
SYMPLECTIC RECONSTRUCTION OF DATA FOR HEAT AND
WAVE EQUATIONS

JESPER CARLSSON

Abstract. This report concerns the inverse problem of estimating a spacially
dependent coefficient of a partial differential equation from observations of the
solution at the boundary. Such a problem can be formulated as an optimal
control problem with the coefficient as the control variable and the solution
as state variable. The heat or the wave equation is here considered as state
equation. It is well known that such inverse problems are ill-posed and need
to be regularized. The powerful Hamilton-Jacobi theory is used to construct
a simple and general method where the first step is to analytically regularize
the Hamiltonian; next its Hamiltonian system, a system of nonlinear partial
differential equations, is solved with the Newton method and a sparse Jacobian.
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1. Introduction

In this paper we study the inverse problem to determine a spacially dependent
coefficient σ of a partial differential equation from partial knowledge of the forward
solution u. In particular, we seek the diffusion coefficient in the heat equation
and the wave speed coefficient in the wave equation. Inverse problems arise in
many applications such as inverse scattering, impedance tomography and topology
optimization, see e.g. [1, 3, 6, 14], and share the property that they are ill posed
i.e. given data u there may not exist a corresponding coefficient σ, and if it exists
it may not be unique nor depend continuously on u. To be able to determine σ
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the problem thus needs to be regularized such that it becomes well posed. The
method used here to regularize and to solve the inverse problem is based on the
work [7, 8, 15, 16] where the inverse problem is formulated as an optimal control
problem and the corresponding Hamilton-Jacobi equation is used to construct a
regularization, to obtain convergence results, and to finally solve the regularized
problem by using the method of characteristics, i.e. to solve the corresponding
Hamiltonian system.

The paper is stuctured as follows: In Section 2 the general theory of optimal
control of partial differential equations and Hamilton-Jacobi-Bellman is presented.
In Section 3 the idea of how to optimally control the heat equation is discussed
together with numerical examples, and in Section 4 the control of the wave equation
is treated.

2. Optimal Control and Dynamic Programming

Consider a differential equation constrained minimization problem with solution
ϕ : Ω × [0, T ] → R, ϕ(·, t) ∈ V and control σ : Ω × [0, T ] → B, σ(·, t) ∈ W for
an open domain Ω, some Hilbert spaces V and W on Ω, and a closed bounded set
B ⊂ R:

(1)
min

σ:Ω×[0,T ]→B

∫ T

0
h(ϕ, σ) dt+ g(ϕT ),

ϕt = f(ϕ, σ),

with ϕT := ϕ(·, T ) and given initial value ϕ0 = ϕ(·, 0). Here, ϕt denotes the partial
derivative with respect to time, f : V ×W → V is the flux, and h : V ×W → R,
g : V → R are given functions.

This optimal control problem can be solved either directly using constrained
minimization or by dynamic programming. The Lagrangian becomes

L(ϕ, λ, σ) :=
∫ T

0
〈λ, f(ϕ, σ)− ϕt〉+ h(ϕ, σ) dt,

with Lagrange multiplier λ : Ω × [0, T ] → R, λ(·, t) ∈ V , and the constrained
minimization method is based on the Pontryagin method

(2)

ϕt = f(ϕ, σ),
λt = −〈λ, fϕ(ϕ, σ)〉+ hϕ(ϕ, σ),

σ(·, t) ∈ argmin
a:Ω→B

{〈λ, f(ϕ, a)〉+ h(ϕ, a)}.

with given initial value ϕ0, final value λT := λ(·, T ) = gϕ(ϕT ), and where fϕ,
hϕ denotes the Gateaux derivatives with respect to ϕ and 〈v, w〉 is the duality
pairing on V , which reduces to the L2(Ω) inner product if v, w ∈ L2(Ω). For a
differentiable Lagrangian that is convex in σ the Pontryagin principle coincides
with the Lagrangian formulation for a constrained interior minimum

(3)

ϕt = f(ϕ, σ),
λt = −〈λ, fϕ(ϕ, σ)〉+ hϕ(ϕ, σ)
0 = 〈λ, fσ(ϕ, σ)〉+ hσ(ϕ, σ),
σ ∈ B,

but in general (2) and (3) may have different solutions ϕ, λ, σ although both describe
necessary conditions for a minimizer to (1). If an explicit minimizer in (2) can
be found the Pontryagin principle gives additional information about the control.
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Pontryagin’s minimum principle can also be written as a Hamiltonian system, see
[2],

(4)
ϕt = Hλ(ϕ, λ)
λt = −Hϕ(ϕ, λ)

with ϕ0 given, λT = gϕ(ϕT ), and the Hamiltonian H : V × V → R defined as

(5) H(λ, ϕ) := min
a:Ω→B

{〈λ, f(ϕ, a)〉+ h(ϕ, a)}.

The alternative dynamic programming method is based on the value function
U : V × [0, T ]→ R,

U(φ, τ) := inf
σ:Ω×[τ,T ]→B

{∫ T

τ

h(ϕ, σ) dt+ g(ϕT )
∣∣∣∣ ϕt = f(ϕ, σ), ϕ(·, τ) = φ ∈ V

}
which solves the nonlinear Hamilton-Jacobi-Bellman equation

(6) ∂tU(φ, t) +H
(
Uφ(φ, t), φ

)
= 0, U(φ, T ) = g(φ),

with Hamiltonian defined as in (5). Note that solving the Hamiltonian system
(4) is the method of characteristics for the Hamilton-Jacobi equation (6), with
λ(x, t) = Uϕ(ϕ(x, t), t). In general, the value function is however not everywhere
differentiable and the multiplier λ becomes ill defined in a classical sense.

The Hamilton-Jacobi formulation (6) has the advantages that there is a com-
plete well-posedness theory for Hamilton-Jacobi equations, based on non-differential
viscosity solutions, see [9], and it finds a global minimum. However, (6) is not com-
putationally feasible for problems in high dimension, such as the case where ϕ is
an approximation of a solution to a partial differential equation. The Hamiltonian
form (4) has the advantage that it is computationally feasible but the drawbacks
are that it only focuses on local minima and that the Hamiltonian (5) in general
only is Lipschitz continuous, even if f, g and h are smooth, which means that the
optimal control depends discontinuously on (λ, ϕ) and (4) becomes undefined where
the Hamiltonian is not differentiable.

In the following sections we will use a regularized version of (4) to iteratively
solve the nonlinear constrained optimization problem (1).

