DD2477: Search Engines and Information Retrieval Systems

Johan Boye* KTH Lecture 2

* Many slides inspired by Manning, Raghavan and Schütze

The Boolean search model

A first IR example

- Which plays by Shakespeare contain the words "Brutus" AND "Caesar" but NOT "Calpurnia"?
- Suggestion:

- Search for "Brutus" in all plays \rightarrow resulting set R1
- Search for "Caesar" i R1 \rightarrow resulting set R2
- Search in R2 and return plays that do **not** contain "Calpurnia"
- Is there something wrong with this solution?

Term-document matrix

	Antony and Cleopatra	Julius Caesar	Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0 🔨	0	0	0	0
mercy	1	0	0	1	1	1
citizen	1	1	0	0	1	0
			\backslash			

1 if the play contains the term, 0 otherwise

Boolean search

- The terms can be represented by **bit vectors**:
 - Brutus: 110100, Caesar: 110111, Calpurnia: 010000,
 NOT Calpurnia 101111
 - Bitwise AND: 110100 & 110111 & 101111 = 100100
 - The answer is the first and fourth column of the matrix:
 Antony and Cleopatra and Hamlet

Boolean search: Advantages

- Simple model to understand and implement
- A Boolean query has a (a mathematically) precise meaning
- Works well for expert users working with a welldefined document collection (e.g.librarians)

Boolean search: Problems

- Many users have difficulties formulating search queries
- Often returns too many or too few results
 - − "zyxel P-660h" \rightarrow 192 000 results
 - "zyxel P-660h" "no card found" \rightarrow 0 results
- Requires skill to formulate a search query returning a managable number of results
- No rankning of results
- All terms equally important

Boolean search in Google

- marathon -sparta
 - looks for documents containing "marathon" but NOT "sparta"
- The "Advanced Search" menu offers more possibilities

The index

• Conceptually: the term-document matrix

Practical indexing

- We need a sparse matrix representation.
- In the computer assignments we use:
 - a hashtable for the dictionary
 - arraylists for the rows
- Rows are called **postings lists.**

Quiz

We want to build a term-document matrix from these documents:

Sartre:	to be is to do
Kant:	to do is to be
Sinatra:	do be do be do
Hamlet:	to be or not to be
ABBA:	I do I do I do I do I do

How many columns will the matrix have? How many rows?

Quiz

	Sartre	Kant	Sinatra	Hamlet	ABBA
to	1	1	0	1	0
be	1	1	1	1	0
is	1	1	0	0	0
do	1	1	1	0	1
or	0	0	0	1	0
not	0	0	0	1	0
I	0	0	0	0	1
	•				

Quiz

We implement the term-document matrix using postings lists.

Sartre:	to be is to do
Kant:	to do is to be
Sinatra:	do be do be do
Hamlet:	to be or not to be
ABBA:	I do I do I do I do I do

Which word(s) will have the longest postings list? How long is it?

• "be" and "do" have the longest postings lists

Tokenization

Indexing pipeline

Documents

Byte stream

Token stream

Term stream

Inverted index

Friends, romans countrymen

Friends romans countrymen

friend roman countryman

Basic text processing

- Text comes in many different formats (html, text, Word, Excel, PDF, PostScript, ...), languages and character sets
- It might need to be
 - separated from images and other non-textual content
 - stripped of markup in HTML or XML

Character formats

- Text encodings
 - ASCII (de-facto standard from 1968), 7-bit (=128 chars, 94 printable). Most common on the www until Dec 2007.
 Now used in < 0.1% of websites*
 - Latin-1 (ISO-8859-1), 8-bit, ASCII + 128 extra chars
 - Unicode (109 000 code points)
 - UTF-8 (variable-length encoding of Unicode)
 Used in >96% of known websites*

*https://w3techs.com/technologies/overview/character_encoding

Tokenization

How many tokens are there in this text?

- Look, harry@hp.com, that's Harry's mail address at Hewlett-Packard. Boy, does that guy know Microsoft Word! He's really working with the state-of-the-art in computers. And yesterday he told me my IP number is 131.67.238.92. :-)

Tokenization

- A token is a **meaningful minimal unit** of text.
- Usually, spaces and punctuation delimit tokens
- Is that always the case?
 - San Francisco, Richard III, et cetera, ...
 - J.P. Morgan & co
 - http://www.kth.se, jboye@nada.kth.se
 - :-)
- The exact definition is application-dependent:
 - Sometimes it's important to include punctuation among the tokens (e.g. language modeling)
 - Sometimes it's better not to (e.g. search engines)

Some tricky tokenization issues

- Apostrophes
 - Finland's → Finland's? Finlands? Finland? Finland s?
 - don't → don't ? don t ? do not ? don t?
- Hyphens
 - − state-of-the-art → state-of-the-art? state of the art?
 - Hewlett-Packard
 - the San Francisco-Los Angeles flight
- Numbers
 - Can contain spaces or punctuation: 123 456.7 or 123,456.7 or 123 456,7
 - +46 (8) 790 60 00
 - 131.169.25.10
 - My PGP key is 324a3df234cb23e

So how do we do it?

