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Abstract. This article presents a numerical method for approximation of
some optimal control problems for partial differential equations. The method
uses regularization derived from consistency with the corresponding Hamilton-
Jacobi-Bellman equations in infinite dimension. In particular, optimal designs
of elastic structures such as distributing a limited amount of material to min-
imize its compliance, or to detect interior material distributions from surface

measurements, are computed. The derived Pontryagin based method pre-
sented here is simple to use with standard PDE-software using Newton itera-
tions with a sparse Hessian.
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1. The Optimal Design Problem

Optimal design can be described as the particular inverse problem of controlling
a partial differential equation to meet some design criteria in an optimal way. The
control typically consists of changing the computational domain (shape optimiza-
tion) or distributing a coefficient in the partial differential equation (parameter
design). It is well known that these inverse problems often are ill posed, e.g. small
perturbations of data lead to large changes in the solution, and need to be regu-
larized to obtain good approximations, cf. [6, 13]. The goal of this article is to
investigate a numerical method, based on a regularization derived from consistency
with the corresponding Hamilton-Jacobi-Bellman equation in infinite dimension,
for the particular problem of optimally controlling the partial differential equations
of linear elasticity. This extends the work in [11], for control of ordinary differential
equations, and [3], for control of scalar partial differential equations.

This article focuses on two types of inverse problems in elasticity: to optimally
design an elastic structure and to optimally reconstruct an unknown elastic struc-
ture from boundary measurements. The first is a typical problem in optimal design
where the objective is to place a given amount of elastic material, submitted to
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static equilibrium and prescribed volume and surface forces, in a given domain
Ω ∈ R

d, in order to maximize its stiffness. An alternative similar problem is to
minimize the compliance

(1) l(u) ≡

∫

Ω

fb · u dx +

∫

ΓN

fs · u ds,

where u : Ω → R
d denotes the displacements at static equilibrium when applying

given volume forces fb : Ω → R
d and surface forces fs : ΓN → R

d, ΓN ⊂ ∂Ω. For
convenience it is here assumed that a part of the boundary is fixed, i.e. uΓD

= 0
where ΓD = ∂Ω \ ΓN 6= ∅.

For a linearly elastic material, the work done by a virtual displacement v at
static equilibrium, can described by the bilinear energy functional

(2) aρ(u, v) ≡

∫

Ω

ρεij(u)Eijklεkl(v) dx, i, j, k, l = 1, . . . , d,

with a relative material density ρ, linearized strains εij(u) = 1
2 ( ∂ui

∂xj
+

∂uj

∂xi
) and

an elasticity tensor Eijkl . We here use the Einstein summation convention for
summation over indices occurring more than once in an expression. The elasticity
tensor relates linearized strains to linearized stresses by Hooke’s law σij = Eijklεkl,
which for an isotropic material can be written as

(3) σij = λδijεkk + 2µεij

where λ and µ are the Lamé coefficients, and δij denote the Kronecker delta. From
the principle of virtual work, the displacement u ∈ V = {v ∈ H1(Ω)d|vΓD

= 0} at
equilibrium, must then satisfy the variational equation

(4) aρ(u, v) = l(v), ∀v ∈ V.

To indicate void or material an ideal relative material density would be to let
ρ : Ω → {0, 1}, but in order for (4) to be well defined we restrict the density to
ρ : Ω → {ρ−, 1} with some small ρ− > 0.

In summary, the problem to optimally design a structure with minimal compli-
ance, for some fixed volume C, can be formulated as the minimization problem

(5) inf
ρ:Ω→{ρ− ,1}

{

l(u)

∣
∣
∣
∣
aρ(u, v) = l(v), ∀v ∈ V,

∫

Ω

ρ dx = C

}

.

Since the volume constraint in (5) is difficult to handle, we here use an alternative
formulation, were the volume constraint is relaxed by introducing a corresponding
Lagrange multiplier η ∈ R. This gives the simpler problem

(6) inf
ρ:Ω→{ρ−,1}

{

l(u) + η

∫

Ω

ρ dx

∣
∣
∣
∣

aρ(u, v) = l(v), ∀v ∈ V

}

.

In a real application, η of course needs to be determined to meet the desired volume
C, but as a preliminary step we consider (6) with some a priori value of η. In
practice, the multiplier could be determined by solving (6) in an inner loop and
iteratively changing η in an outer loop, but to come up with an effective procedure
for this is a difficult task not dealt with here. Observe that (5) and (6) are not
truly equivalent, since even though every choice of volume in (5) corresponds to a
unique multiplier η, the converse is not necessarily true.

It is well known that (5) and (6) are ill-posed minimization problems in the
sense that existence of a minimizer cannot be guaranteed [1]. In fact, a minimizing
sequence {ρn} would oscillate more wildly as n → ∞ and the limit would not even
belong to the discrete set {ρ−, 1} anymore. The general cure of ill-posedness of this
optimal design problem is to introduce a proper relaxation of the set of admissible
designs, thus replacing (6) with a well-posed problem. This can be done by adding
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a penalty on the variation of the control ρ, so called Tikhonov regularization, or in
this particular case by allowing intermediate densities ρ : Ω → [ρ−, 1], the so called
plate thickness problem [2]. Another approach is to minimize (6) over the class EC
of elasticity tensors for certain composites of materials, i.e.