3. Parameter Reconstruction for the Heat Equation

A distributed parameter reconstuction problem for the heat equation is to find
a heat conductivity (the control) e.g. σ : Ω̄ × [0, T ] → [σ−, σ+], σ(·, t) ∈ W ,
0 < σ− < σ+, and a temperature distribution (the state) u : Ω̄ × [0, T ] → R,
u(·, t) ∈ V that satifies the heat equation

(7)

ut = div(σ∇u), in Ω× (0, T ],
σ∇u · n = j, on ∂Ω× (0, T ],

u = 0, on Ω̄× {t = 0},

such that the error functional

(8)
∫ T

0

∫
∂Ω

(u− u∗)2 ds dt,

is minimized. The function u∗ = u∗(x, t) often represents physical measurements
contaminated by some noise, e.g. u∗(x, t) = utrue(x, t) + w(x, t) where w is a
noise term and utrue satisfies the above heat equation for some unknown parameter
σtrue, and in practice the control is only spacially dependent, σtrue = σtrue(x). The
primary goal is thus to determine the unknown diffusion coefficient σtrue and the
method to do so is to minimize the objective functional (8).
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Inverse problems like (7), (8) are in general ill-posed due to one or more of the
following reasons:

(1) There exists no minimizer (u, σ), something that may occur with noisy
data. Given unperturbed data u∗ corresponding to σtrue, it is evident that
there exists a minimizer to (7), (8).

(2) The minimizer is not unique, e.g. although it may be possible to find an
optimal state that minimizes (8), u and σ may not be unique in Ω.

(3) The solution (u, σ), and particularly the control σ, depends discontinuously
on data u∗.

A simple and common way to impose well-posedness to many inverse problems is to
add a Tikhonov regularization of the form ε‖σ‖2L2(Ω×(0,T )) for ε > 0, to the objective
functional (8), see [1, 10, 14, 17]. Using the Pontryagin principle presented in the
previous section we will in Section 3.2 regularize the inverse problem (7), (8) in a
way that is comparable to a Tikhonov regularization.

Formulated as an optimal control problem the most natural assumption on the
control σ is that it is dependent on both time and space but as we will see in Section
3.3 it is also possible to let σ = σ(x), σ = σ(t), or even let σ be constant in time
and space.

3.1. The Hamiltonian System. Following Section 2 the Hamiltonian associated
to the optimal control problem (7) and (8) is

(9)

H(u, q, t) := min
σ:Ω→[σ−,σ+]

∫
∂Ω

(u− u∗)2 ds+
∫

Ω
div(σ∇u)q dx

=
∫
∂Ω

(u− u∗)2 + jq ds+ min
σ:Ω→[σ−,σ+]

∫
Ω
−σ∇u · ∇q dx

=
∫
∂Ω

(u− u∗)2 + jq ds−
∫

Ω
max

σ∈[σ−,σ+]
{σ∇u · ∇q}︸ ︷︷ ︸

h(∇u·∇q)

dx.

and the Hamiltonian system, in strong form, then becomes

(10)

ut = div
(
σ̃∇u

)
, in Ω× (0, T ],

σ̃∇u · n = j, on ∂Ω× (0, T ],
u = 0, on Ω̄× {t = 0},

−qt = div
(
σ̃∇q

)
, in Ω× (0, T ],

σ̃∇q · n = 2(u− u∗), on ∂Ω× (0, T ],
q = 0, on Ω× {t = T},

with

(11) σ̃ := h′(∇u · ∇q).

It is here evident that the Hamiltonian only is Lipschitz continuous and the control
σ̃ is a bang-bang type control which depends discontinuously on the solutions (u, q),
see Figure 1. From the optimality conditions (3) an optimal solution has to satisfy
∇u · ∇q = 0 and (10) is thus undefined since h′(0) is set valued, which calls for a
regularization.
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3.2. Regularization. A simple regularization of the Hamiltonian system (10), and
consequently of the Hamiltonian (9), is to approximate h′ with the parabolic func-
tion

(12) h′δ(∇u · ∇q) := σ+ + σ−
2︸ ︷︷ ︸
σ̄

+ σ+ − σ−
2︸ ︷︷ ︸
σ̂

tanh(1
δ
∇u · ∇q),

for some small δ > 0, see Figure 1. This regularization can be compared with a
classic Tikhonov regularization where a small L2-penalty of the control is added to
the objective function (8), i.e. to minimize

(13)
∫ T

0

∫
∂Ω

(u− u∗)2 ds dt+ δ

∫ T

0

∫
Ω
σ2 dx dt.

Minimizing (13) under the constraint (7) will lead to a C2-Hamiltonian with

H(u, q, t) =
∫
∂Ω

(u− u∗)2 + jq ds−
∫

Ω
max

σ∈[σ−,σ+]
{σ(∇u · ∇q − δσ)}︸ ︷︷ ︸

hTikhonov(∇u·∇q)

dx,

which can be seen in Figure 1.
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Figure 1. The functions h (solid line), hδ (dashed line), hTikhonov
(dash-dotted line) to the left and their derivatives to the right.

Another way to describe the simple regularization (12) is to see what kind of
penalty on the objective function it corresponds to. We note that the regularized
Hamiltionian system can be written as∫

Ω
−utv − h′δ(∇u · ∇q)∇u · ∇v dx+

∫
∂Ω
jv ds = 0, ∀v ∈ V,∫

Ω
qtv − h′δ(∇u · ∇q)∇q · ∇v dx+

∫
∂Ω

2(u− u∗)v ds = 0, ∀v ∈ V,

or by a redefinition of σ

(14)

∫
Ω
−utv − σ∇u · ∇v dx+

∫
∂Ω
jv ds = 0, ∀v ∈ V,∫

Ω
qtv − σ∇q · ∇v dx+

∫
∂Ω

2(u− u∗)v ds = 0, ∀v ∈ V,∫
Ω

(
σ − h′δ(∇u · ∇q)

)
v dx = 0, ∀v ∈W.
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Let H be the primitive function of the inverse function of h′δ i.e.

