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Preface

I admit that each and every thing remains in its state until there
is reason for change. (Leibniz)

I’m sick and tired of this schism between earth and sky.
Idealism and realism sorely our reason try. (Gustaf Fröding)

This book, together with the companion volumes Introduction to Computa-
tional Differential Equations and Advanced Computational Differential Equa-
tions, presents a unified approach to computational mathematical modeling
using differential equations based on a principle of a fusion of mathematics and
computation. The book is motivated by the rapidly increasing dependence on
numerical methods in mathematical modeling driven by the development of
powerful computers accessible to everyone. Our goal is to provide a student
with the essential theoretical and computational tools that make it possible to
use differential equations in mathematical modeling in science and engineering
effectively. The backbone of the book is a new unified presentation of numerical
solution techniques for differential equations based on Galerkin methods.

Mathematical modeling using differential and integral equations has formed
the basis of science and engineering since the creation of calculus by Leibniz
and Newton. Mathematical modeling has two basic dual aspects: one symbolic
and the other constructive-numerical, which reflect the duality between the in-
finite and the finite, or the continuum and the discrete. The two aspects have
been closely intertwined throughout the development of modern science from
the development of calculus in the work of Euler, Lagrange, Laplace and Gauss
into the work of von Neumann in our time. For example, Laplace’s monumental
Mécanique Céleste in five volumes presents a symbolic calculus for a mathe-
matical model of gravitation taking the form of Laplace’s equation, together
with massive numerical computations giving concrete information concerning
the motion of the planets in our solar system.

However, beginning with the search for rigor in the foundations of calculus
in the 19th century, a split between the symbolic and constructive aspects
gradually developed. The split accelerated with the invention of the electronic
computer in the 1940s, after which the constructive aspects were pursued in the
new fields of numerical analysis and computing sciences, primarily developed
outside departments of mathematics. The unfortunate result today is that

ix
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symbolic mathematics and constructive-numerical mathematics by and large
are separate disciplines and are rarely taught together. Typically, a student
first meets calculus restricted to its symbolic form and then much later, in a
different context, is confronted with the computational side. This state of affairs
lacks a sound scientific motivation and causes severe difficulties in courses in
physics, mechanics and applied sciences building on mathematical modeling.
The difficulties are related to the following two basic questions: (i) How to
get applications into mathematics education? (ii) How to use mathematics in
applications? Since differential equations are so fundamental in mathematical
modeling, these questions may be turned around as follows: (i) How can we
teach differential equations in mathematics education? (ii) How can we use
differential equations in applications?

Traditionally, the topic of differential equations in basic mathematics edu-
cation is restricted to separable scalar first order ordinary differential equations
and constant coefficient linear scalar n’th order equations for which explicit so-
lution formulas are presented, together with some applications of separation of
variables techniques for partial differential equations like the Poisson equation
on a square. Even slightly more general problems have to be avoided because
the symbolic solution methods quickly become so complex. Unfortunately, the
presented tools are not sufficient for applications and as a result the student
must be left with the impression that mathematical modeling based on sym-
bolic mathematics is difficult and only seldom really useful. Furthermore, the
numerical solution of differential equations, considered with disdain by many
pure mathematicians, is often avoided altogether or left until later classes,
where it is often taught in a “cookbook” style and not as an integral part of
a mathematics education aimed at increasing understanding. The net result is
that there seems to be no good answer to the first question in the traditional
mathematics education.

The second question is related to the apparent principle of organization of
a technical university with departments formed around particular differential
equations: mechanics around Lagrange’s equation, physics around Schrödinger’s
equation, electromagnetics around Maxwell’s equations, fluid and gas dynamics
around the Navier-Stokes equations, solid mechanics around Navier’s elasticity
equations, nuclear engineering around the transport equation, and so on. Each
discipline has largely developed its own set of analytic and numerical tools for
attacking its special differential equation independently and this set of tools
forms the basic theoretical core of the discipline and its courses. The organi-
zation principle reflects both the importance of mathematical modeling using
differential equations and the traditional difficulty of obtaining solutions.

Both of these questions would have completely different answers if it were
possible to compute solutions of differential equations using a unified mathe-
matical methodology simple enough to be introduced in the basic mathematics
education and powerful enough to apply to real applications. In a natural way,
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mathematics education would then be opened to a wealth of applications and
applied sciences could start from a more practical mathematical foundation.
Moreover, establishing a common methodology opens the possibility of ex-
ploring “multi-physics” problems including the interaction of phenomena from
solids, fluids, electromagnetics and chemical reactions, for example.

In this book and the companion volumes we seek to develop such a unified
mathematical methodology for solving differential equations numerically. Our
work is based on the conviction that it is possible to approach this area, which
is traditionally considered to be difficult and advanced, in a way that is com-
paratively easy to understand. However, our goal has not been to write an easy
text that can be covered in one term in an independent course. The material in
this book takes time to digest, as much as the underlying mathematics itself. It
appears to us that the optimal course will involve the gradual integration of the
material into the traditional mathematics curriculum from the very beginning.

We emphasize that we are not advocating the study of computational algo-
rithms over the mathematics of calculus and linear algebra; it is always a fusion
of analysis and numerical computation that appears to be the most fruitful.
The material that we would like to see included in the mathematics curriculum
offers a concrete motivation for the development of analytic techniques and
mathematical abstraction. Computation does not make analysis obsolete, but
gives the analytical mind a focus. Furthermore, the role of symbolic methods
changes. Instead of being the workhorse of analytical computations requiring
a high degree of technical complexity, symbolic analysis may focus on analyti-
cal aspects of model problems in order to increase understanding and develop
intuition.

How to use this book

This book begins with a chapter that recalls the close connection between inte-
gration and numerical quadrature and then proceeds through introductory ma-
terial on calculus and linear algebra to linear ordinary and partial differential
equations. The companion text Advanced Computational Differential Equa-
tions widens the scope to nonlinear differential equations modeling a variety of
phenomena including reaction-diffusion, fluid flow and many-body dynamics as
well as material on implementation, and reaches the frontiers of research. The
companion text Introduction to Computational Differential Equations goes in
the other direction, developing in detail the introductory material on calculus
and linear algebra.

We have used the material that serves as the basis for these books in a
variety of courses in engineering and science taught at the California Insti-
tute of Technology, Chalmers University of Technology, Georgia Institute of
Technology, and the University of Michigan. These courses ranged from math-
ematically oriented courses on numerical methods for differential equations to
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applications oriented courses in engineering and science based on computation.
Students in these kinds of courses tend to have a diverse preparation in mathe-
matics and science and we have tried to handle this by making the material of
this book as accessible as possible and including necessary background material
from calculus, linear algebra, numerical analysis, mechanics, and physics.

In our experience, beginning a course about solving differential equations
by discretizing Poisson’s equation presents an overwhelming array of topics to
students: approximation theory, linear algebra, numerical solution of systems,
differential equations, function spaces, etc. The sheer number of topics in-
troduced at one time in this approach gives rise to an almost insurmountable
hurdle to understanding topics which taken one at a time are not so difficult.
To overcome these difficulties, we have taken a different approach.

In the first part of this book, we begin by considering the numerical solution
of the simplest differential equation by quadrature and we develop the themes of
convergence of numerical methods by giving a constructive proof of the Funda-
mental Theorem of Calculus. We also show the close relationship between con-
vergence and error estimation by studying adaptive quadrature briefly. Next,
we present background material on linear algebra and polynomial approxima-
tion theory, following a natural line started with the first chapter by applying
this material to quadrature. After this, we introduce Galerkin’s method for
more general differential equations by considering three specific examples. In
this chapter, we also raise the important issues that are addressed in the rest of
the book. This part concludes with an introduction to the numerical solution
of linear systems.

In the second part of the book, we discuss the discretization of time or
space dependent ordinary differential equations. The basic theme of this part
is to develop an intuitive sense of the classification of differential equations into
elliptic, parabolic, and hyperbolic. By discretizing model problems representing
these basic types, we can clarify the issues in discretization and convergence.
We also develop a sense of the kind of behavior to be expected of approximations
and their errors for the different kinds of problems.

Finally in the third part of the book, we study the discretization of the clas-
sic linear partial differential equations. The material is centered around specific
examples, with generalizations coming as additional material and worked out
in exercises. We also introduce the complexities of multi-physics problems with
two chapters on convection-diffusion-absorption problems.

While we advocate the arrangement of the material in this book on peda-
gogical grounds, we have also tried to be flexible. Thus, it is entirely possible
to choose a line based on a particular application or type of problem, e.g. sta-
tionary problems, and start directly with the pertinent chapters, referring back
to background material as needed.

This book is a substantial revision of Johnson ([10]) with changes made
in several key ways. First, it includes additional material on the derivation
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of differential equations as models of physical phenomena and mathematical
results on properties of the solutions. Next, the unification of computational
methodology using Galerkin discretization begun in the precursor is brought to
completion and is applied to a large variety of differential equations. Third, the
essential topics of error estimation and adaptive error control are introduced at
the start and developed consistently throughout the presentation. We believe
that computational error estimation and adaptive error control are fundamen-
tally important in scientific terms and this is where we have spent most of our
research energy. Finally, this book starts at a more elementary level than the
precursor and proceeds to a more advanced level in the advanced companion
volume.

Throughout the book, we discuss both practical issues of implementation
and present the error analysis that proves that the methods converge and which
provides the means to estimate and control the error. As mathematicians, a
careful explanation of this aspect is one of the most important subjects we can
offer to students in science and engineering. However, we delay discussing cer-
tain technical mathematical issues underlying the Galerkin method for partial
differential equations until the last chapter.

We believe that the students’ work should involve a combination of mathe-
matical analysis and computation in a problem and project-oriented approach
with close connection to applications. The questions may be of mathemat-
ical or computational nature, and may concern mathematical modeling and
directly relate to topics treated in courses in mechanics, physics and applied
sciences. We have provided many problems of this nature that we have assigned
in our own courses. Hints and answers for the problems as well as additional
problems will be given in the introductory companion volume. The book is
complemented by software for solving differential equations using adaptive er-
ror control called Femlab that is freely available through the Internet. Femlab
implements the computational algorithms presented in the book, and can serve
as a laboratory for experiments in mathematical modeling and numerical solu-
tion of differential equations. It can serve equally well as a model and toolbox
for the development of codes for adaptive finite element methods.

Finally, we mention that we have implemented and tested a reform of the
mathematics curriculum based on integrating mathematics and computation
during the past year in the engineering physics program at Chalmers University.
The new program follows a natural progression from calculus in one variable
and ordinary differential equations to calculus in several variables and partial
differential equations while developing the mathematical techniques in a natural
interplay with applications. For course material, we used this book side-by-side
with existing texts in calculus and linear algebra. Our experience has been very
positive and gives clear evidence that the goals we have stated may indeed be
achieved in practice. With the elementary companion text, we hope to ease
the process of fusing the new and classical material at the elementary level and
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thereby help to promote the reform in a wider context.
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Part I

Introduction

This first part has two main purposes. The first is to review some
mathematical prerequisites needed for the numerical solution of differ-
ential equations, including material from calculus, linear algebra, nu-
merical linear algebra, and approximation of functions by (piecewise)
polynomials. The second purpose is to introduce the basic issues in the
numerical solution of differential equations by discussing some concrete
examples. We start by proving the Fundamental Theorem of Calculus
by proving the convergence of a numerical method for computing an in-
tegral. We then introduce Galerkin’s method for the numerical solution
of differential equations in the context of two basic model problems from
population dynamics and stationary heat conduction.

1





1

The Vision of Leibniz

Knowing thus the Algorithm of this calculus, which I call Differen-
tial Calculus, all differential equations can be solved by a common
method. (Leibniz)

When, several years ago, I saw for the first time an instrument
which, when carried, automatically records the number of steps
taken by a pedestrian, it occurred to me at once that the entire
arithmetic could be subjected to a similar kind of machinery so
that not only addition and subtraction, but also multiplication and
division could be accomplished by a suitably arranged machine
easily, promptly and with sure results.... For it is unworthy of
excellent men to lose hours like slaves in the labour of calculations,
which could safely be left to anyone else if the machine was used....
And now that we may give final praise to the machine, we may say
that it will be desirable to all who are engaged in computations
which, as is well known, are the mangers of financial affairs, the
administrators of others estates, merchants, surveyors, navigators,
astronomers, and those connected with any of the crafts that use
mathematics. (Leibniz)

Building on tradition going back to the ancient Greek philosophers, Leib-
niz and Newton invented calculus in the late 17th century and thereby
laid the foundation for the revolutionary development of science and
technology that is shaping the world today. Calculus is a method for
modeling physical systems mathematically by relating the state of a sys-
tem to its neighboring states in space-time using differential and integral
equations. Because calculus is inherently computational, this revolution
began to accelerate tremendously in the 1940s when the electronic com-
puter was created. Today, we are seeing what is essentially a “marriage”

3



4 1. The Vision of Leibniz

of calculus and computation in the creation of the field of computational
mathematical modeling.

Figure 1.1: Gottfried Wilhelm Leibniz, 1646-1716.

Actually, Leibniz himself sought to realize a unification of calculus
and computation, but failed because the mechanical calculator he in-
vented was not sufficiently powerful. The next serious effort was made
in the 1830s by Babbage, who designed a steam powered mechanical
computer he called the Analytical Engine. Again, technical difficulties
and low speed stopped his ambitious plans.

The possibility of realizing Leibniz’ and Babbage’s visions of a uni-
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versal computing machine came with the invention of the electronic valve
in the 1930s, which enabled the construction of high speed digital com-
puters. The development took a leap during the World War II spurred by
the computing demands of the military. Until this time, large scale com-
putations were performed by rooms of people using mechanical adding
machines. The war provided an immediate pressure to speed up the pro-
cess of scientific development by using mathematical modeling to hone a
physical problem down to a manageable level, and mathematicians and
physicists became interested in the invention of an electronic comput-
ing device. The logical design of programmable electronic computers
was developed by the mathematician von Neumann, among others. By
the late forties, von Neumann was using the first ENIAC (Electronic
Numerical Integrator And Calculator) computer to address questions in
fluid dynamics and aerodynamics.

The subsequent development of computer power that has resulted in
desktop computers of far greater power than the ENIAC, has been paral-
leled by the rapid introduction of computational mathematical modeling
into all areas of science and engineering. Questions routinely addressed
computationally using a computer include: What is the weather going
to do in three days? Will this airplane fly? Can this bridge carry a load
of ten trucks? What happens during a car collision? How do we direct
a rocket to pass close by Saturn? How can we create an image of the
interior of the human body using very weak X-rays? What is the shape
of a tennis racket that has the largest “sweet spot”? What is a design
of a bicycle frame that combines low weight with rigidity? How can we
create a sharp picture from a blurred picture? What will the deficit be
in Sweden in the year 2000? How much would the mean temperature
of the earth increase if the amount of carbon dioxide in the atmosphere
increased by 20 percent?

The physical situations behind these kinds of questions are modeled
by expressing the laws of mechanics and physics (or economics) in terms
of equations that relate derivatives and integrals. Common variables
in these models are time, position, velocity, acceleration, mass, density,
momentum, energy, stress and force, and the basic laws express conserva-
tion of mass, momentum and energy, and balance of forces. Information
about the physical process being modeled is gained by solving for some
of the variables in the equation, i.e. by computing the solution of the
differential/integral equation in terms of the others, which are assumed
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to be known data. Calculus is the basic study of differential/integral
equations and their solutions.

