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Abstract Caging restricts the mobility of an object without necessarily immobi-
lizing it completely. The object is caged if it cannot move arbitrarily far from its
initial position. Apart from its common applications to grasping and manipulation,
caging can also be considered as a problem dual to motion planning: an object is
caged when it is isolated within a bounded connected component of its configura-
tion space and is disconnected from the rest of the latter. In this paper, we address
the problem of caging and path non-existence verification in 2D and 3D workspaces
by representing a subset of the collision space as a simplicial complex and analyz-
ing the connectivity of its complement. Since configuration spaces of 2D and 3D
rigid objects are three-dimensional and six-dimensional respectively, it is compu-
tationally expensive to reconstruct them explicitly. Thus, we represent the object’s
collision space as a union of a finite set of ‘slices’, corresponding to small intervals
of the object’s orientation coordinates. We also discuss possible generalizations of
our approach to higher dimensions.

1 Introduction

A cage is an arrangement of obstacles that restricts the mobility of the object in
such a way that it cannot escape arbitrarily far from its initial position. In robotics,
caging relates to grasping, where it is used either as an alternative to contact-based
grasping or as a pregrasping condition [8, 9, 13, 16, 17, 20]. Apart from that, caging
has applications in multi-agent manipulation [18].

In terms of the object’s configuration space, the object is caged if its configuration
lies in a bounded connected component of its free space. Therefore, a cage and a
path can be seen as two opposite concepts: while the existence of a path ensures
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reachability, the presence of a cage means that the object’s mobility is restricted to
the current bounded connected component, see Fig. 1.

Fig. 1 The collision space of the object is illustrated in grey, the two connect components of the
free space are denoted by Q1 and Q2. We see that the configuration c1 is caged as Q1 is bounded.
Having Q1 and Q2 we can also say that any configuration c2 ∈ Q2 cannot be reached from c1.

The problem of proving path non-existence can be applied to path planning. Most
of the sampling-based planning algorithms perform iterative random sampling and
incrementally build paths between configurations. Usually these algorithms are ei-
ther probabilistically complete [1] or resolution complete [6], but they are not guar-
anteed to find a path in finite time if one exists. Therefore, one of the practical
questions is how long the planner should search for a path before concluding that it
does not exists. Instead of using stopping heuristics, one could avoid this problem
by proving path non-existence. The latter is a challenging problem as it requires re-
trieving information about the connectivity of the entire configuration space rather
than finding a single path which has been addressed in [2, 10, 22].

Essentially, computing the connected components of the free space would solve
two problems: (i) proving or disproving caging and (ii) checking if the object can be
moved from one configuration to another. In this paper, we address both problems
for rigid objects in 2D and 3D workspaces.

2 Related Work

The notion of a planar cage was initially introduced by Kuperberg in 1990 [5] as
a set of n coplanar points lying in the complement of a polygon and preventing it
from escaping arbitrarily far from its initial position. This problem can be directly
applied to robotics if we represent the fingertips or mobile robots as points, and
the object as a polygon. Point-based caging of polygons and polytopes has received
a lot of attention in the context of grasping and multi-agent manipulation. Rimon
and Blake [14] proposed an algorithm computing a set of caging configurations of
a two-fingered hand for planar non-convex objects. In [11], Pipattanasomporn and
Sudsang proposed an algorithm reporting all two-finger caging sets for a given con-
cave polygon. Vahedi and van der Stappen extended this result in [21] by proposing
an algorithm that returns all caging placements of a third finger given a polygo-
nal object and a placement of two other fingers. A similar approach has also been
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adopted for caging 3D objects. Pipattanasomporn and Sudsang [12] proposed an
algorithm for computing all two-finger cages for non-convex polytopes. Rodriguez
et al. introduced a notion of a pregrasping cage in their work [15]. Starting from a
pregrasping cage, a manipulator can move to a form closure grasp without breaking
the cage.

