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Abstract

This thesis concerns the approximation of optimally controlled partial

differential equations for inverse problems in optimal design. Important ex-

amples of such problems are optimal material design and parameter recon-

struction. In optimal material design the goal is to construct a material that

meets some optimality criterion, e.g. to design a beam, with fixed weight,

that is as stiff as possible. Parameter reconstrucion concerns, for example,

the problem to find the interior structure of a material from surface displace-

ment measurements resulting from applied external forces.

Optimal control problems, particularly for partial differential equations,

are often ill-posed and need to be regularized to obtain good approxima-

tions. We here use the theory of the corresponding Hamilton-Jacobi-Bellman

equations to construct regularizations and derive error estimates for optimal

design problems. The constructed Pontryagin method is a simple and gen-

eral method where the first, analytical, step is to regularize the Hamiltonian.

Next its Hamiltonian system is computed efficiently with the Newton method

using a sparse Jacobian. An error estimate for the difference between exact

and approximate objective functions is derived, depending only on the dif-

ference of the Hamiltonian and its finite dimensional regularization along the

solution path and its L2 projection, i.e. not on the difference of the exact and

approximate solutions to the Hamiltonian systems.

Another treated issue is the relevance of input data for parameter recon-

struction problems, where the goal is to determine a spacially distributed

coefficient of a partial differential equation from partial observations of the

solution. It is here shown that the choice of input data, that generates the

partial observations, affects the reconstruction, and that it is possible to for-

mulate meaningful optimality criteria for the input data that enhances the

quality of the reconstructed coefficient.

In the thesis we present solutions to various applications in optimal ma-

terial design and reconstuction.
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Sammanfattning

Denna avhandling handlar om approximation av optimalt styrda parti-

ella differentialekvationer för inversa problem inom optimal design. Viktiga

exempel på sådana problem är optimal materialdesign och parameterskatt-

ning. Inom materialdesign är målet att konstruera ett material som uppfyller

vissa optimalitetsvillkor, t.ex. att konstruera en så styv balk som möjligt un-

der en given vikt, medan ett exempel på parameterskattning är att hitta den

inre strukturen hos ett material genom att applicera ytkrafter och mäta de

resulterande förskjutningarna.

Problem inom optimal styrning, speciellt för styrning av partiella differen-

tialekvationer, är ofta illa ställa och måste regulariseras för att kunna lösas

numeriskt. Teorin för Hamilton-Jacobi-Bellmans ekvationer används här för

att konstruera regulariseringar och ge feluppskattningar till problem inom op-

timal design. Den konstruerade Pontryaginmetoden är en enkel och generell

metod där det första analytiska steget är att regularisera Hamiltonianen. I

nästa steg löses det Hamiltonska systemet effektivt med Newtons metod och

en gles Jacobian. Vi härleder även en feluppskattning för skillnaden mellan

den exakta och den approximerade målfunktionen. Denna uppskattning be-

ror endast på skillnaden mellan den sanna och den regulariserade, ändligt di-

mensionella, Hamiltonianen, båda utvärderade längst lösningsbanan och dess

L
2-projektion. Felet beror alltså ej på skillnaden mellan den exakta och den

approximativa lösningen till det Hamiltonska systemet.

Ett annat fall som behandlas är frågan hur indata ska väljas för parame-

terskattningsproblem. För sådana problem är målet vanligen att bestämma

en rumsligt beroende koefficient till en partiell differentialekvation, givet ofull-

ständiga mätningar av lösningen. Här visas att valet av indata, som genererar

de ofullständiga mätningarna, påverkar parameterskattningen, och att det

är möjligt att formulera meningsfulla optimalitetsvillkor för indata som ökar

kvaliteten på parameterskattningen.

I avhandlingen presenteras lösningar för diverse tillämpningar inom opti-

mal materialdesign och parameterskattning.
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Chapter 1

Introduction

This thesis deals with the problem on how to solve ill-posed inverse problems with
optimal control techniques. The purpose of optimal control is to control a dy-
namical system to achieve a desired goal in an optimal way. Optimal control is
of great importance in many areas of science such as finance, economics, aeronau-
tics, chemistry, physics and mechanics. In fact, almost any discipline that deals
with dynamical systems also have applications where it is of interest to control
that dynamical system. Another area where optimal control is of interest is inverse
problems, cf. [3, 13, 24, 13]. The goal is then to determine input data to an equation
from its solution, i.e. if the solution y to the forward problem is given by

y = A(x),

where x is the input, and A is a (non-linear) operator, then the inverse problem to
find x is simply

x = A−1(y).