Sometimes it is possible to find an exact formula for the solution
of a differential/integral equation. For example, the solution might be
expressed in terms of the data as a combination of elementary functions
or as a trigonometric or power series. This is the classical mathemat-
ical method of solving a differential equation, which is now partially
automated in mathematical software for symbolic computation such as
Maple or Mathematica. However, this approach only works on a rel-
atively small class of differential equations. In more realistic models,
solutions of differential equations cannot be found explicitly in terms
of known functions, and the alternative is to determine an approximate
solution for given data through numerical computations on a computer.
The basic idea is to discretize a given differential/integral equation to
obtain a system of equations with a finite number of unknowns, which
may be solved using a computer to produce an approximate solution.
The finite-dimensional problem is referred to as a discrete problem and
the corresponding differential/integral equation as a continuous problem.
A good numerical method has the property that the error decreases as
the number of unknowns, and thus the computational work, increases.
Discrete problems derived from physical models are usually computa-
tionally intensive, and hence the rapid increase of computer power has
opened entirely new possibilities for this approach. Using a desktop
computer, we can often obtain more information about physical situ-
ations by numerically solving differential equations than was obtained
over all the previous centuries of study using analytical methods.

Predicting the weather

The progress in weather prediction is a good example for this discussion.
Historically, weather forecasting was based on studying previous pat-
terns to predict future behavior. A farmer’s almanac gives predictions
based on the past behavior, but involves so many variables related to the
weather that determining meaningful correlations is an overwhelming
task. By modeling the atmosphere with a set of differential equations,
the number of variables is reduced to a handful that can be measured
closely, albeit at many locations. This was envisioned by the English
pioneer of numerical weather prediction Richardson in the 1920s, who
proposed the formation of a department of 64,000 employees working
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in shifts to perform the necessary calculations using mechanical calcu-
lators more quickly than the weather changed. After this proposal, the
attitude toward numerical weather prediction became pessimistic. Not
until the development of the modern computer, could the massive com-
putations required be performed sufficiently rapidly to be useful. The
first meaningful numerical forecasts were made by von Neumann and
Charney in the late forties using the ENIAC, but of course the reliabil-
ity was very low due to the extremely coarse discretization of the earth’s
system they had to use. The most recent model for the global weather
uses a discretization grid with roughly 50,000 points horizontally and 31
layers vertically giving a total of five million equations that are solved
in a couple of hours on a super-computer.

There are three sources of errors affecting the reliability of a numer-
ical weather forecast: (i) measurement errors in data (or lack of data)
(ii) approximation errors in modeling and (iii) approximation errors in
computation. The initial data at the start of the computer simulation
are always measured with some error; the set of differential equations in
the computer model only approximately describes the evolution of the
atmosphere; and finally the numerical solution of the differential equa-
tions is only an approximation of the true solution. These sources add
up to form the total prediction error. It is essential to be able to esti-
mate the total error by estimating individually the contributions from
the sources (i)-(iii) and improve the precision where possible. This is a
basic issue in all applications in computational mathematical modeling.

Our experience tells that forecasts of the daily weather become very
unreliable in predictions for more than say a week. This was discussed
in the 1960s by the meteorolgist Lorenz, who coined the phrase “the
butterfly effect” to describe situations in which a small cause can have
a large effect after some time. Lorenz gave a simple example displaying
this phenomenon in the form of the Lorenz system of ordinary differen-
tial equations with only three unknowns. We plot a typical solution in
Fig. 1.2, showing the trajectory of a “particle” being ejected away from
the origin to be attracted into a slowly diverging orbit to the left, then
making a loop on the right, returning to a few orbits to the left, then
back to the right etc. The trajectory is very sensitive to perturbations
as to the number of loops to the left or right, and thus is difficult to
compute accurately over a longer time interval, just as the evolution of
the weather may be difficult to predict for more than a week.
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Figure 1.2: A solution of the Lorenz system computed with an error of
.1 or less over the time interval (0, 30).

What is this book about?

If we summarize the Leibniz vision as a fusion of mathematical modeling,
mathematical analysis and computation, then there are three fundamen-
tal issues to be addressed:

• How are physical phenomena modeled using differential equations?

• What are the properties of solutions of differential equations?

• How are approximate solutions of differential equations computed
and how can the accuracy of the approximations be controlled?

This book tries to answer these questions for a specific set of problems
and to provide a set of tools that can be used to tackle the large variety
of problems met in applications.

The book begins with some material directly from calculus. Partly
this is a review and partly a presentation of elementary material needed
to solve differential equations numerically. Next, we study the particu-
lar issues that arise in different classes of equations by studying a set of
simple model problems from physics, mechanics and biology. The scope
is then widened to cover basic linear models for heat conduction, wave
propagation, fluid flow and elastic structures. The companion volume
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extends the scope further to nonlinear differential equations and sys-
tems of equations modeling a variety of phenomena including reaction-
diffusion, fluid flow and many-body dynamics and reaches the frontiers
of research.

Covering most of the material in this book would provide a good
preparation and a flexible set of tools for many of the problems that are
met in engineering and science undergraduate courses. It is essential to
do a good portion of the problems given in the text in order to master
the subject. We mark the more difficult and tedious problems (but they
must be all the more rewarding, right?) with warnings and often give
hints. A companion volume called Advanced Computational Differential
Equations leads into graduate level, including material on nonlinear dif-
ferential equations and implementation. Another companion book, In-
troduction to Computational Differential Equations, contains additional
material on calculus and linear algebra, hints to problems in this volume
and suggestions for project work.

The presentation is unified in the sense that it is always essentially
the same set of basic tools that are put to use independently of the level
of complexity of the underlying differential equation. The student will
discover this gradually going through the material. The methodology is
always presented in the simplest possible context to convey an essential
idea, which later is applied to successively more complex problems just
by “doing the same”. This means that a thorough understanding of the
simplest case is the best investment; for the student with limited time or
energy this minimal preparation allows him or her to computationally
address complex problems without necessarily having to go into all the
details, because the main ideas have been grasped in a simple case.
Thus, we seek to minimize the technical mathematical difficulties while
keeping the essence of the ideas.

On the other hand, some ideas cannot be explained in just one appli-
cation. As a result, the presentation in the simple cases may occasionally
seem lengthy, like for instance the careful proof of the Fundamental The-
orem of Calculus. But, the reader should feel confident that we have a
carefully thought out plan in our minds and some reason for presenting
the material in this way.

The book is supplemented by the software Cards and Femlab, where
the algorithms presented in the book are implemented. This gives the
possibility of a problem/project-oriented approach, where the student
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may test the performance of the algorithms and his own ideas of appli-
cation and improvement, and get a direct experience of the possibilities
of computational mathematical modeling. Femlab may also be used as a
basis for code development in project-oriented work. Femlab is available
through the World Wide Web by accessing http://www.math.chalmers.se
/femlab. The software is presented in the introductory companion vol-
ume.

Figure 1.3: Leibniz’s first paper on calculus, Acta Eruditorum, 1684.
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A Brief History

The quadrature of all figures follow from the inverse method of
tangents, and thus the whole science of sums and quadratures can
be reduced to analysis, a thing nobody even had any hopes of
before. (Leibniz)

I would like to give a method of Speciosa Generalis, in which all
truths of reason would be reduced to some kind of calculus. This
could at the same time be a kind of language or universal script,
but very different from all that have been projected hitherto, be-
cause the characters and even the words would guide reason, and
the errors (except those of fact) would only be errors of computa-
tion. It would be very difficult to form or to invent this Language
or Characteristic, but very easy to learn it without any Dictio-
naries. It would also serve to estimate the degree of likelihood
(because we have not sufficient data to arrive at truths that are
certain), and to see what is necessary to obtain them. And this
estimate would be very important for its applications to life and
for the deliberations of practice where by estimating the proba-
bilities one miscalculates most often in more than half the cases.
(Leibniz)

Before plunging into work, we make a brief digression into the history
of mathematical modeling based on differential equations. The purpose
is to give some perspective on the work that lies before us. We hope
that the impressions gained by browsing through these pages will help
when the material becomes difficult. In fact, it is no exaggeration to
describe our subject as containing the finest creations of some of the
most inventive minds of the last few centuries. Here, we can only give

11
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the briefest review. We strongly recommend the book Kline ([12]) as an
interesting and readable background source for enriching the perspective.

From a large perspective the revolution in information technology
now emerging, of which computational mathematical modeling is a part,
could be viewed as the second major step after the first revolution in
information technology created by the Babylonian culture around 2000
B.C. based on information-processing on clay tablets. The Babylonian
culture had a high level of organization based on agriculture and trade
and accordingly developed quite sophisticated mathematical tools for
handling questions in astronomy, economy, and infrastructure such as
dams and canals, using algebraic and geometric methods. In partic-
ular, algebraic methods for solving systems of equations involving the
computation of square and cubic roots were developed.

2.1. A timeline for calculus

Calculus is the central mathematics underlying computational math-
ematical modeling and its development characterizes the modern scien-
tific struggle to describe nature in quantitative terms.

17th century: Leibniz and Newton

The first and perhaps most stunning success of calculus was given by
Newton (1642-1727) in his Principia Mathematica published in 1687.
This summarized Newton’s work in the period 1665-6, when Newton,
having just finished his undergraduate studies, moved to his family home
while Cambridge was struck by the plague. In the Principia, Newton
gave a simple description of the motion of the planets in our solar sys-
tem as solutions of differential equations that were derived under the
assumption of a inverse square law for gravitational force. The preci-
sion of the predictions based on Newton’s theory was impressive (and
still is) and the success was boosted by the sheer size of the objects
that seemed to be controlled by mathematics. In tackling this problem,
Newton was following a long tradition. The origins of applications of
calculus in astronomy goes back to Copernicus (1473-1543), who was the
first person to seriously question the Aristotelian/Ptolemaic geocentric
theory in which the planets and the Sun evolved around the earth in
a very complex combination of circular motions, to Kepler (1571-1630),
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and to Galileo (1564-1642), who was condemned in Rome in 1632 for
his heretical scientific views. All of these people formulated mathemat-
ical descriptions of the motion of the planets. Some of the discoveries
of Galileo are now a standard topic in high school, such as the well
known formulas v = at and s = at2/2 for the velocity v and traveled
distance s at time t of an object starting at rest and having a constant
acceleration a. Kepler formulated laws for the motion of the planets in
elliptical orbits and also applied calculus to practical science on Earth:
when married for a second time, he installed a wine cellar in his house
and began to compute volumes of wine kegs to find optimal shapes and
detect false volume specification. He did this by summing small pieces
of volume. Cavalieri (1598-1647), a student of Galileo, actually formu-
lated an early version of calculus. Fermat (1604-1665) and Descartes
(1596-1650) continued this work, introducing analytical methods based
on representing geometrical objects through equations for points in a
coordinate system. Leibniz (1646-1716) and Newton, working indepen-
dently, summarized and extended the previous work and created calculus
in much the form we now use it. In particular, Leibniz laid the founda-
tion of calculus as a formal symbolic “machine” with a surprising power
and flexibility.

18th century: Euler and Lagrange

The development of calculus in the 18th century was largely advanced
by Euler (1707-1783) and Lagrange (1736-1813) who used calculus to
treat basic problems of mechanics. Euler’s productivity is legendary;
he authored over 800 books and articles and was the father of thirteen
children. The calculus of variations was created by Euler and Lagrange
to give a condensed formulation of problems in mechanics based on vari-
ational principles, where solutions are defined as minima or more gen-
erally stationary points of Lagrangian functions representing the total
energy or the difference of kinetic and potential energy. The condition
of stationarity could alternatively be expressed as a differential equation
and thus variational formulations gave an alternative to description via
differential equations. The finite element method is the modern realiza-
tion of this deep relation.
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19th and 20th centuries: Partial differential equations

In the 19th century and the beginning of the 20th century, the scope of
calculus was widened by Gauss, Laplace, Poisson, Fourier, Cauchy, Rie-
mann, Green, Stokes, Maxwell, Boltzmann, Einstein and Schrödinger
among others, to phenomena such as heat conduction, fluid flow, me-
chanics of deformable bodies, electromagnetism, gas dynamics, relativ-
ity and quantum mechanics. Again, variational methods were often
used and the corresponding Euler-Lagrange equations now took the
form of partial differential equations. We name the basic such equations
along with the approximate year of discovery or formulation: Laplace’s
equation in 1810, Poisson’s equation in 1812, Cauchy-Navier’s elastic-
ity equations in 1828, Navier-Stokes equations in 1821/1845, Maxwell’s
equations in 1864, Boltzmann’s equation in 1860, Einstein’s equations
in 1917, and Schrödinger’s equation in 1925. For certain problems, the
application of calculus again had a tremendous success: For example,
building on the experiments of Faraday, Maxwell (1831-1879) formu-
lated his famous model for the interaction of electric and magnetic fields
known as Maxwell’s equations for electromagnetism and predicted the
possibility of propagation of electromagnetic waves and Einstein (1879-
1955) created the theory of relativity and Schödinger quantum mechan-
ics, based on calculus and, like Newton, opened a new perception of the
world.

However, there was much less progress in other applications. The
Navier-Stokes equations modeling fluid flow are virtually impossible to
solve using analytical techniques and have become useful in applica-
tions only recently, when increased computer power has begun to allow
accurate numerical solution. In fact, Newton’s theoretical predictions
of the impossibility of sustained motored flight, which was based on a
crude model for fluid flow and overestimated the power necessary to
create the necessary lift, were not corrected until the early 20th cen-
tury after the actual flights by the Wright brothers, when Kutta and
Jukowski discovered some approximate solutions of the Navier-Stokes
equations that gave accurate predictions of the lift. In particular, the
famous d’Alembert paradox (1752), which predicted both zero drag and
lift in inviscid flow, posed a serious obstacle of getting theory and ob-
servation to agree. Even today, there are still many questions about the
Navier-Stokes equations that we cannot answer.
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2.2. A timeline for the computer

The development of the computer has had a striking impact on mathe-
matical modeling by extending our ability to compute information about
the solutions of differential equations tremendously. In fact, this is be-
coming one of the main activities in science and engineering.

Before the 20th century

The idea of using a machine to handle tedious computations appears in
several places. The abacus, for example, is a simple manually operated
digital computer. Pascal (1623-1662) designed a machine to do additions
and subtractions. Later in 1671, Leibniz designed a calculating machine
that was capable of multiplication and division as well as addition and
subtraction, and 1673 went to the Royal Society in London to get funding
for its construction. In the 1830s, the English mathematician Babbage
(1792-1871) was inspired by the punch-card programmable weaving ma-
chine of Jacquard to design the Analytical Engine; a mechanical steam
powered programmable machine that was to be used to solve calculus
problems from astronomy and navigation. Babbage built demonstra-
tion models with support from the British government, and the Swedes
Georg and Edvard Scheutz in the 1850s designed a related “Difference
Machine” built in 3 copies, but the complexity of the mechanics pre-
vented a further spread of the technology. Babbage was aware of the
generality of his concept and stated that “the whole of the conditions
which enable a finite machine to make calculations of unlimited extent,
are fulfilled in the Analytical Engine”. By the “extent”, he meant both
the amount and accuracy of the data to be processed and the length
and logical complexity of the algorithm to be performed. Interestingly,
Babbage was a member of the Analytical Society in Cambridge that
formed to study the calculus of Leibniz, or what was called the “d-ism”
related to the du/dt notation of derivatives of Leibniz, as opposed to the
“dot-age” notation u̇ of Newton that dominated in England for many
decades.