In the above mentioned works fingertips are represented as points or spheres,
and more complex shapes of caging tools usually are not taken into account. Alter-
natively, one can derive sufficient caging conditions based on specific geometric and
topological features of the object and the caging tools. In particular, Stork et al. pro-
posed an approach towards caging objects with ‘holes’ in their works [13, 16, 17].
Subsequently, Varava et al. considered loop-based caging of objects with narrow
parts – so-called ‘necks’ and ‘double forks’ [20]. Sufficient conditions for caging
objects of particular shapes have also been studied in [8, 9].

The advantage of the above mentioned approaches is that they utilize global ge-
ometric properties of the objects. Therefore, one does not have to explicitly recon-
struct the free space of the object, which is a challenging task due to its high dimen-
sionality. However, these methods require the objects to exhibit particular shape
features, which prevents us from applying them to caging objects of arbitrary shape.
A more general approach is to directly analyze the topological properties of the
configuration space of the object.

In this context, caging is closely related to the problem of proving path non-
existence. Motivated by motion planning applications, in their pioneering work [2]
Basch et al. propose an approach towards proving that two configurations are dis-
connected because the object is ‘too big’ or ‘too long’ to pass through a ‘gate’
between them. The authors apply their algorithm to several simple objects and inte-
grate it with a PRM motion planner. In [22], Zhang et al. use approximate cell de-
composition and prove path non-existence. They decompose a configuration space
into a set of cells and for each cell decide if it lies in the collision space. In [10]
McCarthy et al. propose a somewhat similar approach. There, they randomly sam-
ple the configuration space and reconstruct its approximation as an alpha complex.
They later use it to check the connectivity between pairs of configurations.

In this paper, we also aim to study the connectivity of the free space of the object.
However, unlike [10], we do not construct the collision space directly. Instead we
decompose it into a finite set of lower dimensional ‘slices’. We compute the con-
nected components of the latter and analyze the possible transitions between differ-
ent slices. This allows us to overcome the dimensionality problem without losing
any necessary information about the topology of the configuration space.

3 An Overview of Our Method

In this section we state the problem we are going to address, introduce the necessary
notation, and provide an intuitive description of our approach while avoiding going
into technical details.
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3.1 Problem Formulation

Let us start with the necessary definitions. A rigid object O is a compact connected
subset of Rd of the form O = cl(U), where d ∈ {2,3}, U is an open subset of Rd ,
and cl(U) denotes the closure of U . A set of obstacles S is a compact subset of
Rd with the same property: it can be represented as a closure of an open subset
of Rd . Let C = SE(d) denote the configuration space of the object. We define its
collision space as the set of the objects configurations in which the object pene-
trates the obstacles: C col = {c ∈ C | int(c(O))∩ int(S ) 6= /0}, where c(O) denotes
the object in a configuration c. Note that this definition allows the object to be in
contact with the obstacles. The free space C f ree is the complement of the collision
space: C f ree = C −C col . We assume that both the obstacles and the object can be
approximated as unions of balls lying in their interior, S = {BR1(X1), ..,BRn(Xn)}
and O = {Or1(Y1), ..,Orm(Ym)} of radii R1, ..,Rn and r1, ..,rm respectively1.

Our goal is to provide an algorithm which:
• takes the approximations of the object and the obstacles as input;
• constructs an approximation of the collision space;
• for a given configuration, checks whether it is caged; returns “True” if it is guar-

anteed to be caged, and “Undefined” otherwise;
• for a given pair of configurations, checks whether there is a collision-free path

between them; returns “False” if they are guaranteed to be disconnected, and
“Undefined” otherwise.

3.2 Our Approach: The General Idea

To address our problem we compute an approximation of C col , and then analyse
the connectivity of its complement – the free space. Let us think of C as a product
C = Rd×SO(d) where d ∈ {2,3}.