(7) min
ρ∈[ρ−,1],E∈EC

{

l(u) + η

∫

Ω

ρ dx

∣
∣
∣
∣
aρ,E(u, v) = l(v), ∀v ∈ V

}

,

where aρ,E(u, v) ≡ aρ(u, v) to indicate the dependence of E. Here, the tensor E
now describes the micro-structure of the material, and for the right choice of EC , e.g.

sequential laminated composites, the minimization problem (7) is well posed, and
the solution corresponds to a homogenized optimal design, cf. [1]. Homogenization
in optimal design is closely connected to the concept of quasi-convexity, which in the
standard theory of variational calculus is a necessary condition for the existence of a
minimizer [5]. In fact, homogenization or quasi-convexification gives truly optimal
designs in the sense that the minimum of (7) coincides with the infimum of (6).
Ill-posed problems related to optimal design has been studied extensively in the
context of relaxation by quasi-convexification and homogenization in for example
[1, 7, 8] and [9].

In Section 2, we derive an alternative regularization which can be compared
to a Tikhonov type penalty. The regularization is based on the Hamilton-Jacobi-
Bellman equation corresponding to the optimal control problem (6) and the exis-
tence of a minimizer essentially depends on the quasi-convexity of the Hamiltonian.
Numerical examples for the particular problem (6) are studied in Section 4.

Another inverse problem studied in Section 4 is the reconstruction of an un-
known density from boundary measurements: apply given forces fs : ΓN → R

d

and reconstruct the interior density ρ : Ω → {ρ−, 1} from the resulting boundary
displacements umeas on ΓN by minimizing

(8) inf
ρ:Ω→{ρ− ,1}

{∫

ΓN

|u − umeas|
2 ds

∣
∣
∣
∣
aρ(u, v) = l(v), ∀v ∈ V

}

.

The problem to determine ρ is in general ill-posed due to non-continuous depen-
dence on measured data. For this problem Tikhonov type regularization methods
therefore seem standard, since to introduce intermediate values ρ : Ω → [ρ−, 1] is
not sufficient. Note, that the measurements umeas may be restricted to a subset of
ΓN and can also be contaminated by noise, which makes (8) even harder to solve
without proper regularization. Also note that the above optimal control problems
(6) and (8) are single-load problems which easily can be extended to the multi-load
case. In Section 4 we present some numerical results for the reconstruction problem
(8) using multiple loads.

2. Pontryagin Approximations for Optimal Control

It is well known that inverse problems need to be regularized to obtain good
approximations [6], and regularization may also be necessary to assure the mere
existence of a solution. In the following section we present a Pontryagin method
for optimal control of partial differential equations using a regularization derived
from consistency with the corresponding Hamilton-Jacobi-Bellman equations in
infinite dimension. To make the presentation clear and concise we first describe the
method for controlling a system of ordinary differential equations, and then apply
the methodology to control of partial differential equations, following [3].

Consider the optimal control problem for a controlled ordinary differential equa-
tion

(9) inf
α∈A

{

g(X(T )) +

∫ T

0

h(X(s), α(s)) ds

∣
∣
∣
∣
X ′(t) = f(X(t), α(t)), X(0) = X0

}

,
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with given data g : R
n → R, h : R

n × B → R, f : R
n × B → R

n, X0 ∈ R
n, the

state variable X : [0, T ] → R
n and a set of controls A = {α : [0, T ] → B ⊂ R

m}.
Optimal control problems like (9) can be solved by dynamic programming or by
the Lagrange principle. Defining the value function

u(x, t) ≡ inf
X(t)=x,α∈A

{

g
(
X(T )

)
+

∫ T

t

h
(
X(s), α(s)

)
ds

}

,

the dynamic programming approach gives that u : R
n × [0, T ] → R is the bounded

uniformly continuous viscosity solution of the nonlinear Hamilton-Jacobi-Bellman
partial differential equation

(10)
∂tu(x, t) + H

(
∂xu(x, t), x

)
= 0, (x, t) ∈ R

n × (0, T ),

u(x, T ) = g(x), x ∈ R
n,

where the Hamiltonian function H : R
n × R

n → R is defined by

H(λ, x) ≡ min
α∈B

{
λ · f(x, α) + h(x, α)

}
.