In the finite dimensional case for a linear operator, e.g. A(x) = Ax where A is
an invertible matrix, the inverse problem is just to solve a linear system. For the
infinite dimensional case, however, the inverse problem may be ill-posed, i.e. one
or more of the following properties for well-posedness is not satisfied:

1. There exists a solution x.

2. The solution is unique.

3. The solution depends continuously on the input y.

A simple example of an ill-posed inverse problem is to find x∗ : [0, T ]→ R for

y∗(t) =

∫ T

0

x∗(t) dt := A(x∗), (1.1)

1



2 CHAPTER 1. INTRODUCTION

where y∗ : [0, T ] → R is non-differentiable. For the corresponding discretized
problem, with A−1 being the difference operator, the sensitivity to data is reflected
by the condition number which grows as the step size goes to zero.

To formulate an optimal control problem for the inverse problem (1.1) it is
necessary to introduce an objective functional, e.g. the least-squares functional

∫ T

0

(
y(t)− y∗(t)

)2
dt. (1.2)

The optimal control problem is then to find x, y : [0, T ]→ R that satisfies

dy(t)

dt
= x(t), t ∈ (0, T ],

x(0) = 0.

and minimizes (1.2). Since the optimal control problem still is ill posed it is nec-
essary to modify it to allow a solution and to lessen the dependence on data. One
way is to regularize it by adding an extra penalty on the control x, e.g. to replace
(1.2) with

∫ T

0

(
y(t)− y∗(t)

)2
+ δx2(t) dt,

see [19].
In this thesis optimal design problems are considered, i.e. inverse problems

for partial differential equations, cf. [19, 20] . Optimal design also includes con-
trol problems without time dynamics, e.g. control of stationary partial differential
equations, and can in the general form be written as the mimimization of a func-
tional

F (u, σ) : V (U)×W (U)→ R,

where U is a domain (possibly in both time and space), and the state u and the
control σ belongs to Hilbert spaces V and W , and satisfies a partial differential
constraint

G(u, σ) = 0 in U.

Usually the control is also restriced to only attain values in some admissible set in
W . In the following chapter, the special case of optimal design problems where the
control is only able to attain discrete values, e.g. σ : U → {σ−, σ+}, is discussed.
The theory for this case can easily be extended to the more general cases σ : U →
[σ−, σ+] or σ : U → R.



Chapter 2

Optimal Design

Optimal design has with the increase of computational capacity and commercial
software for solving partial differential equations become an important industrial
field, with applications in virtually all fields of science. Two important applications
are optimal design of material structures, and inverse optimal reconstruction of
physical properties from experimental data, see e.g. [5] and [6], respectively.

Mathematically, optimal design can be described as the particular inverse prob-
lem of controlling one or more a partial differential equations to meet some design
criteria in an optimal way. For example, consider the general problem to find a
bounded open set D ⊂ Ω ⊂ R

d such that

inf
D∈Dad

{∫

D

F (u) dx

∣
∣
∣
∣
G(u) = 0 in D

}

, (2.1)

where the design criteria is described by the functional F : R
n → R, the state

variable u : Ω → R
n satisfies the partial differential equation G(u) = 0 in D, and

Dad describes a set of admissible designs. Typically, the partial differential operator
G here describes a physical state, while the design criteria consists of some energy to
minimize or, for a reconstruction problem, an error functional relating the solution
u to measurements.

The above problem (2.1) is usually referred to as an optimal shape problem [20]
and is in general ill-posed in the sense that small perturbations of data lead to large
changes in the solution [13, 24]. Also, for a too large set of admissible designs Dad,
the infimum in (2.1) may not even be attained.

An alternative way to write the optimal shape problem (2.1) is as a parameter
design problem

inf
χ∈χad

{∫

Ω

χF (u) dx

∣
∣
∣
∣
χG(u) = 0 in Ω

}

, (2.2)

where the domain Ω is fixed and the infimum is taken is over all characteristic
functions χ : Ω→ {0, 1} in the admissible set χad.

3



4 CHAPTER 2. OPTIMAL DESIGN

Example 2.1 (Optimal design in conductivity). Consider the problem of minimiz-
ing the power loss in an electric conductor, by placing a given amount C of con-
ducting material in a given domain Ω ⊂ R

d, for a given surface current q : Γ→ R,
Γ ⊆ ∂Ω. In the shape optimization setting this can be formulated as finding the
conducting domain D ⊂ Ω, Γ ⊆ ∂D, such that

inf
D∈Dad

{∫

D

|∇ϕ|2 dx

∣
∣
∣
∣
− div(∇ϕ)

∣
∣
D

= 0,
∂ϕ

∂n

∣
∣
∂D\Γ

= 0,
∂ϕ

∂n

∣
∣
Γ

= q,

}

, (2.3)

where ∂/∂n denotes the normal derivative on the boundary,

ϕ ∈ V ≡

{

v ∈ H1(D) :

∫

D

v dx = 0

}

,

is the electric potential, and where

Dad ≡

{

D ⊂ Ω : Γ ⊆ ∂D,

∫

D

dx = C

}

.

