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Abstract. This report concerns the problem to find optimal input data for an

inverse reconstruction problem. In a classical parameter reconstruction prob-
lem the goal is to determine a spacially distributed (and optionally time de-

pendent) coefficient of a partial differential equation from observed data. Here,

the spacially dependent wave speed coefficient of the acoustic wave equation is
sought, given observations of the solution on the boundary. The reconstruction

of the coefficient is highly dependent on input data, e.g. if Neumann boundary

values serve as input data it is in general not possible to determine the coef-
ficient for all possible input data. It is shown that it is possible to formulate

meaningful optimality criteria for the input data that enhances quality of the

reconstructed coefficient. Both the problem of estimating the coefficient and
the problem of finding optimal input data are ill-posed inverse problems and

need to be regularized.
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1. Introduction

This paper describes a method to find optimal input data for inverse scattering
problems. It is well known that inverse problems are ill-posed and need to be
regularized [6]. Much of the research on inverse problems today is focused on
how to regularize and to solve them efficiently. A more unusual question is how
the choice of input data affects the solution to the inverse problem, and if it is
possible to enhance the quality of the solution by simply choosing other input data.
This question was asked in [3, 5] for time independent reconstruction problems in
impedance tomography, and later for inverse scattering problems [4].
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In [4], it was investigated how to best distinguish two different spacially depen-
dent wave coefficients c(x) and c0(x), for the acoustic wave equation in the half
space x3 < 0 in R3, from each other by using information of the downgoing and
upgoing waves at the boundary x3 = 0. As a measure of distinguishability the
difference in energy flux between the upgoing fields for c and c0 was chosen, and it
was shown that this difference is maximized by a time-harmonic downgoing wave
with frequency depending on the two coefficients. In this paper, a similar approach
is used, but with the focus on how the choice of the incoming wave affects the
reconstruction for the inverse problem to reconstruct an unknown wave coefficient.

2. Problem Formulation

Consider the acoustic wave equation in an bounded open domain Ω ∈ R2 and
for times t ∈ [0, T ]:

(1)

ϕ∗tt = div(σ∗∇ϕ∗), in Ω× (0, T ],

σ∗∇ϕ∗ · n = j, on ΓN × (0, T ],

σ∗∇ϕ∗ · n = 0, on ∂Ω \ ΓN × (0, T ],

ϕ∗ = ϕ∗t = 0, on Ω̄× {t = 0},

where ϕ∗ : Ω̄ × [0, T ] → R denotes acoustic pressure, σ∗ : Ω̄ → R, σ∗ > 0 is
the squared wave speed and ΓN ⊆ ∂Ω. To find the acoustic pressure ϕ∗, for
a given coefficient σ∗ and boundary data j : ΓN × (0, T ] → R, is the forward
problem. Given sufficient regularity of the input data, e.g. σ∗ ∈ C1(Ω) and j ∈
L2(0, T ;L2(ΓN )), the forward problem is well posed, i.e. there exists a unique
(weak) solution ϕ ∈ L2(0, T ;H1(Ω)) which depends continuously on j and σ∗, see
[7]. A typical corresponding inverse problem to (1) is to find σ∗, for given input
boundary data j and measurements ϕ∗.

2.1. Inverse Scattering. Unlike the forward problem above, the inverse problem
is ill posed, i.e. there may not exist a solution σ∗, and if it exists it may not be
unique nor depend continuously on the data j and ϕ∗. To formulate an inverse
problem that has a unique solution, with continuous dependence on data, it is
necessary to add some regularization [6].

The regularized inverse scattering problem is here: for given Neumann boundary
data j and measurements ϕ∗ on ΓM ⊂ ∂Ω, find the coefficient σ : Ω̄ → R, σ > 0,
and the state ϕ : Ω̄× [0, T ]→ R, that minimizes the error functional

(2)
1
2

∫ T

0

∫
ΓM

(ϕ− ϕ∗)2 ds dt+
δ

2

∫
Ω

(σ2 + |∇σ|2) dx,

and satisfies the acoustic wave equation

(3)

ϕtt = div(σ∇ϕ), in Ω× (0, T ],

σ∇ϕ · n = j, on ΓN × (0, T ],

σ∇ϕ · n = 0, on ∂Ω \ ΓN × (0, T ],

ϕ = ϕt = 0, on Ω̄× {t = 0}.

