Language, lateralization (Ch 26)

Language Acquisition – what happened?

1. Language is universal across all human societies. That is, all societies use language in similar ways.
2. Despite the apparent diversity of human languages, any language can be learned by anybody.
3. Accordingly, languages must have some common underlying structures.

Universal Grammar (UG; Chomsky, 1965): A set of abstract general (and innate) principles that are universal to all natural languages. Each language is nothing but a specific implementation of these principles (e.g., temperature by F, C or K).

Speech perception is very difficult

Understanding language is even more difficult

Language is hierarchical and can be extremely ambiguous

Animal Communication

What is communication?
One possible definition (E.O. Wilson)

“Communication occurs when the action of or cue given by one organism is perceived by and thus alters the ... behaviour in another organism in a fashion adaptive to either one of both”

Do animals communicate?
Yes, lots! (and plants too)
So what's special about us? Reference? Complexity? Acquisition?
Vervet Language?

Vervet monkey gives different alarm call for three predators:
- Eagles
- Snakes
- Leopards

Are these referential? Closed system – mostly innate.

Bee Language?

Honey Bees communicate about:
- What direction to look for nectar
- How far away it is
- How good it is

Easily as complex as information in a sentence of human language.

Songbird Language?

Song in some species is learned
Regional “dialects”
Not really saying much

Human Language…

Digital infinity/recursion
Allows us unbounded expression – we can talk about anything

This is the farmer sowing the corn, that kept the cock that crowed in the morn, that waked the priest all shaven and shorn, that married the man all tattered and torn, that kissed the maiden all forlorn, that milked the cow with the crumpled horn, that tossed the dog, that worried the cat, that killed the rat, that ate the malt, that lay in the house that Jack built.

So is it a gradual or a Big Bang development?

Could language evolve gradually, or as one improbable mutation?

We need fossils of early protolanguage

Living fossils
- Early child language
- Pidgin languages
- Trained chimps

PROTOLANGUAGE:
- No closed-class words
- No grammatical endings/morphology
- No embedding, relative clauses etc.
- No established word-order

Chimps’ and Other Apes’ Language?

Language used from 6 months (critical period)?

Able to understand some syntax

1. Go get the carrot that’s in the oven
2. Put jelly in milk
3. Put milk in jelly

Kenzi
A chimp called Washoe…
(Washoe – group, US)

Experiments with chimps and other apes show they are capable of much more than we thought, in terms of language.

Chimps do not have the physical apparatus for human speech, but Washoe, a female chimp, was taught 160 signs in AmeSlan.

Generalizing signs

Washoe moved beyond the signs and generalized them - and combined them.

She learned “open” for one door, and then used it to ask for other doors to be opened.

She asked for refrigerators to be opened and pointed to open drawers and briefcases.

Washoe and Lucy (another chimp) learned the sign for feces and generalized it to mean dirty.

Lucy used the term as an expletive when she got mad at her trainer for not giving her something.

Lucy invented “cry hurt food” - three signs in AmeSlan - to talk about radishes and “candy fruit” to talk about watermelons.

Chimps and other great apes achieve the linguistic capacity of a 2-3 year old human.

Comparative linguistics and language origins
(Sci Am, April 2004)

Brent Berlin and Paul Kay studied 110 languages and found seven stages in the development of color terms.

All languages have at least two terms, white and black, or color and lack of color.

When languages acquire a third term, it is always red.

When languages acquire a fourth term, it is either green or yellow.

Berlin and Kay’s study...
(Originated 1969)

At five terms, green or yellow enters, depending on which one entered at stage IV.

At 6 terms, blue enters, and at 7 terms, brown enters.

At the final stage of 8 or more terms, purple, pink, orange, grey or combinations of these terms enter the lexicon. Moreover, color lexicons become more complex as societies become more complex.

Pidgins and creoles

Recent studies of Pidgins and Creoles also shed light on the evolution of language.

Pidgin languages are always second languages.

They develop when speakers of different languages try to communicate, often for purposes of trade.