A corresponding parameter design problem can be formulated as to find the char-
acteristic conductivity function σ : Ω→ {0, 1} such that

inf
σ

{∫

Ω

σ|∇ϕ|2 dx

∣
∣
∣
∣
− div(σ∇ϕ)

∣
∣
Ω

= 0, σ
∂ϕ

∂n

∣
∣
∂Ω

= q,

∫

Ω

σ dx = C

}

. (2.4)

This parameter design problem is studied in detail in [10].

Remark 2.1 (Two materials). For two materials, with objective functionals F 1

and F 2, and state equations G1 and G2, an optimal shape problem is

inf
D∈Dad

{∫

D

F 1(u) dx+

∫

Ω\D

F 2(u) dx

∣
∣
∣
∣
G1(u) = 0 in D, G2(u) = 0 in Ω \D

}

,

with the corresponding parameter design problem

inf
χ∈χad

{∫

Ω

χF 1(u) + (1 − χ)F 2(u) dx

∣
∣
∣
∣
χG1(u) + (1 − χ)G2(u) = 0 in Ω

}

.

Example 2.2 (Time dependent reconstruction). An example of a time dependent
optimal design problem is to reconstruct a time independent wave coefficient σ∗ :
Ω→ {σ−, σ+} of the wave equation from boundary measurements ϕ∗ : ∂Ω×[0, T ]→
R. This can be formulated as

inf
σ

∫ T

0

∫

∂Ω

(ϕ− ϕ∗)2 ds dt,
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such that
ϕtt = div(σ∇ϕ) in Ω× (0, T ],

σ
∂ϕ

∂n
= q on ∂Ω× (0, T ],

ϕ = ϕ0, on Ω× {0},

ϕt = ϕ̃0, on Ω× {0},

for given Neumann boundary values q : ∂Ω × (0, T ] → R and initial data ϕ0 and
ϕ̃0.

Remark 2.2 (Continuous material). In Example 2.1 and 2.2 it is possible to allow
the sought coefficient σ to have intermediate values, e.g. σ : Ω → [σ−, σ+] for
Example 2.2. For some optimal design problems allowing intermediate values leads
to a well posed problem while, e.g. the problem in Example 2.2 remains ill posed.

2.1 Existence of Solutions

Without any restrictions on the class of admissible designs, optimal design problems
often do not admit any solutions. A simple example is the problem to find the set
D ⊂ Ω ∈ R

2 that minimizes 1/l(D), where l(D) is the length of the boundary ∂D.
This unconstrained minimization problem clearly has no minimizer although the
minimum tends to zero, and to attain a minimizer we must add extra constraints
on for example the shape of the domain D, or the boundary ∂D.

To understand why the set of admissible designs is so important we review some
conditions on the existence of minimizers, see [20]: To assure existence of a solu-
tion D with a corresponding state variable u to the minimization problem (2.1),
a necessary condition is that there exists a minimizing sequence Dm to (2.1) such
that D̄m → D̄, in the Hausdorff sense. This does not imply that the corresponding
characteristic functions χDm : Ω→ L∞(Ω) converges pointwise or even weakly * to
a characteristic function χD (see Definition 2.1 for weak * convergence). However,
there always exists a minimizing sequence such that the characteristic functions
χDm converges in the weak * sense to a limit not belonging to the class of charac-
teristic functions. For the problem (2.1) this means that even if the state variables
um, corresponding to the minimizing sequence of shapes Dm, satisfies the constraint
G(um) = 0, the limit u may not be a solution to the original partial differential
constraint G(u) = 0.

Definition 2.1. By weak * convergence of χm ∈ L
∞(Ω) to χ ∈ L∞(Ω) we mean

that

lim
m→∞

∫

Ω

χm(x)φ(x) dx =

∫

Ω

χ(x)φ(x) dx,

for all test functions φ ∈ L1(Ω). The notation ’weak *’ is here used since L1(Ω) is
not the dual space of L∞(Ω).
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To find a minimizing sequence of characteristic functions that converges to a
characteristic function, we can either alter the original optimal design problem by
adding penalty terms in the design criterion, or change the set of admissible designs,
for example by adding conditions on the smoothness of the boundary, e.g. only
allowing Lipschitz boundaries. One problem is that this restriction usually gives a
minimum different from the infimum of the original problem, i.e. the problem has
been altered significantly. Another approach is to extend the admissible set χad in
(2.2) to include not only characteristic functions, e.g. by introducing composites
of laminated materials as in the homogenization method [1]. Such composites
describes periodic material micro-structures and can for certain laminations give a
minimum that coincides with the true infimum. It is worth to mention that even if
a solution exists, optimal design problems may be ill-posed in the sense that small
perturbations of data lead to large changes in the solution.