The Hamilton-Jacobi partial differential equation approach has the advantage that
a global minimum is found, but cannot be used computationally for high dimen-
sional problems where n ≫ 1, and gives no direct information on the optimal
path X(t) and control α(t). On the other hand, assuming that H, f, g, h are dif-
ferentiable, the Lagrange principle gives that an optimal path X(t) satisfies the
Hamiltonian boundary value system

(11)
X ′(t) = ∂λH

(
λ(t), X(t)

)
, X(0) = X0,

−λ′(t) = ∂xH
(
λ(t), X(t)

)
, λ(T ) = g′(X(T )),

Solving (11) is actually the method of characteristics for the Hamilton-Jacobi equa-
tion (10) provided λ(t) ≡ ∂xu(X(t), t) exists. Also note that equation (11) is equal
to

X ′(t) = f
(
X(t), α(t)

)
,

X(0) = X0,

−λ′
i(t) = ∂xi

f
(
X(t), α(t)

)
· λ(t) + hxi

(
X(t), α(t)

)
,

λ(T ) = g′
(
X(T )

)
.

with the control α determined by the Pontryagin principle

(12) α(t) ∈ argmina∈B

{
λ(t) · f(X(t), a) + h(X(t), a)

}
,

The Lagrange principle has the advantage that high dimensional problems, n ≫ 1
can be solved computationally and the drawback is that in practice only local min-
ima can be found computationally. Also, when using (11) to solve the minimization
problem (9) it is assumed that the Hamiltonian is explicitly known and differen-
tiable. In general, Hamiltonians are only Lipschitz continuous for smooth f , g and
h. As we will see in Section 4, explicit Hamiltonians do exist for many interesting
applications, and they can be approximated by differentiable ones. To emphasize
the connection with the optimal control we refer to solving (11) as the Pontryagin

method.
Many optimal control problems lead to non-smooth optimal controls, e.g. bang-

bang controls, which occur by two reasons: the Hamiltonian is in general only
Lipschitz continuous, even though f, g, h are smooth, and backward optimal paths
X(t) may collide. The theory of viscosity solutions to Hamilton-Jacobi equations
elegantly handles non-smooth solutions, but to be able to use the computational
advantage of solving the Hamiltonian boundary value system (11) we introduce
a regularized problem with a C2(Rn × R

n) λ-concave approximation Hδ of the
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Hamiltonian H . This approximation not only gives meaning to (11), but is well
defined in the sense that the corresponding approximated value function uδ is close
to the original value function u. In [11], error analysis yields the estimate

(13) ‖uδ − u‖L∞(Rd×R+) = O(δ),

for the real and approximate value functions u and uδ, and with a regularization
parameter δ, such that ‖Hδ − H‖L∞(Rn×Rn) = O(δ). This error estimate is not
explicitly dependent on the dimension n and is thus suitable for optimal control
of discretized partial differential equations. Observe that ‖uδ − u‖L∞(Rn×R+) → 0
does not necessarily imply convergence of the optimal paths X(t) or the controls
α(t).

Now, consider the above analysis extended to control of a time dependent partial
differential equation, as in [3],

∂tϕ(x, t) = f
(
ϕ(x, t), α(x, t)

)
, (x, t) ∈ Ω × (0, T )

ϕ(x, 0) = ϕ0, x ∈ Ω

where f is a partial differential operator, Ω ⊂ R
n, and ϕ(·, t) belongs to some Hilbert

space V on Ω. The minimization problem corresponding to (9) then becomes

inf
α:Ω×[0,T ]→B

{

g
(
ϕ(·, T )

)
+

∫ T

0

h
(
ϕ(·, t), α(·, t)

)
dt

∣
∣
∣
∣

∂tϕ = f
(
ϕ(·, t), α(·, t)

)
, ϕ(·, 0) = ϕ0

}

,

(14)

The Hamiltonian H : V × V → R is defined as

(15) H(λ, ϕ) ≡ min
α:Ω→B

{〈λ, f(ϕ, α)〉 + h(ϕ, α)},

and the value function u : V × [0, T ] → R,

u(φ, τ) ≡ inf
α:Ω×[0,T ]→B

{

g
(
ϕ(·, T )

)
+

∫ T

τ

h
(
ϕ(·, t), α(·, t)

)
dt

∣
∣
∣
∣

∂tϕ = f
(
ϕ(·, t), α(·, t)

)
, ϕ(·, τ) = φ ∈ V

}

solves the Hamilton-Jacobi-Bellman equation

(16) ∂tu(φ, t) + H
(
∂φu(φ, t), φ

)
= 0, u(·, T ) = g.

Here, ∂ now denotes Gâteaux derivatives (except for ∂t), and 〈v, w〉 is the duality
pairing on V , which reduces to the L2(Ω) inner product if v, w ∈ L2(Ω). From the
Lagrange principle we get the Hamiltonian system

(17)
∂tϕ = ∂λH(λ, ϕ), ϕ(·, 0) = φ

∂tλ = −∂ϕH(λ, ϕ), λ(·, T ) = ∂ϕg
(
ϕ(·, T )

)
.

