Synaptic Transmission

Postsynaptic Mechanisms

Part I

- Synapses electrical and chemical
- Neurotransmitters categories and life cycle
- Neurotransmitters examples and postsynaptic effects
- Pathology

Part II

- Neurotransmitter Receptors categories and examples
- Postsynaptic Potentials
 EPSP and IPSP

Electrical Neurotransmission	Chemical Neurotransmission
Direct contact between cells	No direct contact between cells
Fast	Comparatively slow
Two-directional	One-directional
Relatively simple effects	Often more complicated, receptor-dependent effects
Modulation possible	Can be modulated in many more ways

What happens on the presynaptic side?

- 1. Action potential depolarizes synaptic terminal
- 2. Calcium influx
- 3. Synaptic vesicles containing neurotransmitter fuse with the presynpatic membrane
- 4. Neurotransmitter is released into the synaptic cleft

Depending on the type of neurotransmitter and postsynaptic receptor a multitude of postsynaptic effects result...

Neurotransmitter Life Cycle •Synthesis •Packaging •Release •Removal

SMALL-MOLECULE NEUROTRANSMITTERS

Acetylcholine
$$(CH_3)_3\mathring{N} - CH_2 - CH_2 - O - C - CH_3$$

AMINO ACIDS

Glutamate $H_3\mathring{N} - C - COO - CH_2$
 CH_2
 CH_2
 CH_2
 $COOH$

Aspartate $H_3\mathring{N} - CH_2 - CH_2 - COO - CH_3$

GABA $H_3\mathring{N} - CH_2 - CH_2 - COO - CH_3$
 $COOH$
 $CH_3 - CH_2 - CH_3 - COO - CH_3$
 $COOH$
 $CH_3 - CH_2 - CH_3 - COO - CH_3$
 $COOH$
 $CH_3 - CH_3 - CH_3 - CH_3 - COO - CH_3$
 $COOH$
 $CH_3 - CH_3 - CH_3 - CH_3 - COO - CH_3$
 $COOH$
 $CH_3 - CH_3 - CH_3 - CH_3 - COO - CH_3$
 $COOH$
 $CH_3 - CH_3 - CH_3 - CH_3 - COO - CH_3$
 $COOH$
 $CH_3 - CH_3 - CH_3 - CH_3 - COO - CH_3$

leurotransmitter	Postsynaptic effect ^a	Precursor(s)	Rate-limiting step in synthesis	Removal mechanism	Type of vesicle
C h	Excitatory	Choline + acetyl CoA	CAT	AChEase	Small, clear
Glutamate	Excitatory	Glutamine	Glutaminase	Transporters	Small, clear
GABA	Inhibitory	Glutamate	GAD	Transporters	Small, clear
Slycine	Inhibitory	Serine	Phosphoserine	Transporters	Small, clear
Catecholamines (epinephrine, norepinephrine, dopamine)	Excitatory	Tyrosine	Tyrosine hydroxylase	Transporters, MAO, COMT	Small dense- core, or large irregular dense-core

Neurotransmitter	Postsynaptic effect ^a	Precursor(s)	Rate-limiting step in synthesis	Removal mechanism	Type of vesicle
•				THE RESERVE THE PROPERTY OF THE PARTY OF THE	Control of the Contro
Serotonin (5-HT)	Excitatory	Tryptophan	Tryptophan hydroxylase	Transporters, MAO	Large, dense-core
Histamine	Excitatory	Histidine	Histidine decarboxylase	Transporters	Large, dense-core
ATP	Excitatory	ADP	Mitochondrial oxidative phosphorylation; glycolysis	Hydrolysis to AMP and adenosine	Small, clear
Neuropeptides	Excitatory and inhibitory	Amino acids (protein synthesis)	Synthesis and transport	Proteases	Large, dense-core
Endocannabinoids	Inhibits inhibition	Membrane lipids	Enzymatic modification of lipids	Hydrolasis by FAAH	None
Nitric oxide	Excitatory and inhibitory	Arginine	Nitric oxide synthase	Spontaneous oxidation	None

The most common postsynaptic effect is indicated; the same transmitter can elicit postsynaptic excitation or inhibition depending on the nature of the ion channels affected by transmitter binding (see Chapter 7).

NEUROSCIENCE, Third Edition, Table 6.1 (Part 2) © 2004 Sinauer Associates, Inc.

Prolonged excitatory neurotransmission mediated by glutamate can destroy neurons.

Excitotoxicity

Under normal conditions the glutamate concentration in the synaptic cleft reaches approx. 1mM. But only for a few milliseconds.

During brain injury excessive amounts of glutamate can be released and/or re-uptake mechanisms inhibited. Example: stroke

Drug-induced imbalance of neurotransmitter release, response and/or re-uptake $\,$

Example: cocaine effects based on increased dopamine levels in brain regions involved in motivation and emotional reinforcement

Postsynaptic Neurotransmitter Receptors

(protein molecules)

Ionotropic Receptors

Linked directly to ion channels

2 functional domains combined in one molecular entity:

Extracellular transmitter binding site

Membrane-spanning ion channel

Multimers of 4 or 5 protein subunits, each contributing to the channel pore

Metabotropic Receptors

Receptors don't contain ion channels

Channels affected by intermediated molecules (G-Proteins)

Monomeric proteins with extracellular transmitter binding site and intracellular G-Protein binding site

Neurotransmitter binds, G-Protein activates, dissociates from receptor, interacts with ion channel or other effector proteins

Activation of Postsynaptic Receptors Results in PSPs

Ionotropic Receptors

Mediate rapid postsynaptic effects

Arise 1-2 ms after AP reaches presynaptic terminal

Last a few tens of ms

Metabotropic Receptors

Mediates slower responses

Hundreds of ms to minutes or

longer

Excitatory and Inhibitory Postsynaptic Potentials

EPSPs IPSPs

Depolarize postsynaptic cell and increase probability of AP generation

Hyperpolarize postsynaptic cell and decrease probability of AP generation

The relationship of reversal and threshold potential determines if a PSP is excitatory or inhibitory.

Summation of Postsynaptic Potentials

PSPs resulting from the activity of single synapses are almost always well below the threshold potential.

But neurons are commonly innervated by thousands of synapses. Therefore summation of PSPs in space and time occurs.

Summation allows the neuron to integrate all the electrical information provided by all the excitatory and inhibitory synapses innervating it.

The balance between excitation and inhibition therefore determines AP generation.