In Chapter 3, a different approach more connected with optimal control and
calculus of variations, is used for finding a regularization. For some problems we
can derive sufficient conditions for a minimizer [8, 10].

Remark 2.3. For the particular example of minimizing energy in Example 2.1,
there exists a unique minimizer without any restriction on the shape [20]. On the
other hand, changing the ’inf’ for a ’sup’ needs regularization to admit a solution.
This particular maximization problem has is addressed in [10], and can be regular-
ized by convexification or homogenization [1, 15, 16, 17, 18].

2.2 Solution Methods

Roughly, the computational methods solving for optimal design problems can be
divided into two classes: Methods with optimality conditions derived from (2.1),
and methods based on approximation of the characteristic function χ in (2.2).

In the first class we find the classical method of shape derivatives, which de-
rives the optimal variation of the boundary. Topological derivatives, or the bubble
method, is a similar method that derives optimality conditions for the creation of
holes in the domain, i.e not only moves the boundary but also changes the topology.
The shape optimization methods commonly use a finite element or finite difference
discretization of the domain D to solve the partial differential equation G(u) = 0
and update both D and the discretization from the optimality conditions. Alter-
natively, a fixed mesh and a mapping onto the domain D can be used. Another
method that uses the shape derivative, the topological derivative, or a combina-
tion of both is the level-set method. A level-set function is then used to indicate
the boundary, and boundary movement and creation of holes is done by solving a
transport equation for the level-set function on the whole domain Ω.

The second class of computational methods is based on the formulation (2.2)
and relaxes the class of admissible designs to allow a global minimum, either by
smooth approximation of χ, or as in the homogenization method, by a special class
of admissible controls χad based on periodic micro-structures. Since these methods
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uses a discretization of the whole region Ω it is here often necessary to use a weak
material to mimic void, i.e. χ > 0. Also, to produce sharp boundaries between, in
this case, the weak and the solid phase, some penalization procedure is often added.
This may seem counter productive, but the hope is to first reach a global minimum
to the relaxed problem, followed by a penalization which removes existence of a
global minimum but forces the solution to a nearby local minimum.

In this presentation, we only deal with the continuous problem, and do not
discuss any of the many optimization methods dealing with the discretized versions
of (2.1) and (2.2). An introduction to discrete methods concerning optimal design
of material structures can be found in [5].

Shape and Topological Derivative

Consider the problem (2.1) and define the objective functional

J(D) ≡

∫

D

F (u) dx,

where u : D → V is the solution, belonging to some Hilbert space V , to the partial
differential equation G(u) = 0 in (2.1)

For a small perturbation θ : R
d → R

d of the domain D ⊂ R
d into D + θ =

{x+ θ(x), x ∈ D} the shape derivative in the direction θ can be defined as

δJ(D; θ) =

∫

∂D

L
(
u(s), λ(s)

)
θ(s) · n ds, (2.5)

where n denotes the outward boundary normal. The functional L is here a certain
problem dependent functional which is described for an example below, see Example
2.3. The variable λ : D → V is here the solution to a corresponding adjoint problem.
One way to define the adjoint problem is from the Lagrangian

L(D,u, λ) ≡ J(D,u) + 〈λ,G(u)〉,

where 〈v, w〉 is the duality pairing on V , which reduces to the L2 inner product if
v, w ∈ L2(D). The Gâteaux derivative with respect to λ gives the original constraint
G(u) = 0, in the distribution sense, while the Gâteaux derivative with respect to u
gives the dual problem for λ. The shape derivative (2.5) gives the sensitivity of the
value function J with respect to change in the domain, and indicates how to move
the boundary ∂Ω, or the individual mesh points in the discretization of D.

Example 2.3. Consider a simplified version of the conductivity optimization prob-
lem (2.3), given in Example 2.1, where the objective functional now is

J(D) =

∫

D

|∇ϕ|2 dx+ η

∫

D

dx,



8 CHAPTER 2. OPTIMAL DESIGN

and the state variable ϕ solves

−div(∇ϕ)
∣
∣
D

= 0,
∂ϕ

∂n

∣
∣
∂D\Γ

= 0,
∂ϕ

∂n

∣
∣
Γ

= q.