The 20th century

The ideas of Babbage were lost in science as the complete machine was
never built. Then in the 1930s, Alan Turing (1912-1954) reopened the
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quest for a programmable “universal machine” in the form of the “Tur-
ing machine” studied in his dissertation Computable numbers in 1937
(apparently without being aware of the work by Babbage). Together
with the development of the electronic valves, this opened the explo-
sive development of the modern computer started during World War II.
Turing was also interested in the ability of a computer to develop “in-
telligence” and devised the Turing Test. A person sits in a room with a
teletype connected to two teletype machines located in one room with a
human and one room with a computer. The person tries to determine
which room holds the computer by asking questions using the teletype
and studying the responses. If he can’t find out, then the computer can
be considered intelligent.

In fact, the theoretical basis of the computer revolution is rooted
in the work on the foundations of mathematics in the 1920s and 1930s
related to Hilbert’s ambition of showing that any mathematical problem
can be solved by a “fixed and mechanical process”, or at least that the
consistency (lack of contradictions) of mathematics can be established by
“finite methods” that avoid reference to infinite numbers or an infinity
of properties or manipulations. The work by Gödel, Church and Turing
in the 1930s showing that certain questions in mathematics are “un-
decidable”, or equivalently that certain quantities are “uncomputable”,
ruined Hilbert’s hopes. But, this work did lay a foundation for the de-
sign of the modern computer. The mathematician von Neumann (1903-
1957), initially related to Hilbert’s program, played an important role
in the development of the first generation of programmable electronic
computers during and immediately after World War II, motivated by the
need to solve certain differential equations of military importance. It is
interesting to note the close connection between the abstract study of
the very basis of mathematics and the concrete questions arising in the
design of computers. This is an outstanding example of fruitful fusion
of theory and practice.

John Atanassoff built a small-scale electronic digital computing de-
vice starting in 1939 at Iowa State University. In the same year, Howard
Aiken began constructing an electro-mechanical computer called the
Mark I (Automatic Sequence Controlled Calculator) at Harvard. Fur-
ther development of early program-stored electronic computers was car-
ried in parallel at several places during World War II: at the Institute of
Advanced Study in Princeton and the University of Pennsylvania by von
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Neumann and others, at the National Physical Laboratory in London
by Turing, and also in Germany by Konrad Zuse. In the United States,
the first general purpose electronic digital scientific computer was the
ENIAC built during 1943-46 by Eckert and Mauchly at the University
of Pennsylvania for the numerical computation of firing tables to replace
the mechanical analog Differential Analyzer used there for the same pur-
pose. The ENIAC was a big computer (100 feet long and 8 feet high),
included 18,000 vacuum tubes, and was “programmed” manually by set-
ting switches and plugging up cables. In 1944, von Neumann joined the
ENIAC project and in a famous memo outlined the logical design of a
program-stored computer, which was realized in the JOHNNIAC, MA-
NIAC and the EDVAC (Electronic Discrete Variable Automatic Com-
puter). In England, the computers developed during the war were the
ACE (Analytical Computing Engine) and the Colossus, and in Germany,
the Zuse 1-4. The UNIVAC I (Universal Automatic Computer) designed
by Eckert and Mauchly and released in 1951 was the first computer to
handle both numeric and alphabetic data equally well, and was also the
first commercially available computer (48 systems were built).

Moving into the sixties, seventies, and eighties, new “generations”
of computers have been introduced roughly every five to six years. In
parallel, there has been a rapid development of computer-based methods
in traditional areas of mathematics such as differential equations and
optimization, in new areas of applications such as image processing and
medical tomography, and in new branches of mathematics such as fractal
geometry and complex “chaotic” systems. In the advanced companion
volume, we continue this history with a focus on the development of the
modern scientific computer and numerical analysis.

2.3. An important mathematical controversy

The logistic and contructivist schools

Leibniz considered calculus to be a formal theory for symbolic ma-
nipulation that was extremely useful, but which could not be given a
completely rigorous justification because of the difficulties involved in
defining concepts like “continuum” and “infinity”. Leibniz was fasci-
nated by the remarkable savings in computational effort that resulted
when an integral could be computed using his formal symbolic methods



18 2. A Brief History

instead of the tedious and time-consuming “method of exhaustion” of
Eudoxus (408-355 B.C.). This method, also used by Euclid (approx 300
B.C.) and Archimedes (287-212 B.C.) computes the area of a figure by
summing the individual areas of a large number of small pieces making
up the figure. However, Leibniz was also aware of the fact that symbolic
methods could not replace numerical calculation most of the time, and
as we said, constructed a mechanical digital calculator in 1671.

During the 19th century, strong efforts were made by Cauchy (1789-
1857), Weierstrass (1815-1897), Dedekind (1831-1916), and Cantor (1845-
1918) to give calculus a theoretically satisfactory foundation which in-
cluded precise definitions of the basic concepts of the continuum of real
numbers, limit, continuity, derivative and integral. These efforts were
largely successful in the sense that some basic concepts were clarified.
Correspondingly, the “axiomatic formalistic”, or “logistic”, school of
thought began to take a dominating role in mathematics education de-
spite the strong criticisms from the “constructivists” in the beginning
of the 20th century. The point of view of the constructivist school is
that only mathematical objects that can be “constructed” by “finite
methods” can be the subject of investigation, which effectively excludes
infinite sets such as e.g. the set of real numbers used by the logistic
school. Though many mathematicians had (and have) sympathy for the
constructivist point of view, few worked actively in mainstream math-
ematics towards constructivist goals after the collapse of the Hilbert
program in the 1930s. However, beginning in the 1940s, some construc-
tivists, building on the positive aspects of the work by Gödel (1906-1978)
and Turing, turned towards what has become computer science and de-
veloped the electronic computer. The dispute on the foundations of
mathematics was left unsettled.

Symbolic and numerical computation

The use of computational methods boomed with the invention of the
electronic computer in the 1940s. The basic problem in the construc-
tivist point of view now appeared in the form of “computability” in
computer science, which basically is the question of how much computa-
tional work is needed for a certain task. The question of computability
also naturally comes up in the context of solving differential equations
in the following form: how much work is required to compute a solution
to a given differential equation to a certain accuracy? This in fact is the
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basic question of this book. If the computational work is too large, e.g.
requiring more operations than the number of atoms in the universe, a
constructivist would say that the solution does not exist in a concrete
sense. A logicist could claim that the solution “exists” even though it is
very difficult or impossible to construct.

The controversy between logicists and constructivists reflects a fun-
damental difference in nature between symbolic and numerical computa-
tion, where symbolic computation represents the logicist approach and
the numerical computation the constructive one. One may argue, that
nature itself is “constructive” and builds on “numerical computation”
which is massive but finite, while symbolic computation, involving “infi-
nite” sets such as the set of real numbers or Hilbert spaces of functions,
may be used by mathematicians or scientists in descriptions of natural
phenomena. Solving differential equations using numerical computa-
tion thus may be viewed as a more or less direct simulation of natural
processes of finite dimension, while symbolic computation may have a
different, less concrete, character. It appears that both symbolic and
numerical computation are indispensable, reflecting in a sense a dual-
ity of soul and matter, and we may think of the good combination in
science, which always remains to be found, as a Leibnizian synthesis of
calculus and computation.

2.4. Some important personalities

Leibniz

If I were to choose a patron for cybernetics, I should have to choose
Leibniz. (Wiener)

Gottfried Wilhelm Leibniz was maybe the last Universal Genius inces-
santly active in the fields of theology, philosophy, mathematics, physics,
engineering, history, diplomacy, philology and many others. He was
born in 1646 at Leipzig into an academic family. His father died in
1652 after which Leibniz took charge of his own education by using his
father’s large library to read works by poets, orators, historians, ju-
rists, philosophers, mathematicians, and theologians. At the age of 8,
he taught himself Latin and decided, when 15, to convert from the clas-
sical scholastic philosophy of Aristotle to the new philosophy of Bacon,



20 2. A Brief History

Pascal, and Descartes. His universal reading made him knowledgeable
in almost every field. Leibniz attended university from the age of 14
to 22, finishing in 1667 with a doctorate in Jurisprudence based on a
thesis entitled On Difficult Cases in Law, though there was some trou-
ble in graduating because of his youth. The year after he developed a
new method of teaching law including a new system seeking to define
all legal concepts in terms of a few basic ones and deducing all spe-
cific laws from a small set of principles. He also wrote a dissertation in
1666 in philosophy entitled The Art of Combinations, in which he out-
lines a “universal language”, which is a precursor to the development of
the calculus of logic that Boole invented in the 19th century and for-
mal languages underlying computer science of today. He pursued the
idea of associating with each primitive concept a prime number and the
composition of primitive concepts with the product; for example, if 3
represents “man”, and 7 “rational”, then 21 would represent “rational
man”. He then tried to translate the usual rules for reasoning into such
a system, but was unsuccessful. The Art of Combinations also contains
the Fundamental Theorem of Calculus in “difference form”.

In 1670, Leibniz published his first philosophical work On true princi-
ples, and the true method of philosophizing against false philosophers and
continued the year after with the two-volume treatise Hypothesis Phys-
ica Nova dedicated to the Academie des Sciences de Paris and the Royal
Society of London. This contained, among other things, discussions on
the principles of conservation of quantity of motion or momentum in its
correct vector form and conservation of energy. Leibniz took up a job
as advisor to the Duke of Mainz and came up with a plan to distract
Louis XIV from Europe into a conquest of Egypt, which was eventually
followed by Napoleon, and was sent in 1672 to Paris to present his in-
genious ideas. In this context, Leibniz published anonymously a biting
satire on Louis XIV called Mars Christianissimus (Most Christian War
God) referring to the king’s imperialism.

During his stay in Paris 1672-76, which included two visits to Lon-
don, Leibniz (“the most teachable of mortals” in his own words), plunged
himself into studies of the “pre-calculus” of Cavalieri, Pascal, Fermat,
Descartes, Gregory and Barrow (Newton’s teacher), with guidance in
particular from Christian Huygens. With only little preparation in ge-
ometry and algebra, Leibniz quickly created a synthesis of calculus in-
cluding the Fundamental Theorem of Calculus, and the basic notation
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and analytical tools still used today. This work was summarized in 1684
in six pages in Leibniz’ journal Acta Eruditorum, while Newton’s first
work on calculus was published in Principa in 1686 (but was conceived
around 1666). Later, a bitter academic fight developed between Newton
and Leibniz concerning “who invented calculus”, Leibniz being accused
of plagiarism. The truth is that Newton and Leibniz developed cal-
culus independently in different forms building on a common tradition
including the work of many.

Leibniz returned to Germany in 1676 and served different Dukes of
Brunswick in Hannover as counselor and librarian among other duties.
He was commissioned to write the history of the House of Brunswick,
and bravely started, after intense studies including long trips to Austria
and Italy 1687-90, with the volume Protagea: A dissertation on the
first formation of the globe and the oldest traces of history in the very
monuments of nature, which turned out as a work in geology and natural
history. As concerns the history of the Dukes, he never got beyond year
1009, which affected his position at the court. At the end of his life
he was often ridiculed and was treated as an old fossil in his enormous
black wig and once-fashionable ornate clothes.

Leibniz also worked in other branches of mathematics: he introduced
determinants to solve linear systems of equations and in Characteristica
Geometria from 1679 envisioned a form of combinatorial topology, but
as often he was too far ahead of his time to get any response. He
also proposed the binary system as suitable for machine calculation and
designed a binary calculator and a converter from decimal to binary
numbers, in addition to his decimal calculator in 1671.

Leibniz wrote more than 15,000 letters including a long-lasting corre-
spondence with Jacob and Johan Bernoulli, who popularized and spread
Leibniz’s work on calculus. His mature work on philosophy includes
Discourse on Metaphysics 1686, New Essays on Human Understanding
1704, Theodicy 1710, Monadology and Principles of Nature and Grace,
based on Reason 1714. His work on physics includes Dynamics 1689-91
and the essay A specimen of Dynamics 1695. Leibniz opposed Newton’s
idea of absolute space and time basing his dynamics on the concept of
force, preparing the way for Einstein’s theory of special relativity.

Leibniz’ work was governed by a principle of synthesis by which he
always sought to combine the best elements of truth. Even after his con-
version to the new philosophy, he kept ties with Aristotle’s idealism and



22 2. A Brief History

rejected a pure materialism. He tried to find paths to unite Catholics
and Protestants and proposed to create a United States of Europe in
the form of a Holy Roman Empire with state and church united. His
Monadology builds on the principle that body and soul are united and
express dual aspects of existence, and has been viewed as a precursor
to modern quantum mechanics. It also leads into modern systems and
complexity theory with the whole being more than the sum of its parts
in the same way as a state has a nature beyond that expressed through
a list of the members of state. His idea of the “best possible world”
rests on a synthesis of maximal variety and simplicity of laws, coupling
to todays research on fractals and chaos. Many of his ideas were amaz-
ingly visionary, including the formation of the European union, and the
notions of computers and complexity. Leibniz also had a strong inter-
est in matters of direct practical importance. His different calculating
machines were only some of Leibniz’s many technological inventions in-
cluding improvements on time-keeping, distance-reckoning, barometry,
the design of lenses, carriages, windmills, suction pumps, gearing mech-
anisms and other devices.

Leibniz rejected an academic career and called universities “monk-
ish”, charging them with possessing learning but no judgement and being
absorbed in trifles. Instead, he urged the pursuit of real knowledge, a
combination of mathematics, physics, geography, chemistry, anatomy,
botany, zoology and history.