H(σ) := δ

2σ̂

(
(σ − σ−) ln

(σ − σ−
σ̂

)
+ (σ+ − σ) ln

(σ+ − σ
σ̂

))
,

then it is evident that (14) can be seen as the first order optimality conditions for
the problem to minimize∫ T

0

∫
∂Ω

(u− u∗)2 ds dt+
∫ T

0

∫
Ω

H(σ) dx dt,

under the constraint (7). In Figure 2, the function H(σ) is compared with a
Tikhonov regularization of the form δ(σ − σ̄)2.
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Figure 2. The function H(σ) (solid line) compared to the L2

penalty function δ(σ − σ̄)2 (dashed line) for δ = 1, σ− = 1 and
σ+ = 2.

It is often beneficial to prevent spacial oscillations of the coefficient by adding
a penalty on the L2-norm of the gradient of the coefficient, i.e. ε‖∇σ‖2L2(Ω×(0,T )),
for ε > 0, to the objective function (8). For such a penalty the minimization in the
corresponding Hamiltonian

(15) H(u, q, t) := min
σ:Ω→[σ−,σ+]

∫
∂Ω

(u− u∗)2 ds+
∫

Ω
div(σ∇u)q + ε|∇σ|2 dx,

can not be done explicitly, and instead taking the first variation in σ would give
the system

ut = div
(
σ∇u

)
,

−qt = div
(
σ∇q

)
,

2ε∆σ = −∇u · ∇q,
σ ∈ [σ−, σ+].

which corresponds to the usual first order optimality conditions for the Lagrangian.
How to treat different penalties on the control in an optimal control setting is
discussed in Section 3.4.
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3.3. Time Independent Control. To study the case when the control σ is in-
dependent of time we first assume that it not only is independent of time but also
depends on an auxilliary variable z, i.e. σ : Ω̄ × [0, T̃ ] → [σ−, σ+], σ = σ(x, z).
For a moment we also assume that u : Ω̄ × [0, T ] × [0, T̃ ] → R, u = u(x, t, z), but
with the same measurements as in (8). If we treat z as the time and t as a spacial
variable we can define the optimal control problem

(16) min
σ:Ω̄×[0,T̃ ]→[σ−,σ+]

1
T̃

∫ T̃

0

∫ T

0

∫
∂Ω

(u− u∗)2 ds dt dz,

where the state u satisfies the partial differential equation

(17)

uz = 1
T̃

(
div(σ∇u)− ut

)
, in Ω× (0, T )× (0, T̃ ],

σ∇u · n = j, on ∂Ω× (0, T )× (0, T̃ ],
u = 0, on Ω̄× {t = 0} × (0, T̃ ],
u = u0, on Ω̄× (0, T )× {z = 0}.

for some arbitrary initial condition u(x, t, 0) = u0.
The Hamiltonian for (16), (17) is

(18)

H(u, q, z) := min
σ:Ω→[σ−,σ+]

1
T̃

∫ T

0

∫
∂Ω

(u− u∗)2 ds dt

+ 1
T̃

∫ T

0

∫
Ω

(
div(σ∇u)− ut

)
q dx dt

= 1
T̃

∫ T

0

∫
∂Ω

(u− u∗)2 + jq ds dt− 1
T̃

∫ T

0

∫
Ω
utq dx dt

− 1
T̃

∫
Ω

max
σ∈[σ−,σ+]

{
σ

∫ T

0
∇u · ∇q dt

}
︸ ︷︷ ︸

h
(∫ T

0
∇u·∇q dt

)
dx,

and the Hamiltonian system is given by

(19)

uz = 1
T̃

(
div(h′∇u)− ut

)
, in Ω× (0, T )× (0, T̃ ],

h′∇u · n = j, on ∂Ω× (0, T )× (0, T̃ ],
u = 0, on Ω̄× {t = 0} × (0, T̃ ],
u = u0, on Ω̄× (0, T )× {z = 0},

−qz = 1
T̃

(
div(h′∇q) + qt

)
, in Ω× (0, T )× (0, T̃ ],

h′∇q · n = 2(u− u∗), on ∂Ω× (0, T )× (0, T̃ ],
q = 0, on Ω̄× {t = T} × (0, T̃ ],
q = 0, on Ω̄× (0, T )× {z = T̃}.

Under the assumption that the solutions u and q in (19) are asymptotically sta-
tionary as T̃ → ∞, the Hamiltonian system for the problem (7), (8), with a time-
independent control, is given by (10) and

(20) σ̃ := h′
(∫ T

0
∇u · ∇q dt

)
.
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Similarly, the case of a space independent coefficient σ = σ(t) will lead to

σ̃ := h′
(

1
|Ω|

∫
Ω
∇u · ∇q dx

)
,

and for the case where σ is constant

σ̃ := h′
(

1
|Ω|

∫ T

0

∫
Ω
∇u · ∇q dx dt

)
.

3.4. Penalty on the Control. If we want to reconstruct a time independent
control it can be beneficial to put a penalty on σt, i.e. we want to minimize the
objective functional

(21) F (u, σt) :=
∫ T

0

∫
∂Ω

(u− u∗)2 ds dt+ ε

∫ T

0

∫
Ω
σ2
t dx dt,

under the usual constraint (7). To do this the optimal control problem has to be
reformulated such that σ is a state variable and the control is defined as z := σt(x, t),
z : Ω̄ × [0, T ] → [z−, z+]. The optimal control problem is thus to find a control z
and state variables u and σ such that F (u, z) is minimized and the system

ut = div(σ∇u), in Ω× (0, T ],
σt = z in Ω× (0, T ],

σ∇u · n = j, on ∂Ω× (0, T ],
u = 0, on Ω̄× {t = 0},
σ = σ0 > 0, on Ω̄× {t = 0}.

is satisfied. The Hamiltonian becomes

H(u, q, σ, λ, t) := min
z:Ω→[z−,z+]

∫
∂Ω

(u− u∗)2 ds+
∫

Ω
div(σ∇u)q + zλ+ εz2 dx

=
∫
∂Ω

(u− u∗)2 + jq ds−
∫

Ω
σ∇u · ∇q dx

+
∫

Ω
min

z:Ω→[z−,z+]
{z(εz + λ)}︸ ︷︷ ︸

h(λ)

dx,

and the corresponding Hamiltonian system is
ut = div

(
σ∇u

)
, in Ω× (0, T ],

σt = h′(λ) in Ω× (0, T ],
σ∇u · n = j, on ∂Ω× (0, T ],

u = 0, on Ω̄× {t = 0},
σ = σ0 > 0, on Ω̄× {t = 0}.
−qt = div

(
σ∇q

)
, in Ω× (0, T ],

−λt = −∇u · ∇q in Ω× (0, T ],
σ∇q · n = 2(u− u∗), on ∂Ω× (0, T ],

q = 0, on Ω× {t = T},
λ = 0, on Ω× {t = T},

which is equivalent to (10) with

σ̃ := σ0 +
∫ t

0
h′
(∫ T

y

−(∇u · ∇q)(x, z) dz
)

dy.
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Note, since we no longer have a constraint σ > 0, the bound z− has to be carefully
chosen to ensure well-posedness of the forward problem.