The second term in (2) is a Tikhonov regularization, with δ > 0, that ensures
that the minimization problem is well posed [7]. Also, it is assumed that the
measurements ϕ∗ satisfy (1) for some unknown σ∗.

Note that, for simplicity a pure Neumann boundary condition is here used, but
it is possible to use a Dirichlet condition on a subset ΓD ⊂ ∂Ω, ΓD ∩ ΓM 6= ΓM ,
without complication.
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2.2. Optimal Input Data. The objective of this paper is not only to solve the
above minimization problem (2), but also to find the best possible boundary input
data j that ensures a good reconstruction of σ∗. For the acoustic wave equation
the choice of input data is highly important since a wave may only visit a subset
of the region Ω before it is measured, and it can thus only be expected to find an
approximation of σ∗ in that subset.

One way to define what is meant by the ”best” input j is to first define the
concept of distinguishability, i.e. how to best distinguish two coefficients σ and σ∗

from each other. Following [3], let Λσ denote the Neumann-to-Dirichlet map

Λσ : σ
∂ϕ

∂n

∣∣∣
∂Ω×(0,T ]

→ ϕ|∂Ω×(0,T ]

which associates the input j with the solution ϕ on the boundary, and define the
distinguishability as

d(σ, σ∗) :=
‖(Λσ − Λσ∗)j‖∂Ω×(0,T )

‖j‖∂Ω×(0,T )
=
‖ϕ− ϕ∗‖∂Ω×(0,T )

‖j‖∂Ω×(0,T )
,

where ‖·‖A denotes the L2(A) norm with corresponding inner product (·, ·)A. Here,
the L2 norm was chosen for simplicity, but it may happen that two coefficients that
are not distinguishable in the L2 norm are still distinguishable in norms that better
reflect the regularity of j and ϕ, see [3].

Given σ and σ∗, the best input j can be defined as the maximizer to d(σ, σ∗), i.e.
the eigenfunction that corresponds to the dominating eigenvalue of the difference
operator Λσ −Λσ∗ . To find the eigenfunction for the dominating eigenvalue, power
iteration can be used, an approach that was used in [2] to find good input currents
for impedance tomography.

2.3. Minimax Problem. If the Neumann data j is normalized by introducing a
new variable q : ΓN × (0, T ]→ R such that

j :=
q

‖q‖ΓN×(0,T )
, on ΓN × (0, T ],

the problem to find both the coefficient σ∗ and an optimal input j can be formulated
as the minimax problem

(4) min
σ

max
q
‖ϕ− ϕ∗‖2ΓM×(0,T ) +

δ

2

(
‖σ‖2Ω + ‖∇σ‖2Ω

)
,

with the constraints (1) and (3). Remember, that since σ∗ is unknown Equation
(3) cannot be solved, but the measurements ϕ∗ on the boundary are still accessible
through experiments.

Similarly to the minimization of (4), the maximization is an inverse problem and
can be expected to be ill posed. The normalization of j here acts as a Tikhonov
regularization, and ensures that the objective fucnction is bounded, but it is not
clear if the maximization admits a solution, or if the solution is unique. Addi-
tional regularization may thus be needed. In Section 3.5, it is observed that q and
correspondingly ϕ tends to oscillate in time as the measurement error grows, and
to prevent large oscillations the numerical method is interrupted prematurely. An
alternative measure would be to add a penalty on the time derivative of q in (4).
Physically, it would also be suitable to include a constraint on the energy, as in [4],
but this approach is not pursued in this paper.