Leibniz did not marry. He considered it once at the age of fifty, but
the person to whom he proposed wanted time to think about it, which
also gave Leibniz time to reconsider his proposal. He kept close ties
with both Duchess Sophie of Hannover and also her daughter Queen
Sophie Charlotte of Brandenburg, who considered herself to be a stu-
dent of Leibniz. He wrote a beautiful ode to Queen Charlotte on the
occasion of her funeral in 1705 (see below). He spent months at a time
without leaving his study, sleeping a few hours in a chair to wake up
early to continue his work. He was easily angered but composed him-
self quickly, reacted badly to criticism but accepted it soon. He had
an excellent memory, being called a Living Dictionary by Duke George
Ludwig. Leibniz died in 1716, lonely and neglected, with only his secre-
tary attending the funeral. His work is a landmark in the development
of science and philosophy and of great relevance even today.
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Wiener

Norbert Wiener, the “20th century Leibniz of America”, was born in
1894 into a Jewish Russian emigrant family, was tutored early by his fa-
ther (who spoke forty languages), got a B.A. in 1909 and a Ph.D. in Phi-
losophy at Harvard when aged 18. Wiener then worked on the founda-
tions of mathematics with Russell in Cambridge, returned to the United
States for military service and then turned to integration theory, poten-
tial theory and statistical mechanics in the 1920s. He took up a position
at the Massachusetts Institute of Technology working on applications of
harmonic analysis in signal processing, proposed an analog computer for
the solution of partial differential equations, laid a foundation of cyber-
netics, developed anti-aircraft prediction during World War II, worked in
mathematical physiology, pattern recognition, aspects of automatization
and automata theory. Together with von Neumann, Wiener founded the
Teleological Society or Cybernetical Circle directed to automata theory,
self-reproducing machines, information theory, brain-computer interac-
tion etc. Wiener died in 1954 in Stockholm (as did Descartes in 1650).

von Neumann

John von Neumann was born in 1903 in Budapest as the oldest of three
sons of a banker. At the age of 6, he divided 8-digit numbers without
pen and paper and by 8 he had mastered calculus. He got a Ph. D.
in Mathematics in 1926 in Budapest after training as a chemical engi-
neer until 1925. He then held posts in Göttingen, Berlin and Hamburg,
working on the set theoretic and logical foundations of mathematics and
the mathematical basis of quantum mechanics developing the theory of
Hilbert spaces. He moved in 1930 to Princeton, where he became pro-
fessor in 1933 at the Institute of Advanced Study, together with a group
of famous scientists including Einstein. To start with his interest was
directed towards different areas of pure mathematics including number
theory, algebra, geometry, topology and functional analysis, but gradu-
ally through his engagement in the Manhattan project and the further
development of the ENIAC during and after World War II, his interest
shifted towards applications. Von Neumann laid the theoretical basis
for the design of the first generation of programmable computers (ED-
VAC), including speculative work on self-reproducing computers. He
developed basic numerical methods for problems in hydrodynamics and
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meteorology, and laid the foundation of game theory and mathematical
economics. Von Neumann’s personality was direct and open, he liked
people, jokes, puns, bridge and poker, food and wine. In addition to
science he was knowledgeable in literature and history. Von Neumann
died in 1957. Wiener and von Neumann had largely parallel careers
starting with the foundations of mathematics, continuing with applica-
tions of functional and harmonic analysis to quantum mechanics and
information theory, further working on electronic computers, automata,
and systems science.

One evening I was sitting in the rooms of the Analytical Society
at Cambridge, my head leaning forward on the table in a kind
of dreamy mood, with a Table of logarithms lying open before
me. Another member, coming into the room, and seeing me half
asleep, called out: Well, Babbage, what are you dreaming about?
to which I replied “I am thinking that all these Tables (pointing
at the logarithms) might be calculated by machinery”. (Babbage)

Today we know that the program-controlled computer began dur-
ing the last century with Babbage. But he was so far ahead his
time that his machine was nearly completely forgotten. So in Ger-
many when I started in 1934 nobody knew of his work. I was a
student then in civil engineering in Berlin. Berlin is a nice town
and there were many opportunities for a student to spend his time
in an agreeable manner, for instance with nice girls. But instead
of that we had to perform big and awful calculations. Also later as
an engineer in the aircraft industry, I became aware of the tremen-
dous number of monotonous calculations necessary for the design
of static and aerodynamic structures. Therefore I decided to de-
sign and construct calculating machines suited to solving these
problems automatically. (Konrad Zuse)
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A Review of Calculus

The two questions, the first that of finding the description of the
curve from its elements, the second that of finding the figure from
the given differences, both reduce to the same thing. From this it
can be taken that the whole of the theory of the inverse method
of the tangents is reducible to quadratures. (Leibniz 1673)

Mathematics is the science of quantity. (Aristotle)

This chapter serves two purposes. First, it is a review of calculus of one
variable recalling the basic tools we need in order to study differential
equations. Calculus is essentially the study of differential and integral
equations and their solutions, and is important because the mathemat-
ical models in science usually take the form of differential and integral
equations. It turns out that it is generally impossible to solve these
equations analytically by finding a symbolic expression for the solution,
say in terms of elementary functions. Instead, we usually have to be
satisfied with approximate, or numerical, solutions. The second pur-
pose of this chapter is to introduce the important issues that arise when
computing approximate solutions of differential and integral equations.
We do this by giving a detailed proof of the Fundamental Theorem of
Calculus which states that a function is the derivative of its integral and
that the integral of a function on an interval gives the area underneath
the graph of the function on that interval. The proof of the Fundamental
Theorem shows the existence of the integral as the solution of a simple
differential equation and also gives a method for computing approximate
solutions of the differential equation.

25
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3.1. Real numbers. Sequences of real numbers

Recall the way real numbers are classified: there are the natural num-
bers i = 1, 2, .., the integers p = 0,±1,±2, ..., the set of rational numbers
r = p/q, where p and q 6= 0 are integers, and finally the set of irrational
numbers which are all the real numbers that are not rational. For ex-
ample,

√
2 and π are irrational numbers. We use R to denote the set of

real numbers.
Suppose for each natural number i = 1, 2, 3, ...,, a corresponding real

number ξi is specified. Then we say that {ξi} = ξ1, ξ2, ξ3, .. is an infinite
sequence of real numbers, or a sequence of real numbers for short. For
example 1, 2−2, 3−2, 4−2, .. is a sequence of real numbers ξi with ξi = i−2.
We can not actually reach the “end” of an infinite sequence, but as a
practical alternative, we can try to determine if the numbers ξi in the
sequence approach some particular value or limit as the index i increases.
If this is the case, we may “extrapolate” to infinity without actually
going there. To make this more precise, we say that a sequence {ξi}
converges to the limit ξ ∈ R if for any ǫ > 0 there is an integer Nǫ such
that

|ξ − ξi| < ǫ for all i > Nǫ, (3.1)

which we write in compact form as ξ = limi→∞ ξi. This definition says
that ξi can be made “arbitrarily” close to ξ by taking i sufficiently large.
For example,

lim
i→∞

1

i
= 0,

since for any ǫ > 0, |0 − 1/i| < ǫ for all i > 1/ǫ. Similarly,

lim
i→∞

i

i+ 1
= 1.

However, limi→∞(−1)i is undefined because ξi = (−1)i the sequence
never gets close to a single number as i increases.

This definition of convergence is purely qualitative since it does not
give any quantitative measure of the rate at which the numbers ξi in a
convergent sequence approaches the limit. For example, the sequences
{1/i}, {1/i3}, and {1/2i} all converge to 0; however the rates are vastly
different. We plot a few terms of the sequences in Fig. 3.1. Quantitative
measures of convergence play an important role in practical computa-
tion, and this is a central theme of this book.
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i
0 1 2 3 4 5 6 7 8 9 10111213141516

x i
10-5

10-4

10-3

10-2

10-1

100

1/i 1/i3 1/2i

Figure 3.1: Three sequences that converge to zero plotted on a log
scale.

In order to check if a sequence converges using the definition, we have
to know a candidate for the limit. In the simple examples above, the
limit is easy to find, but in general this is not true. For example, if the
limit is a real number with an infinite, non-repeating decimal expansion,
such as π, then we can’t write down the limit explicitly. In such cases,
it is natural to ask if there is a way to tell whether a sequence {ξi} in
R has a limit without actually producing the limit first. To answer this,
we note that if a sequence {ξi} actually has a limit, then the ξi must
become close to each other for large indices since they get closer to the
same value, i.e. the limit. It turns out that the converse is true for a
sequence of real numbers. To make this precise, we define a sequence
{ξi} to be a Cauchy sequence if for any ǫ > 0 there is an integer Nǫ such
that

|ξj − ξi| < ǫ for all i, j > Nǫ.

The set of real numbers R has the property that a Cauchy sequence {ξi}
of real numbers does converge to some real number ξ. This property is
often expressed by saying that R is complete.

Problem 3.1. Show that a sequence that converges is a Cauchy sequence.
Hint: write ξi − ξj = (ξi − ξ) + (ξ − ξj) and use the triangle inequality.

Problem 3.2. Show that a sequence that converges cannot have two
limits.
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Verifying that a sequence of real numbers is a Cauchy sequence does
not require any a priori (beforehand) knowledge of the limit, but re-
quires only specific information about the sequence itself. This makes
the verification of convergence a concrete matter. Moreover, though we
do not know the limit, we have the means to determine approximations
of it to any desired accuracy. We encounter this issue many more times
in the course of this book.

3.1.1. What is the square root of two?

We illustrate some of the issues related to the nature of the set of real
numbers by examining the familiar real number

√
2. We learn in school

two things about
√

2. First, it is the positive root of the equation ξ2 = 2.
Second,

√
2 is irrational with an infinitely long decimal expansion that

never forms a regular pattern:

√
2 = 1.41421356237309504880168872420969807856967187537694...

Early in mathematical history, the Pythagoreans introduced
√

2 as the
length of the diagonal in a square of side one and also discovered that√

2 is not a rational number. Their proof is easy to understand: we
assume that

√
2 = p/q with all common factors in p and q divided out.

By squaring both sides, we get 2q2 = p2. It follows that p must contain
the factor 2, so that p2 contains two factors of 2. But this means that
q must also have a factor 2, which is a contradiction. The discovery
was shocking to the Pythagoreans and had to be kept secret since the
Pythagorean school was based on the principle that everything could be
described in terms of natural numbers. It took more than 2000 years to
resolve this dilemma.

The story continues in the late 19th century, when Cantor and
Dedekind explained that

√
2 should be viewed as a limit of a sequence

{ξi} of rational numbers. Such a sequence is generated from the algo-
rithm

ξi+1 =
ξi
2

+
1

ξi
, i = 1, 2, ..., (3.2)

starting with ξ1 = 1. We obtain ξ2 = 1.5, ξ3 = 1.4167, ξ4 = 1.4142157,
ξ5 = 1.41421356237469, ξ6 = 1.414213562373095, .... With a little work,
we can show that this is a Cauchy sequence and therefore converges to
a limit ξ. The limit must be ξ =

√
2 since replacing both ξi+1 and ξi
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by ξ, we obtain the equation ξ2 = 2 with the positive root ξ =
√

2. In
fact, the sequence (3.2) is generated by Newton’s method for solving the
equation ξ2 = 2 and variants are used in pocket calculators to compute
square roots.

The resolution is that we use
√

2 in two different ways; as a symbol
representing the positive root of the equation ξ2 = 2, and as a limit of
a sequence of numbers that can be computed to any desired accuracy.
The symbol

√
2 may be used in symbolic calculations like (

√
2)6 = 8

without having to know its decimal expansion, whereas the constructive
algorithm is used whenever we need the actual value to some precision,√

2 = 1.4142135.... To bring the two meanings together, one could try
to identify the real number

√
2 with the algorithm (3.2) that gives ap-

proximations of
√

2. A mathematician from the constructivist school
would like to do this. However, if we had to specify for each real number
a convergent Cauchy sequence defining the number, then a discussion
involving real numbers would get bogged down quickly. For this rea-
son, it is often convenient to use a symbolic meaning of real numbers
rather than a constructive meaning. The same dualism of symbolic and
constructive aspects is useful for discussing solutions of differential equa-
tions.

Problem 3.3. Compute 8 iterations of (3.2) and compare the results to
the value of

√
2 given by your calculator.

Problem 3.4. (Pretty hard.) Prove that (3.2) generates a Cauchy se-
quence. Hint: see Problem 3.14.

Problem 3.5. Is 0.9999.... equal to 1?

3.2. Functions

Ultimately, calculus is the study of functions. We say that u = u(x)
is a function of x defined on R if for each x ∈ R there is a number
u = u(x) ∈ R. We call x the independent variable and u the dependent
variable. Functions may also be defined on subsets of R such as an open
interval (a, b) = {x ∈ R : a < x < b} or closed interval [a, b] = {x ∈ R :
a ≤ x ≤ b}, where a, b ∈ R. The set of points x for which a function
u(x) is defined is the domain of definition of u. The points (x, u(x))
for a ≤ x ≤ b plotted in a (x, u) coordinate system is the graph of the
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function u on the interval [a, b]. We use x, y and z to denote independent
variables, and typically u, v,w, f and g to denote functions. The concept
of a function was introduced by Leibniz.

3.2.1. Limits and continuity

We say that ū is the limit of u(x) as x approaches x̄, denoted

ū = lim
x→x̄

u(x),

if for any ǫ > 0 there is a δ > 0 such that

|ū− u(x)| < ǫ for all x with 0 < |x̄− x| < δ. (3.3)

This definition says that u(x) comes arbitrarily close to ū as x approaches
x̄. We emphasize that in the definition, we require 0 < |x̄ − x| and do
not set x = x̄. Thus, the limit tells about the behavior of u(x) close to x̄,
but does not involve u(x̄). For example, consider the three functions in
Fig. 3.2. We clearly have limx→x̄ u1(x) = 1, but also limx→x̄ u2(x) = 1

x

1

a b

u1(x)

x
ba

1

.5

u2(x)

x
ba

1

.5

u3(x)

Figure 3.2: One continuous function and two discontinuous functions.

although 1 6= u2(x̄). In fact, the limit is independent of the value of u
at x̄, which needs not even be defined. Finally, limx→x̄ u3(x) does not
exist, because u gets close to one value on the left of x̄ and another value
on the right. In this case we could speak of a left and right limit of u3(x)
as x approaches x̄ from left or right, but these limits are unequal so the
limit itself is undefined.

Problem 3.6. (a) Compute, if possible, the limits: limx→0 sin(x) and
limx→0 sin(1/x). (b) Write down a definition for limx→x̄ u(x) = ∞. (c)
Determine limx→0 1/x2.
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We distinguish the special class of functions u(x) for which the limit
limx→x̄ u(x) can be evaluated by substituting x = x̄. A function u(x) is
continuous at a point x̄ if limx→x̄ u(x) = u(x̄), or in other words if for
any ǫ > 0 there is a δǫ > 0 such that

|u(x) − u(x̄)| < ǫ if |x− x̄| < δǫ.

For this to hold, u must be defined at x̄, the limit must exist, and
the limit must equal the value of u at x̄. In the example above, u1 is
continuous at x̄, while u2 and u3 are not. Notice that we may make u2

continuous at x̄ by changing the single function value u2(x̄) to be equal
to 1, while this would not work for u3.

We say that a function is continuous in an interval if it is continuous
at every point in the interval. The function u1 is continuous in [a, b],
while u2 and u3 are continuous at all points x 6= x̄. We say that u(x)
is uniformly continuous on an interval [a, b] if for any ǫ > 0 there is a
δǫ > 0 such that for all a ≤ x̄ ≤ b,

|u(x) − u(x̄)| < ǫ for all a ≤ x ≤ b with |x− x̄| < δǫ.

Comparing the definitions of continuity and uniform continuity, we see
that uniform continuity means that the same δǫ in the definition can
be chosen simultaneously for every point in the interval. We use the
concept of uniform continuity in the proof of the Fundamental Theorem
below. It is possible to prove that a function that is continuous on a
closed bounded interval is uniformly continuous on that interval.

Problem 3.7. Show that f(x) = 1/x is continuous but not uniformly
continuous on (0, 1).

We recall some properties of continuous functions. A continuous
function on a closed, bounded interval has both a maximum and a mini-
mum value and takes on every value between its maximum and minimum
value at least once in the interval. If we add two continuous functions
u(x) and v(x) defined on a common domain, where their sum u + v is
defined by (u + v)(x) = u(x) + v(x), then we get another continuous
function. The product of two continuous functions is also continuous,
and so is the ratio of two continuous functions u(x)/v(x) at all points
in the common domain where the denominator v(x) is nonzero.