Note that as long as the object is caged by a subset of the collision space, it is
guaranteed to be caged by the entire collision space. Therefore, to solve our prob-
lem, it is not necessary to reconstruct the exact collision space C col . Instead, it is
enough to approximate it by its sufficiently large subset C col

a ⊂ C col .
Instead of reconstructing C col directly, we work with its projections C col(Oφ )

onto Rd corresponding to fixed orientation φ of the object in SO(d).
Since the number of all possible orientation values is infinite, we divide C into a

finite number of slices:

Definition 1 A slice of the configuration space C is a subset of C defined as fol-
lows:

SlU = Rd×U,

1 From now on, we will always use this approximation in this paper, and hence we write the
approximations as equalities to simplify the notation.
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where U is an open subset of SO(d).

Similarly, we denote a slice of the collision (free) space by Slcol
U (Sl f ree

U ). For each
slice we build an approximation of the collision space Slcol

U , so that the union of all
of them represents the entire collision space:

C col =
⋃

U⊂SO(d)

Slcol
U

Let us now discuss how we construct the slices. Note that to show that the object
collides with an obstacle it is enough to show that some part of the object is in
collision. We define an ε−core of the object as follows:

Definition 2 An ε-core of an object O is a subset Oε of the object such that any
point of Oε lies at least at a distance2 ε from the boundary of O:

Oε = {p ∈ O|d(p,∂O)≥ ε}

Let Oφ and Oφ

ε denote an object O and its ε-core with a fixed orientation φ ∈
SO(d), respectively. Note that the collision space of an object with a fixed rotation
is a subset of Rd .

Fig. 2 An ε-core Oφ

ε of the object Oφ is depicted in grey; it is contained within the rotated object
Oθ

ε .

In Sec 4, we show that for an object Oφ and its ε-core Oφ

ε with a fixed orientation
φ we can find an open neighbourhood U(ε,φ) ⊂ SO(d) of φ such that for any
θ ∈ U(ε,φ) the ε-core Oφ

ε is fully contained within a slightly rotated object Oθ ,
see Fig. 2. Since SO(d) is compact, we choose a finite set of rotations {φ1, ..,φs}
so that the corresponding family of sets U(ε,φi) is a finite open cover of SO(d):
SO(d) =

⋃
i∈{1,..,s}U(ε,φi).

Now note that if Oφ

ε ⊂ Oθ , then C col(Oφ

ε ) ⊂ C col(Oθ ). Thus, we can approxi-
mate the collision space of a slice by aSlcol

U(ε,φ) defined as follows:

Slcol
U(ε,φ) ≈ aSlcol

U(ε,φ) = C col(Oφ

ε )×U(ε,φ),

and then C col ≈ C col
a =

⋃
i∈{1,..,s} aSlcol

U(ε,φi)
.

2 By distance here we mean Euclidean distance in Rd
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Given an object Oφ and an ε > 0, we compute the corresponding ε-core Oφ

ε .
We then compute an approximation of the collision space for Oφ

ε . Recall that the
set of obstacles is represented as a set of balls S = {BR1(X1), ..,BRn(Xn)} and O =
{Or1(Y1), ..,Orm(Ym)}. The ε-core can be represented as a set of balls with centres
at the same points and smaller radii: Oφ

ε = {Or1−ε(Y1), ..,Orm−ε(Ym)}.
However, to understand the connectivity of the free space it is not enough to

consider different orientation intervals separately. Consider an example, see Fig.3.
Here we have two slices of the free space corresponding to two orientation in-
tervals U1 ∩U2 6= /0. Both slices have 3 connected components: Q1,Q2,Q3, and
Q′1,Q

′
2,Q

′
3 respectively. The object can move between the connected components

Qi and Q′jfrom different slices if (i) the corresponding orientation intervals have a
non-empty intersection and (ii) Qi and Q j have non-empty intersection in Rd .

Fig. 3 Two approximations of the collision space corresponding to the non-disjoint orientation
intervals U1 and U2 are depicted in grey. The free space is depicted in white. The arrows between
different connected components indicate the possible transitions between slices.

Therefore, the object is contained within a bounded connected component of
the free space if (i) for the corresponding slice SlU of the configuration space it is
contained within a bounded connected component of C f ree, and (ii) there is no path
between slices leading the object to an unbounded connected component of C f ree.