To solve (17), consider a finite element subspace V̄ ⊂ V and a corresponding C2

regularized approximate Hamiltonian H̄δ : V × V̄ → R,

H̄δ(λ, ϕ̄) ≡ min
α:Ω→B

{〈λ, fδ(ϕ̄, α)〉 + hδ(ϕ̄, α)},

with approximations fδ and hδ. For ϕ, λ ∈ V̄ , the problem has now been trans-
formed into the control of a system of ordinary differential equations, so the esti-
mate (13) still holds for the value functions ūδ and ū solving (16) using H̄δ and
the unregularized Hamiltonian H̄ : V × V̄ → R respectively, see [3, 11]. An error
estimate for the difference between the true value function u and the regularized
approximate value function ūδ is however harder to derive, since it seems to require
knowledge of the difference between true optimal paths (ϕ, λ) and approximated
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optimal paths (ϕ̄δ, λ̄δ). As noted earlier these paths does in general not converge
for a non-differentiable Hamiltonian, since the control becomes discontinuous. In
[3], an estimate of u − ūδ, using only the difference of H and H̄δ along the same
path, is derived. This estimate gives an error estimate which in practice can be
bounded in terms of the regularization parameter δ and the finite element mesh
size, such that the value functions converge even though the optimal paths do not.
For more on this issue, see [3, 12].

In the following sections the Pontryagin method is used for solving time in-
dependent optimal design problems with only Lipschitz continuous Hamiltonians.
All examples presented give Lipschitz continuous Hamiltonians which need to be
regularized.

3. Concave Maximization

To apply the methodology of time dependent optimal control from Section 2 to
the time independent optimal design problem in Section 1, we first concentrate on
a simpler scalar problem of electric conductivity [10]: to place a given amount of
conducting material in a given domain Ω ⊂ R

d in order to minimize the power loss
for a given surface current q, satisfying

∫

∂Ω q ds = 0. Let, as in Section 1, η ∈ R be
a given constant, associated to the given amount of material, and find an optimal
conduction distribution σ : Ω → {σ−, σ+}, where σ± > 0, such that

(18) inf
σ

{∫

∂Ω

qϕ ds + η

∫

Ω

σ dx

∣
∣
∣
∣
div(σ∇ϕ)

∣
∣
∣
Ω

= 0, σ
∂ϕ

∂n

∣
∣
∣
∂Ω

= q

}

,

here ∂/∂n denotes the normal derivative, ds is the surface measure on ∂Ω and
ϕ ∈ V ≡ {v ∈ H1(Ω) :

∫

Ω v dx = 0} is the electric potential.
Now, consider the parabolic variant of the constraint in (18), with σ : Ω×[0, T ] →

{σ−, σ+}, ϕ : Ω × [0, T ] → R and initial data ϕ0 ∈ V :

∂tϕ = div
(
σ∇ϕ

)
, (x, t) ∈ Ω × (0, T )

σ
∂ϕ

∂n
= q(x), (x, t) ∈ ∂Ω × (0, T )

ϕ(x, 0) = ϕ0, x ∈ Ω,

and the time dependent minimization problem

inf
σ

{ ∫ T

0

∫

∂Ω

qϕ ds + η

∫

Ω

σ dx dt

∣
∣
∣
∣

∂tϕ = div(σ∇ϕ), σ
∂ϕ

∂n

∣
∣
∣
∂Ω

= q, ϕ(·, 0) = ϕ0

}

.

(19)

The Lagrangian takes the form

L(σ, λ, ϕ) :=

∫ T

0

∫

∂Ω

q(ϕ + λ) ds dt +

∫ T

0

∫

Ω

σ (η −∇ϕ · ∇λ)
︸ ︷︷ ︸

v

−∂tϕλ dx dt,

with λ = λ(x, t) and the Hamiltonian corresponding to (15) becomes

H(λ, ϕ) = min
σ:Ω→{σ±}

{∫

Ω

σv dx +

∫

∂Ω

q(ϕ + λ) ds

}

=

∫

Ω

min
σ∈{σ−,σ+}

{σv}

︸ ︷︷ ︸

h(v)

dx +

∫

∂Ω

q(ϕ + λ) ds.
(20)
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As in Section 2, the value function

u(φ, τ) = inf
σ

{∫ T

τ

∫

∂Ω

qϕ ds + η

∫

Ω

σ dx dt

∣
∣
∣
∣

∂tϕ = div(σ∇ϕ), σ
∂ϕ

∂n

∣
∣
∣
∂Ω

= q, ϕτ = φ

}

satisfies the infinite dimensional Hamilton-Jacobi equation

∂tu(φ, t) + H(∂φu(φ, t), φ) = 0 t < T, u(·, T ) = 0,

using the Gâteaux derivative ∂φu(φ, t) of the functional u(φ, t) in L2(Ω). The
corresponding Hamiltonian system is the parabolic system

(21)

∫

Ω

∂tϕw + h′(η −∇ϕ · ∇λ)∇ϕ · ∇w dx =

∫

∂Ω

qw ds, ϕ(·, 0) = ϕ0,

∫

Ω

−∂tλv + h′(η −∇ϕ · ∇λ)∇λ · ∇v dx =

∫

∂Ω

qv ds, λ(·, T ) = 0,

for all test functions v, w ∈ V ≡ {v ∈ H1(Ω) :
∫

Ω
v dx = 0}.