Since the concavity with respect to q is unclear, the minimization and maximiza-
tion problems will here be treated as two separate subproblems:

Max: Given σ and σ∗, maximize (4) with respect to j under the constraints
(1) and (3).
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Min: Given j and ϕ∗, minimize (4) with respect to σ under the constraint
(3).

Even if the min and max in (4) could switch place, there are numerical consid-
erations which leads to two separate subproblems. This will be explained in the
following sections.

3. Numerical Solution

3.1. Discretization. Let V ⊂ H1(Ω) be the finite element subspace of continuous
piecewise linear functions on a triangular finite element mesh on Ω, and divide
the interval [0, T ] into N intervals of equal length k = T/N . An explicit scheme,
discretized in time and finite elements in space, for the weak form of Equation (3)
is

(5)
(ϕn+1 − 2ϕn + ϕn−1, v)Ω = k2(jn, v)ΓN

− k2(σ∇ϕn,∇v)Ω, ∀v ∈ V,
ϕ0 = ϕ1 = 0,

for n = 1, . . . , N − 1. Also, even though Equation (1) is never solved computa-
tionally, since ϕ∗ is measured, it is assumed that the measured data uses the same
discretization

(6)
(ϕ∗n+1 − 2ϕ∗n + ϕ∗n−1, v)Ω = k2(jn, v)ΓN

− k2(σ∗∇ϕ∗n,∇v)Ω, ∀v ∈ V,
ϕ∗0 = ϕ∗1 = 0,

for n = 1, . . . , N − 1. Using formulation (4) above, with Neumann boundary data
jn defined by

jn :=
qn√

k
∑N−1
n=1 ‖qn‖2ΓN

,

the discretized minimax problem is thus to find ϕ2, . . . , ϕN , ϕ∗2, . . . , ϕ
∗
N , q1, . . . , qN−1

and σ such that

(7) min
σ

max
q1,...,qN−1

k

2

N∑
n=0

‖ϕn − ϕ∗n‖2ΓM
+
δ

2
(‖σ‖2Ω + ‖∇σ‖2Ω),

under the constraints (5) and (6).

3.2. Optimality Condition. To formulate an optimality condition for the dis-
cretized problem (7), (5) and (6), the Lagrangian is introduced:

L :=
k

2

N∑
n=0

‖ϕn − ϕ∗n‖2ΓM
+
δ

2
(‖σ‖2Ω + ‖∇σ‖2Ω)+

+
N−1∑
n=1

1
k

(ϕn+1 − 2ϕn + ϕn−1, λn−1)Ω − k(jn, λn−1)ΓN
+ k(σ∇ϕn,∇λn−1)Ω

+
N−1∑
n=1

1
k

(ϕ∗n+1 − 2ϕ∗n + ϕ∗n−1, λ
∗
n−1)Ω − k(jn, λ∗n−1)ΓN

+ k(σ∗∇ϕ∗n,∇λ∗n−1)Ω

with multipliers λn, λ∗n ∈ V, n = 0, . . . , N − 2.
An optimal solution to the discretized minimax problem is also stationary point

to the Lagrangian, and satisfies

(8)

∂ϕn+1L = 0, ∂λn−1L = 0,
∂ϕ∗n+1

L = 0, ∂λ∗n−1
L = 0,

∂qnL = 0, ∂σL = 0,



INVERSE RECONSTRUCTION FROM OPTIMAL INPUT DATA 5

for n = 1, . . . , N − 1. The variation with respect to λn−1 and λ∗n−1 in (8) becomes
Equation (5) and (6), respectively. Variation in ϕn+1 and ϕ∗n+1 gives the adjoint
equations