If a < c < b and u(x) is continuous separately on (a, c) and (c, b),
then we say that u(x) is piecewise continuous on (a, b). Such a function
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may have a jump at x = c. The function u3 of Fig. 3.2 is piecewise
continuous on (a, b).

3.2.2. Sequences of continuous functions

The solution of a differential or integral equation is a function and the
main subject of this book is producing approximations of solutions of
such equations. The approximations can be written as a sequence of
functions where the index is related to the amount of work spent com-
puting the approximation. The main mathematical issue is to show
that an approximating sequence converges to the solution as the work
increases, in other words, we get more accuracy with increased effort.

We start by discussing the convergence of sequences of continuous
functions. A sequence of continuous functions {fi} converges to a func-
tion f at a point x if for every ǫ > 0 there is an integer Nǫ > 0 such
that

|fi(x) − f(x)| < ǫ for all i ≥ Nǫ.

{fi} converges to f on an interval I if {fi} converges to f at every point
x in I. Note that the values of fi at two different points may converge
at different rates to the values of f at the points, i.e. we may have to
choose different Nǫ for different points in the interval. In contrast, {fi}
converges uniformly to f on I if for every ǫ > 0 there is an integer Nǫ

such that i ≥ Nǫ implies

|fi(x) − f(x)| < ǫ for all x in I.

Similarly, we define the sequence {fi} to be a uniform Cauchy sequence
on the interval I if for every ǫ > 0 there is an integer Nǫ such that
i, j ≥ Nǫ implies

|fi(x) − fj(x)| < ǫ for all x in I.

A uniform Cauchy sequence of continuous functions {fi} on a closed,
bounded interval I converges to a continuous function f(x) on I. This
follows from the convergence of the sequence of real numbers {fi(x)}
for each x in I. For example, the sequence {xi} on [0, 1/2] is a Cauchy
sequence, since if j ≥ i, then

|xi − xj| ≤ xi |1 − xj−i| ≤ 2−i · 1
for all 0 ≤ x ≤ 1/2. Thus {xi} converges to a continuous function on
[0, 1/2], namely the (rather boring) function f ≡ 0.
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Problem 3.8. Show that for any 0 < a < 1 the sequence {xi} converges
uniformly to 0 on [0, a], but not for a = 1.

Problem 3.9. Let {fi} be a uniform Cauchy sequence consisting of
uniformly continuous functions on a closed, bounded interval I. Show that
the limit is uniformly continuous. Hint: use the definition of continuity
and the triangle inequality as in Problem 3.1.

3.2.3. The derivative

The derivative is used to measure how much a function u(x) varies for
x close to a given point x̄. The change in the function u from x to x̄ is
u(x̄) − u(x) which tends to zero as x approaches x̄ if we assume that u
is continuous. The average rate of change,

u(x̄) − u(x)

x̄− x
,

is defined for x 6= x̄. If u(x) represents the position of a car at time x
then u(x) has the units of length and x the units of time and the units
of the average rate of change is distance/time, or speed. Recall that the
average rate of change of u between x and x̄ is the slope of the secant
line to u passing through the points (x, u(x)) and (x̄, u(x̄)), see Fig. 3.4.

The average rate of change of a function indicates something about
how the function changes with input, but it is not very precise. For a
given x and x̄, there are many functions with the same average rate of
change, as we demonstrate in Fig. 3.3. The way to make the average rate
more precise is to move x closer to x̄. Of course, we can’t take x = x̄,
and now we see why the concept of the limit is so useful in calculus.
Using it, we can discuss the behavior of the average rate of change of a
function over increasingly smaller intervals, or as x→ x̄.

The derivative of u at x̄, denoted u′(x̄), is defined as the limit

u′(x̄) = lim
x→x̄

u(x̄) − u(x)

x̄− x
= lim

∆x→0

u(x̄) − u(x̄− ∆x)

∆x
, (3.4)

provided the limit exists. If the limit u′(x̄) exists, then u(x) is said
to be differentiable at x̄. Note that in (3.4), ∆x tends to 0 from both
directions, so that replacing ∆x by −∆x in the quotient we have

u′(x̄) = lim
∆x→0

u(x̄+ ∆x) − u(x̄)

∆x
,
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x x

ui(x)

ui(x)

u1(x)

u2(x)

u3(x)

Figure 3.3: Three functions with the same average rate of change be-
tween x and x̄.

which is equivalent to (3.4). Restricting ∆x to be positive or negative
defines a one-sided derivative. If u(x) is differentiable at x for all x ∈
(a, b), then we say that u(x) is differentiable on (a, b).

In Fig. 3.4, we plot secant lines for four points xi that are successively
closer to x̄. We recall, as confirmed in this plot, that the derivative of u
at x̄ is the slope of the tangent line to u at x̄. Note that in the definition
(3.4) we never actually substitute x = x̄ since the denominator would
be zero.

x x4 x3 x2 x1

secant lines

tangent line

u(x)

Figure 3.4: A sequence of secant lines approaching the tangent line at
x̄.

The derivative u′(x) of u(x) is the function that takes the value of
the derivative of u at each point x. We also use the notation Du(x) =

u′(x). Similarly, we write the nth order derivative as Dnu(x), which is
computed recursively as the derivative of Dn−1u. The notation du

dx = u′,
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d2u
dx2 = u′′ etc., and f (q) = dqf/dxq is also used.

The derivative of a constant function is zero while the derivative of
a linear function u(x) = ax+ b, where a, b ∈ R, is the constant function
u′(x) = a, or in other words, the slope of the line u = ax + b is a.
Further, the derivative of a polynomial u(x) = xm, with m 6= 0, is
Dxm = mxm−1, where we assume that x 6= 0 if m < 0. We recall the
derivatives of some other elementary functions:

D exp(x) = exp(x), D sin(x) = cos(x), D log(x) = x−1.

We recall some of the properties of the derivative (for proofs, see Fig. 1.3):

(u+ v)′ = u′ + v′

(uv)′ = u′v + uv′

(
u

v

)′

=
u′v − uv′

v2
(v 6= 0).

Another important rule of differentiation is the chain rule for differen-
tiation of a function w(x) = u(v(x)) composed of two functions u and v
that reads:

w′(x) = u′(v(x)) v′(x). (3.5)

Using these formulas, it is possible to compute derivatives of func-
tions that are made up of products, sums, quotients and compositions of
the elementary functions such as polynomials, the exponential exp(x),
and the trigonometric functions sin(x) and cos(x).

Problem 3.10. Compute the derivative of 1 + 2x3 − exp(x) sin(5x+ 1).

3.2.4. The mean value theorem and Taylor’s theorem

We recall the mean value theorem.

Theorem 3.1. Suppose that u is continuous on [a, b] and differentiable
on (a, b). Then there is a point ξ in (a, b) such that

u(b) − u(a) = u′(ξ)(b− a).

Problem 3.11. Prove the mean value theorem by first reducing to the
case u(a) = u(b) = 0 and then using the fact that u(x) must take on a
maximum or minimum value for some point x̄ in (a, b). The case u(a) =
u(b) = 0 is also referred to as Rolle’s theorem.
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a b

tangent line
secant line

equal slopes

u(x)

Figure 3.5: Illustration of the mean value theorem.

Problem 3.12. Prove the chain rule (3.5) assuming u′ is continuous at
v(x) and v is differentiable at x. Hint: use the mean value theorem.

We also recall Taylor’s theorem, which states that knowledge of the
derivatives of a function u(x) at a point x̄ allows the function u(x) to
be approximated by a polynomial in an interval around x̄. The mean
value theorem is a particular case of Taylor’s theorem with polynomial
approximation of degree zero.

Theorem 3.2. Assume that u has continuous derivatives of order q+1
in an interval (a, b) containing x0. Then, for all a < x < b,

u(x) = u(x0) + u′(x0)(x− x0) +
1

2
u′′(x0)(x− x0)

2 + · · ·

+
1

q!
Dqu(x0)(x− x0)

q +
1

(q + 1)!
Dq+1u(ξ)(x − x0)

q+1,

for some ξ between x and x0.

The polynomial

u(x0) + u′(x0)(x− x0) +
1

2
u′′(x0)(x− x0)

2 + · · · + 1

q!
Dqu(x0)(x− x0)

q

in x, is called the qth degree Taylor polynomial of the function u(x) at
x0. If we use the Taylor polynomial to approximate the values of u, then
the error is

1

(q + 1)!
Dq+1u(ξ)(x− x0)

q+1,
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which is called the remainder. For example, the linear approximation to
u(x) is u(x0) + (x− x0)u

′(x0) with the following estimate of the error:

|u(x) − u(x0) − (x− x0)u
′(x0)| ≤

1

2
(x− x0)

2 max
a≤z≤b

|u′′(z)| (3.6)

for a ≤ x ≤ b. In Fig. 3.6, we plot the constant, linear and quadratic
approximations to a function u. The size of the remainder depends on

u(x)
constant Taylor polynomial
linear Taylor polynomial
quadratic Taylor polynomial

x0

Figure 3.6: Constant, linear, and quadratic Taylor approximations.

how close x is to x0, the order of the Taylor polynomial, and on the size
of Dq+1u on (a, b).

Problem 3.13. Plot the constant, linear, quadratic, and cubic Tay-
lor polynomials for cos(x) computed at x0 = 0 over the interval [a, b] =
[−π/2, π/2]. In each case, compute a bound on the remainder.

Problem 3.14. (Fixed point iteration.) Let u(x) be a differentiable func-
tion defined on R. Consider the sequence {ξj} generated by ξj = u(ξj−1),
where x0 is given. Suppose there is a constant θ < 1 such that |u′(x)| ≤ θ
for x ∈ R. Prove that {ξj} is a Cauchy sequence converging to ξ ∈ R sat-
isfying ξ = u(ξ), where we refer to ξ as a fixed point of u. Draw a picture
to illustrate. Apply the result to the function u(x) = x

2 + 1
x related to

the computation of
√

2 according to (3.2). Note that it suffices that the
condition |u′(x)| ≤ θ is satisfied close to the fixed point.

Problem 3.15. (Zero of a function.) Let u(x) be a continuous function de-
fined on R. Consider the sequence {ξj} generated by ξj = ξj−1−αu(ξj−1),
where ξ0 is given and α is a constant. Find conditions that guarantee that
{ξj} converges to ξ ∈ R satisfying u(ξ) = 0.
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Problem 3.16. (Intermediate value theorem.) Prove that if u is a contin-
uous function on [0, 1] such that u(0) < 0 and u(1) > 0, then there is point
0 < ξ < 1 such that u(ξ) = 0. Hint: define a sequence of intervals Ij in
[0, 1] of length 2−j such that Ij+1 ⊂ Ij and u(x) changes sign in Ij . Choose
a point ξj from each interval Ij and prove that {ξj} is a Cauchy sequence
converging to ξ satisfying u(ξ) = 0. Generalize to prove that a continuous
function on an interval [a, b] assumes all values between its maximum and
minimum values.

3.3. Differential equations

A differential equation is an equation that relates derivatives of one or
more functions over a specified domain of definition. Very often, the
mathematical description of physical phenomena result in a differential
equation, so that finding a solution of a differential equation, which is
a function (or set of functions) that satisfies the differential equation at
every point in the domain, is a centrally important problem in science.
For example, when there is just one independent variable, the differential
equation is called ordinary. The general form of a first order ordinary
differential equation for one unknown function u(x) is

Ψ(u′(x), u(x), x) = 0 for a < x < b, (3.7)

where Ψ(y1, y2, y3) is a given real-valued (continuous) function of the
real variables y1, y2 and y3, and (a, b) is a given interval. The general
problem is to find all functions u(x) that satisfy this equation at every
point x in (a, b). To determine solutions uniquely a specification of the
value of u at some point in (a, b) is generally required.

If we can solve for u′(x) in terms of u(x) and x in (3.7), then we
obtain a problem of the form

{
u′(x) = f(u(x), x) for a < x ≤ b,

u(a) = u0,
(3.8)

where f(y1, y2) is a given function of the two variables y1 and y2, and
we have specified the value u(a) = u0. This problem is called an initial
value problem and we may think of x as representing time so that u(a)
is the value of u(x) given at the initial time x = a. We require the func-
tion u(x) to be continuous on [a, b] and satisfy the differential equation
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u′(x) = f(u(x), x) for all x in (a, b]. We could also require the differ-
ential equation to be satisfied on (a, b) or [a, b] with u′(x) defined as a
one-sided derivative at the end-points. The situation is a little different
in the case of approximate numerical solution for which the specification
(a, b] is more natural. We may think of the initial value u(a) = u0 as
“replacing” the differential equation at x = a.

The general form of a second order ordinary differential equation for
one unknown function u(x) is

Ψ(u′′(x), u′(x), u(x), x) = 0, a < x < b, (3.9)

where Ψ(y1, y2, y3, y4) is a given function of y1, .., y4. One possibility
of determining a unique solution is to specify both the values u(a) and
u(b), in which case (3.9) is called a two-point boundary value problem
where x usually represents a spatial coordinate. Alternatively, we can
specify u(a) and u′(a) and obtain an initial value problem.

Much of mathematics is devoted to the study of differential equa-
tions, concentrating on such questions as whether a given differential
equation has solutions (existence), whether or not there is at most one
solution (uniqueness), properties of solutions such as regularity and sta-
bility to perturbations, and numerical computation of solutions.

3.3.1. The simplest differential equation

We begin by considering the simplest differential equation: given the
uniformly continuous function f(x) on (a, b], find a continuous function
u(x) on [a, b] such that

u′(x) = f(x) for a < x ≤ b. (3.10)

Solving this equation, i.e. finding what is also called a primitive function
u(x) of f(x), is a basic problem of calculus. This problem was called the
“inverse method of tangents” by Leibniz, who thought of this problem
in terms of finding a continuous curve given the slope of its tangent at
every point.

We note that a primitive function is determined only up to a con-
stant, because the derivative of a constant is zero; if u′(x) = f(x), then
also (u(x) + c)′ = f(x) for any constant c. For example, both u(x) = x2

and u(x) = x2 + c satisfy u′(x) = 2x. The constant may be specified by
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specifying the value of the primitive function u(x) at some point. Spec-
ification at the left-hand end point leads to the following initial value
problem: given the function f(x) on (a, b] and the initial value u0 at
x = a, find a continuous function u(x) such that

{
u′(x) = f(x), a < x ≤ b,

u(a) = u0.
(3.11)

The Fundamental Theorem of Calculus states that this problem has a
unique solution if f(x) is continuous (or more generally piecewise con-
tinuous).

An example of a physical situation modeled in this way is a cyclist
biking along a straight line with u(x) representing the position at time x
so that u′(x) is the speed at time x. Supposing that the bike is equipped
with a simple speedometer reporting the speed f(x) of the bike at each
time x, the problem is to determine the position u(x) of the cyclist at
time x after specifying a starting position u0 at some time x = a. This
problem is actually solved automatically by most speedometers which
keep track of the total traveled distance by using an analog “integrator”
that accumulates distance in increments based on a mechanical system.
In fact, the mathematical method we use to generate an approximate
solution is also based on a principle of accumulation of increments.