The shape derivative is then given by

δJ(D; θ) =

∫

∂D

(∇u · ∇λ) θ · n ds+ η

∫

∂D

θ · n ds

where the dual solution is given by λ = ϕ, see [20].

Unfortunately, the shape derivative does not deal with changes in the topology,
e.g. nucleation of holes in the domain. A method which does consider topological
changes is the method of topological derivatives, see e.g. [11]. The topological
derivative is an extension of the shape derivative, and derives an expression for the
change in the value function with respect to the creation of a small hole inside the
domain.

Level-Set Methods

The level-set method, conveniently connects the two problems (2.1) and (2.2) by
parameterizing the boundary between the phases using a level-set function ψ :
Ω× [0, T ]→ R, given by







ψ(x, ·) > 0, x ∈ Ω−D,
ψ(x, ·) = 0, x ∈ ∂D,
ψ(x, ·) < 0, x ∈ D,

where the normal n of ∂D is given by∇ψ/|∇ψ| and the curvature by div(∇ψ/|∇ψ|).
The time is here an artificial variable used to evolve the shape towards its optimum,
by the dynamics of the Hamilton-Jacobi equation

∂tψ + V |∇ψ| = 0 in Ω (2.6)

where V : Ω × [0, T ] → R denotes the normal velocity of ∂D. Here, the normal
velocity can be chosen according to the shape or topological derivatives, see [2, 7],
and the time T corresponds to the length of the gradient step. In practice, the
T is chosen such that the normal and curvature of the level-set function does not
become too distorted. From the solution ψ(·, T ), a reinitialization where the partial
differential equation in (2.2) is solved, gives new initial data ψ(·, 0) for solving (2.6)
again. The level-set method requires using a weak phase to mimic void when
solving the partial differential equation in (2.2), and extra computational work is
introduced from introducing the additional function ψ. Also, a fixed discretization
of the whole domain Ω is used for both (2.6) and the partial differential equation
constraint in (2.2).
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Homogenization

The previous methods all tried to find an optimal domain D ∈ Ω, which may
not exist for certain problems, unless some restriction is put on the shape of the
boundary ∂D. The homogenization method, on the other hand, looks for optimal
designs in the class of periodic micro-structures. Such structures do not in general
form sharp boundaries, but instead share the property that there exists a minimum
which coincides in average with the infimum of the original problem, as mentioned
in Section 2.1.

x

y

φ

θ

1 − θ

σ−

σ+

Figure 2.1: The rank-1 laminate used in (2.8)

To exemplify, we state the problem briefly mentioned in Remark 2.3: Find the
conductivity function σ : Ω→ {σ−, 1} that maximizes the power loss in an electric
conductor, i.e.

sup
σ

{∫

Ω

σ|∇ϕ|2 dx

∣
∣
∣
∣
− div(σ∇ϕ)

∣
∣
Ω

= 0, σ
∂ϕ

∂n

∣
∣
∂Ω

= q,

∫

Ω

σ dx = C

}

, (2.7)

for σ : Ω→ {σ−, 1}. Note that we have here filled the void with a weak phase σ− >
0. This maximization problem lacks maximizers, but can be relaxed to allow the
existence a maximizer by simply using σ : Ω→ [σ−, 1] instead of σ : Ω→ {σ−, 1}. A
more clever approach is to use the homogenization method for laminated materials.
We then look at the problem

max
θ,φ

{∫

Ω

σ∗|∇ϕ|2 dx

∣
∣
∣
∣
−div
(
σ∗∇ϕ

)∣
∣
Ω

= 0, σ∗
∂ϕ

∂n

∣
∣
∂Ω

= q,

∫

Ω

θ dx = C

}

. (2.8)

with θ : Ω→ [0, 1], φ : Ω→ [0, π] and the rank-1 laminate tensor

σ∗(θ, φ) =

(
cosφ sinφ
− sinφ cosφ

)(
λ+
θ 0

0 λ−θ

)(
cosφ − sinφ
sinφ cosφ

)

,
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with

λ−θ =

(
θ

σ−
+

1− θ

σ+

)−1

, λ+
θ = θσ− + (1− θ)σ+.

The tensor σ∗ is obtained from rotation and mixing of the two tensor valued controls
σ−I and σ+I in proportions θ and 1 − θ and direction φ, see Figure 2.1. We have
thus enlarged the set of admissible controls by introducing two new parameters
θ, φ describing a laminated material. The effective conductivities in the principal
directions of the material is λ+

θ and λ−θ , while (λ+
θ )−1 and (λ−θ )−1 correspond to the

total resistances for resistors connected in parallel and in series, respectively. The
homogenization method has the advantage that a maximizer (θ, φ) is found and that
that the value of (2.8) coincides with (2.7). This particular problem uses a rank-1
laminate, but higher rank laminates, sufficient to find minimizers (or maximizers)
for many important optimal design problems, can be found [1].