In a similar fashion as for penalizing temporal variations of the control it is
also possible to penalize spacial variations, as was briefly mentioned in Section 3.2,
where the objective was to minimize F (u, |∇σ|) under the constraint (7), which
leads to the Hamiltonian (15). To be able to explicitly find the minimum in the
Hamiltonian we once again let σ act as a state variable, introduce the control z and
the dynamics

(22)
σt = z − |∇σ|2

γ
, in Ω× (0, T ],

σ = σ0 > 0, in Ω× {t = 0},

for γ > 0. The slightly perturbed control problem is now to minimize the objective
function F (u, z) such that (7) and (22) holds, which leads to the Hamiltonian

H(u, q, σ, λ, t) := min
z:Ω→[z−,z+]

∫
∂Ω

(u− u∗)2 ds+
∫

Ω
div(σ∇u)q + λ

z − |∇σ|2

γ
+ εz dx

=
∫
∂Ω

(u− u∗)2 + jq ds−
∫

Ω
σ∇u · ∇q + λ

|∇σ|2

γ
dx

+
∫

Ω
min

z:Ω→[z−,z+]
{z(ε+ λ

γ
)}︸ ︷︷ ︸

h(λ)

dx,

and the Hamiltonian system

ut = div
(
σ∇u

)
,

σt = h′(λ)− |∇σ|
2

γ
,

−qt = div
(
σ∇q

)
,

−λt = ∇u · ∇q − 2λ∆σ
γ
.

3.5. Numerical Approximation and Symplectic Methods. Let V̄ ⊂ V :=
H1(Ω) be the finite element subspace of piecewise linear functions defined on a
triangulation of Ω, which implies that our optimal control problems in the previ-
ous sections are approximated by optimal control problems for ordinary differential
equations. We also let the functions hδ,Hδ and hδ denote the regularized counter-
parts to h,H and h. The regularized version of h is given by (12) from which the
definition of Hδ follows. The regularized function hδ can be derived from Hδ by
hδ := Hδ − 〈λ,Hδ

λ〉 and a regularized version of f can be defined as fδ := Hδ
λ.

Now, introduce the uniform partition {ti = ki}Ni=0, k = T/N of the time interval
[0, T ], and the corresponding finite element approximations at each time step ϕn :=
ϕ(tn), λn := λ(tn). Also define a discrete regularized version Ū : V̄ × [0, T ]→ R of
the value function (2),

Ū(φ, tm) := min
ϕm=φ

{
g(ϕN ) + k

N−1∑
n=m

hδ(ϕn, λn+1)
}
,

where ϕn and λn satisfy a symplectic scheme, e.g. the symplectic forward Euler
method

(23)
ϕn+1 − ϕn = kHδ

λ(ϕn, λn+1), for n = m, . . . , N − 1 given ϕm = φ,

λn − λn+1 = kHδ
ϕ(ϕn, λn+1), for n = m, . . . , N − 1 given λN = gϕ(ϕN ).
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Symplecticity here means that Ūϕ(ϕn, tn) = λn, i.e. the gradient of the discrete
value function coincides with the discrete dual λn, and given that |H−Hδ| = O(δ)
it can be shown that for symplectic one-step schemes∣∣∣∣U(ϕ0, t0)− g(ϕN )− k

N−1∑
n=m

hδ(ϕn, λn+1)
∣∣∣∣ = O(k),

for δ ∼ k, see [15]. It is thus essential to use a symplectic time discretization of the
regularized Hamiltonian system

ϕt = Hδ
λ(ϕ, λ),

λt = −Hδ
ϕ(ϕ, λ),

in order to have convergence in the value function.
Some examples of other symplectic schemes are the the backward Euler method

(24)
ϕn+1 − ϕn = kHδ

λ(ϕn+1, λn), for n = 0, . . . , N − 1 given ϕ0,

λn − λn+1 = kHδ
ϕ(ϕn+1, λn), for n = 0, . . . , N − 1 given λN ,

and the implicit midpoint method

(25)
ϕn+1 − ϕn = kHδ

λ

(
ϕn + ϕn+1

2
,
λn + λn+1

2

)
, n = 0, . . . , N − 1, given ϕ0,

λn − λn+1 = kHδ
ϕ

(
ϕn + ϕn+1

2
,
λn + λn+1

2

)
, n = 0, . . . , N − 1, given λN .

See [12] for a thorough description of symplectic methods.

3.6. The Newton Method. To solve the coupled nonlinear symplectic schemes
(23)-(25) above, it is tempting to propose fix-point schemes that partly removes the
coupling between the forward and bacward equation, e.g. by iterating separately in
ϕ and λ. Such methods has the advantage that existing partial differential equation
solvers can be used to efficiently solve the forward and backward problems in each
iteration, but the disadvantage is that the convergence to an optimal solution tends
to be slow, and also dependent on the discretization. A more suitable strategy is
to use information of the Hessian of Hδ; e.g. Quasi-Newton methods, or since the
Hessian in our case can be found explicitly and is sparse, the Newton method itself.

For the Hamiltonian system (10) with σ̃ := h′δ given by (12) the symplectic
backward Euler can be written as

Fn(w) = 0, Gn(w) = 0, n = 0, . . . , N − 1, ∀w ∈ V̄

where

(26)

Fn(w) :=
∫

Ω
(un+1 − un)w + kh′δ(∇un+1 · ∇qn)∇un+1 · ∇w dx

−
∫
∂Ω
kjn+1w ds,

Gn(w) :=
∫

Ω
(qn − qn+1)w + kh′δ(∇un+1 · ∇qn)∇qn · ∇w dx

−
∫
∂Ω

2k(un+1 − u∗n+1)w ds,

and u0 = qN = 0. Given an initial guess u[0], q[0] the (damped) Newton method
yields that

u[i+ 1] = u[i]− αû,
q[i+ 1] = q[i]− αq̂,
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where α ∈ (0, 1] and, for each iteration, the updates û and q̂ solve a linear system
of the form

(27)
(
K11 K12
K21 KT

11

)(
û
q̂

)
=
(
f
g

)
,

where
û =

(
û1 . . . ûN

)T
, q̂ =

(
q̂0 . . . q̂N−1

)T
,

f =
(
F0 . . . FN−1

)T
, g =

(
G0 . . . GN−1

)T
.