- In assignment 1.1:
 - In the general case, assume that space and punctuation (except apostrophes and hyphens) separate tokens
 - Specify special cases with regular expressions

Sub-word tokenization

Sometimes it can be useful to tokenize into subwords...

- ... because words can be syntactically related...
 - "cat" and "cats", "äpple" and "äpplenas"
- ... or sematically related
 - "pianostämning" and "pianostämmare"
 - tokenizing "piano" + "stäm" + "ning" / "mare" could be useful

One such tokenization method is "Byte-Pair Encoding" (next video).

Text normalization

Normalization

- After tokenization, we sometimes need to "normalize" tokens
 - Abbreviations: U.S., US \rightarrow U.S.
 - − Case folding: Window, window → window
 - Diacritica: a, å, ä, à, á, â \rightarrow a, c, ç, č \rightarrow c, n, ñ \rightarrow n, l, ł, \rightarrow l, ...
 - − Umlaut: Tübingen → Tuebingen, Österreich → Oesterriech
- Need for normalization is highly dependent on application
 - Is it always a good idea to lowercase Apple and Windows?
 - Should we remove diacritica?
 - When should we regard run and runs as the same word?

Morphemes

- Words are built from smaller meaningful units called **morphemes**.
- A morpheme belongs to one of two classes:
 - **stem:** the core meaning-bearing unit
 - affix: small units glued to the stem to signal various grammatical functions
- An affix can in its turn be classified as a
 - prefix (un-)
 - suffix (-s, -ed, -ly)
 - infix (Swedish korru-m-pera)
 - circumfix (German ge-sag-t)

Word formation

- Words can be **inflected** to signal grammatical information:
 - play, plays, played, playing
 - cat, cats, cat's, cats'
- Words can also be **derived** from other words:
 - − friend → friendly → friendliness → unfriendliness
- Words can be **compound**:
 - − smart + phone \rightarrow smartphone
 - − anti + missile \rightarrow anti-missile
- Clitics
 - − Le + hôtel \rightarrow L'hôtel, Ce + est \rightarrow c'est
 - − She is \rightarrow she's, She has \rightarrow she's

Language variation

• English morphology is exceptionally simple!

Language variation

Parler

The verb parler "to speak", in French orthography and IPA transcription

	Indicative				Subjunctive		Conditional	Imperative
	Present	Simple past	Imperfect	Simple future	Present	Imperfect	Present	Present
je	/parl-e	/parl-al	parl-ais /paʁlɛ/	parl-erai /parlare/	/parl-e	parl-asse /paʁlas/	parl-erais /paʁləʁɛ/	
tu	parl-es /paʁl/	parl-as /paula/	parl-ais /paʁlɛ/	parl-eras /paʁləʁa/	parl-es /paʁl/	parl-asses /paʁlas/	parl-erais /paʁləʁɛ/	parl-e /paʁl/
	parl-e /paʁl/	/parl-a /parla/	/parl-ait /parlɛ/	parl-era /paslasa/	/parl-e /paʁl/	parl-ât /paʁlɑ/	parl-erait /paʁləʁɛ/	
nous	parl-ons /paʁlɔ̈/	parl-âmes /paulom/	parl-ions /paʁljɔ̃/	parl-erons /paʁləʁɔ̃/	parl-ions /paʁljɔ̈/	parl-assions /paʁlasjɔ̈/	parl-erions /paʁləʁjɔ̃/	parl-ons /paʁlɔ̃/
vous	/parl-ez /parle/	parl-åtes /paʁlɑt/	parl-lez /parlje/	parl-erez /paslase/	parl-iez /paʁlje/	parl-assiez /paʁlasje/	parl-eriez /paʁləʁje/	parl-ez /paʁle/
ils	parl-ent /paʁl/	parl-èrent /paslɛ:s/	parl-aient /paʁlɛ/	parl-eront /paslas5/	parl-ent /paʁl/	parl-assent /paʁlas/	parl-eraient /paʁləʁɛ/	

Some non-English words

- German: Lebensversicherungsgesellschaftsangestellter
 - "Life insurance company employee"
- Greenlandic: iglukpisuktunga
 - iglu = house, kpi = build, suk = (I) want, tu = myself, nga = me
- Finnish: järjestelmättömyydellänsäkäänköhän
 - "not even with its lack of order"