4 Methodology

In this section, we describe the technical details of our approach. We start with the
derivation of the possible slice size depending on the size of the chosen ε-core of
the object.

4.1 The Object Core and The Size of The Slices

Consider an ε-core of the object in a given orientation for a fixed ε , and let us fix its
orientation φ ∈ SO(d). We now want to explicitly find an open set U(ε,φ)⊂ SO(d)
such that for any θ ∈U(ε,φ) the ε-core Oφ

ε is fully contained within any Oθ . We
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represent a motion in SO(d) as a rotation matrix R. First, we make the following
observation:

Observation 1 Consider an object Oφ and an ε-core Oφ

ε inside it. Let us fix the
orientation φ ∈ SO(d) of Oφ

ε , and apply a rotation R to Oφ . Then Oφ

ε is fully con-
tained inside the rotated object ORφ if the displacement ||Ry−y||2 of a point y after
applying the rotation is smaller than ε for any point y ∈ Oφ .

The proof is trivial, as by construction any point of Oφ

ε is separated at least at a
distance ε from the boundary of Oφ . Thus, if Oφ

ε is not lying inside of ORφ , then
there exists a point y ∈ Oφ such that the distance from it to its image Ry in ORφ is
not smaller than ε , ||Ry− y||2 ≥ ε .

Note that in fact the form of U(ε,φ) does not depend on φ , and U(ε,Rφ) can be
obtained by rotating the former: U(ε,Rφ) = RU(ε,φ) for any φ ∈ SO(d) and any
rotation R.

We now want to estimate the maximum displacement ||Ry−y||2 of a point y∈Rd

after applying a rotation R. Let I be the identity matrix. We call R− I a displacement
matrix associated to the rotation R. To estimate ||(R−I)y||2, we compute the spectral
norm of the displacement matrix:

||R− I||2 = sup
y∈R3, ||y||2 6=0

||(R− I)y||2
||y||2

,

which gives us an upper bound for the displacement:

∀y ∈ Oφ : ||R− I||2 max
x∈Oφ

(||x||2)≥ ||(R− I)y||2

4.1.1 2D Workspace

Consider a two-dimensional workspace. In this case, the configuration space (and
hence the collision space) of the object is a three-dimensional subset of SE(2) =
R2×SO(2), where each configuration is described by a position of the object x∈R2

and its orientation φ ∈ SO(2).
In this case rotation matrix can be written as

Rθ =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
,

Recall that the spectral norm of R− I is defined as the square root of the maxi-
mum eigenvalue of (R− I)T (R− I).

This matrix has a single single eigenvalue of algebraic multiplicity two:

λ = (cos(θ)−1)2 + sin2(θ) = 2−2cos(θ) = 4sin2(θ/2),

which gives us an upper bound for the maximum displacement of y after applying
a rotation Rθ :
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||Rθ y− y||2 ≤ 2|sin(θ/2)| · ||y||2

4.1.2 3D Workspace

We represent motions in SO(3) as a composition of the pitch, yaw and roll rotation
matrices:

Rφ =

 cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)

 , Rσ =

cos(σ) −sin(σ) 0
sin(σ) cos(σ) 0

0 0 1

 , Rθ =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)


As before, we want to estimate the displacement incurred by applying a given ro-

tation. Consider a fixed triplet (θ ,σ ,φ) we define R(θ ,σ ,φ) = Rθ ·Rσ ·Rφ , and once
again compute the norm of the displacement matrix as the square root of the maxi-
mum eigenvalue of (R(θ ,σ ,φ)− I)T (R(θ ,σ ,φ)− I).

Direct computations show that this matrix has a single non-zero eigenvalue of
algebraic multiplicity two:

λ = 3− cos(σ)cos(φ)− cos(θ)cos(φ)− cos(σ)cos(θ)− sin(σ)sin(φ)sin(θ)

We can simplify this expression by rewriting the products of trigonometric func-
tions as their sums and get:

λ = 3− cos(σ −φ)

2
− cos(σ +φ)

2
− cos(σ −θ)

2
− cos(σ +θ)

2
− cos(θ −φ)

2

− cos(θ +φ)

2
− sin(σ +θ −φ)

4
− sin(σ −θ +φ)

4
+

sin(σ +θ +φ)

4
+

sin(σ −θ −φ)

4

For simplicity, instead of treating our parameters θ , σ , and φ separately, we
consider those triples which lie inside of a ball Br(0) of radius r > 0.