Chapter 3

Optimal Control and the

Pontryagin Method

In the previous chapter we saw that optimal design problems often need to be
regularized to obtain good approximations, and that regularization may also be
necessary to assure the mere existence of a solution. In this chapter we present
a method for optimal design using a regularization derived from the Hamilton-
Jacobi-Bellman equations for the corresponding optimal control problem. We first
describe the method for control of a system of ordinary differential equations, and
then apply the methodology to control partial differential equations.

3.1 Dynamic Programming

Consider an optimal control problem for a controlled ordinary differential equation

inf
α∈A

{

g
(
X(T )

)
+

∫ T

0

h
(
X(s), α(s)

)
ds

∣
∣
∣
∣
X ′(t) = f

(
X(t), α(t)), X(0) = X0

}

, (3.1)

with given data g : R
n → R, h : R

n × B → R, f : R
n × B → R

n, X0 ∈ R
n, the

state variable X : [0, T ] → R
n and a set of controls A = {α : [0, T ] → B ⊂ R

m}.
Optimal control problems like (3.1) can be solved by dynamic programming or by
the Lagrange principle, cf. [14]. From the dynamic programming approach a value
function u : R

n × [0, T ]→ R, defined by

u(x, t) ≡ inf
X(t)=x,α∈A

{

g
(
X(T )

)
+

∫ T

t

h
(
X(s), α(s)

)
ds

}

, (3.2)

is the unique viscosity solution (see Definition 3.1 and [14, 12]) of the nonlinear
Hamilton-Jacobi-Bellman partial differential equation

∂tu(x, t) +H
(
∂xu(x, t), x

)
= 0, (x, t) ∈ R

n × (0, T ),

u(x, T ) = g(x), x ∈ R
n,

(3.3)

11
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where the Hamiltonian function H : R
n × R

n → R is defined by

H(λ, x) ≡ min
α∈B

{
λ · f(x, α) + h(x, α)

}
. (3.4)

The value function (3.2) indicates the least cost from starting at a point (x, t) and
following an optimal path X(s) and control α(s) for the remaining time s ∈ [t, T ],
and the infimum of (3.1) is given by the solution to (3.3) in the point (X0, 0).
Although we can here find a global minimum, the Hamilton-Jacobi equation can in
practice not be solved numerically for high dimensional problems where n≫ 1.

Definition 3.1. (Viscosity solution) A bounded uniformly continuous function u
is a viscosity solution to (3.3), if u(·, T ) = g(·), and for each v ∈ C∞(Rn × (0, T ))

• ∂tv(x, t) +H
(
∂xv(x, t), x

)
≥ 0 when u− v has a local maximum in (x, t), and

• ∂tv(x, t) +H
(
∂xv(x, t), x

)
≤ 0 when u− v has a local minimum in (x, t).

The viscosity solution u is also unique, see [14, 12].

3.2 The Pontryagin Principle

To derive information on the optimal path X(t) and the corresponding optimal
control α(t), we consider the Pontryagin (Minimum) Principle, see [21], which states
the following necessary condition for an optimal control to (3.1): Assuming that
f, g, h are differentiable, then given an optimal path X(t) with an optimal control
α(t), there exists a path λ(t) such that

X ′(t) = f
(
X(t), α(t)

)
,

X(0) = X0,

−λ′i(t) = ∂xif
(
X(t), α(t)

)
· λ(t) + ∂xih

(
X(t), α(t)

)
,

λ(T ) = g′
(
X(T )

)
,

(3.5)

and

λ(t) · f
(
X(t), α(t)

)
+ h
(
X(t), α(t)

)
≤ λ(t) · f

(
X(t), a

)
+ h
(
X(t), a

)
, a ∈ B,

or equivalently

α(t) ∈ argmina∈B
{
λ(t) · f

(
X(t), a

)
+ h
(
X(t), a

)}
. (3.6)

Also, assuming that the Hamiltonian H defined in (3.4) is differentiable, the Pon-
tryagin Principle (3.5) and (3.6), equals the Lagrange principle, i.e. an optimal
path X(t) satisfies the Hamiltonian boundary value system

X ′(t) = ∂λH
(
λ(t), X(t)

)
, X(0) = X0,

−λ′(t) = ∂xH
(
λ(t), X(t)

)
, λ(T ) = g′(X(T )),

(3.7)
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cf. [4], which in fact is the method of characteristics for the Hamilton-Jacobi equa-
tion (3.3) provided λ(t) ≡ ∂xu(X(t), t) exists. The Lagrange principle has the
advantage that high dimensional problems, n ≫ 1 can be solved computationally
and the drawback is that in practice only local minima can be found computation-
ally. When using (3.7) to solve the minimization problem (3.1) it is assumed that
the Hamiltonian is explicitly known and differentiable. In general, Hamiltonians
are only Lipschitz continuous for smooth f , g and h.