The matrix K11 is a bi-diagonal block matrix with M + Si for i = 0, . . . , N − 1 on
the diagonal and −M on the sub-diagonal, where M denotes the mass matrix∫

Ω
ww̄ dx,

and
Sn :=

∫
Ω
kh′′δ (∇un+1 · ∇qn)∇qn · ∇w ∇un+1 · ∇w̄ dx

+
∫

Ω
kh′δ(∇un+1 · ∇qn)∇w · ∇w̄ dx.

for w, w̄ ∈ V̄ . The matrices K12, K21 are symmetric block-diagonal matrices with∫
Ω
kh′′δ (∇un+1 · ∇qn)∇un+1 · ∇w ∇un+1 · ∇w̄ dx,

and ∫
Ω
kh′′δ (∇un+1 · ∇qn)∇qn · ∇w ∇qn · ∇w̄ dx−

∫
∂Ω

2kw̄w ds,

for n = 0, . . . , N − 1 on the the diagonals, respectively.
If we repartition the block 2× 2 linear system (27) to

(28)
(
K21 KT

11
K11 K12

)(
û
q̂

)
=
(
g
f

)
,

we see that it is a generalized saddle point system [4] with symmetric matrices
K21,K12, and KT

11 6= 0, K21 6= 0. However, unlike saddle point problems aris-
ing from e.g. the steady-state Navier-Stokes equations or from the Karush-Kuhn-
Tucker optimality conditions for equality constrained minimization problems, both
K12 and K21 may here be indefinite and singular.

Since (27) and (28) are increasingly ill-conditioned with respect to reduction in
mesh size, step size and regularization, the success of iterative algorithms like Krylov
sub-space methods will depend heavily on the choice of preconditioner. Standard
algebraic preconditioners like incomplete LU-factorization are often unsuitable for
saddle-point problems due to the indefiniteness and lack of diagonal dominance, so
the preconditioner must be tailored for the specific problem at hand. One popular
approach for PDE-constrained optimization problems is to base the preconditioner
on the solution from a reduced approximated problem where the Schur complement
is replaced by an approximation e.g. by quasi-newton methods, see [5].

In our case we use the GMRES method to solve the non-symmetric system (27)
and base our preconditioner on the approximate solution of a simple blockwise
Gauss-Seidel method i.e. to start with a guess q̂0 and iteratively solve

(29)
K11û

i+1 = f −K12q̂
i,

KT
11q̂

i+1 = g −K21û
i+1,

which works well for large regularizations i.e. when h′′δ is small and the diagonal
blocks of (27) are dominant. Also, each iteration with this method only requires
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one forward and one backward solve in time of a modified heat equation so the com-
putational work for one iteration is concentrated to solving N − 1 smaller systems
with system matrices (M + Si). In practice, the Gauss-Seidel method will break
down for small regularizations but for our problems (and discretizations) only one
iteration with (29) turns out to be a fairly good approximation to use as precondi-
tioner. Note that for q̂0 = 0, one Gauss-Seidel iteration is the same as solving (27)
with the approximation K12 = 0.

Another more elaborate idea is to use a preconditioner based on the solution of
an approximated Schur complement system(

K11 K12
0 S

)(
û
q̂

)
=
(

g
f −K12K

−1
11 g

)
,

where S is an approximation of the Schur complement

KT
11 −K21K

−1
11 K12.

which essentially is to find a good approximation of the lower triangular block
matrix K−1

11 .
Although solution algorithms for saddle point systems on the symmetric form

(28) are extensively treated in the litterature, see [4] for an overview, we here favour
the non-symmetric form (27), since a Schur complement reduction of (28) means
to find an approximation to the Schur complement

K12 −K11K
−1
21 K

T
11,

which since K21 here can be singular, is unavailable. One way around this obstacle
is to rewrite (28) by e.g. the augmented Lagrangian method which leads to a
symmetric invertible Schur complement but where the physical meaning of the
original system, on PDE level, is partially lost.

If a direct solver is used for the Newton system it is appropriate to reorder (27)
such that the solution vector and right hand side contains time steps in increasing
order, which leads to a banded Jacobian with band-width of the same order as the
number of spacial degrees of freedom.

Our computations were implemented MATLAB (for the one dimensional exam-
ples), and in DOLFIN [13], the C++/Python interface of the finite element solver
environment FEniCS [11] (for the two dimensional examples). Piecewise linear ba-
sis functions were used for the finite element subspace V̄ , and in all examples the
solution u, q was first calculated for a large regularization which was succesively
reduced such that the solution from the previous regularization served as starting
guess for a smaller regularization.

For the two dimensional examples the sadde-point system (27) was solved with
the PETSc implementation of GMRES (used by DOLFIN) with preconditioning
based on the solution from one iteration of blockwise Gauss-Seidel method. For
the one dimensional examples a direct solver was used. The number of iterations
for GMRES with the Gauss-Seidel preconditioner seems to be relatively insensitive
with respect to temporal and spacial discretization but still highly sensitive to the
regularization in our examples.

To give a time independent approximation σ(x) of the time dependent control
σ(x, t), approximated by σ̃ := h′δ(∇u ·∇q) where u, q are solutions to the Hamilton-
ian system (10), three different types of averaging were tested as post-processing:

(1) Let the time independent control be defined by the Hamiltonian (18), i.e.

(30) σ := h′δ

(∫ T

0
∇u · ∇q dt

)
.
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(2) Let the time independent control be the average of the time dependent
control, i.e.

(31) σ := 1
T

∫ T

0
h′δ(∇u · ∇q) dt.