Now for a fixed r > 0 we observe that for any (θ ,σ ,φ) ∈ Br(0), each of the
arguments σ±θ ,σ±φ ,θ±φ ,σ±φ±θ is contained in [−r,r]. Indeed, for example

|s+ t + p| ≤ |s|+ |t|+ |p| ≤
√

s2 + t2 + p2 ≤ r,

and the same follows for any other argument from the list. This means that for
any r in the interval [−π/2,π/2] we have:

cos(σ +θ),cos(σ −θ),cos(σ + p),cos(σ −φ),cos(θ +φ),cos(θ −φ)≥ cos(r)

sin(σ +φ +θ),sin(σ −θ −φ)≥ sin(−r) =−sin(r)

sin(σ +θ −φ),sin(σ −θ +φ)≥−sin(r),

And hence

λ ≤ 3−3cos(r)+ sin(r)
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Furthermore, since this is true for every l ∈ [0,r] we get

||R(θ ,σ ,φ)− I||2 ≤
√

3−3cos(r)+ sin(r) ∀(θ ,σ ,φ) ∈ Br(0),

and so the maximum displacement of y after applying a rotation R(θ ,σ ,φ) can be
estimated as follows:

||(R(θ ,σ ,φ)− I)y||2 ≤
√

3−3cos(r)+ sin(r) · ||y||2
Fig. 4 illustrates how the displacement grows with the radius r.

Fig. 4 Graph of the maximum displacement estimate for a ball of radius r

4.2 Collision Space Reconstruction

Let us now discuss how we construct the collision space for each slice. Recall
that both the object and the obstacles are represented as unions of balls, S =⋃

i∈{1,..,n}BRi(Xi) and O =
⋃

i∈{1,..,m}Ori(Yi) of radii R1, ..,Rn and r1, ..,rm respec-
tively. Let the frame of the object be centred in its centroid G, GYi denote the posi-
tion vector of the center of each ball, i ∈ {1..m}, and T−GYi

denote a translation to a
vector −GYi.

The object represented as a union of balls collides with the obstacles if at least
one of the balls is in collision, so the collision space of the object is a union of the
collision spaces of the balls shifted with respect to the position of the balls centers:

C col(Oφ

ε ) =
⋃

i∈{1..m}
T−GYi

(C col(Ori−ε))
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Note also that a ball collides with the obstacles when the distance from the ob-
stacles to its center is not greater than the radius of the ball, so the collision space of
a single ball of radius ri− ε can be expressed as follows:

C col(Ori−ε) = {x ∈ Rd |d(x,S)≤ ri− ε}=
⋃

j∈{1..n}
BR j+ri−ε(X j)

So, the collision space of the ε-core can be written as

C col(Oφ

ε ) =
⋃

i∈{1..m}, j∈{1..n}
T−GYi

(BR j+ri−ε(X j))

Algorithm 1: Construct-Slice

Data: An ε-core Oφ

ε = {Or1−ε(Y1), ..,Orm−ε(Ym)}, a set of obstacles
S = {BR1(X1), ..,BRn(Xn)}

Result: A union of balls representing the collision space C col(Oφ

ε )

1 GYi← Centroid(Oφ

ε )
2 C col(Oφ

ε )← /0
3 foreach i ∈ {1..m}, j ∈ {1..n} do
4 C col(Oφ

ε )← C col(Oφ

ε )∪T−GYi
(BR j+ri−ε(X j))

5 end
6 return C col(Oφ

ε )

The construction of the collision space of the ε-core of the object is straightfor-
ward, see Alg. 1. Recall now that for a certain U(ε,φ) the collision space C col(Oφ

ε )
is contained within C col(Oθ ) for each θ ∈U(ε,φ), which gives us an approxima-
tion of the slice of C col as C col(Oφ

ε )×U(ε,φ).