(9)
(λn+1 − 2λn + λn−1, v)Ω =− k2(ϕn+1 − ϕ∗n+1, v)ΓM

− k2(σ∇λn,∇v)Ω,

λN = λN−1 =0,

and

(10)
(λ∗n+1 − 2λ∗n + λ∗n−1, v)Ω =k2(ϕn+1 − ϕ∗n+1, v)ΓM

− k2(σ∗∇λ∗n,∇v)Ω,

λ∗N = λ∗N−1 = 0,

for all v ∈ V . Stationarity with respect to qn and σ is given by

(11)
k2(qn, λn−1 + λ∗n−1)ΓN

(qn, v)ΓN(
k
∑N−1
n=1 ‖qn‖2∂Ω

) 3
2

−
k(λn−1 + λ∗n−1, v)ΓN(
k
∑N−1
n=1 ‖qn‖2ΓN

) 1
2

= 0,

and

(12) δ(σ, v)Ω + δ(∇σ,∇v)Ω + k

N−1∑
n=1

(v∇ϕn,∇λn−1)Ω = 0,

respectively, for all v ∈ V . For simplicity, it is here assumed that σ, qn ∈ V .
Expressions (9) and (10) are discretizations of the adjoint equations

(13)

λtt = div(σ∇λ), in Ω× [0, T ),

σ∇λ · n = −(ϕ− ϕ∗), on ΓM × [0, T ),

σ∇λ · n = 0, on ∂Ω \ ΓM × [0, T ),

λ = λt = 0, on Ω̄× {t = T},

and

(14)

λ∗tt = div(σ∗∇λ∗), in Ω× [0, T ),

σ∗∇λ∗ · n = (ϕ− ϕ∗), on ΓM × [0, T ),

σ∗∇λ∗ · n = 0, on ∂Ω \ ΓM × [0, T ),

λ∗ = λ∗t = 0, on Ω̄× {t = T},

but compared to the discretization of the forward problem (3) the boundary con-
ditions are evaluated at a different time step. Equation (12) is an approximation
to the equation

(15)
δ(∆σ − σ) =

∫ T

0

∇ϕ · ∇λ dt, in Ω,

∇σ · n = 0, on ∂Ω.

Observe, that since σ∗ is unknown neither (1), (14) nor their discretized counter-
parts (6), (10) can be solved. However, it is possible to experimentally apply the
appropriate Neumann boundary conditions and measure the resulting boundary
values ϕ∗ and λ∗.

The fact that ϕ∗, λ∗ and σ∗ are not acessible in Ω makes it hard to solve the opti-
mality system (8) efficiently since not all of the second variations of the Lagrangian
are accessible. Also, as mentioned in Section 2.3, the minimax problem may not
be convex-concave, so to simultaneously solve the equations in (8) may not give
the same results as treating the minimization and maximization separately. The
regularized minimization problem is convex in a neighbourhood of the optimal σ
and all second variations are accessible, so Newton’s method can be used. However,
for the maximization problem none of the second variations are available.
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3.3. Minimization Problem. Assume that Neumann boundary data j and mea-
surements ϕ∗ are given. The forward equation (5) for ϕ, the dual equation (9) for
λ and the steady state equation (12) for σ can be written as

fn :=
1
k

(λn+1 − 2λn + λn−1, v)Ω + k(ϕn+1 − ϕ∗n+1, v)ΓM
+ k(σ∇λn,∇v)Ω = 0

gn :=
1
k

(ϕn+1 − 2ϕn + ϕn−1, v)Ω − k(jn, v)ΓN
+ k(σ∇ϕn,∇v)Ω = 0

h :=δ(σ, v)Ω + δ(∇σ,∇v)Ω + k

N−1∑
i=1

(v∇ϕi,∇λi−1)Ω = 0

for n = 1, . . . , N − 1 and ∀v ∈ V . The Newton method for finding the sta-
tionary point to the above system is to, given ϕ, λ and σ, find the updates
ϕ̂ := (ϕ̂2, . . . , ϕ̂N )T , λ̂ := (λ̂0, . . . , λ̂N−2)T and σ̂ that satisfies