The lexicon usually comes from one language, and the grammar from the other.
Children’s language acquisition

12 - 13 months: name objects
18 - 20 months: one-word sentences
18 - 24 months: two-word sentences

WHY?

Anatomy - Bipedalism

We stood up:
- Frees up the hands (could gesture be the first form of language?)
- Breath control

Change in shape of pelvis:
- Conflict between big brains and birth canal
- Neoteny – we are embryonic after birth

Anatomy - The vocal tract

Vowels [a], [i], [u] only possible in Homo sapiens (not in Neanderthals?)

Dangerous skill – we can choke!

Joint attention and mind reading

Q: When children hear a new word, what do they do?
A: They look to see what the speaker is looking at.

Disadvantage:
Difference in contrast between sclera and pupil

Chimps can hide what they are looking at but we can’t...

Social Organization

Group size related to size of brain
Human group size: 150

Speech and handedness – a link to be understood?

The speech area of the brain is adjacent to the area devoted to the control of the human hand.

The makers of stone tools were mostly right handed.

Chimps can make stone tools – they don’t do that in the wild - but when they do in experiments in captivity, they do not show any preference for right- or left handedness (Stanley Ambrose, Science 2001).

Handedness is probably associated with lateralization of the brain, as is language.

Maybe there is advantages in lateralization in bimanual tasks requiring precision and power (both in some chimps in Tanzania and among humans females more right-handed females than males, Am J Phys Anthropol, 123:62-8, 2004)

Corpus callosum fibres have similar conductance speeds across species suggesting that in bigger brains lateralization may be favoured (Braz J Med Biol Res, 36:409-20,2003)
Lateralization of language function

Left brain: 98% of right-handed people have almost all of the language functions represented in the left-hemisphere of the neocortex.

Right-hemisphere processes language functions regarding metaphorical or artistic meaning of language (e.g., humor).

In left-handed people, language function is more often represented predominantly in the right-hemisphere of the neocortex.
Varieties of Aphasia

Broca's aphasia:
- Damage to Broca's area
- Prevent a person from producing speech.
- Nonfluent, telegraphic speech
- Words are not properly formed (e.g.)
 "I'm a sig ... no... man ... uh, well, ... again."
 "Well...mess...uh...sgga...diz...es..."
- Person can understand language

Wernicke's aphasia:
- Damage to Wernicke's area
- Loss of the ability to understand language
- Fluent but unintelligent speech
- Can form words properly but the words that are put together make no sense
 (e.g.)
 "I go to a dog of cookies in TV"

Conduction aphasia:
- Damage to Arcuate fasciculus
- Fluent speech/good comprehension, but unable to repeat what is heard or read

Acquired alexia:
- Damaged connection between visual cortex and Wernicke's area
- Inability to read, but can see words

Agraphia:
- Inability to write words
- Damages to where??

Dyslexia:
- Loss & deficits of reading skills, spelling and recognizing word sounds

NEURAL ABNORMALITIES IN DYSLEXIA

Anomalies in cortical cell arrangement
- Ectopias: unusual groupings of cells in outer layers
- Micropolygyria: excessive cortical folding
- Disoriented cells

These abnormalities probably occur during neural migration during fetal development
BRAIN IMAGING DYSLEXIA

fMRI studies show different patterns of brain activation in dyslexics and nondyslexics.

Dyslexic subjects:
- showed less activation in posterior regions (e.g., Wernicke’s area) and overactivity in anterior regions compared to nondyslexics.
- showed less activation of visual cortex in response to written words.