(3) Let the time independent control be the weighted average

(32) σ :=
∫ T
0 h′δ(∇u · ∇q)|∇u · ∇q| dt∫ T

0 |∇u · ∇q| dt
,

of the time dependent control h′δ(∇u · ∇q).
The weighted average turned out to be the most successful aproximation and can
be explained by first extending the Hamiltonian (9) to also depend on the artifical
variable z as in Section 3.3

H(u, q, z) := 1
T̃

∫ T

0

∫
∂Ω

(u− u∗)2 + jq ds dt− 1
T̃

∫ T

0

∫
Ω
utq dx dt

− 1
T̃

∫
Ω

∫ T

0
h′(∇u · ∇q)∇u · ∇q dt dx,

where h′(∇u · ∇q)∇u · ∇q = h(∇u · ∇q) by definition. For the problem with a time
independent control we now seek an approximation of the Hamiltonian (18) of the
form

H̄(u, q, z) := 1
T̃

∫ T

0

∫
∂Ω

(u− u∗)2 + jq ds dt− 1
T̃

∫ T

0

∫
Ω
utq dx dt

− 1
T̃

∫
Ω
f(∇u · ∇q)

∫ T

0
∇u · ∇q dt dx,

that best approximates H, i.e.

f(∇u · ∇q) :=
∫ T
0 h′(∇u · ∇q)∇u · ∇q dt∫ T

0 ∇u · ∇q dt
.

In Figure 3, one dimensional reconstructions from three sets of simulated data
u∗, generated from a time independent conductivity σtrue, are compared:

(1) Data calculated with the same discretization as u and q.
(2) Different discretizations used for data and solutions.
(3) Different discretizations used for data and solutions and with noise in the

data u∗.
The last set is the most realistic one since for true experimental data of u∗ it is in-
evitable to have noisy measurements. To simulate noise the discrete solution u∗ was
multiplied componentwise by independent standard normal distributed stochastic
variables εij according to u∗(xi, tj)(1 + ηεij), where η denotes the percentage of
noise. It is notable that the systematic error from using different meshes can have
a much bigger effect on the solutions than additional noise, which can be observed
from the dual solution q in Figure 3.

In Figure 4 the time independent post-processing of the time dependent recon-
struction can be found. It is here evident that the weighted average (32) performs
better than (31), but since the reconstruction is highly dependent on the given
boundary condition, see Figure 5 for comparison, there are situations where the
different post-processing techniques perform equally well. It would of course be
optimal to use the knowledge that σtrue is independent of time in the calculations,
i.e. to use the Newtion system for (10) with time independent-control (20). This
would however lead to a dense Jacobian.
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Note that in the examples the limits σ− and σ+ were chosen to be the biggest
and smallest values of σtrue. In our experience the Pontryagin method is not well
suited for reconstruction of values between σ− and σ+, if there is noise or other
measurement errors present in data.

Figure 6 shows two-dimensional reconstructions of two different time indepen-
dent conductivities. Unlike the one-dimensional example the quality of the recon-
struction here deteriorates quickly as the distance to the measurement locations is
increased.

Figure 3. 1D reconstruction of σtrue = 0.75− 0.5 tanh(20x− 10)
for δ = 10−6, σ− = 0.5, and σ+ = 1. Measurements were collected
on both boundaries and the Neumann boundary condition was
σux(0, t) = −σux(1, t) = sin(4t) for t < 0.5 and 0 elsewhere. The
plot shows, from top to bottom, u, q, h′δ and the objective function
‖u− u∗‖L2(∂Ω×[0,T ]). In all cases u, q was calculated with 50 steps
in space and time. In the left column, the data u∗ was generated
by solving the heat equation for σtrue with 50 steps in time and
space, while 200 steps in time and space was used in the middle
and right columns. In the right column 10% noise was also added
to u∗.
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Figure 4. The time independent post-processed conductivity for
the 1D reconstructions in Figure 3. The true control σtrue is indi-
cated by a solid line and the averaged controls (30), (31) and (32)
are indicated by dotted, dash-dotted and dashed lines, respectively.

Figure 5. 1D reconstruction with data as in Figure 3 and 4 but
with Neumann boundary condition σux(0, t) = −σux(1, t) = 1.
The top row shows h′δ and the bottom row the averaged conduc-
tivities, as described in Figure 4.

4. Reconstruction from the Wave Equation

In this section the goal is to determine the wave speed for a scalar acoustic wave
equation: Given measured data u∗, find the state u : Ω̄ × [0, T ] → R, u(·, t) ∈ V
and a control σ : Ω̄× [0, T ]→ [σ−, σ+], σ = σ(x, t) where 0 < σ− < σ+, that solves
the partial differential equation

(33)

utt = div(σ∇u), in Ω× (0, T ],
σ∇u · n = j, on ∂Ω× (0, T ],

u = ut = 0, on Ω̄× {t = 0},

such that the error functional

(34)
∫ T

0

∫
∂Ω

(u− u∗)2 ds dt,

is minimized. The control σ is here the square of the wave speed of the medium
and u is the pressure deviation.



16 JESPER CARLSSON

Figure 6. 2D reconstruction on the unit square with final time
T = 1 and Neumann boundary condition σ ∂u∂n = 1 on ∂Ω× [0, T ].
The data u∗ was simulated by solving the forward equation on a
quasi-uniform mesh with 13000 triangles and 80 time steps while
the inverse problem was solved on a uniform mesh with 3200 tri-
angles and 40 time steps. Measurements from the whole boundary
were used. Top: True conductivity σtrue. Middle: Reconstructed
condictivity for δ ≈ 0.002 using the weighted average (32). Bot-
tom: As in middle but for δ ≈ 0.05 and with 5% noise in the
measurements.

To use the framework of the previous section we note that (33) can be written
as the first order system

(35)

vt = div(σ∇u), in Ω× (0, T ],
ut = v, in Ω̄× (0, T ],

σ∇u · n = j, on ∂Ω× (0, T ],
u = v = 0, on Ω̄× {t = 0}.
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4.1. The Hamiltonian System. As in Section 3.1 we have a Hamiltonian asso-
ciated with the optimal control problem (34) and (35) which is defined by

(36)

H := min
σ:Ω→[σ−,σ+]

∫
∂Ω

(u− u∗)2 ds+
∫

Ω
div(σ∇u)q + vp dx

=
∫
∂Ω

(u− u∗)2 + jq ds+ min
σ:Ω→[σ−,σ+]

∫
Ω
−σ∇u · ∇q + vp dx

=
∫
∂Ω

(u− u∗)2 + jq ds+
∫

Ω
vp− max

σ∈[σ−,σ+]
{σ∇u · ∇q}︸ ︷︷ ︸

h(∇u·∇q)

dx,

and the Hamiltonian system becomes

(37)

vt = div
(
σ̃∇u

)
, in Ω× (0, T ],

ut = v, in Ω̄× (0, T ],
σ̃∇u · n = j, on ∂Ω× (0, T ],

u = v = 0, on Ω̄× {t = 0},
−pt = div

(
σ̃∇q

)
, in Ω× (0, T ],

−qt = p, in Ω̄× (0, T ],
σ̃∇q · n = 2(u− u∗), on ∂Ω× (0, T ],

p = q = 0, on Ω× {t = T},

or equivalently

(38)

utt = div
(
σ̃∇u

)
, in Ω× (0, T ],

σ̃∇u · n = j, on ∂Ω× (0, T ],
u = ut = 0, on Ω̄× {t = 0},
qtt = div

(
σ̃∇q

)
, in Ω× (0, T ],

σ̃∇q · n = 2(u− u∗), on ∂Ω× (0, T ],
q = qt = 0, on Ω̄× {t = T}.

with
σ̃ := h′(∇u · ∇q).