From (20) it is evident that the control becomes undefined and the Hamilton-
ian non-differentiable when v ≡ η − ∇ϕ · ∇λ = 0. We thus replace H with the
concave regularization Hδ depending on a smooth approximation, hδ ∈ C2(R), of
the Lipschitz continuous and monotonically increasing function h, see left part of
Figure 1. In this case the regularization Hδ is therefore similar to a Tikhonov reg-

h

hδ

v

h, hδ

σ∗ h′δ

v

h′δ, σ
∗

Figure 1. Left: The function h and its regularization hδ with
respect to v. Right: The approximation h′δ compared to a control
σ∗ obtained from adding a Tikhonov type penalty δ

∫

Ω σ2 dx to
(20) with σ : Ω → [σ−, σ+].

ularization with penalty on the L2 norm of σ, see right part of Figure 1. Note that
σ : Ω → [σ−, σ+] in (20) will lead to the same Hamiltonian as σ : Ω → {σ−, σ+}.

To connect the optimal design problem (18) with the artificial time-dependent
problem (19) we assume that

lim
T→∞

u(·, 0)

T
= inf

σ

{ ∫

∂Ω

qϕ ds + η

∫

Ω

σ dx

∣
∣
∣
∣
div(σ∇ϕ)

∣
∣
∣
Ω

= 0, σ
∂ϕ

∂n

∣
∣
∣
∂Ω

= q

}

,

which can be achieved by assuming ∂tϕ = ∂tλ = 0 in the Hamiltonian system
(21). Time independent solutions to (21) exhibits symmetry ϕ = λ and solves the
nonlinear elliptic partial differential equation

(22)

div
(
h′δ(η − |∇ϕ|2)∇ϕ

)
= 0, x ∈ Ω

h′δ
∂ϕ

∂n
= q, x ∈ ∂Ω
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which can be formulated as the concave maximization problem: ϕ ∈ V is the unique
maximizer of

Hδ(ϕ, ϕ) =

∫

Ω

hδ(η − |∇ϕ(x)|2) dx + 2

∫

∂Ω

qϕ ds.

An advantage with the Pontryagin approach (22) is that the Hessian of Hδ can be
determined explicitly and is sparse, so that the Newton method can be used for
iterative solution of (22). Note that the opposite problem of maximizing power
loss, i.e. replacing the ’inf’ in (18) with a ’sup’, would in general not give a concave
regularized Hamiltonian Hδ. The existence of a maximizer ϕ depends on the weak
upper semi-continuity of Hδ, which in this particular case can be guaranteed if
hδ is concave with respect to |∇ϕ|, see [5]. In Figure 2, h and hδ are shown as
functions of |∇ϕ| for both minimizing and maximizing power loss. The function
hδ for the problem of maximizing power loss is only concave for sufficiently large
regularizations.

h

hδ

|∇ϕ|

h, hδ

h

hδ

|∇ϕ|

h, hδ

Figure 2. The function h and its regularization hδ with respect
to |∇ϕ| when minimizing power loss (left) and maximizing power
loss (right).

4. Numerical Examples

To numerically solve the optimal design problems (6) and (8) in Section 1, we
consider the planar stress case, σ3l = σl3 = 0, l = 1, 2, 3, for a thin plate located in
the xy-plane. The plate can be described by the two dimensional domain Ω ⊂ R

2,
and the material density ρ can be interpreted as the thickness of the plate. For
planar forces fb : Ω → R

2 and fs : ΓN → R
2, ΓN ⊂ ∂Ω, the planar displacements

u : Ω → R
2 can be separated from the anti-planar displacement, and satisfy the

variational equation (4), for d = 2. The Lamé coefficients in Hooke’s law (3) takes
the form

µ =
E

2(1 + ν)
, λ =

Eν

1 − ν2
,

with a Young’s modulus E and a Poisson ratio ν. In all examples we assume
E = 100, ν = 0.3, and that no volume forces are present, i.e. fb = 0.

4.1. Compliance Optimization. Recall the compliance minimization problem
(6), i.e.

inf
ρ

{

l(u) + η

∫

Ω

ρ dx

∣
∣
∣
∣

aρ(u, v) = l(v), ∀v ∈ V

}

.

with relative material density ρ : Ω → {ρ−, 1}, displacement u : Ω → R
2, compli-

ance functional l(u) and bilinear energy functional aρ(u, v). Similarly to Section 3,
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we note that the Lagrangian takes the form

L(u, λ, ρ) = l(u) + l(λ) +

∫

Ω

ρ

(

η −
∑

ijkl

εij(u)Eijklεkl(λ)

︸ ︷︷ ︸

v

)

dx,

and the Hamiltonian is

H(u, λ) = l(u) + l(λ) +

∫

Ω

min
ρ∈{ρ−,1}

{ρv}

︸ ︷︷ ︸

h(v)

dx.

Regularizing h with hδ, and consequently H with Hδ, gives a Hamiltonian system
which by symmetry, u = λ, can be reduced to the variational equation

(23)

∫

Ω

h′δ

(

η −
∑

mnop

εmn(u)Emnopεop(u)

)

εij(u)Eijklεkl(v) dx = l(v)

for all admissible displacements v ∈ V = {H1(Ω)d, vΓD
= 0}, which is the Euler-

Lagrange equation of the problem to find the unique maximizer u ∈ V of the
functional

(24) Hδ = 2l(u) +

∫

Ω

hδ

(

η −
∑

ijkl

εij(u)Eijklεkl(u)

)

dx.