The process of solving (3.11), or in other words, producing a function
whose derivative is a specified function on an interval and that has a
specified value at one point, is called definite integration. Anticipating
the Fundamental Theorem, we suppose (3.11) can be solved and we use
the notation

u(x) =

∫ x

a
f(y) dy for a ≤ x ≤ b, (3.12)

to denote the solution u(x) in the special case that u(a) = 0. We refer
to
∫ x
a f(y) dy as the integral of f over the interval [a, x]. The notation

was introduced by Leibniz in 1675 who thought of the integral sign
∫

as
representing “summation” and dy as the “increment” in y. We refer to a
and x as the lower and upper limits respectively and y is the integration
variable. The proof of the Fundamental Theorem explains the reason
for this language. Right now, this is just a symbolic way of denoting the
solution u(x) of (3.11) in the case u0 = 0. The solution u(x) of (3.11)
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with u0 6= 0, can then be expressed as

u(x) =

∫ x

a
f(y) dy + u0 for a ≤ x ≤ b.

Recall that it is indeed sometimes possible to produce a function u(x)
with a specified derivative u′(x) = f(x) on an interval. For example, if
f(x) = 3x2 then u(x) = x3+c, if f(x) = sin(x) then u(x) = − cos(x)+c,
and if f(x) = ex, then u(x) = ex + c. In general, however, we cannot
solve u′(x) = f(x) symbolically by expressing u(x) in terms of elemen-
tary functions, so even the large number of examples that are worked
out during a typical calculus course do not prove that every continu-
ous function f(x) has a primitive function. This is the motivation for
studying the Fundamental Theorem of Calculus in detail.

Problem 3.17. Show that if u is differentiable in (a, b) and continuous
on [a, b] and u′(x) = 0 for all a < x < b, then u is constant on [a, b]. Hint:
use the mean value theorem.

Problem 3.18. Solve u′(x) = sin(x), x > π/4, u(π/4) = 2/3 .

3.4. The Fundamental Theorem of Calculus

Utile erit scribit
∫

pro omnia. (Leibniz, October 29 1675)

We prove the Fundamental Theorem of Calculus by constructing a se-
quence of approximate solutions of (3.11). The construction is based on
approximating the uniformly continuous function f(x) by simple func-
tions FN (x) that converge to f(x) as N increases and for which primitive
functions UN (x) can be determined easily. We show that {UN} form a
Cauchy sequence and converges to a limit u, which we prove is the solu-
tion of (3.11). This proof is the analog of defining

√
2 by constructing a

sequence that converges to
√

2. The proof also shows that the integral
of a function between two points gives the area underneath the graph
of the function between the points. This couples the problem of finding
a primitive function, or computing an integral, to that of computing
an area, that is to quadrature. For simplicity’s sake, we assume that
f(x) ≥ 0 for all a ≤ x ≤ b. The proof directly extends to the more
general case of a piecewise continuous function f(x) of variable sign.
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3.4.1. A simple case

According to the discussion above, it suffices to consider (3.11) with
u0 = 0. To motivate the computational method, we first consider the
problem: {

U ′(x) = F, x0 < x ≤ x1,

U(x0) = 0.
(3.13)

where F is a constant on [x0, x1], and where in anticipation, we rename
a = x0 and choose a < x1 ≤ b. Since F is constant, the primitive
function U is simply the linear function

U(x) =

∫ x

x0

F dy = F · (x− x0).

We see that in this case U(x) gives the area underneath the curve F
between x0 and x, see Fig. 3.7.

x0 x x1

U(x) = F.(x - x0)

F

Figure 3.7: Integration of a constant function.

We choose F to be the maximum value of f on [x0, x1], which exists
because f is continuous. If the interval [x0, x1] is small, then we expect
f(x) to be close to F for all x0 ≤ x ≤ x1, see Fig. 3.8, and therefore the
solutions of u′ = f and U ′ = F with u(x0) = U(x0) = 0 also to be close
on [x0, x1].

Problem 3.19. For f(x) = ex, compare
∫ δ
0
f(x) dx and

∫ δ
0
F dx for small

δ > 0. (Hint: use Taylor’s theorem.)

3.4.2. An approximate solution formula

In general, we have to deal with f over an interval [a, b] that is not
necessarily small and therefore we cannot expect f to be approximately
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x0 x1

f(x)

F

Figure 3.8: A constant approximation of a smooth function.

constant over [a, b]. Instead, we use a piecewise constant approximation
of f over [a, b] based on dividing the interval up into sufficiently small
pieces so that f is approximately constant on each. We choose an integer
N ≥ 1 and set h = (b − a)/2N , then define x0 = a and xi = x0 + i · h,
for i = 1, ..., 2N . In particular, x2N = b. The partition of [a, b] induced
by x0 < x1 < · · · < x2N is called a mesh and the xi’s are the nodes.
We let FN,i denote the maximum value of f on [xi−1, xi] and define the
piecewise constant function FN (x) = FN,i for xi−1 < x ≤ xi. We plot
three examples in Fig. 3.9. The function FN (x) is piecewise constant on
the partition {xi}, and is our first example of a piecewise polynomial
function.

Problem 3.20. Show that if N ≤ M are two integers, then the nodes
corresponding to N are also nodes in the mesh corresponding toM . Meshes
with this property are called nested.

Next, we compute the primitive function UN corresponding to FN .
On the first interval [x0, x1], we let UN solve

{
U ′
N (x) = FN,1 for x0 < x ≤ x1,

UN (x0) = 0,

so that UN (x) = FN,1 · (x−x0) for x0 < x ≤ x1. We repeat this process,
interval by interval, solving

U ′
N (x) = FN,i for xi−1 < x ≤ xi, (3.14)

with UN (xi−1) determined from the previous interval, to get

UN (x) = UN (xi−1) + FN,i · (x− xi−1) for xi−1 < x ≤ xi. (3.15)
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x0 x1 x2

f(x)

F1(x)

x0 x2 x4

f(x)

x1 x3

F2(x)

x0 x4 x8

f(x)

x2 x6x1 x3 x5 x7

F3(x)

Figure 3.9: Three piecewise constant approximations to a smooth func-
tion.

Unwinding this formula back to the first interval, we obtain a formula
for an approximate solution of the initial value problem (3.11):

UN (x) =

i−1∑

j=1

FN,j h+ FN,i · (x− xi−1) for xi−1 < x ≤ xi. (3.16)

By construction, UN (x) is the area underneath the graph of FN from
x0 to x, written as the sum of the areas over each sub-interval. The
next step is to prove that the sequence of functions UN (x) converges to
a limit as N tends to infinity, which requires the uniform continuity of
the function f(x).
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Problem 3.21. Prove (3.16).

3.4.3. Convergence

We shall prove that the sequence {UN} is a uniform Cauchy sequence
on [a, b] in the sense that for any ǫ > 0 there is a Nǫ such that

max
[a,b]

|UN − UM | < ǫ for all N,M > Nǫ.

We conclude that there is a limit u(x) = limN→∞UN (x) that is also a
continuous function on [a, b]. We then show that the construction of UN
implies that u(x) solves (3.11) and the Fundamental Theorem follows.

To show that {UN} is a Cauchy sequence, we choose N and M with
N < M and let FN and FM denote the piecewise constant functions
computed using the maximum values of f on intervals in the meshes with
nodes {xN,i}2N

i=0 and {xM,i}2M

i=0 corresponding to N and M respectively.
The values UN (x) and UM (x) represent the areas underneath the curves
FN and FM between xN,0 = xM,0 = a and x in [a, b]. We want to prove
that these values are uniformly close for all x in [a, b] if N and M are
large.

To compare UN and UM , we introduce the piecewise constant func-
tion FN defined using the minimum instead of the maximum value of
f(x) on each sub-interval and the primitive function UN corresponding
to FN .

Problem 3.22. Compute a formula for UN analogous to (3.16).

The functions FN , FM and FN , as well as the areas given by UN , UM
and UN are displayed in Fig. 3.10. From the picture, it is clear that

FN (x) ≤ FM (x) ≤ FN (x) for a ≤ x ≤ b,

which implies the analogous relation for the corresponding areas:

UN (x) ≤ UM (x) ≤ UN (x) for a ≤ x ≤ b.

It follows that

max
[a,b]

|UN − UM | ≤ max
[a,b]

|UN − UN |. (3.17)
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f(x)

xM, p-1 xM, q

FN(x)

FN(x)
=

xN, i-1

=

xN, i

xM, j

FM(x)

xM, j-1

Figure 3.10: The area below FM is between the areas below FN and
FN .

We estimate max[a,b] |UN−UN | in terms of max[a,b] |FN−FN | as follows:

For xN,i−1 ≤ x ≤ xN,i, we have with h = (b− a)2−N ,

0 ≤ UN (x) − UN (x) =

i−1∑

j=1

(
FN,j − FN,j

)
h+ (x− xN,i−1)

(
FN,i − FN,i

)
,

which shows that

max
[a,b]

|UN − UN | ≤ (b− a)max
[a,b]

|FN − FN |, (3.18)

because the sum of the lengths of the sub-intervals is less than or equal
to b − a. To estimate max[a,b] |FN − FN |, we use the assumption that
f(x) is uniformly continuous on [a, b], i.e. for any ǫ > 0 there is a δǫ > 0
such that

|f(x) − f(y)| < ǫ for all a ≤ x, y ≤ b with |x− y| < δǫ.

This implies that for any ǫ > 0 there is a Nǫ such that,

max
[a,b]

|FN − FN | < ǫ if N > Nǫ. (3.19)
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It follows from (3.18) that {UN} is a uniform Cauchy sequence of contin-
uous functions on [a, b] and therefore converges to a continuous function

u(x) = lim
N→∞

UN (x) for a ≤ x ≤ b. (3.20)

Moreover,
UN (x) ≤ u(x) ≤ UN (x) for all a ≤ x ≤ b (3.21)

and UN (x) also converges to u(x), see Fig. 3.11. We denote the limit
u(x) by

u(x) =

∫ x

a
f(y) dy,

where the motivation for this symbol comes from considering the limit
of

UN (xi) =

i∑

j=1

FN,jh

where
∫ x
a replaces the sum

∑
j, f(y) replaces FN,j and dy replaces the

stepsize h.

UN(x)

UN(x)xN,0 xN,1 xN,i

u(x)
<_ (x-xN,0)
when
max |FN-FN| <_

Figure 3.11: u is between UN and UN .

Problem 3.23. Prove (3.18), (3.19), (3.21).

3.4.4. The limit satisfies the differential equation

It remains to show that u(x) satisfies (3.11). Obviously u(a) = 0 since
UN (a) = 0, so we have to show that u(x) solves the differential equation
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u′(x) = f(x) for a < x ≤ b. We do this by using the definition of the
derivative, so for a < x ≤ b, let ∆x denote a small positive number such
that a ≤ x − ∆x ≤ b. We assume that xj−1 ≤ x ≤ xj for some j, and
that xi−1 < x−∆x ≤ xi for some i, where we drop the sub-index N on
the nodes to make the notation simpler, see Fig. 3.12. Using the formula

xi-1 xi xj-1 xj

x - x x

x

xi+1

<_ x+2h

Figure 3.12: Locating x and x− ∆x in the mesh.

for UN (x), it follows that

|UN (x) − UN (x− ∆x) − ∆xf(x)| ≤ ∆x max
xi−1≤z,y≤xj

|f(y) − f(z)|.

Problem 3.24. Prove this.

This bound shows that UN approximately satisfies the differential equa-
tion. To see this, note that by the uniform continuity of f , for any ǫ > 0,
there is a δǫ > 0 such that

max
xi−1≤y,z≤xj

|f(y) − f(z)| < ǫ, (3.22)

provided that ∆x and h are so small that ∆x+ 2h < δǫ; see Fig. 3.12.
Dividing by ∆x, we thus see that if ∆x and h are small enough, then

∣∣∣∣
UN (x) − UN (x− ∆x)

∆x
− f(x)

∣∣∣∣ < ǫ.

Letting N → ∞ and using the convergence of UN to u, we conclude that
∣∣∣∣
u(x) − u(x− ∆x)

∆x
− f(x)

∣∣∣∣ < ǫ, (3.23)

if ∆x < δǫ. We illustrate this in Fig. 3.13. Using a very similar argument,
we see that (3.23) also holds for small ∆x < 0. Finally, we let ∆x → 0
and conclude, using the definition of the derivative and the fact that ǫ is
arbitarily small, that u is differentable at x and u′(x) = f(x). Finally, it
follows from Problem 3.17 that u(x) is uniquely defined. This completes
the proof of the Fundamental Theorem of Calculus:
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xx- x

f(x)

u(x- x) u(x) f(x) x

Figure 3.13: An illustration of (3.23). We see that that the difference
between the area under f from 0 to x, which is u(x), and
the area under f from 0 to x − ∆x, which is u(x− ∆x),
is approximately f(x)∆x.

Theorem 3.3. Suppose that f is continuous on the interval [a, b]. Then
there is a uniquely defined differentiable function u(x) =

∫ x
a f(y) dy on

[a, b], which satisfies u′(x) = f(x) for a < x ≤ b, u(a) = 0. Further,
u(x) gives the area below the graph of f from a to x.

The theorem directly extends to the situation when f is piecewise
continuous and has variable sign. In this case, we have to interpret the
area with the proper sign.

Problem 3.25. Let u(x) be continuous on [a, b] and let a = x0 < x1 <
... < xm = b be a partition of [a, b]. Prove that

m∑

i=1

u(xi) − u(xi−1)

xi − xi−1
(xi − xi−1) = u(b) − u(a).

Study the relation between this formula and the Fundamental Theorem,
see Leibniz’ Art of Combinations from 1666.

3.4.5. Properties of the integral

Properties of integration follow from the properties of differentiation and
the proof of the Fundamental Theorem. We recall some of these now.
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1. If f1 and f2 are piecewise continuous functions for a ≤ x ≤ b,
x0, x1 are points in [a, b] and c1 and c2 are constants, then
∫ x1

x0

(c1f1(x) + c2f2(x)) dx = c1

∫ x1

x0

f1(x) dx+ c2

∫ x1

x0

f2(x) dx.

2. If u and v are two differentiable functions for a ≤ x ≤ b and x0

and x1 are points in [a, b], then
∫ x1

x0

u′(x)v(x) dx = u(x1)v(x1) − u(x0)v(x0) −
∫ x1

x0

u(x)v′(x) dx.

3. If f(x) is continuous for a ≤ x ≤ b and x0, x1, and x2 are points
in [a, b], then

∫ x2

x0

f(x) dx =

∫ x1

x0

f(x) dx+

∫ x2

x1

f(x) dx.

4. If f1 and f2 are continuous functions and f1(x) ≤ f2(x) for all
a ≤ x ≤ b and x0 and x1 are points in [a, b] with x0 < x1, then

∫ x1

x0

f1(x) dx ≤
∫ x1

x0

f2(x) dx.

Problem 3.26. Prove #2. Hint: apply the Fundamental Theorem to the
product uv.

Problem 3.27. (a) Prove #4. Hint: Problem 3.17. (b) Prove that
|
∫ x1

x0

f(x) dx| ≤
∫ x1

x0

|f(x)| dx if x0 < x1 by using the result from (a).

