 0

I 0 0 0 0 1

Quiz

We implement the term-document matrix using postings lists.

Which word(s) will have the longest postings list? How long is it?

Hamlet: to be or not to be

Sartre: to be is to do

Kant: to do is to be

Sinatra: do be do be do

ABBA: I do I do I do I do I do

Quiz

• “be” and “do” have the longest postings lists

be Sartre Kant Sinatra Hamlet

do Sartre Kant Sinatra ABBA

Tokenization

Indexing pipeline

Documents

Byte stream

Token stream

Term stream

Inverted index

F r i e n d s , r o m a n s c o u n t r y m e n

Friends romans countrymen

friend roman countryman

friend

roman

countryman

1 10 12 16 82

6

9

10

10

23

Basic text processing

• Text comes in many different formats (html, text, Word, Excel,
PDF, PostScript, …), languages and character sets

• It might need to be
– separated from images and other non-textual content

– stripped of markup in HTML or XML

Character formats

• Text encodings

– ASCII (de-facto standard from 1968), 7-bit (=128 chars, 94
printable). Most common on the www until Dec 2007.
Now used in < 0.1% of websites*

– Latin-1 (ISO-8859-1), 8-bit, ASCII + 128 extra chars

– Unicode (109 000 code points)

– UTF-8 (variable-length encoding of Unicode)
Used in >96% of known websites*

*https://w3techs.com/technologies/overview/character_encoding

Tokenization

How many tokens are there in this text?

- Look, harry@hp.com, that’s Harry’s mail address at
Hewlett-Packard. Boy, does that guy know
Microsoft Word! He’s really working with the
state-of-the-art in computers. And yesterday he
told me my IP number is 131.67.238.92. :-)

Tokenization

• A token is a meaningful minimal unit of text.

• Usually, spaces and punctuation delimit tokens

• Is that always the case?
– San Francisco, Richard III, et cetera, …

– J.P. Morgan & co

– http://www.kth.se, jboye@nada.kth.se

– :-)

• The exact definition is application-dependent:
– Sometimes it’s important to include punctuation among the tokens

(e.g. language modeling)

– Sometimes it’s better not to (e.g. search engines)

Some tricky tokenization issues

• Apostrophes
– Finland’s → Finland’s? Finlands? Finland? Finland s?

– don’t → don’t ? don t ? do not ? don t?

• Hyphens
– state-of-the-art → state-of-the-art? state of the art?

– Hewlett-Packard

– the San Francisco-Los Angeles flight

• Numbers
– Can contain spaces or punctuation: 123 456.7 or 123,456.7 or 123 456,7

– +46 (8) 790 60 00

– 131.169.25.10

– My PGP key is 324a3df234cb23e

So how do we do it?

• In assignment 1.1:
– In the general case, assume that space and punctuation (except

apostrophes and hyphens) separate tokens

– Specify special cases with regular expressions

Sub-word tokenization

Sometimes it can be useful to tokenize into subwords...

• ... because words can be syntactically related...

– ”cat” and ”cats”, ”äpple” and ”äpplenas”

• ... or sematically related

– ”pianostämning” and ”pianostämmare”

– tokenizing ”piano” + ”stäm” + ”ning” / ”mare” could be useful

One such tokenization method is ”Byte-Pair Encoding” (next
video).

Text normalization

Normalization

• After tokenization, we sometimes need to “normalize”
tokens

– Abbreviations: U.S., US → U.S.

– Case folding: Window, window → window

– Diacritica: a, å, ä, à, á, â → a, c, ç, č → c, n, ñ → n, l, ł, → l, …

– Umlaut: Tübingen → Tuebingen, Österreich → Oesterriech

• Need for normalization is highly dependent on application

– Is it always a good idea to lowercase Apple and Windows?

– Should we remove diacritica?

– When should we regard run and runs as the same word?

Morphemes

• Words are built from smaller meaningful units called
morphemes.

• A morpheme belongs to one of two classes:
– stem: the core meaning-bearing unit

– affix: small units glued to the stem to signal various grammatical
functions

• An affix can in its turn be classified as a
– prefix (un-)

– suffix (-s, -ed, -ly)

– infix (Swedish korru-m-pera)

– circumfix (German ge-sag-t)

Word formation

• Words can be inflected to signal grammatical information:
– play, plays, played, playing

– cat, cats, cat’s, cats’

• Words can also be derived from other words:
– friend → friendly → friendliness → unfriendliness

• Words can be compound:
– smart + phone → smartphone

– anti + missile → anti-missile

• Clitics
– Le + hôtel→ L’hôtel, Ce + est→ c’est

– She is → she’s, She has → she’s

Language variation

• English morphology is exceptionally simple!