4.3 Gluing The Slices Together

Once we have computed the collision space for each slice, we proceed by finding
the connected components of the free space of each of them. As a result, we want
to get s a d−dimensional simplicial complexes approximating the free space for
each of the slices. For that, we use the approach proposed by McCarthy et al. in
[10]. Since C col(Oφ

ε ) is a union of balls, it is convenient to represent it as an alpha
complex – a discrete representation of the space. Alpha complexes are simplicial
complexes which are particularly convenient for approximating unions of balls, as
by the nerve theorem they preserve the homotopy type (and hence the necessary
topological properties) of the corresponding union of balls. They have been used
to approximate configuration spaces, for instance, in [7, 10]. We refer the reader to
[3] for a complete and self-contained treatment of alpha complexes and the theory
behind them. To approximate the free space, we compute a regular triangulation,
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Algorithm 2: Glue-Slices
Data: A set of slices C col

a = {aSlcol
U1

, ..,aSlcol
Us
}; their connected components

{{C1
1 , ..,C

1
n1
}, ..,{Cs

1, ..,C
s
ns}}

Result: A connectivity graph G
1 G ← /0
2 AddVertices(G ,{C1

1 , ..,C
1
n1
, ..,Cs

1, ..,C
s
ns}

3 foreach aSlcol
Ui
∈ C col

a do
4 foreach aSlcol

U j
∈ Neighbours(aSlcol

Ui
) do

5 foreach Ci
k ∈ Components(aSlcol

Ui
) do

6 foreach C j
l ∈ Components(aSlcol

U j
) do

7 if Ci
k ∩C j

l 6= /0 then
8 AddEdge(G ,(Ci

k,C
j
l )

9 end
10 end
11 end
12 end
13 end
14 return G

which is a convex superset of the computed alpha complex, see [4]. We mark tetra-
hedra in the regular triangulation as “free” or “in collision”, and compute a set of
connected components of the free space. We then mark the connected components
as “bounded” and “unbounded”. Note that since both the object and the set of obsta-
cles are bounded, the collision space is also bounded, and therefore the free space
always has one unbounded connected component. We represent it by artificially
adding an “infinite” tetrahedron.

Now when we have an approximation of the collision space as a union of slices

C col
a =

⋃
Ui,i∈{1,..,s}

aSlcol
Ui

and an alpha complex representing each slice aSlcol
U , we can study the relation-

ship between slices. More precisely, we would like to build a connectivity graph G ,
where the vertices represent the connected components {Ci

1, ..,C
i
ni
} of each slice Ui

for i ∈ {1, ..s}, see Alg. 2.
Two vertices representing components Cp ⊂ aSlcol

Ui
and Cq ⊂ aSlcol

U j
, i 6= j, are

connected by an edge if a direct transition between them is possible. That is, if (i)
the sets Ui and U j overlap, Ui∩U j 6= /0, and (ii) the respective projections of the con-
nected components to Rd intersect: PrRd (Cq)∩PrRd (Cp) 6= /0, where the projection
operator is defined as PrRd (x,φ) = x. So, for each slice aSlcol

Ui
, we consider its neigh-

bours – i.e., slices aSlcol
U j

such that Ui ∩U j 6= /0, and check whether the connected
components of the free space of these pairs of slices (represented as d-dimensional
simplicial complexes) overlap.
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Once the connectivity graph is constructed, we can easily check if there is no path
between two given configurations, and if a given configuration is caged. We run a
depth-first search in G to compute its connected components, and then given two
configurations cs and cg we simply check if the corresponding vertices of G belong
to different connected components. If that is the case, there is no path between cs
and cg.