Problem 3.28. Prove Taylor’s theorem. Hint: integrate successively by
parts using the notation kn(x) = (x− z)n/n! as follows:

u(z) = u(y) +

∫ z

y

Du(x)Dk1(x) dx

= u(y) +Du(y)(z − y) −
∫ z

y

D2u(x)Dk2(x) dx,

where in the last integral we used that Dk2 = k1. Continuing this way, we
reach the conclusion using a variant of the mean value theorem.

Problem 3.29. Give an alternative proof of the fact that the limit u(x)
given by (3.20) satisfies u′(x) = f(x) by starting from the fact that u(x)−
u(x− ∆x) =

∫ x
x−∆x

f(y) dy; see Fig. 3.13.



3. A Review of Calculus 51

3.4.6. October 29, 1675

On October 29, 1675, Leibniz got a bright idea sitting at his desk in
Paris. He writes: “Utile erit scribit

∫
pro omnia” which translates to

“It is useful to write
∫

instead of omnia”. This is the moment when the
modern notation of calculus is created. Since 1673, Leibniz had been
working with a notation based on a, l and “omnia” which represented in
modern notation dx, dy and

∫
respectively. He had been using formulas

like

omn.l = y, omn.yl =
y2

2
, omn.xl = xomn.l − omn.omn.la,

where “omn.”, short for omnia, indicated a discrete sum and l and a
denoted increments of finite size (often a = 1). In the new notation,
these formulas became

∫
dy = y,

∫
y dy =

y2

2
,

∫
x dy = xy −

∫
y dx.

This opened up the possibility of dx and dy being arbitrarily small and
the sum being replaced by the “integral”.

Problem 3.30. Make sense out of the above formulas. Prove, as did
Leibniz, the second from a geometrical argument based on computing the
area of a right-angled triangle by summing thin slices of variable height
y and thickness dy, and the third from computing similarly the area of a
rectangle as the sum of the two parts below and above a curve joining two
opposite corners of the rectangle.

3.4.7. Estimating the accuracy of the approximation

The proof of the Fundamental Theorem also gives a way to estimate the
accuracy of the approximation computed on a particular mesh. By the
construction of UN , it follows that for xm−1 < x ≤ xm,

|u(x) − UN (x)| ≤
m∑

j=1

max
xj−1≤y,z≤xj

|f(y) − f(z)|h, (3.24)

where h = (b− a)2−N . Using the estimate

max
xj−1≤y,z≤xj

|f(y) − f(z)| ≤ max
[xj−1,xj ]

|f ′| |xj − xj−1|, (3.25)
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which is a consequence of the mean value theorem, we obtain from (3.24)

|u(x) − UN (x)| ≤
m∑

j=1

(
max

[xj−1,xj ]
|f ′|h

)
h. (3.26)

In particular, (3.26) can be simplified to

|u(x) − UN (x)| ≤ 2−N (b− a) max
[a,xm]

|f ′| , (3.27)

from which we conclude that any desired level of accuracy on [a, b] can
be reached by choosing N large enough to balance the size of |f ′| and
the length of [a, b].

Problem 3.31. Prove (3.24), (3.25), (3.26) and (3.27)

We illustrate by estimating the error in the approximation of log(x)
using numerical integration. Recall that the natural logarithm log(x)
solves the initial value problem

{
u′(x) = x−1 for x > 1 or 0 < x < 1,

u(1) = 0,

or in other words

log(x) =

∫ x

1

1

y
dy. (3.28)

Problem 3.32. Prove that log
(
ex
)

= x for all x. Hint: use the chain rule
to show that

d

dx
log
(
ex
)

= 1,

and observe that log
(
e0
)

= 0.

We now apply the procedure presented above to compute an approxi-
mation of the integral log(x) given by (3.28) and bound the error using
the estimate (3.26). Note that because |f ′′(x)| = x−2 is decreasing,
max[xj−1,xj] |f ′′| = x−2

j−1. Computing log(4) ≈ 1.38629 for a variety of h,
we find that

h Error Bound True Error
.1 .0799 .0367
.01 .00755 .00374
.001 .000750 .000375
.0001 .0000750 .0000375
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We see that (3.26) predicts the dependence of the error on h well in the
sense that the ratio of the true error to the error bound is more or less
constant as h decreases. Since the ratio is approximately .5, this means
that (3.26) overestimates the error by a factor of 2 in this problem.
In contrast, if we use the less accurate error bound (3.27), we obtain
the estimates .3, .03, .003, and .0003 for h = .1, .01, .001, and .0001
respectively, which is about 8 times too large for any given h.

Problem 3.33. Explain why (3.27) is less accurate than (3.26) in general.

Problem 3.34. Estimate the error using (3.26) and (3.27) for the follow-

ing integrals: (a)
∫ 2

0 2s ds, (b)
∫ 2

0 s
3 ds, and (c)

∫ 2

0 exp(−s) ds using h = .1,
.01, .001 and .0001. Discuss the results.

3.4.8. Adaptive quadrature

Once we can estimate the error of approximations of u(x) =
∫ x
a f(y) dy,

it is natural to pose the problem of computing an approximation of a
specified accuracy. Using (3.26) it follows that if h is so small that

m∑

j=1

(
max

[xj−1,xj ]
|f ′|h

)
h ≤ TOL, (3.29)

where TOL is a given error tolerance, then

|u(x) − UN (x)| ≤ TOL, (3.30)

if xm−1 < x ≤ xm. Since in general the amount of computer time,
or cost, is a major concern, the practical problem is to compute an
approximation of a given accuracy using the least amount of work, which
in this case means the largest possible step size h, or equivalently, the
smallest number of intervals.

However, the form of (3.29) carries an inherent inefficiency in terms
of reaching a desired accuracy with minimum cost if |f ′| varies over the
interval [a, xm]. More precisely, we have to adjust h depending on the
size of |f ′| to achieve (3.29), and in particular, the size of h in fact
depends on the largest value of |f ′| in the entire interval [a, xm]. This is
the appropriate size of h for intervals [xj−1, xj ], j ≤ m, where the largest
value is achieved, but in intervals where |f ′| is significantly smaller, this
value of h is unnecessarily small. Consequently, the number of intervals
may be far from minimal.
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A better procedure is to adapt the step size to compensate for the
size of |f ′| in each sub-interval. Such a mesh is called an adapted mesh.
We choose a non-uniform partition of [a, x], a = x0 < x1 < ... < xm =
x, with sub-intervals Ij = (xj−1, xj) of lengths hj = xj − xj−1 and
approximate

∫ x
a f(s) ds by the sum

U(x) =
m∑

j=1

f(xj)hj , (3.31)

which is referred to as a Riemann sum or the rectangle rule quadrature
formula. Using a straightforward modification of the proof above, it is
possible to show that

∣∣∣∣∣∣

∫ xm

a
f(y) dy −

m∑

j=1

f(xj)hj

∣∣∣∣∣∣
≤

m∑

j=1

(
max

[xj−1,xj ]
|f ′|hj

)
hj . (3.32)

Problem 3.35. Prove (3.32).

By (3.32), we can guarantee that

∣∣∣∣∣∣

∫ xm

a
f(y) dy −

m∑

j=1

f(xj)hj

∣∣∣∣∣∣
≤ TOL, (3.33)

by choosing the step sizes hj so that

m∑

j=1

(
max

[xj−1,xj ]
|f ′|hj

)
hj ≤ TOL. (3.34)

We refer to (3.34) as a stopping criterion; if the mesh sizes hj satisfy this
criterion, then the quadrature error is bounded by the tolerance TOL
and we are satisfied.

Choosing the steps to achieve (3.34) is not straightforward because
of the global aspect of the inequality, i.e. the size of one step hj affects
the possible sizes of all the remaining steps. In practice, we simplify
the problem by devising a step-wise strategy, or adaptive algorithm, for
choosing each step hj in order to achieve (3.34). There are many possi-
ble adaptive algorithms and the choice depends partly on the accuracy
requirements. We describe two.
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In the first case, we estimate the sum in (3.34) as

m∑

j=1

(
max

[xj−1,xj ]
|f ′|hj

)
hj ≤ (xm − a) max

1≤j≤m

(
max

[xj−1,xj ]
|f ′|hj

)
,

where we use the fact that
∑m

j=1 hj = xm − a. It follows that (3.34) is
satisfied if the steps are chosen by

hj =
TOL

(xm − a) max
[xj−1,xj ]

|f ′| for j = 1, ...,m. (3.35)

In general, this is a nonlinear equation for hj since xj depends on hj .
We apply this adaptive algorithm to the computation of log(4) and

obtain the following results

TOL xm Steps Approximate Area Error

.1 4.077 24 1.36 .046
.01 3.98 226 1.376 .0049
.001 3.998 2251 1.38528 .0005
.0001 3.9998 22501 1.3861928 .00005

The reason xm varies slightly in these results is due to the strategy we
use to implement (3.35). Namely, we specify the tolerance and then
search for the value of m that gives the closest xm to 4. This procedure
is easy to carry out by hand, but it is not the most efficient way to
achieve (3.35) and we discuss more efficient methods later in the book.

We plot the sequence of mesh sizes for TOL = .01 in Fig. 3.14,
where the adaptivity is plainly visible. In contrast, if we compute with
a fixed mesh, we find using (3.29) that we need N = 9/TOL points
to guarantee an accuracy of TOL. For example, this means using 900
points to guarantee an accuracy of .01, which is significantly more than
needed for the adapted mesh.

The second adaptive algorithm is based on an equidistribution of
error in which the steps hj are chosen so that the contribution to the
error from each sub-interval is roughly equal. Intuitively, this should
lead to the least number of intervals since the largest error reduction is
gained if we subdivide the interval with largest contribution to the error.
In this case, we estimate the sum on the left-hand side of (3.34) by

m∑

j=1

(
max

[xj−1,xj ]
|f ′|hj

)
hj ≤ m max

1≤j≤m

(
max

[xj−1,xj ]
|f ′|h2

j

)
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and determine the steps hj by

h2
j =

TOL

m max
[xj−1,xj ]

|f ′| for j = 1, ...,m. (3.36)

As above, we have to solve a nonlinear equation for hj , now with the
additional complication of the explicit presence of the total number of
steps m.

We implement (3.36) using the same strategy used for the first adap-
tive algorithm for the computation of log(4) and obtain the following
results:

TOL xm Steps Approximate Area Error

.1 4.061 21 1.36 .046
.01 4.0063 194 1.383 .005
.001 3.9997 1923 1.3857 .0005
.0001 4.00007 19220 1.38626 .00005

We plot the sequence of step sizes for TOL = .01 in (3.14). We see

xj
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Figure 3.14: On the left, we plot the step sizes generated by two
adaptive algorithms for the integration of log(4) using
TOL = .01. On the right, we plot the errors of the same
computations versus x.

that at every tolerance level, the second adaptive strategy (3.36) gives
the same accuracy at xm ≈ 4 as (3.35) while using fewer steps. We
may compare the efficiency of the two algorithms by estimating in each



3. A Review of Calculus 57

case the total number of steps m required to compute log(x) to a given
accuracy TOL. We begin by noting that the equality

m =
h1

h1
+
h2

h2
+ · · · + hm

hm
,

implies that, assuming xm > 1,

m =

∫ xm

1

dy

h(y)
,

where h(y) is the piecewise constant mesh function with the value h(s) =
hj for xj−1 < s ≤ xj. In the case of the second algorithm, we substitute
the value of h given by (3.36) into the integral to get, recalling that
f(y) = 1/y so that f ′(y) = −1/y2,

m ≈
√
m√

TOL

∫ xm

1

dy

y
,

or

m ≈ 1

TOL
(log(xm))2 . (3.37)

Making a similar analysis of the first adaptive algorithm, we get

m ≈ xm − 1

TOL

(
1 − 1

xm

)
. (3.38)

In both cases, m is inversely proportional to TOL. However, the number
of steps needed to reach the desired accuracy using the first adaptive
algorithm increases much more quickly as xm increases than the number
needed by the second algorithm, i.e. at a linear rate as opposed to a
logarithmic rate. Note that the case 0 < xm < 1 may be reduced to the
case xm > 1 by replacing xm by 1/xm since log(x) = − log(1/x).

If we use (3.35) or (3.36) to choose the steps hj over the interval
[a, xm], then of course the error of the approximate integration over any
smaller interval [a, xi] with i ≤ m, is also smaller than TOL. For the
first algorithm (3.35), we can actually show the stronger estimate

∣∣∣∣∣∣

∫ xi

a
f(y) dy −

i∑

j=1

f(xj)hj

∣∣∣∣∣∣
≤ xi − a

xm − a
TOL, 1 ≤ i ≤ m, (3.39)

i.e., the error grows at most linearly with xi as i increases. However, this
does not hold in general for the second adaptive algorithm. In Fig. 3.14,
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we plot the errors versus xi for xi ≤ xm resulting from the two adaptive
algorithms with TOL = .01. We see the linear growth predicted for the
first algorithm (3.35) while the error from the second algorithm (3.36)
is larger for 1 < xi < xm.

Problem 3.36. Approximate the following integrals using the adaptive

algorithms (3.35) and (3.36) to choose the steps: (a)
∫ 2

0 2s ds, (b) (Harder)∫ 2

0
s3 ds, and (c)

∫ 2

0
exp(−s) ds using e.g. TOL = .1, .01, .001 and .0001.

Discuss the results.

Problem 3.37. Compare theoretically and experimentally the number
of steps of (3.35) and (3.36) for the computation of integrals of the form∫ 1

x f(y) dy for x > 0, where f(y) ∼ y−α with α > 1.

3.5. A look ahead

We proved above the existence of a solution u(x) to the initial value
problem {

u′(x) = f(u(x), x) for a < x ≤ b,

u(a) = u0,
(3.40)

in the case that f(u(x), x) = f(x) depends only on x, by studying the
convergence of a numerical method of the form

Uj = Uj−1 + hjf(xj) for j = 1, 2, ...,m, (3.41)

with U0 = u0, where a = x0 < x1 < ... < xm is an increasing sequence
with step size hj = xj−xj−1 and Uj is an approximation of u(xj). Such
numerical methods extend to the more general case (3.40), where for
instance f can also depend on u(x), in the form

Uj = Uj−1 + hjf(Uj−1, xj) for j = 1, 2, ...,m, (3.42)

with U0 = u0. Moreover, a variation of the argument used above proves
that as the step sizes tend to zero, this method converges to a solution
of (3.40). In this volume, we will study scalar and vector problems
of the form (3.40) where f is linear in u, and then in the advanced
companion volume, we will consider nonlinear f . This study is all the
more important because once f is allowed to depend on u, then in general
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there is no equivalent of the definite integral that we can use to define
the solution of the initial value problem.

The elementary functions in mathematics such as the exponential
function exp(x) = ex or the trigonometric functions sin(x), cos(x), are
solutions to specific initial or boundary value problems. For instance,
for λ ∈ R the function exp(λx) solves the initial value problem

u′(x) = λu(x) for x > 0, u(0) = 1,

corresponding to f(u(x), x) = λu(x). We will meet this problem in
Chapters 6 and 9. For ω ∈ R, the function sin(ωx) solves the initial value
problem u′′(x)+ω2u(x) = 0 for x > 0, u(0) = 0, u′(0) = ω, a problem we
will meet in Chapter 10. Further, for n = 1, 2, ..., the function sin(nx)
solves the boundary value problem u′′(x) + n2u(x) = 0 for 0 < x < π,
u(0) = u(π) = 0, a problem we will meet in Chapters 6 and 8. Values
of the elementary functions in general are computed by approximate
solution of the corresponding differential equation. The computational
methods presented in the book in particular gives methods for computing
values of the elementary functions.