Language variation

Some non-English words

• German: Lebensversicherungsgesellschaftsangestellter
– ”Life insurance company employee”

• Greenlandic: iglukpisuktunga
– iglu = house, kpi = build, suk = (I) want, tu = myself, nga = me

• Finnish: järjestelmättömyydellänsäkäänköhän
– ”not even with its lack of order”

Tokenization using byte-pair encoding

Idea:

• First learn (once) the vocabulary (set of token types)
directly from a large corpus

• Then tokenize files/sentences using the learned vocabulary

Tokenization using byte-pair encoding

Method:

1. Initial vocabulary is the set of all bytes (a,b,c,..., A,B,C,...)

2. Then choose the two symbols that are most frequently
adjacent in the training corpus (e.g. ’th’)

3. Add a new symbol ’th’ to the vocabulary

4. Replace all adjacent ’t’ ’h’ by ’th’

5. Repeat from 2 until k merges have been done.
(typically 25,000)

Tokenization using byte-pair encoding

t h e _ t h i n _ t h i e f _ t h r e a t e n e d _ t h e _ t h u g

t h → th

th e _ th i n _ th i e f _ th r e a t e n e d _ th e _ th u g

th e → the

the _ th i n _ th i e f _ th r e a t e n e d _ the _ th u g

th i → thi

the _ thi n _ thi e f _ th r e a t e n e d _ the _ th u g

Tokenization using byte-pair encoding

• Greedy, language-independent method

• Note that the algorithms work on bytes, not chars

– many non-English chars have >1 byte, e.g. åäö

– these tend to be merged early in the process

• When used for tokenization, merges should be applied in
the order they were learned

• But greedy left-to-right maximal matching works pretty
well too

More on text normalization

Lemmatization

• Map inflected form to its lemma (=base form)

• ”The boys’ cars are different colours” → ”The boy car
be different color”

• Requires language-specific linguistic analysis

– part-of-speech tagging

– morphological analysis

• Particularly useful in morphologically rich languages,
like Finnish, Turkish, Hungarian

Stemming

• Don’t do morphological or syntactic analysis, just
chop off the suffixes

– No need to know that ”foxes” is plural of ”fox”

• Much less expensive than lemmatization, but can be
very wrong sometimes

– stocks → stock, stockings → stock

• Stemming usually improves recall but lowers
precision

Porter’s algorithm

• Rule-based stemming for English

– ATIONAL → ATE

– SSES → SS

– ING → ε

• Some context-sensitivity

• (W>1) EMENT → ε

– REPLACEMENT → REPLAC

– CEMENT → CEMENT

Compound splitting

Isolated words

Head

Modifier

Suffixes

s

Can be achieved with finite-state techniques.

Compound splitting

• In Swedish: försäkringsbolag (insurance company)
– bolag is the head

– försäkring is a modifier

– the s is an infix

• This process can be recursive:
– försäkringsbolagslagen (the insurance company law)

– en is a suffix indicating definite form

– lag is the head

– the s is an infix

– försäkringsbolag is the modifier

Stop words

• Can we exclude the most common words?

– In English: the, a, and, to, for, be, …

– Little semantic content

– ~30% of postings for top 30 words

• However:

– ”Let it be”, ”To be or not to be”, ”The Who”

– ”King of Denmark”

– ”Flights to London” vs ”Flights from London”

– Trend is to keep stop words: compression techniques
means that space requirements are small

Sum-up

• Reading, tokenizing and normalizing contents of
documents

– File types and character encodings

– Tokenization issues: punctuation, compound words,
word order, stop words

– Normalization issues: diacritica, case folding,
lemmatization, stemming

• We’re ready for indexing

Indexing and search

Indexing and search

• Recap:
– We want to quickly find the most relevant documents

satisfying our information need.

– The user gives a search query.

– The engine searches through the index, retrieves the
matching documents, and possibly ranks them.

The index

• Conceptually: the term-document matrix

aardvak

zyxel

1 n

Practical indexing

• We need a sparse matrix representation.