Idea:

- First learn (once) the vocabulary (set of token types) directly from a large corpus
- Then tokenize files/sentences using the learned vocabulary

Method:

- 1. Initial vocabulary is the set of all bytes (a,b,c,..., A,B,C,...)
- 2. Then choose the two symbols that are most frequently adjacent in the training corpus (e.g. 'th')
- 3. Add a new symbol 'th' to the vocabulary
- 4. Replace all adjacent 't' 'h' by 'th'
- Repeat from 2 until k merges have been done. (typically 25,000)

- the_thin_thief_threatened_the_thug
 th→th
- th e _ th i n _ th i e f _ th r e a t e n e d _ th e _ th u g th e → the
- the _ th i n _ th i e f _ th r e a t e n e d _ the _ th u g
 th i → thi
- the _ thi n _ thi e f _ th r e a t e n e d _ the _ th u g

- Greedy, language-independent method
- Note that the algorithms work on bytes, not chars
 - many non-English chars have >1 byte, e.g. åäö
 - these tend to be merged early in the process
- When used for tokenization, merges should be applied in the order they were learned
- But greedy left-to-right maximal matching works pretty well too

More on text normalization

Lemmatization

- Map inflected form to its lemma (=base form)
- "The boys' cars are different colours" → "The boy car be different color"
- Requires language-specific linguistic analysis
 - part-of-speech tagging
 - morphological analysis
- Particularly useful in morphologically rich languages, like Finnish, Turkish, Hungarian
Stemming

 Don't do morphological or syntactic analysis, just chop off the suffixes

No need to know that "foxes" is plural of "fox"

- Much less expensive than lemmatization, but can be very wrong sometimes
 - stocks \rightarrow stock, stockings \rightarrow stock
- Stemming usually improves recall but lowers precision

Porter's algorithm

- Rule-based stemming for English
 - ATIONAL \rightarrow ATE
 - SSES \rightarrow SS
 - $\text{ ING} \rightarrow \epsilon$
- Some context-sensitivity
- (W>1) EMENT $\rightarrow \epsilon$
 - REPLACEMENT \rightarrow REPLAC
 - CEMENT \rightarrow CEMENT

Compound splitting

Can be achieved with finite-state techniques.

Compound splitting

- In Swedish: försäkringsbolag (insurance company)
 - **bolag** is the head
 - försäkring is a modifier
 - the **s** is an infix
- This process can be recursive:
 - försäkringsbolagslagen (the insurance company law)
 - en is a suffix indicating definite form
 - lag is the head
 - the s is an infix
 - försäkringsbolag is the modifier

Stop words

- Can we exclude the most common words?
 - In English: the, a, and, to, for, be, ...
 - Little semantic content
 - ~30% of postings for top 30 words
- However:
 - "Let it be", "To be or not to be", "The Who"
 - "King of Denmark"
 - "Flights to London" vs "Flights from London"
 - Trend is to keep stop words: compression techniques means that space requirements are small

Sum-up

- Reading, tokenizing and normalizing contents of documents
 - File types and character encodings
 - Tokenization issues: punctuation, compound words, word order, stop words
 - Normalization issues: diacritica, case folding, lemmatization, stemming
- We're ready for indexing

Indexing and search

Indexing and search

- Recap:
 - We want to quickly find the most relevant documents satisfying our information need.
 - The user gives a **search query**.
 - The engine searches through the index, retrieves the matching documents, and possibly ranks them.

The index

• Conceptually: the term-document matrix

Practical indexing

- We need a sparse matrix representation.
- In the computer assignments we use:
 - a hashtable for the dictionary
 - arraylists for the rows
- Rows are called **postings lists.**

One-word queries

denmark

• Return all the documents in which 'denmark' appears. (Task 1.2)

Multi-word queries

copenhagen denmark

- Intersection query (Task 1.3)
- Phrase query (Task 1.4)
- **Union** query (Assignment 2)

- Runs in O(n+m), where n,m are the lengths of the lists
- We can do better (if index isn't changing too fast)

Skip pointers

• Add skip pointers at indexing time

 By using skip pointers, we don't have to compare 41 to 17 or 21

Skip pointers: Where?

- Tradeoff:
 - More skips \rightarrow shorter skip spans \Rightarrow more likely to skip. But lots of comparisons to skip pointers.
 - Fewer skips \rightarrow few pointer comparison, but then long skip spans \Rightarrow few successful skips.
 - Heuristic: for length L, use \sqrt{L} evenly spaced skip pointers

Positional indexes and phrase queries

Phrase queries

- E.g. "Joe Biden"
- Should not match "President Biden"
 - The concept of phrase queries has proven easily understood by users; one of the few "advanced search" ideas that works
 - Many more queries are *implicit phrase queries*
- For this, it no longer suffices to store only <term : docs> entries

First attempt: **Biword index**

- "Friends, Romans, Countrymen" generates the biwords
 - friends romans
 - romans countrymen
- Each of these biwords is now a dictionary term
- Two-word phrase query-processing is now immediate.
- Longer phrases: friends romans countrymen
- Intersect friends romans and romans countrymen?