In all numerical tests for the compliance minimization problem we let Ω be the
rectangular domain defined by (x, y) ∈ (0, 2) × (0, 1), and solve (23) on the finite
element subspace consisting of nine-node quadrilateral elements on a uniform mesh.
The left boundary is fixed and a downward force, fs(2, y) = −10, y ∈ [0.45, 55],
is applied to the middle of the right boundary. The lower bound on the material
density is ρ− = 10−3, and the regularized function hδ is chosen such that

h′δ(v) =
1

2

(

ρ− + 1 + (ρ− − 1) tanh

(
v tanh−1(0.99)

δ

))

,

see Figure 1. The resulting discrete system is solved with Newton’s method and
for successively smaller regularizations according to the scheme:

• if the Newton method for δold converged choose

δnew = αoldδold, αnew = αold,

• otherwise let

δnew =
1

2
δold(1 +

1

αold

), αnew =
2αold

αold + 1
.

This means that if the Newton method fails to converge for some regularization δ,
the new regularization will be the average of δ and the last successful regularization.
Also, the parameter α is constructed such that if this new averaged regularization
works, we will once again try the regularization where the method previously failed.
Here, αold = 0.5 is used as initial step-size.

In the left part of Figure 3 to Figure 7, the variational equation (23) is solved
using FEMLAB and the Newton method for successively smaller values of δ. As δ
is reduced the density will not achieve purely discrete values, but rather remain at
intermediate values in large regions. This agrees with results from other regulariza-
tions, such as the plate thickness approach [2] or the homogenization method [1].
The smooth density is consistent with the fact that a minimizing sequence for the
original formulation (6) will oscillate in these areas, and the regularized solution
will behave approximately as an average of these oscillations.
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Figure 3. Plot of h′δ as an approximation of the relative material
density when minimizing compliance of an elastic plate with a fixed
right side and an external load fs(2, y) = −10, y ∈ [0.45, 55]. A
uniform mesh with 80× 40 nine-node quadrilateral finite elements
and a multiplier η = 5 · 10−3 was used. In the left figure, (4) was
solved with the Newton method and by successively reducing the
regularization δ until δ ≈ 3.5 · 10−4. The right figure shows the
density after 100 iterations using (25) with δ = 0 and with the
solution from the left part taken as initial guess.

Figure 4. Plot of h′δ calculated with data as in Figure 3 but using
a 240× 120 mesh. Note that the unregularized design on the right
is mesh dependent. The discrete designs are also sensitive to the
initial data and the fraction of elements allowed to change in each
iteration. Although the discrete design here differs a lot from the
one in Figure 3, the compliance only differs by less than 0.1 percent.

Since ρ can be determined explicitly by the Pontryagin method an alternative
approach to solving (23) with the Newton method is to iterate separately over ρ
and u according to the scheme

(25) ρm+1 = h′δ

(

η −
∑

ijkl

εij(um)Eijklεkl(um)

)

where um solves (23) with ρ = ρm. This scheme, which essentially is the Jacobi
method, is highly unstable since information from the Hessian is lost. It is, however,
still possible to use this method, with δ = 0, as post-processing to eliminate areas
of intermediate density generated by the Newton method. In general, such discrete
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Figure 5. Convergence plots corresponding to Figure 4. Left:
Convergence of the compliance, the Hamiltonian, and the volume
with respect to the regularization. Right: Plot of the compliance
for the discrete iterations corresponding to the right plot in Figure
4. The values from the left plot is included in the first iterations
for comparison. Note that although the compliance for the dis-
crete iterations decreases it will never reach the compliance for the
regularized problem.

Figure 6. Plot of h′δ with η = 2 · 10−2 and a 80 × 40 mesh. The
regularization in the left figure is δ ≈ 1.5 · 10−3.

Figure 7. Plot of h′δ with data as in Figure 6 but with a 240×120
mesh. The compliance of the discrete design is here 1.6 · 10−2

compared with 3.6 · 10−2 for the discrete design in Figure 6, and
9.7 · 10−3 for the regularized designs.
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iterations do not converge and we may need to restrict the amount of material al-
lowed to change in each iteration. The right part of Figure 3 to Figure 7 shows the
density after 100 iterations using a variant of (25) with δ = 0 and with solutions
from the left part of the figures taken as initial guesses. Here, ρ is updated ele-
mentwise and only a fraction of elements, corresponding to the smallest and largest
values of v, is allowed to change, such that the volume remains constant. In all
experiments, the compliance initially drops but eventually starts to oscillate, and
at this point the control ρ will start to form checkerboard structures in large areas.
To prevent the formation of such structures we here reduce the fraction of elements
allowed to change as soon as the compliance starts to oscillate.

Figure 8. The relative material density when material has been
iteratively removed from a completely filled domain by sorting
εij(u)Eijklεkl(u) and removing the material corresponding to the
largest values. In each iteration the volume to be removed is ad-
justed to follow a geometric sequence of volumes such that the final
volume is the same as in Figure 4. The final compliance after 70
iterations has converged to 6.78 · 10−3 compared to 6.65 · 10−3 for
the discrete iterations in Figure 4 and 5.

