Eﬁl Chapter 6. Hidden Markov and Maximum Entropy Models
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|. Initialization:

vild) = agibiloy) 1<j<N (6.20)
by (j) = 0 (6.21)

2. Recursion (recall that states 0 and gF are non-emitting):
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3. Termination:

N
The best score: Pa = vilgr) = max vr(i) #a; 5 (6.24)

The start of backtrace: gp# = bir(gr) = argﬁ'l&x vr(i)#a;p  (6.25)
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6.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learn;
¢ learning the parameters of an H i%,
the A and B matrices, Formally, i TS
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m The Viterbi backtrace. As we extend each path 1o a new state account for the next observation, we
keep a backpointer (shown with broken lines) to the best path that led us to this state.

Forward-
fackvwand
Beaiws- Welch

EM

Learning: Given an observation sequence  and the set of possible states
in the HMM, learn the HMM parameters A and B.

The input to such a learning algorithm would be an unlabeled sequence of obser-
vations O and a vocabulary of potential hidden states ). Thus, for the ice cream task.
we would start with a sequence of observations O = {1,3,2,..., } and the set of hidden
states H and C. For the part-of-speech tagging task, we would start with a sequence of
observations O = {wy,wy,ws...} and a set of hidden states NN, NNS, VBD, IN.... and
50 O,

The standard algorithm for HMM training is the forward-backward, or Baum-
Welch algorithm (Baum, 1972), a special case of the Expectation-Maximization or
EM algorithm (Dempster et al., 1977). The algorithm will let us train both the transi-
tion probabilities A and the emission probabilities B of the HMM,

Let us begin by considering the much simpler case of training a Markov chain
rather than a hidden Markov model. Since the states in a Markov chain are observed,
we can run the model on the observation sequence and directly see which path we
took through the model and which state generated each observation symbol. A Markov
chain of course has no emission probabilities B (alternatively, we could view a Markov
chain as a degenerate hidden Markov model where all the b probabilities are 1.0 for the