• In the computer assignments we use:
– a hashtable for the dictionary

– arraylists for the rows

• Rows are called postings lists.

caesar

brutus

calpurnia

1 2 4 5 6

1

2

2 4

One-word queries

• Return all the documents in which ’denmark’
appears. (Task 1.2)

denmark

Multi-word queries

• Intersection query (Task 1.3)

• Phrase query (Task 1.4)

• Union query (Assignment 2)

copenhagen denmark

Intersection

• Walk through two postings lists simultaneously

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar

Intersection

• Walk through two postings lists simultaneously

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar

Intersection

• Walk through two postings lists simultaneously

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2

Intersection

• Walk through two postings lists simultaneously

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2

Intersection

• Walk through two postings lists simultaneously

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2

Intersection

• Walk through two postings lists simultaneously

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

Intersection

• Walk through two postings lists simultaneously

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

Intersection

• Walk through two postings lists simultaneously

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

Intersection

• Walk through two postings lists simultaneously

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

Intersection

• Walk through two postings lists simultaneously

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

Intersection

• Walk through two postings lists simultaneously

• Runs in O(n+m), where n,m are the lengths of the
lists

• We can do better (if index isn’t changing too fast)

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

Skip pointers

• Add skip pointers at indexing time

• By using skip pointers, we don’t have to compare 41
to 17 or 21

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Skip pointers: Where?

• Tradeoff:

– More skips → shorter skip spans more likely to skip.
But lots of comparisons to skip pointers.

– Fewer skips → few pointer comparison, but then long skip
spans few successful skips.

– Heuristic: for length L, use evenly spaced skip pointersL

Positional indexes and phrase queries

Phrase queries

• E.g. ”Joe Biden”

• Should not match ”President Biden”

– The concept of phrase queries has proven easily
understood by users; one of the few “advanced search”
ideas that works

– Many more queries are implicit phrase queries

• For this, it no longer suffices to store only
<term : docs> entries

First attempt: Biword index

• “Friends, Romans, Countrymen” generates the
biwords

– friends romans

– romans countrymen

• Each of these biwords is now a dictionary term

• Two-word phrase query-processing is now
immediate.

• Longer phrases: friends romans countrymen

• Intersect friends romans and romans countrymen?

Biword index: disadvantages

• False positives

– Requires post-processing to avoid

• Index blowup due to bigger dictionary

– Infeasible for more than biwords, big even for them

Positional indexes

• For each term and doc, store the positions where
(tokens of) the term appears

• Intersection needs to deal with more than equality

<be;

1: 7, 18, 33, 72, 86, 231;

2: 3, 149;

4: 17, 191, 291, 430, 434;

5: 363, 367, …>

Processing phrase queries

• Extract inverted index entries for each distinct term:
to, be, or, not.

• Intersect their doc:position lists to enumerate all
positions with “to be or not to be”.

– to:

• 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

– be:

• 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

• Same general method for proximity searches

Exercise

Which docs match the query ”fools rush in” ?

rush: 2: 2,75,194,321,702;
4: 9,69,149,429,569;
7: 14,404;

fools: 2: 1,17,74,222;

4: 78,108,458;

7: 3,13,23,193;

in: 2: 3,37,76,444,851;

4: 10,20,110,470,500;

7: 5,15,25,195;

Positional index size

• Need an entry for each occurrence, not just once per
document

• Consider a term with frequency 0.1%
– Doc contain 1000 tokens → 1 occurrence

– 100 000 tokens → 100 occurrences

• Rule of thumb: is 2–4 as large as a non-positional
index

• Positional index size 35–50% of volume of original
text

• Caveat: all of this holds for “English-like” languages

Large indexes

Large indexes (Task 1.7-1.8)

• The web is big:

– 1998: 26 million unique web pages

– 2018: 130 trillion (1.3×1014) unique web pages!

– about 4.26 billion of these are indexed.

• In real applications, the index is too large to fit in
main memory.

Large indexes (Task 1.7-1.8)

• Task 1.7 asks you to implement an index which is
stored on disk

– using any method (well, not quite…) for grade C

– using a hash table with both dictionary and postings lists
on disk for grade B

– first construct the index in main memory, then write it to
disk

– if we have a lot of data, construct several sub-indexes, and
then merge them

Data file (with postings lists)

”word”
Hash

function

Hash tables on disk- what one would like to do

Why doesn’t this work?

Hash tables on disk- what we will do

Dictionary file Data file (with postings lists)

”word”
Hash

function

Hash table on disk

• Dictionary file:

– with entries of a fixed length

– entries contain pointer to the data file

• Data file

– contains string representation of postings list

– don’t serialize the PostingsList objects! (waste of space)

• Hash function

– inputs word (as a string)

– outputs an integer [0…TABLESIZE-1] which is a pointer to
the dictionary file.

Dictionary file Data file (with postings lists)

”words are useful”

Hash
function

Dictionary file Data file (with postings lists)

”words are useful”

Hash
function

Dictionary file Data file (with postings lists)

”words are useful”

Hash
function

Hash table on disk

• Dictionary file

– has a fixed size

– will be mostly empty (load factor about 0.33)

• Data file grows dynamically

– will be completely packed

Hash collisions

”words”
Hash

function

Oops, that bucket was
already full… let’s try
another one

Dictionary file

Hash collisions

”words”
Hash

function

Full as well!