Many optimal control problems lead to non-smooth optimal controls, which
occur by two reasons: the Hamiltonian is in general only Lipschitz continuous, even
though f, g, h are smooth, and backward optimal paths X(t) may collide. To be
able to use the computational advantage of solving the Hamiltonian boundary value
system (3.7) a regularized problem with a C2(Rn × R

n) λ-concave approximation
Hδ of the Hamiltonian H , is introduced in [22]. This approximation not only
gives meaning to (3.7), but is well defined in the sense that the corresponding
approximated value function uδ is close to the original value function u, see [22].
In [22], error analysis yields the estimate

‖uδ − u‖L∞(Rn×R+) = O(δ), (3.8)

for the real and approximate value functions u and uδ, and with a regularization
parameter δ, such that ‖Hδ − H‖L∞(Rn×Rn) = O(δ). This error estimate is not
explicitly dependent on the dimension n, which makes the regularization suitable
for optimal control of discretized partial differential equations. Observe that ‖uδ −
u‖L∞(Rn×R+) → 0 does not necessarily imply convergence of the optimal paths X(t)
or the controls α(t).

3.3 Pontryagin Approximations for Optimal Design

In [10], the above analysis for optimal control of ordinary differential equations is
extended to control of a time dependent partial differential equation

∂tϕ(x, t) = f
(
ϕ(x, t), α(x, t)

)
, (x, t) ∈ Ω× (0, T )

ϕ(x, 0) = ϕ0, x ∈ Ω

where f is a partial differential operator, Ω ⊂ R
n, and ϕ(·, t) belongs to some

Hilbert space V on Ω. The minimization problem corresponding to (3.1) then
becomes

inf
α:Ω×[0,T ]→B

{

g
(
ϕ(·, T )

)
+

∫ T

0

h
(
ϕ(·, t), α(·, t)

)
dt

∣
∣
∣
∣

∂tϕ = f
(
ϕ(·, t), α(·, t)

)
, ϕ(·, 0) = ϕ0

}

,

(3.9)

The Hamiltonian H : V × V → R is defined as

H(λ, ϕ) ≡ min
α:Ω→B

{〈λ, f(ϕ, α)〉 + h(ϕ, α)}, (3.10)



14 CHAPTER 3. OPTIMAL CONTROL AND THE PONTRYAGIN METHOD

and the value function u : V × [0, T ]→ R,

u(φ, τ) ≡ inf
α:Ω×[0,T ]→B

{

g
(
ϕ(·, T )

)
+

∫ T

τ

h
(
ϕ(·, t), α(·, t)

)
dt

∣
∣
∣
∣

∂tϕ = f
(
ϕ(·, t), α(·, t)

)
, ϕ(·, τ) = φ ∈ V

}

solves the Hamilton-Jacobi-Bellman equation

∂tu(φ, t) +H
(
∂φu(φ, t), φ

)
= 0, u(·, T ) = g, (3.11)

Here, ∂ now denotes Gâteaux derivatives (except for ∂t), and 〈v, w〉 is the duality
pairing on V , which reduces to the L2(Ω) inner product if v, w ∈ L2(Ω). The
Lagrange principle gives the Hamiltonian system

∂tϕ = ∂λH(λ, ϕ), ϕ(·, 0) = φ

∂tλ = −∂ϕH(λ, ϕ), λ(·, T ) = ∂ϕg
(
ϕ(·, T )

)
.

(3.12)

In [8, 10], the time-independent version of Equation (3.12) is solved for ϕ, λ
defined on a finite element subspace V̄ ⊂ V and using a C2 regularized approximate
Hamiltonian H̄δ, and in [9, 23] the time dependent problem is solved.

As an example of a time-independent optimal control problem for partial dif-
ferential equations we review problem (2.4) in Example 2.1, which using Gauss
theorem and a prescribed multiplier η ∈ R corresponding to the volume constraint
C, can be written as

inf
σ:Ω→{0,1}

{∫

∂Ω

qϕ ds+ η

∫

Ω

σ dx

∣
∣
∣
∣
− div(σ∇ϕ)

∣
∣
Ω

= 0, σ
∂ϕ

∂n

∣
∣
∂Ω

= q

}

. (3.13)

In this case, the Hamiltonian becomes

H(λ, ϕ) = min
σ:Ω→{0,1}

{∫

Ω

σ(η −∇ϕ · ∇λ
︸ ︷︷ ︸

v

) dx+

∫

∂Ω

q(ϕ+ λ) ds

}

=

∫

Ω

min
σ∈{0,1}

{σv}

︸ ︷︷ ︸

h(v)

dx+

∫

∂Ω

q(ϕ+ λ) ds.