4.2. Symplecticity for the Wave Equation. As a natural case the symplectic
methods discussed in 3.5, with ϕ = (u, v), λ = (p, q), can be used to solve the system
(37). It is however also possible to use a time-discretization that is symmetric in
time i.e.

(39)

un+1 − 2un + un−1 = k2div
(
σ̃n∇un

)
, in Ω,

σ̃n∇un · n = jn, on ∂Ω,
u0 = u1 = 0, in Ω,

qn+1 − 2qn + qn−1 = kdiv
(
σ̃n∇qn

)
, in Ω,

σ̃n∇qn · n = 2(un − u∗n), on ∂Ω,
qN = qN−1 = 0, in Ω,

for σ̃n := h′(∇un · ∇qn) and n = 1, . . . , N − 1. For a given σ̃, constant in time, this
scheme is the symplectic backward Euler method for the forward wave equation for
u, which can be written as the Hamiltonian system (35) with Hamiltonian

Hwave(u, v) := 1
2

∫
Ω
|σ̃∇u|2 + v2 dx,
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and the symplectic forward Euler method for the backward wave equation for q.
To see that that the scheme (39) is symplectic for σ̃n := h′(∇un · ∇qn) we note

that a one-step method (ϕn, λn) → (ϕn+1, λn+1) is symplectic if there exists a
function H(ϕn, λn+1) such that (23) holds, or equivalently H(ϕn+1, λn) such that
(24) holds, see Remark 4.8 in [15] or [12] for details. It thus follows that the one-step
method

vn+1 − vn = kdiv
(
h′(∇un · ∇qn)∇un

)
,

un+1 − un = kvn+1,

pn − pn+1 = kdiv
(
h′(∇un · ∇qn)∇qn

)
,

qn − qn+1 = kpn+1,

corresponds to the symplectic forward Euler method for the Hamiltonian

H̃(un, qn︸ ︷︷ ︸
ϕn

, vn+1, pn+1︸ ︷︷ ︸
λn+1

) := H(un, vn+1, pn+1, qn)− 2
∫

Ω
vn+1pn+1 dx,

where H is given by (36). Since (39) only is stable for sufficiently small time-steps
and still requires to solve a complex saddle point system we will use the symplectic
midpoint method in our experiments.

4.3. Numerical Examples. Let σ̃ := h′δ where h′δ is given by (12). The symplectic
midpoint method for the regularized Hamiltonian system (37) can then be written
as

F 1
n(w) = 0, F 2

n(w) = 0, G1
n(w) = 0, G2

n(w) = 0,

for n = 0, . . . , N − 1, and ∀w ∈ V̄ , where

F 1
n(w) :=

∫
Ω
(vn+1 − vn)w + kh′δ

(
∇un+ 1

2
· ∇qn+ 1

2

)
∇un+ 1

2
· ∇w dx

−
∫
∂Ω
kjn+ 1

2
w ds,

F 2
n(w) :=

∫
Ω
(un+1 − un − kvn+ 1

2
)w dx,

G1
n(w) :=

∫
Ω
(qn − qn+1 − kpn+ 1

2
)w dx.

G2
n(w) :=

∫
Ω
(pn − pn+1)w + kh′δ(∇un+ 1

2
· ∇qn+ 1

2
)∇qn+ 1

2
· ∇w dx

−
∫
∂Ω

2k(un+ 1
2
− u∗n+ 1

2
)w ds,

and u0 = v0 = pN = qN = 0. The index n + 1
2 implies the average of the values

at n and n + 1, i.e. un+ 1
2

:= 1
2 (un + un+1). Taking the variations with respect to

u, v, p, q gives the Newton system

(40)


K11 K12 0 K14
K21 K22 0 0
0 0 K33 K34
K41 0 K43 K44




û
v̂
p̂
q̂

 =


f1
f2
g1
g2

 ,

with increments

û =
(
û1 . . . ûN

)T
, v̂ =

(
v̂1 . . . v̂N

)T
,

p̂ =
(
p̂0 . . . p̂N−1

)T
, q̂ =

(
q̂0 . . . q̂N−1

)T
,
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and right hand side

f1 =
(
F 1

0 . . . F 1
N−1

)T
, f2 =

(
F 2

0 . . . F 2
N−1

)T
,

g1 =
(
G1

0 . . . G1
N−1

)T
, g2 =

(
G2

0 . . . G2
N−1

)T
.

with submatrices with the following structure:
• K11 is lower block bi-diagonal with

(41)

1
2

∫
Ω
kh′′δ (∇un+ 1

2
· ∇qn+ 1

2
)∇qn+ 1

2
· ∇w ∇un+ 1

2
· ∇w̄ dx

+ 1
2

∫
Ω
kh′δ(∇un+ 1

2
· ∇qn+ 1

2
)∇w · ∇w̄ dx,

on its main diagonal for n = 0, . . . , N − 1 and on its sub-diagonal for
n = 1, . . . , N − 1.
• K44 is upper block bi-diagonal with (41) on its diagonal for n = 0, . . . , N−1
and on its super-diagonal for n = 0, . . . , N − 2.
• K12 = K21 = KT

34 = KT
43 is lower block bi-diagonal with mass matrices M

on the main diagonal and −M on the subdiagonal.
• K22 = KT

33 is lower block bi-diagonal with −kM2 on the diagonal and the
sub-diagonal.
• K14 is upper block bi-diagonal with

1
2

∫
Ω
kh′′δ (∇un+ 1

2
· ∇qn+ 1

2
)∇un+ 1

2
· ∇w ∇un+ 1

2
· ∇w̄ dx,

on its diagonal for n = 0, . . . , N − 1 and on its super-diagonal for n =
0, . . . , N − 2.
• K41 is lower block bi-diagonal with
1
2