Algorithm 3: Query-Connectivity

Data: Two configurations, ci and c j; a set of slices C col
a = {aSlcol

U1
, ..,aSlcol

Us
};

their connected components {{C1
1 , ..,C

1
n1
}, ..,{Cs

1, ..,C
s
ns}}; the

connectivity graph G
Result: Boolean, path existence

1 aSli← Slice-Containing-Configuration(ci, {aSlcol
U1

, ..,aSlcol
Us
})

2 aSl j← Slice-Containing-Configuration(c j, {aSlcol
U1

, ..,aSlcol
Us
})

3 Ci← Component-Containing-Configuration(ci, aSli, {Ci
1, ..,C

i
n1
})

4 C j← Component-Containing-Configuration(c j, aSl j, {C j
1, ..,C

j
n1})

5 if Are-Connected(Ci, C j, G ) then
6 return Undefined
7 end
8 else
9 return False

10 end

For caging, we need to check whether we can reach an unbounded connected
component starting from a given configuration, see Alg. 4. For each connected com-
ponent of each of the slices, we know if it is bounded or not, each vertex of G has a
corresponding mark. To prove caging, we check if the vertex of G corresponding to
a certain configuration c is connected to an ”unbounded” vertex.

Algorithm 4: Check-Caging

Data: A configuration ci; a set of slices C col
a = {aSlcol

U1
, ..,aSlcol

Us
}; their

connected components {{C1
1 , ..,C

1
n1
}, ..,{Cs

1, ..,C
s
ns}}; the connectivity

graph G
Result: Boolean, the configuration is caged

1 aSli← Slice-Containing-Configuration(ci, {aSlcol
U1

, ..,aSlcol
Us
})

2 Ci← Component-Containing-Configuration(ci, aSli, {Ci
1, ..,C

i
n1
})

3 if Connected-To-Unbounded(C, G ) then
4 return Undefined
5 end
6 else
7 return True
8 end
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5 Paths Construction

In this section, we discuss how our approximation of the configuration space can be
used for path planning. Modern path planning algorithms, such as PRM, RRT, and
their modifications, are guaranteed to find a path if one exists. However, they can-
not prove that two configurations are disconnected. On the contrary, our approach
is not guaranteed to find a path if one exists, as our approximation of the collision
space is just a subset of the actual collision space. However, we can prove path
non-existence. Thus, path planning algorithms and our method can be considered as
complementary techniques and can be run in parallel to solve path planning prob-
lem more efficiently. Furthermore, our approximation of the collision space can be
used to construct path candidates which are not guaranteed to be collision-free, but
can be used as initial approximations and to be further improved using some path
optimization technique, such as CHOMP [19]. This is especially useful in cluttered
environments, when we need to find a path through a narrow passage. Our approach
can be seen as a continuation of the pioneering work by Basch et al., [2].

Since our approximation of the collision space is not complete, we are limited to
a certain class of paths which we can construct. We call them decomposable paths:
– collision-free paths that can be decomposed into finitely many motions in SO(d)
followed by a motion in Rd . Formally, we define it as follows:

Definition 3 A path γ : [0,1]→ SO(d) is decomposable if there exists a family of
paths γ1,γ

′
1, ..,γn,γ

′
n such that PrRd (Im(γi)) and PrSOd (Im(γ ′i )) are constant paths in

Rd and SO(d) respectively3, and γ = γ1 ∗ γ ′1 ∗ ..∗ γn ∗ γ ′n, where by γi ∗ γ j we mean a
composition of paths γi and γ j.

However, this class is nevertheless useful as we can show that if there exists
some collision-free path in the free space, our approximation of the configuration
space allows us to construct a decomposable approximation. Namely, instead of
considering the original object, we construct a decomposable path for its ε-core,
and we show that we can always do that providing there is a collision-free path:

Lemma 1 If two configurations c and c′ of the original object O are connected,
then there is a decomposable path between the respective configurations of its ε-
core Oε .