k(ϕ̂n+1, v)ΓM
+

1
k

(λ̂n+1 − 2λ̂n + λ̂n−1, v)Ω+

+k(σ∇λ̂n + σ̂∇λn,∇v)Ω = −fn, n = 1, . . . , N − 3,

k(ϕ̂n+1, v)ΓM
+

1
k

(−2λ̂n + λ̂n−1, v)Ω+

+k(σ∇λ̂n + σ̂∇λn,∇v)Ω = −fn, n = N − 2,

k(ϕ̂n+1, v)ΓM
+

1
k

(λ̂n−1, v)Ω + k(σ̂∇λn,∇v)Ω = −fn, n = N − 1,

1
k

(ϕ̂n+1, v)Ω + k(σ̂∇ϕn,∇v)Ω = −gn, n = 1,

1
k

(ϕ̂n+1 − 2ϕ̂n, v)Ω + k(σ∇ϕ̂n + σ̂∇ϕn,∇v)Ω = −gn, n = 2,

1
k

(ϕ̂n+1 − 2ϕ̂n + ϕ̂n−1, v)Ω + k(σ∇ϕ̂n + σ̂∇ϕn,∇v)Ω = −gn, n = 3, . . . , N − 1,

and

k

N−1∑
n=2

(v∇ϕ̂n,∇λn−1)Ω + k

N−1∑
n=1

(v∇ϕn,∇λ̂n−1)Ω + δ(σ̂, v)Ω + δ(∇σ̂,∇v)Ω = −h,

for all v ∈ V , or in matrix notation

(16)

 K11 K12 K13

KT
12 0 K23

KT
13 KT

23 K33

 ϕ̂

λ̂
σ̂

 = −

 f
g
h

 .

where f := (f1, . . . , fN−1)T and g := (g1, . . . , gN−1)T .
Let M , M̄ , S(σ) and P (ϕ) be matrices with the elements

Mij = (vi, vj)Ω, M̄ij = (vi, vj)∂Ω,

Sij(σ) = (σ∇vi,∇vj)Ω, Pij(ϕ) = (vj∇ϕ,∇vi)Ω,

where vi denotes the basis functions of the finite element space V , then the subma-
trices in the Newton system (16) are of the form (for N = 4)

K11 = k

 M̄
M̄

M̄

 , K12 =
1
k

 M k2S(σ)− 2M M
M k2S(σ)− 2M

M

 ,

and

K13 = k

 P (λ1)
P (λ2)
P (λ3)

 , K23 = k

 P (ϕ1)
P (ϕ2)
P (ϕ3)

 , K33 = δ
(
M + S(1)

)
.
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To solve the Newton system (16) with a direct solver is very demanding for large
problems and in practice it must be done iteratively. For the examples in this report,
the GMRES method with a simple preconditioner, was used. The preconditioner is
based on solving the system approximately, for an arbitrary right hand side (f, g, h),
with the Gauss-Seidel method, i.e. given (ϕ̂i, λ̂i, σ̂i) an approximate solution is
given by iterating according to the scheme

KT
12ϕ̂

i+1 = g −K23σ̂
i,

K11ϕ̂
i+1 +K12λ̂

i+1 = f −K13σ̂
i,

KT
13ϕ̂

i+1 +KT
23λ̂

i+1 +K33σ̂
i+1 = h.

For the examples in Section 3.5, it turned out that one single iteration with the
Gauss-Seidel method provided a sufficiently good preconditioner to achieve accept-
able convergence with the GMRES method. This could not be done with any of the
standard algebraic preconditioners like Jacobi, ILU or SOR, which worked poorly
due to the block structure of the Newton system.

To achieve reasonable convergence for larger problems a more clever approach is
needed. One idea is to use the approximate Gauss-Newton system

(17)

 K11 K12 0
KT

12 0 K23

0 KT
23 K33

 ϕ̂

λ̂
σ̂

 = −

 f
g
h

 .

which arises from the observation that λ ≈ 0 close to an optimum. A preconditioner
can be derived from (17) by noting that eliminating ϕ̂ and λ̂ from (17) leads to the
reduced system

(18) (K33 +KT
23K

−1
12 K11K

−T
12 K23)︸ ︷︷ ︸

Hr

σ̂ = KT
23K

−1
12 (f −K11K

−T
12 g)− h.

with a symmetric positive definite reduced Hessian Hr which then can be approxi-
mated by e.g. a quasi-Newton method, see [1].