∫
Ω
kh′′δ (∇un+ 1

2
· ∇qn+ 1

2
)∇qn+ 1

2
· ∇w ∇qn+ 1

2
· ∇w̄ dx−

∫
∂Ω
kw̄w ds,

on its diagonal for n = 0, . . . , N − 1 and sub-diagonal for n = 1, . . . , N − 1.
As in the previous section we will solve the Newton system using GMRES and

an approximate solution as preconditioner, e.g. from the the 2×2 blockwise Gauss-
Seidel method

K11û
i+1 +K12v̂

i+1 = f1 −K14q̂
i,

K21û
i+1 +K22v̂

i+1 = f2,

K33p̂
i+1 +K34q̂

i+1 = g1,

K43p̂
i+1 +K44q̂

i+1 = g2 −K41û
i+1,

which can be written as

(42)
(K11 −K12K

−1
22 K21)ûi+1 = f1 −K12K

−1
22 f2 −K14q̂

i,

(K44 −K43K
−1
33 K34)q̂i+1 = g2 −K43K

−1
33 g1 −K41û

i+1.

Note that (42) is easily solved since inverting K22 and K33 only involves the cal-
culation of M−1. In fact, the Schur complements K11 − K12K

−1
22 K21 and K44 −

K43K
−1
33 K34 becomes lower and upper block trianglar matrices, respectively, and

(42) can be solved by one forward substitution in time for ûi+1 and one backward
substitution in time for q̂i+1. Of course, to save memory the Schur complement
system (42) should never be formed explicitly. For large regularizations the Schur
complements can be seen as approximations of the operator −∆ + ∂tt. As for the
case with the heat equation starting with q̂0 = 0, one iteration with (42) is the
same as solving (40) with K14 = 0.

In Figure 7, a two dimensional example of reconstruction two different speed
coefficients is shown. The measured data was here simulated by solving the wave
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equation for σtrue with the symplectic backward Euler method for (35), which can
be written as the second order scheme∫

Ω
(un+1 − 2un + un−1)w dx =

∫
∂Ω
jw ds−

∫
Ω
σ∇un · ∇w dx, ∀w ∈ V̄ .

Since the wave equation is a conservation law and is reversible in time it is tempting
to believe that it would be easier to control than the heat equation but there are
some computational drawbacks: numerical errors are propagated in time and there
seems to be many local minima. From the approximation h′δ(∇u · ∇q) in Figure 8
it is evident that the time dependent reconstruction varies a lot over time and is
not a good approximation of the time independent wave coefficient σtrue.
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Figure 7. 2D reconstruction using the weighted average (32), fi-
nal time T = 1.5 and Neumann boundary condition 2 sin(4πt) for
(x, y, t) ∈ {0} × [0.4, 0.6] × [0, 0.5] and 0 elsewhere. The data u∗
was simulated by solving the forward equation on a quasi-uniform
mesh with 3232 triangles and 328 time steps while the inverse prob-
lem was solved on a uniform mesh with 1250 triangles and 30 time
steps. Measurements from the whole boundary were used. Top:
Reconstruction of σtrue = 0.5 inside the square [0.2, 0.5]× [0.5, 0.8]
and σtrue = 1 elsewhere, with no noise in data (left) and 10% noise
in data (right). Bottom: Reconstruction of σtrue = 0.5 inside the
square [0.35, 0.65]× [0, 0.3] and σtrue = 1 elsewhere, with no noise
in data (left) and 10% noise in data (right).



22 JESPER CARLSSON

Figure 8. Measurements u∗ (top) and h′δ(∇u · ∇q) (bottom) for
timesteps 5, 15 and 25. The data here corresponds to the top left
plot in Figure 7, and u∗ is interpolated onto the mesh used for the
calculation of u and q.



SYMPLECTIC RECONSTRUCTION OF DATA FOR HEAT AND WAVE EQUATIONS 23

References
[1] H. T. Banks and K. Kunisch. Estimation techniques for distributed parameter systems, vol-

ume 1 of Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston,
MA, 1989.

[2] Emmanuel Nicholas Barron and Robert Jensen. The Pontryagin maximum principle from
dynamic programming and viscosity solutions to first-order partial differential equations.
Trans. Amer. Math. Soc., 298(2):635–641, 1986.

[3] M. P. Bendsøe and O. Sigmund. Topology optimization. Springer-Verlag, Berlin, 2003. Theory,
methods and applications.

[4] Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle point problems.
Acta Numer., 14:1–137, 2005.

[5] George Biros and Omar Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-
constrained optimization. I. The Krylov-Schur solver. SIAM J. Sci. Comput., 27(2):687–713
(electronic), 2005.

[6] Liliana Borcea. Electrical impedance tomography. Inverse Problems, 18(6):R99–R136, 2002.
[7] Jesper Carlsson. Pontryagin approximations for optimal design of elastic structures. preprint,

2006.
[8] Jesper Carlsson, Mattias Sandberg, and Anders Szepessy. Symplectic pontryagin approxima-

tions for optimal design. preprint, 2006.
[9] M. G. Crandall, L. C. Evans, and P.-L. Lions. Some properties of viscosity solutions of

Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 282(2):487–502, 1984.
[10] Heinz W. Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse problems,

volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dor-
drecht, 1996.

[11] FEniCS. FEniCS project. URL: urlhttp//www.fenics.org/.
[12] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration, vol-

ume 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second
edition, 2006. Structure-preserving algorithms for ordinary differential equations.

[13] J. Hoffman, J. Jansson, A. Logg, and G. N. Wells. DOLFIN. URL: url-
http//www.fenics.org/dolfin/.

[14] J.-L. Lions. Optimal control of systems governed by partial differential equations. Translated
from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band
170. Springer-Verlag, New York, 1971.

[15] M. Sandberg and A. Szepessy. Convergence rates of symplectic Pontryagin approximations
in optimal control theory. M2AN, 40(1), 2006.

[16] Mattias Sandberg. Convergence rates for numerical approximations of an optimally controlled
Ginzburg-Landau equation. preprint, 2006.

[17] Curtis R. Vogel. Computational methods for inverse problems, volume 23 of Frontiers in
Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2002. With a foreword by H. T. Banks.

CSC, Numerical Analysis, Kungl. Tekniska Högskolan, 100 44 Stockholm, Sweden;
E-mail address: jesperc@kth.se