Dictionary file

Hash collisions

”words”
Hash

function OK, this one was free!

Dictionary file

Hash function

• Have a look in the literature

– or devise your own method

– but be sure there aren’t too many collisions

– about 1 collision/unique word is a reasonable target

– (that means about 200,000 collisions)

Searching the disk index

• When the index is committed to disk, you can restart
the search engine, and start searching without any
start-up time.

• However, how do you detect hash collisions?

”words”
Hash

function

Is this really the right
cell?

Merging indexes

• The solution in Task 1.7 still requires that the entire
index can be kept in main memory

• Task 1.8 will ask you to construct a series of small
indexes, which you will then merge in a background
thread.

• You can then search the merged index just as in
task 1.7

Dynamic indexing

• Document collections are rarely static.

– Documents come in over time and need to be inserted.

– Documents are deleted and modified.

• This means that the dictionary and postings lists have
to be modified:

– Postings updates for terms already in dictionary

– New terms added to dictionary

Simplest approach

• Maintain “big” main index

• New docs go into “small” auxiliary index

• Search across both, merge results

• Deletions

– Invalidation bit-vector for deleted docs

– Filter docs output on a search result by this invalidation
bit-vector

• Periodically, re-index into one main index

Assignment 1

• Tokenization (1.1)

• Basic indexing (1.2)

• Intersection search (1.3)

• Phrase search (1.4)

• Evaluation (1.5)

• Query construction (1.6)

• Large indexes on disk (1.7)

• Merging indexes (1.8)

	Slide 1: DD2477: Search Engines and Information Retrieval Systems
	Slide 2: The Boolean search model
	Slide 3: A first IR example .
	Slide 4: Term-document matrix
	Slide 5: Boolean search
	Slide 6: Boolean search: Advantages
	Slide 7: Boolean search: Problems
	Slide 8: Boolean search in Google
	Slide 9: The index
	Slide 10: Practical indexing
	Slide 11: Quiz
	Slide 12: Quiz
	Slide 13: Quiz
	Slide 14: Quiz
	Slide 15: Tokenization
	Slide 16: Indexing pipeline
	Slide 17: Basic text processing
	Slide 18: Character formats
	Slide 19: Tokenization
	Slide 20: Tokenization
	Slide 21: Some tricky tokenization issues
	Slide 22: So how do we do it?
	Slide 23: Sub-word tokenization
	Slide 24: Text normalization
	Slide 25: Normalization
	Slide 26: Morphemes
	Slide 27: Word formation
	Slide 28: Language variation
	Slide 29: Language variation
	Slide 30: Some non-English words
	Slide 31: Tokenization using byte-pair encoding
	Slide 32: Tokenization using byte-pair encoding
	Slide 33: Tokenization using byte-pair encoding
	Slide 34: Tokenization using byte-pair encoding
	Slide 35: More on text normalization
	Slide 36: Lemmatization
	Slide 37: Stemming
	Slide 38: Porter’s algorithm
	Slide 39: Compound splitting
	Slide 40: Compound splitting
	Slide 41: Stop words
	Slide 42: Sum-up
	Slide 43: Indexing and search
	Slide 44: Indexing and search
	Slide 45: The index
	Slide 46: Practical indexing
	Slide 47: One-word queries
	Slide 48: Multi-word queries
	Slide 49: Intersection
	Slide 50: Intersection
	Slide 51: Intersection
	Slide 52: Intersection
	Slide 53: Intersection
	Slide 54: Intersection
	Slide 55: Intersection
	Slide 56: Intersection
	Slide 57: Intersection
	Slide 58: Intersection
	Slide 59: Intersection
	Slide 60: Skip pointers
	Slide 61: Skip pointers: Where?
	Slide 62: Positional indexes and phrase queries
	Slide 63: Phrase queries
	Slide 64: First attempt: Biword index
	Slide 65: Biword index: disadvantages
	Slide 66: Positional indexes
	Slide 67: Processing phrase queries
	Slide 68: Exercise
	Slide 69: Positional index size
	Slide 70: Large indexes
	Slide 71: Large indexes (Task 1.7-1.8)
	Slide 72: Large indexes (Task 1.7-1.8)
	Slide 73: Hash tables on disk- what one would like to do
	Slide 74: Hash tables on disk- what we will do
	Slide 75: Hash table on disk
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Hash table on disk
	Slide 80: Hash collisions
	Slide 81: Hash collisions
	Slide 82: Hash collisions
	Slide 83: Hash function
	Slide 84: Searching the disk index
	Slide 85: Merging indexes
	Slide 86: Dynamic indexing
	Slide 87: Simplest approach
	Slide 88: Assignment 1