ASSESSMENTS OF CEREBRAL LATERALIZATION

- Sodium Amytal Test
- Dichotic Listening Test
- Tachistoscopic Tests with Split-Brain patients
- Functional Brain Imaging

Confirmation of Linguistic Specialization of the Left Hemisphere in Humans

Signing Deficits in Deaf Individuals who Suffered Lesions of Language Areas in the Left Hemisphere

Asymmetry of the Right and Left Human Temporal Lobes
Lateralization is a general phenomenon

Lateralization

<table>
<thead>
<tr>
<th>Left Hemisphere</th>
<th>Right Hemisphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal competence</td>
<td>Nonverbal areas</td>
</tr>
<tr>
<td>Speaking, reading, thinking & reasoning</td>
<td>Comprehension, spatial relationships, drawing, music, emotion</td>
</tr>
<tr>
<td>Processes info in sequence</td>
<td>Processes info. as a whole intuitive</td>
</tr>
<tr>
<td>One piece of data at a time</td>
<td>Logical</td>
</tr>
</tbody>
</table>

Study questions:

- Is language unique to humans?
- Compare the functions of the right and left hemispheres. What techniques have been used to investigate cerebral lateralization (hemispheric specialization)?
- Where is Broca's area? Wernicke's area? Compare Wernicke's aphasia and Broca's aphasia. What can the variety of aphasia tell us about the neural basis of language?
- What similarities between sign language and spoken language suggest that they have common neural substrates?
- Is hemispheric specialization unique to humans?
- What is the relationship between handedness, lateralization of language, and anatomical hemispheric asymmetry?
- What evidence suggests the importance of biological constraints or predispositions in language learning?
- If a split-brain patient is briefly shown a pencil in her left visual field, will she be able to describe the pencil? Which hand would she use to select the pencil by feel from a set of test objects? Explain with the aid of a diagram.

Other terms to know:
- phonemes, grammar, syntax
- conduction aphasia
- planum temporale
- aprosodias
What is emotion?
Feeling, or affect, that can involve physiological arousal, conscious experience, and behavioral expression.

Emotion as Rationality
The relation between emotional states and cognitive states is the need to draw conclusions when cognition would face combinatorial explosion of possible reasoning threads.

Emotions
Basic affects
Surprise
Happiness
Interest
Anger
Fear
Disgust
Sadness
Shame

Theories of Emotion
* Emotion results from physiological states triggered by stimuli in the environment
* Emotion and physiological reactions occur simultaneously

Biology of Emotion
PET studies have shown that disgust, sadness, and happiness all activate the thalamus and prefrontal cortex.

Autonomic Nervous System is activated in many emotions.

Orbitofrontal Cortex:
- Involved in assessing the potential reward value of situations and objects
- Involved in processing of emotional cues
- Damage causes inappropriate interpersonal interactions and generally insensitive to the emotional expression of others
- Damage is associated with excessive aggression and violence

Happiness and sadness activate hypothalamus
Fear activates amygdala (quick processing)
Disgust activates the insula (related to gustatory reaction to unpleasant tastes and smells)

Important brain structures for emotion
Differential contribution of right and left amygdala to affective information processing

Hans J. Markowitsch

Right: more negative

Left: activated by more positive stimuli, language related

Emotion-communication: (not just info processing)?

Emotions are the fastest way that we can communicate with members of our group.
Emotions are signals between animals of the same species that communicate one’s brain state to another.
Emotions may predate language itself as a form of communication.
Facial expression is inevitable like language and universal like language.

Positive and negative emotions can coexist and are governed by different types of behavior.
Evidence for separate systems in the brain for approach emotions, such as happiness, and withdrawal emotions, such as fear.
The left frontal lobes are more active in approach emotions, and the right frontal lobes are more active in withdrawal emotions.
People who have more activation in the left frontal lobe tend to be more optimistic than people who have dominant right frontal lobe activity.
Clinically depressed people tend to have low left frontal lobe activity.

Box D Fear and the Human Amygdala: A Case Study

Part 2

28.6 Model of associative learning in the amygdala relevant to emotional function.
Culture affects the way we express our emotions. Each of us learns a set of ‘display rules’ from our culture that dictate how we will express our emotions publicly.

(Americans versus Asians - only differences found when they were watching in groups)

Culture also affects how sensitive we are to the emotional expressions of others. People from cultures with very restrained display rules are generally better at accurately detecting emotions in others. The harder the culture makes it to display emotions, the better the culture is at detecting emotions.