Synaptic plasticity

*Activity-dependent changes in synaptic strength.

Changes in innervation patterns. New synapses or
deterioration of synapses.

*Repair/changes in the nervous system after damage.



Synaptic transmission

Pre Post
AP triggers Calcium inflow which in turn results in fusion of vesicles with the plasmamembrane.
Transmittor is released and diffuses over to the postsynaptic site.
The transmittorn activates ionotropic (or metabotropic) postsynaptic receptors.
The receptor activation results in a flow of ions over the plasmamembrane and therefore
in voltage changes (EPSP, IPSP) that at are summated temporally and spatially at Axon

hilloch (AP generation).

Transmittor is taken away by reuptake, diffusion and breakdown.



Receptor-lon exemples

GABA,: CI-
NAChR: Na*, K+, Ca?*

AMPA: Na*, K*, (Ca?*)

NMDA: Na*, K*, Ca?*



The size of the EPSP/IPSP i1s
dependent on:

How likely it is that TM is released by a presynaptic AP.

How many TM molecules that are present in a vecicle.

How much TM that is broken down in the synaptic cleft.

How likely it is that an ion channel is opened when TM binds to a receptor.

How many ion channels/receptors that are present in the postsynaptic
membrane.

The ion channel conductance.

The input resistance of the postsynaptic cell.



Many of these factors are dynamically controlled and can

be modulated by for instances phosphorylation of receptors.
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Habituation & Sensitation
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Stimulate tail nerve
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Activity-dependent synaptic plasticity

e Short-term synaptic plasticity
e Long-term synaptic plasticity
e Long-term potentiation (LTP)
e Long-term depression (LTD)

* Depotentiation

o Glutamatergic
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Activity-dependent long-term synaptic
plasticity

e Changes In the postsynaptic response as a function of the
activity pattern of the pre- and postsynaptic cells and
how these patterns relate to each other.

e Can Involve both pre- and postsynaptic changes.

o |s differentially expressed at different synapses.



Major pathways in hippocampal slices
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The Discovery of LTP
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Basic properties of LTP
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High frequency
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Mechanism of induction of NMDA
receptor-dependent LTP
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AMPA receptors mediate a modifiable synaptic response

NMDA receptors are necessary for the induction of LTP
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Ca2* permeation through NMDA receptors
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KN-62 blocks the induction of LTP in hippocampal CA1 neurons
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Signalling mechanisms following the
synaptic activation of NMDA receptors

a transient rise in [CaZ*] in dendritic spines

activation of CaMKIl|I



The synaptic strength increases as:
The single channel conductance of AMPA-receptors increases.

The number of AMPA-receptors in the postsynaptic cleft increases.

The mechanisms appear to be mutually exclusive.
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Evidence for the existence of silent synapses
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Damage-induced alterations
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(B) Normal hand representation
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(C) Hand representation two months
after digit 3 amputation
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Use-dependent alterations
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