function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi[N+2,T]

for each state s from 1 to N do

; initialization step

 $viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)$

 $backpointer[s,1] \leftarrow 0$

for each time step t from 2 to T do

; recursion step

for each state s from 1 to N do

 $viterbi[s,t] \leftarrow \max_{s}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})$

 $backpointer[s,t] \leftarrow \underset{t'=1}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s}$

 $viterbi[q_F,T] \leftarrow \max_{s=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step

 $backpointer[q_F,T] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s,T] * a_{s,q_F}$; termination step

return the backtrace path by following backpointers to states back in time from $backpointer[q_F, T]$

Figure 6.11 Viterbi algorithm for finding optimal sequence of hidden states. Given an observation sequence and an HMM $\lambda = (A, B)$, the algorithm returns the state path through the HMM that assigns maximum likelihood to the observation sequence. Note that states 0 and q_F are

1. Initialization:

$$v_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$
 (6.20)

$$bt_1(j) = 0$$
 (6.21)

2. **Recursion** (recall that states 0 and q_F are non-emitting):

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$
(6.22)

$$bt_t(j) = \underset{i=1}{\operatorname{argmax}} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$
 (6.23)

3. Termination:

The best score:
$$P* = v_t(q_F) = \max_{i=1}^{N} v_T(i) * a_{i,F}$$
 (6.24)

The start of backtrace:
$$q_T *= bt_T(q_F) = \underset{i=1}{\operatorname{argmax}} v_T(i) * a_{i,F}$$
 (6.25)

6.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that is, the A and B matrices. Formally,

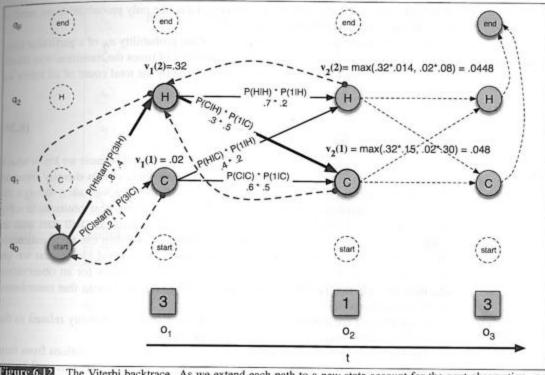


Figure 6.12 The Viterbi backtrace. As we extend each path to a new state account for the next observation, we keep a backpointer (shown with broken lines) to the best path that led us to this state.

> Learning: Given an observation sequence O and the set of possible states in the HMM, learn the HMM parameters A and B.

The input to such a learning algorithm would be an unlabeled sequence of observations O and a vocabulary of potential hidden states Q. Thus, for the ice cream task, we would start with a sequence of observations $O = \{1, 3, 2, ..., \}$ and the set of hidden states H and C. For the part-of-speech tagging task, we would start with a sequence of observations $O = \{w_1, w_2, w_3 ...\}$ and a set of hidden states NN, NNS, VBD, IN,... and

Forward-backward Baum-Welch

The standard algorithm for HMM training is the forward-backward, or Baum-Welch algorithm (Baum, 1972), a special case of the Expectation-Maximization or EM algorithm (Dempster et al., 1977). The algorithm will let us train both the transition probabilities A and the emission probabilities B of the HMM.

Let us begin by considering the much simpler case of training a Markov chain rather than a hidden Markov model. Since the states in a Markov chain are observed, we can run the model on the observation sequence and directly see which path we took through the model and which state generated each observation symbol. A Markov chain of course has no emission probabilities B (alternatively, we could view a Markov chain as a degenerate hidden Markov model where all the b probabilities are 1.0 for the