3.4. Maximization Problem. Given σ, the maximization problem is solved by
the gradient method:

a. Start with an initial guess qi.
b. Solve the forward equation (5) and the dual equation (9) to get ϕ and λ.
c. Apply the Neumann boundary values j (given by qi) and −ϕ + ϕ∗ to the

physical system (1) with unknown coefficient σ∗, and measure the resulting
boundary values ϕ∗ and λ∗, respectively.

d. Take a step in the gradient direction in q i.e.

qi+1
n = qin + α∂qn

L,

for n = 1, . . . , N − 1, α ∈ (0, 1], and with ∂qn
L given by the left hand side

of (11).
e. Goto step (a) unless tolerance is achieved or oscillations in q become too

large.

3.5. Results. In the following examples a slightly different objective function

(19) max
q

‖ϕ− ϕ∗‖2ΓM×(0,T )

‖ϕ‖2ΓM×(0,T )

.

is used for the maximization problem but not for the minimization problem. Even
though ϕ is bounded in the L2 norm on ΓM × (0, T ) it may be a good idea restrict
ϕ even more. This does however not change the generality of the prevoius sections
other than changing the boundary values σ∇λ · n and σ∗∇λ∗ · n on ΓM × [0, T )
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Figure 1. Left: The sought coefficient σ∗. Right: σ after first
minimization. Boundary data: q = sin(2πt) sin(πy) at x = 0.

when performing the maximization. Also, the results do not differ much from using
the original objective function (4).

In Figure 1 to 6, three different examples are shown. In all examples a wave
coefficient σ∗ is reconstructed in the unit square by sending in a wave at ΓN ×
(0, T ] := {x = 0}× (0, 1] and measuring the acoustic pressure ϕ∗ at ΓM × (0, T ] :=
{x = 0} × (0, 1] ∪ {x = 1} × (0, 1]. First, the minimization problem is solved
for a small regularization δ = 10−5, then the calculated σ is used to maximize
(19) with respect to q. Before the maximization the incoming wave is modelled
by q = sin(2πt) sin(πy), in Figures 1 and 3, and q = sin(πt) sin(πy) in Figure 5.
Finally, the minimization problem is solved again but with Neumann data j given
by the new q. Of course, this can be done repeatedly and it is not necessary to
start by solving the minimization problem, but instead start with some qualified
guess for σ.

The Newton method for the minimization problem is solved such that the abso-
lute residual error is less than 10−13 and the gradient method for the maximization
problem is terminated when the L2 norm of jt gets to big. The calculations were
done on a uniform triangular mesh with 1800 triangles and 125 time steps, and the
measurements were simulated by using the same mesh.

The left part of Figure 1, 3 and 5 show the unknown coefficient σ∗, and the right
part of the figures show σ after the first minimization. Figure 2, 4 and 6 show
σ after the second minimization. In Figure 7 the simulated solution ϕ∗ is shown
before and after the maximization in q.
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Figure 3. Left: The sought coefficient σ∗. Right: σ after first
minimization. Boundary data: q = sin(2πt) sin(πy) at x = 0.

Figure 4. The coefficient σ after the second minimization. In the
maximization of q, the value function increased 1200% and the L2

norm of qt increased 100%. The decrease in the L2(Ω) norm of
σ − σ∗ between the first and second minimization was 32%.
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Figure 5. Left: The sought coefficient σ∗. Right: σ after first
minimization. Boundary data: q = sin(πt) sin(πy) at x = 0.

Figure 6. The coefficient σ after the second minimization. In
the maximization of q, the value function increased 400% and the
L2 norm of qt increased 50%. The decrease in the L2(Ω) norm of
σ − σ∗ between the first and second minimization was 40%.

Figure 7. The measured solution ϕ∗ before (top) and after (bot-
tom) the maximization in q, for three different timesteps. The
oscillations in q after the maximization are clearly visible in ϕ∗.
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