Figure 9. Plot of h′δ as an approximation of the relative material
density when maximizing compliance. A uniform mesh with 240×
120 nine-node quadrilateral finite elements, a lower relative density
ρ− = 0.5, and a multiplier η = 2 · 10−3, was used. The discrete
iterations give no further information in this case.

It can also be noted that the expression v ≡ η − εij(u)Eijklεkl(u) resembles the
the topological gradient used in the topological shape method [4]. The topological



PONTRYAGIN APPROXIMATIONS FOR OPTIMAL DESIGN OF ELASTIC STRUCTURES 13

10
−3

10
−2

10
−1

10
0

4.5

5

5.5

6

6.5
x 10

−3

δ

C
om

pl
ia

nc
e

10
−3

10
−2

10
−1

10
0

1.4

1.45

1.5

1.55

δ

V
ol

um
e

Figure 10. Convergence history for the compliance maximization
problem. Although the volume does not converge as the regular-
ization decreases, the compliance here seems to increase and level
out. For comparison the compliance for a intuitive guess, with ρ−
close to the left and right boundary, ρ+ in the middle, and the same
volume, gives a compliance of 5.7 ·10−3 compared with 6.4 ·10−3 in
the figure. Also, note that the Newton iterations fail to converge
for small regularizations.

Figure 11. The compliance minimization problem for a down-
ward force fs(x, 0) = −10, x ∈ [0.95, 1.05], and with supports lo-
cated at x ∈ [0.2, 0.25] and x ∈ [1.75, 1.8]. Both supports are fixed
in both the x- and y-direction. A uniform mesh with 240 × 120
elements and a multiplier η = 5 ·10−3 was used. In the left plot the
regularization is δ ≈ 10−3 and the compliance is 1.3 · 10−3. The
compliance after 100 discrete iterations, shown in the right plot, is
1.5 · 10−3.

shape method starts from a completely filled domain and successively removes ma-
terial according to the sign of the topological derivative. This method is appealing
since it is simple and gives interesting designs, but it may not converge to the true
optimal design if it is possible to remove too much material, which never can be
added again. In Figure 8, material has been iteratively removed from a completely
filled domain by sorting εij(u)Eijklεkl(u) and removing the material corresponding
to the largest values. In each iteration the volume to be removed is adjusted to
follow a geometric sequence such that the final volume is approximately the same
as the one in Figures 3 and 4.
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Figure 12. The compliance minimization problem with data as
in Figure 11 but with both supports fixed in the y-direction and
free to move in the x-direction. The smallest regularization was
δ ≈ 10−3 with a compliance of 1.5 · 10−3. The compliance after
100 discrete iterations was 2.8 · 10−3.

As a comparison with the concave maximization problem of minimizing com-
pliance, it is interesting to see what happens for the problem of maximizing com-
pliance. Replacing the ’inf’ in (24) with a ’sup’ gives, similarly to Section 3, a
regularized Hamiltonian which only has a unique minimizer for sufficiently large
regularizations. In Figure 9, the Pontryagin method is used to maximize compli-
ance by placing two materials with ρ ∈ {0.5, 1}. The reason to not have ρ− = 10−3,
is that maximizing compliance here seems to lead to a structure not connected to
the part of the boundary where the external force is applied, thus making the prob-
lem harder to solve. It is also not clear that the solution for a small value of ρ−
is a good approximation of the solution for ρ− = 0 in this example. The solution
to the regularized Hamiltonian system gives, in Figure 9, a design which has the
interesting shape of a turning fork. In Figure 10, we see that the Newton iterations
do not converge for small regularizations, which indicates that there does not longer
exist any minimizer to the regularized Hamiltonian. Also, discrete iterations with
(25) does not give any additional information.

Finally, in Figures 11 and 12 the compliance minimization problem is solved
for a slightly different example where a downward force is applied to the middle
of the lower side, fs(x, 0) = −10, x ∈ [0.95, 1.05], and supports are located at
x ∈ [0.2, 0.25] and x ∈ [1.75, 1.8]. In Figure 11 the supports are fixed in both the
x- and y-direction whereas they are only fixed in the y-direction in Figure 12.

4.2. Interior Reconstruction. For the compliance optimization problem (6) sym-
metry, u = λ, reduced the Hamiltonian system to the variational equation (23).
Symmetry is common in many optimization problems connected to minimization
of energy, but there are important exceptions such as inverse problems related to
reconstruction from measurements. For example, consider the multi-experiment
case of the reconstruction problem (8) stated in Section 1: reconstruct an un-
known density ρ : Ω → {ρ−, 1} from M different boundary measurements umeas,i,
i = 1, . . . , M on ΓN resulting from applying given forces fs,i, fb,i : ΓN → R

d,
i = 1, . . . , M . One strategy is then to find the density ρ such that

inf
ρ:Ω→{ρ−,1}

{ M∑

m=1

∫

ΓN

|um − umeas,m|2 ds

∣
∣
∣
∣

aρ(um, v) = lm(v), ∀v ∈ V, m = 1, . . . , M

}

,

(26)
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where aρ(u, v) is given by (2) and the compliance is given by

lm(u) ≡

∫

Ω

fb,m · u dx +

∫

ΓN

fs,m · u ds.