Fig. 5 The arcs (pi−1, pi and (pi, pi+1 of the projection π are completely contained within a ball
ω of radius ε/2

3 Here PrRd (.) and PrSO(d)(.) denote the projections to Rd and SO(d) respectively, and Im(γ)
denotes the image of γ in SO(d).
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Proof. If there exists a decomposable path between c and c′ for the original ob-
ject O , then the same path is valid for Oε ⊂ O . Otherwise, let us pick any non-
decomposable path γ between c and c′. Note that along this path Oε is always
at least at a distance ε from the obstacles. Let us now explicitly decompose
γ by choosing waypoints c = (p0,r0), . . . ,(pn,rn) = c′ from γ and constructing
γ ′ = {(p0,r0),(p1,r0),(p1,r1), . . . ,(pn−1,rn−1),(pn,rn−1),(pn,rn)}, where pi are
the coordinates of the Rd component of SE(d) and ri are the coordinates of the
SO(d) component. The resulting decomposition will consist of alternating pure
translation and pure rotation paths sending the point (pi,ri) to (pi+1,ri) through
a translation-only segment and then to (pi+1,ri+1) through a rotation-only segment.

Assume the waypoints c = (p0,r0), . . . ,(pi,ri) are already chosen. Let p =
PrRd (γ) be the projection of γ onto Rd . We choose the next point pi+1 as the sec-
ond endpoint of the longest arc (pi,y) of the path π which is fully contained within
an ε/2-ball ω centered at pi (or as the Rd-component of c′, in case the part of π

connecting it to pi lies inside ω), and make sure that pi+1 does not coincide with
pi−1.

Let us show that a pure translation of Oε from (pi,ri) to (pi+1,ri) is collision-
free. Since π is a projection of a collision-free path, O in configuration (pi,ri) does
not collide with obstacles. Then any point of Oε in (pi,ri) is separated at least at a
distance ε from the obstacles. Pure translation to (pi+1,ri) will move each point of
Oε at distance ε/2 < ε , so it will not collide with the obstacles.

Now consider a pure rotation of Oε from (pi+1,ri) to (pi+1,ri+1). Assume that
there is some r′ ∈ [ri,ri+1] such that Oε in configuration (pi+1,r′) collides with
obstacles. Given the continuity of the path between (pi,ri) and (pi+1,ri+1), there is
some configuration (p′,r′) such that p′ ∈ [pi, pi+1]. Since pi+1 is chosen in a way
that the arc (pi, pi+1) lies inside ω , p′ also lies inside ω . Then the distance between
p′ and pi+1 is less than ε . Therefore, since (p′,r′) is collision-free for the original
object O , (pi+1,r′) is collision-free for Oε , which contradicts our assumption.

Finally, we note that using Lemma 1 we can extend Algorithm 3 to provide an
approximate path between two configurations (p,r) and (p′,r′) if one exists. To
do this, we can have the algorithm output a sequence of pairs (C1,S1), . . . ,(Cn,Sn)
which comprise the path in the connectivity graph G , where the Ci are the compo-
nents and the Si. To produce a path we start from the configuration (p,r) ∈C1×S1
and use a local planner to find a path to some point (p2,r) ∈ (C1∩C2)×S1 and then
we rotate this configuration to (p2,r2) where r2 ∈ S2. We proceed in this manner
until we reach (pn,rn) ∈ Cn× Sn, since by construction (p′,r′) ∈ Cn× Sn, we can
use a local planner to find a path from (pn,rn) to (p′,rn) and finally rotate the final
configuration to (p′,r′).

6 Discussion and Possible Extensions

In this paper, we propose an approach towards proving caging and path non-
existence for rigid objects in 2D and 3D workspaces. We compute an approximation
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of the collision space of the object, represent it as a collection of lower dimensional
projections, and analyze the connectivity of the free space of the object. We also
discuss how our approach can be generalized to arbitrary configuration spaces.

Our approach can be potentially extended to a broader class of configuration
spaces, for example, in order to prove path non-existence for an articulated robot.
Indeed, as long as the configuration space can be represented as a product C =
C1×C2, where C1 ⊂ Rd and C2 is a compact set, we can construct a finite open
cover C2 =

⋃
Ui⊂C2

Ui, and for each slice Sli = C1 ×Ui construct collision space
approximations using an ε-core of the robot.
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