Biword index: disadvantages

• False positives

- Requires post-processing to avoid
- Index blowup due to bigger dictionary
 - Infeasible for more than biwords, big even for them

Positional indexes

 For each term and doc, store the positions where (tokens of) the term appears

i: 7, 18, 33, 72, 86, 231;

i: 3, 149;

i: 17, 191, 291, 430, 434;

5: 363, 367, ...>

Intersection needs to deal with more than equality

Processing phrase queries

- Extract inverted index entries for each distinct term: to, be, or, not.
- Intersect their *doc:position* lists to enumerate all positions with "*to be or not to be*".

- *to*:

• 2:1,17,74,222,551; **4:8,16,190,429,433**; 7:13,23,191; ...

- be:

- 1:17,19; **4:17,191,291,430,434**; 5:14,19,101; ...
- Same general method for proximity searches

Exercise

Which docs match the query "fools rush in" ?

fools: 2: 1,17,74,222; 4: 78,108,458; 7: 3,13,23,193; in: 2: 3,37,76,444,851; 4: 10,20,110,470,500; 7: 5,15,25,195;

rush: 2: 2,75,194,321,702; 4: 9,69,149,429,569; 7: 14,404;

Positional index size

- Need an entry for each occurrence, not just once per document
- Consider a term with frequency 0.1%
 - Doc contain 1000 tokens \rightarrow 1 occurrence
 - − 100 000 tokens \rightarrow 100 occurrences
- Rule of thumb: is 2–4 as large as a non-positional index
- Positional index size 35–50% of volume of original text
- Caveat: all of this holds for "English-like" languages

Large indexes

Large indexes (Task 1.7-1.8)

- The web is big:
 - 1998: **26 million** unique web pages
 - 2018: **130 trillion** (1.3 × 10¹⁴) unique web pages!
 - about 4.26 billion of these are indexed.
- In real applications, the index is **too large to fit** in main memory.

Large indexes (Task 1.7-1.8)

- Task 1.7 asks you to implement an index which is stored on disk
 - using any method (well, not quite...) for grade C
 - using a hash table with both dictionary and postings lists on disk for grade B
 - first construct the index in main memory, then write it to disk
 - if we have a lot of data, construct several sub-indexes, and then merge them
Hash tables on disk- what one would like to do

Why doesn't this work?

Hash tables on disk- what we will do

Hash table on disk

- Dictionary file:
 - with entries of a fixed length
 - entries contain pointer to the data file
- Data file
 - contains string representation of postings list
 - don't serialize the PostingsList objects! (waste of space)
- Hash function
 - inputs word (as a string)
 - outputs an integer [0...TABLESIZE-1] which is a pointer to the dictionary file.

Hash table on disk

- Dictionary file
 - has a fixed size
 - will be mostly empty (load factor about 0.33)
- Data file grows dynamically
 - will be completely packed

Hash collisions

Oops, that bucket was already full... let's try another one

Hash collisions

Hash collisions

Hash function

- Have a look in the literature
 - or devise your own method
 - but be sure there aren't too many collisions
 - about 1 collision/unique word is a reasonable target
 - (that means about 200,000 collisions)

Searching the disk index

- When the index is committed to disk, you can restart the search engine, and start searching without any start-up time.
- However, how do you detect hash collisions?

Merging indexes

- The solution in Task 1.7 still requires that the entire index can be kept in main memory
- Task 1.8 will ask you to construct a series of small indexes, which you will then **merge** in a background thread.
- You can then search the merged index just as in task 1.7

Dynamic indexing

- Document collections are rarely static.
 - Documents come in over time and need to be inserted.
 - Documents are deleted and modified.
- This means that the dictionary and postings lists have to be modified:
 - Postings updates for terms already in dictionary
 - New terms added to dictionary

Simplest approach

- Maintain "big" main index
- New docs go into "small" auxiliary index
- Search across both, merge results
- Deletions
 - Invalidation bit-vector for deleted docs
 - Filter docs output on a search result by this invalidation bit-vector
- Periodically, re-index into one main index

Assignment 1

- Tokenization (1.1)
- Basic indexing (1.2)
- Intersection search (1.3)
- Phrase search (1.4)
- Evaluation (1.5)
- Query construction (1.6)
- Large indexes on disk (1.7)
- Merging indexes (1.8)