By replacing h with a smooth function hδ (see Figure 3.1) the time-independent
version of the Hamiltonian system (3.12) can by symmetry ϕ = λ be reduced to
the non-linear partial differential equation







−div
(

h′δ(η − |∇ϕ|
2)∇ϕ

)

= 0, in Ω

h′δ(η − |∇ϕ|
2)
∂ϕ

∂n
= q, on ∂Ω
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The regularization is here similar to adding a standard Tikhonov penalty, c.f. [13],
on the L2-norm of σ in problem (3.13), which combined with allowing intermediate
conductivities σ : Ω→ [0, 1] gives the problem

inf
σ:Ω→[0,1]

{∫

∂Ω

qϕ ds+η

∫

Ω

σ dx+δ

∫

Ω

σ2 dx

∣
∣
∣
∣
−div(σ∇ϕ)

∣
∣
Ω

= 0, σ
∂ϕ

∂n

∣
∣
∂Ω

= q

}

,

with a regularization parameter δ > 0. The Hamiltonian then becomes

H(λ, ϕ) = min
σ:Ω→[0,1]

{∫

Ω

σ(η −∇ϕ · ∇λ
︸ ︷︷ ︸

v

+δσ) dx+

∫

∂Ω

q(ϕ+ λ) ds

}

=

∫

Ω

σ∗(v) v dx+

∫

∂Ω

q(ϕ+ λ) ds,

with the optimal control

σ∗(v) =







1, v < −2δ,

−v

2δ
, −2δ ≤ v ≤ 0,

0, 0 < v,

see, Figure 3.1.
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h

hδ

v

h, hδ

σ∗ h′

δ

v

h′

δ
, σ∗

Figure 3.1: Top: The function h and its regularization hδ with respect to v. Bottom:
The approximation h′δ compared to a control σ∗ obtained from adding a Tikhonov
type penalty δ

∫

Ω σ
2 dx to (3.13) with σ : Ω→ [σ−, σ+].



Chapter 4

Summary of Papers

Paper 1: Pontryagin Approximations for Optimal Design

In this paper the Pontryagin method presented in Chapter 3 is used to solve three
different typical optimal design problems; one scalar concave maximization problem
in conductivity, one scalar non-concave maximization problem in elasticity, and one
inverse reconstruction problem in impedance tomography. An error estimate for the
difference in the true and approximated value functions, using only the difference
of the true and approximated Hamiltonians along the same paths, is also derived.
This estimate gives an error estimate which in practice can be bounded in terms of
the regularization parameter and the finite element mesh size, such that the value
functions converge even though the optimal paths do not.

Paper 2: Pontryagin Approximations for Optimal Design of

Elastic Structures

Here, the derived Pontryagin method is tested for two problems in optimal design
of elastic structures: to distribute a limited amount of material in a structure to
minimize its compliance, and to detect interior material distributions from surface
measurements. The problem to construct a structure with minimal compliance,
or maximum stiffness, is severely ill posed and needs to be regularized. It is well
known that common regularizations for inverse problems gives infeasible optimal
designs for minimal compliance problems, and this is also the case for the regularized
Pontryagin method. To achieve physically feasible stuctures, a different approach is
used, where the unregularized Pontryagin method is combined with a restriction on
how much material is allowed to change in each iteration. This type of restriction
acts as a regularization and gives meaningful designs that agree with other topology
optimization methods.

17
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Paper 3: Symplectic Reconstruction of Data for Heat and

Wave Equations

This paper deals with the inverse problem of estimating a spacially dependent
coefficient of a time dependent partial differential equation from observations of
the solution at the boundary. The asumption that the coefficient is independent of
time causes some extra difficulties in the Pontryagin method and different remedies
are here investigated.

Paper 4: Inverse Reconstruction from Optimal Input Data

Here, the spacially dependent wave speed coefficient of the acoustic wave equation is
sought given observations of the solution on the boundary. The reconstruction of the
coefficient is highly dependent on input data, e.g. if Neumann boundary values serve
as input data it is in general not possible to determine the coefficient for all possible
input data. This paper shows that it is possible to formulate meaningful optimality
criteria for finding optimal input data that enhances quality of the reconstructed
coefficient, which is also verified by numerical experiments. An interesting property
of the gradient method used to find optimal input data is that it depends on not
only the observed solution to the forward problem, but also on observed solutions
to a dual problem.
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