The Lagrangian is then

L(u1, . . . , uM , λ1, . . . , λM , ρ) =

M∑

m=1

∫

ΓN

|um − umeas,m|2 ds + lm(λm)

+

∫

Ω

−ρ

M∑

m=1

εij(um)Eijklεkl(λm)

︸ ︷︷ ︸

v

dx,

and the Hamiltonian is

(27) H =
M∑

m=1

∫

ΓN

|um − umeas,m|2 ds + lm(λm) +

∫

Ω

min
ρ∈{ρ−,1}

{ρv}

︸ ︷︷ ︸

h(v)

dx.

In this case no symmetry is present and the regularized Hamiltonian system be-
comes

(28)

ah′
δ
(um, vm) dx = lm(vm),

ah′
δ
(um, wm) dx = 2

∫

ΓN

(um − umeas,m) · wm ds,

for all test functions vm, wm ∈ V , m = 1, . . . , M . Note, that replacing ρ : Ω →
{ρ−, 1}, in the original formulation (26), with ρ : Ω → [ρ−, 1], gives the same
Hamiltonian (27).

Figure 13. Material densities to be reconstructed. The density
is 0.5 in the white region, and 1 elsewhere.

In Figures 14 and 17 the system (28) is solved, for M = 1, 2, using the finite
element method on a quadrilateral 40 × 40 mesh with nine-node elements, and
Newton iterations. In all examples we use the computational domain Ω = (−1, 1)×
(−1, 1), with a fixed right boundary, and external boundary forces applied to the
lower and left boundaries. Two sets of measurements were simulated by solving (4)
on a quasi-uniform triangular mesh with 28000 quadratic Lagrange elements, for a
given material density, with applied boundary forces fs,1 = (10 cos(πy/2), 0) on the
left boundary and fs,2 = (0, 10 cos(πx/2)) on the lower boundary. No external force
is applied to the top boundary and no volume forces are present. In all examples
we use ρ : Ω → {0.5, 1} and seek to reconstruct two cases of material distributions:
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Figure 14. Approximated material density, h′δ, from reconstruc-
tion of the amoeba shaped density. Left: Measurements from one
experiment. Right: Measurements from two experiments. Using
measurements from two different experiments here sharpens the
edges and better resolves the region close to the fixed boundary.

Figure 15. Material density reconstructed from experiment with
an amoeba and a circle. Left: Data from one experiment is used.
Right: Data from two experiments is used. In this example the re-
constructed density does not gain much from using multiple mea-
surements. Choosing different boundary forces could here poten-
tially give an improvement of the finest details of the amoeba
shape.

First we use a material with a density distribution in the form of an amoeba (see
left part of Figure 13),

ρ =

{
1, x2 + (y − 0.1)2 ≥ 0.2 + 0.1e1.4 cos(3θ−2)+0.4 sin2 θ

0.5, x2 + (y − 0.1)2 < 0.2 + 0.1e1.4 cos(3θ−2)+0.4 sin2 θ

with θ = arctan(x/(y − 0.1)). Then, we combine the amoeba shape with a circle of
radius 0.2, see right part of Figure 13.

In figure 14 and 15, we see how using multiple experiments increases the quality
of the recovered material distribution, and in Figure 16 we see how the quality
decreases after adding Gaussian random values to the measured data. The added
noise is here scaled to correspond to 5% of the measured data. Note that despite
the bad reconstructions in Figure 16, the L2(∂Ω) error between u and the noisy
measurements umeas levels out, so we can in this case therefore not hope for a better



PONTRYAGIN APPROXIMATIONS FOR OPTIMAL DESIGN OF ELASTIC STRUCTURES 17

reconstruction, even if we continue to reduce the regularization. This is known as
the discrepancy principle, see [6] and [13].

As in section 4.1, discrete iterations in ρ and u can be done as post-processing
to remove intermediate values of ρ. Such iterations does not, however, seem to
give any additional information in this example. Also, using a small value for ρ−
to mimic void, makes the problem too ill-posed to solve with such accuracy in
the reconstructed density as in the examples shown here. From our experience,
solving the system (28) for a small ρ− only seems possible for reconstruction of
small circular inclusions close to the boundaries.

Figure 16. Material density reconstructed from noisy data, using
two experiments and adding 5% white noise to the measured data.
Although, artifacts are here introduced near the forced boundaries,
and the resolution of the shapes is lost, the positions of the regions
are still visible.
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Figure 17. Plot of the L2(∂Ω) norm of u−umeas with respect to
the regularization. Left: Error history corresponding to the single
experiment case in Figure 14. Right: Error history corresponding
to the single experiment case in Figure 15. The error in the right
figure reaches its minimum value, and no better reconstruction can
here be expected without additional post-processing of the mea-
surements.
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