Problem 3.38. Verify that the functions exp(λx), sin(ωx) and sin(nx)
solve the indicated initial or boundary value problems.

Problem 3.39. Find a correspondence between the set of departments
at your university and the set of differential equations.

In the direction of largeness it is always possible to think of a
larger number....Hence this infinite is potential... and is not a
permanent actuality but consists in a process of coming to be, like
time... (Aristotle)

The neglect of mathematics for thirty or forty years has nearly
destroyed the entire learning of Latin Christendom. For he who
does not know mathematics cannot know any of the other sci-
ences; what is more, he cannot discover his own ignorance or find
proper remedies. So it is that the knowledge of this science pre-
pares the mind and elevates it to a well-authenticated knowledge
of all things. For without mathematics neither what is antecedent
nor consequent to it can be known; they perfect and regulate the
former, and dispose and prepare the way for that which succeeds.
(Roger Bacon, 1267)
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A poor head, having subsidiary advantages,.... can beat the best,
just as a child can draw a line with a ruler better than the greatest
master by hand. (Leibniz)

Figure 3.15: An important Leibniz manuscript from October 29, 1675
that contains the origins of calculus.



4

A Short Review of Linear

Algebra

Language is a lens that necessarily intervenes between the mind
and the world and that can, depending of the skill of the optician,
either distort or magnify our aprehension of the world. (Leibniz)

Linear algebra deals with vectors and linear transformations of vectors
and together with calculus forms the basis for the study of differential
equations. In this chapter, we give a speedy review of some parts of
linear algebra, concentrating on the Euclidean vector space Rd. We also
give a first example of a vector space consisting of piecewise polynomial
functions, of which we will meet more examples in the next chapter.

The most familiar vector space is the Euclidean space Rd consisting
of the set of all column vectors x = (x1, ..., xd)

⊤, where ⊤ indicates the
transpose and each xj is a real number. Recall that (x1, ..., xd) denotes
a row vector. When x ∈ R1, we call x a scalar. Note that we do not
distinguish vectors from scalars using an → or boldface for example. It
will be clear from the context whether a particular variable is a vector
or scalar.

Two vectors x = (x1, ..., xd)
⊤ and y = (y1, ..., yd)

⊤ may be added by
componentwise scalar addition

x+ y = (x1, ..., xd)
⊤ + (y1, ..., yd)

⊤ = (x1 + y1, ..., xd + yd)
⊤,

and a vector x may be multiplied by a scalar α ∈ R componentwise
as well αx = (αx1, ..., αxd)

⊤. Thus, vectors in Rd may be added and
multiplied by scalars, which are the two basic operations in a vector

61
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space. More generally, a set V is a vector space, if there are two oper-
ations defined on elements or “vectors” in V , namely addition of vec-
tors denoted by + and multiplication of a vectors by a scalar in R, so
that x, y ∈ V implies x + y ∈ V , and αx ∈ V for any α ∈ R and
x ∈ V . Moreover, the operations should satisfy the rules satsified by
vector addition and scalar multiplication Rd. For example, the addi-
tion of vectors should be commutative and associative, i.e., the order
in which vectors are added is irrelevant. A subspace of a vector space
is a subset with the same properties, so that it forms a vector space in
its own right. For example, {(x1, x2, 0)

⊤ ∈ R3 : xi ∈ R, i = 1, 2} and
{(x1, x2, x3)

⊤ ∈ R3 : x1 − 2x2 + x3 = 0} are subspaces of R3 (verify!).

4.1. Linear combinations, linear independency, and basis.

A linear combination of a set of vectors {vi}di=1 is a sum of the form∑d
i=1 αivi for some scalars αi ∈ R. If {vi}di=1 is a set of vectors in a

vector space V , then the set S of all possible linear combinations of the
vi,

S =
{
v : v =

d∑

i=1

αivi, αi ∈ R
}
,

is a subspace of the vector space.

Problem 4.1. Prove this.

A set of vectors {vi}di=1 is said to be linearly independent if the only
linear combination of the vectors that sums to zero has coefficients equal
to zero, i.e., if

∑d
i=1 αivi = 0 implies αi = 0 for all i. A basis for a vector

space V is a set of linearly independent vectors {vi}di=1 such that any
vector v ∈ V can be written as a linear combination of the basis vectors
vi, i.e. v =

∑d
i=1 αivi, where the αi are called the coordinates of v with

respect to the basis {vi}di=1. The requirement that the vectors in a basis
be linearly independent means that the coordinates of a given vector are
unique. The set of vectors in Rd:

{
(1, 0, 0, · · · , 0, 0)⊤, (0, 1, 0, · · · , 0, 0)⊤, · · · , (0, 0, 0, · · · , 0, 1)⊤

}
,

often denoted by {e1, ...., ed}, is the standard basis for Rd. A vector
x = (x1, ..., xd)

⊤ ∈ Rd can be written x =
∑d

i=1 xiei. The dimension of
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a vector space is the number of vectors in any basis for the space (this
number is the same for all bases).

Problem 4.2. If the dimension of the vector space is d and {vi}di=1 is a
set of d linearly independent vectors, prove that {vi}di=1 forms a basis.

A vector space has many different bases (if the dimension d > 1), and
the coordinates of a vector with respect to one basis are not equal to
the coordinates with respect to another basis.

Problem 4.3. Prove that the set of vectors {(1, 0)⊤, (1, 1)⊤} is a basis
for R2. If the coordinates of x are (x1, x2) in the standard basis, find the
coordinates with respect to the new basis.

4.2. Norms, inner products, and orthogonality.

A norm ‖ · ‖ is a real-valued function of vectors with the following prop-
erties:

‖x‖ ≥ 0 for all vectors x, ‖x‖ = 0 ⇐⇒ x = 0,

‖αx‖ = |α| ‖x‖ for all scalars α and all vectors x,

‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all vectors x, y,

where the last inequality is referred to as the triangle inequality. A norm
is used to measure the size of a vector. The most familiar norm is the
Euclidean norm ‖x‖ = ‖x‖2 or “length” of a vector x = (x1, ..., xd)

⊤

defined by

‖x‖2 =
(
x2

1 + · · · + x2
d

)1/2
,

which fits our geometric intuition about length. The Euclidean norm
is closely related to the Euclidean inner product (x, y)2 of two vectors
x = (x1, ..., xd) and y = (y1, ..., yd), also denoted by x · y and referred to
as the “dot-product”, defined by

(x, y)2 = x · y =
d∑

i=1

xiyi.

The relation between the norm and the inner product is ‖x‖2 =
√

(x, x)2.
The Euclidean inner product (x, y)2 is is The Euclidean norm is also
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called the l2 norm. There are other ways of defining a norm of a vector
x = (x1, ..., xd)

⊤, such as the l1 and l∞ norms:

‖x‖1 = |x1| + · · · + |xd|,
‖x‖∞ = max

1≤i≤d
|xi|.

Problem 4.4. Prove this estimate.

Problem 4.5. Plot the “unit circle” {x ∈ R2 : ‖x‖p = 1} for the three
norms ‖ · ‖p, p = 1, 2,∞.

Recall that an inner product or scalar product is a real-valued func-
tion of pairs of vectors denoted by (·, ·) with the following properties: if
x, y, and z, are vectors and α, β ∈ R, then

(αx+ βy, z) = α(x, z) + β(y, z),

(x, αy + βz) = α(x, y) + β(x, z),

(x, y) = (y, x).

These rules may be summarized by saying that the inner product is
bilinear and symmetric. An inner product also satisfies the Cauchy-
Schwarz (or Cauchy) inequality

|(x, y)| ≤ ‖x‖ ‖y‖,

for any two vectors x and y, where ‖x‖ =
√

(x, x) is the associated scalar
product norm. This inequality follows by noting that for all s ∈ R,

0 ≤ ‖x+ sy‖2 = (x+ sy, x+ sy) = ‖x‖2 + 2s(x, y) + s2‖y‖2

and then choosing s = −(x, y)/‖y‖2, which minimizes the right-hand
side.

The basic example of an inner product is the Euclidean inner product
(·, ·)2. Below, we will often suppress the index 2 in the Euclidean scalar
product and norm. Thus, if nothing else is indicated, ‖x‖ = ‖x‖2 and
(x, y) = (x, y)2. Note that the l1 and l∞ norms are not connected to
scalar products as the Euclidean norm is, but they do satisfy the relation:
|(x, y)2| ≤ ‖x‖1 ‖y‖∞.

Problem 4.6. Prove that if a1,...,ad, are given positive weights, then
(x, y) =

∑d
i=1 aixiyi is a scalar product on Rd. Write down the corre-

sponding norm and Cauchy inequality.



4. A Short Review of Linear Algebra 65

Problem 4.7. Prove the triangle inequality for a scalar product norm.

There is a helpful interpretation of the Euclidean inner product of
two vectors x and v as a generalized average or weighted average of the
coefficients of x. If x1, x2, ..., xd are d numbers, then their average is
(x1 + x2 + ... + xd)/d = 1

d x1 + · · · + 1
d xd. A generalized average is

v1 x1 + · · · + vd xd where the vi are called the weights. Note that this is
the same as (x, v)2 with v = (v1, ..., vd)

⊤. Weighted averages might be
familiar from a course where a test was given several times more weight
than a quiz when the final grade was computed.

If x and y are two vectors, the projection of x in the direction of y
is the vector αy, where α = (x, y)/‖y‖2. This vector has the property
that (x− αy, y) = 0 and is illustrated in Fig. 4.1.

y

x

(x,y)
y

||y||2

Figure 4.1: The projection of x in the direction of y.

Two vectors x and y are orthogonal if (x, y) = 0, i.e. if the projection
of x onto y is the zero vector (and vica versa). Two non-zero orthogonal
vectors are necessarily linearly independent, hence if the dimension of a
vector space V is d and {v1, ..., vd} are an orthogonal set of vectors, by
which we mean the vectors are pairwise orthogonal, then they form a
basis. Alternatively, it is possible, starting from any basis for a vector
space V , to produce an orthogonal basis by successive subtraction of
projections following the Gram-Schmidt algorithm.

To test whether a particular vector x in a vector space V is the zero
vector, we can use orthogonality in the following way:

x = 0 ⇐⇒ (x, v) = 0 for all v ∈ V. (4.1)

Interpreted in terms of averages, this means that x is zero if and only if
every possible weighted average of its components is zero. We note that
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it suffices to check that (4.1) holds for all vectors v in a basis for V . For,
if {vi} is a basis for V and (x, vi) = 0 for all i and v is any vector in V ,
then v =

∑
i αivi for some scalars αi and (x, v) =

∑
i αi(x, vi) = 0.

Problem 4.8. Prove (4.1).

The concept of orthogonality also extends to subspaces. A vector x
in a vector space V is orthogonal to a subspace S ⊂ V if x is orthogonal
to all vectors s ∈ S. For example, (0, 0, 1)⊤ is orthogonal to the plane
generated by the two vectors (1, 0, 0)⊤ and (0, 1, 0)⊤.

Problem 4.9. Plot the vectors and prove this claim.

A vector being orthogonal to a subspace means that certain weighted
averages of its coefficients are zero. Note that it suffices to check that x
is orthogonal to all the vectors in a basis for a subspace S to determine
that x is orthogonal to S. The orthogonal complement of a subspace,
denoted S⊥, is the set of vectors in V that are orthogonal to S.

Problem 4.10. Prove that S⊥ is a subspace of V . Show that the only
vector both in S and in S⊥ is 0. Show that (S⊥)⊥ = S.

Similarly, the projection of a vector v onto a subspace S is the vector
vs ∈ S such that

(v − vs, s) = 0 for all vectors s ∈ S. (4.2)

The projection of a vector v is the best approximation of v in S in the
following sense.

Lemma 4.1. Let vs denote the projection of v into the subspace S of a
vector space. Then,

‖v − vs‖ ≤ ‖v − s‖ for all s ∈ S.

Proof. Using the orthogonality (4.2), we have for any s ∈ S

(v − vs, v − vs) = (v − vs, v − s) + (v − vs, s − vs)

= (v − vs, v − s),

since s− vs ∈ S. Taking absolute values and using the Cauchy-Schwarz
inequality gives

‖v − vs‖2 ≤ ‖v − vs‖ ‖v − s‖,
from which the claim follows.



4. A Short Review of Linear Algebra 67

S

v

vs

v-vs

v-s

s-vS
s

Figure 4.2: The projection of v onto the subspace S.

This basic argument occurs again in various forms, so it is worth taking
the time to understand it now. We illustrate it in Fig. 4.2.

The above applies to the Euclidean inner product, but directly gen-
eralizes to an arbitrary scalar product.

Problem 4.11. Prove that the projection of a vector x in the direction of
a vector y defined above is equal to the projection of x onto the subspace
{v : v = αy, α ∈ R} consisting of all scalar multiples of y.

4.3. Linear transformations and matrices

A transformation or map f(x) from Rd to Rd is a function that associates
a vector y = f(x) ∈ Rd to each vector x ∈ Rd. In component form
in the standard basis, the transformation can be written yi = fi(x),
i = 1, ..., d, where each coordinate function fi is a map from Rd to
R. The transformation y = f(x) is a linear transformation if f has the
property that f(αx+z) = αf(x)+f(z) for all vectors x and z and scalars
α. A linear transformation y = f(x) can be written in component form

y1 = a11x1 + a12x2 + · · · + a1dxd

y2 = a21x1 + a22x2 + · · · + a2dxd
...

yd = ad1x1 + ad2x2 + · · · + addxd
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where aij = fi(ej). Introducing the d×d matrix A = (aij) with elements
aij , i, j = 1, ..., d, where i is the row index and j the column index this
is written

y = Ax.

The matrix of a transformation depends on the choice of basis. Recall
that the transpose A⊤ = (bij) of a matrix A = (aij) is the matrix with
elements bij where bij = aji. The transpose satisfies (Ax, y) = (x,A⊤y).

The properties of linear transformations are reflected by properties
of matrices. If f(x) and g(x) are two linear transformations on Rd with
associated matrices A and B, then the composition g ◦ f(x) = g(f(x))
has matrix BA with the usual definition of matrix multiplication. The
inverse of a transformation exists if and only if the inverse of the associ-
ated matrix exists, where the inverse of a matrix A is the unique matrix
A−1 such that A−1A = AA−1 = I, where I is the d× d identity matrix.
Recall that that the determinant of a matrix A, denoted by detA, is
a real number computable from the elements of A, which is non-zero if
and only if A−1 exists.

Suppose that A is the matrix of a linear transformation f . Recall
that the range R(A) of the matrix A is the set of vectors {Ax, x ∈ Rd}.
If there is a solution of Ax = b, then b must be in the range of A. The
set of vectors x such that Ax = 0 is the null space N(A) of A. A basic
result states that Ax = b has a unique solution if and only if Ay = 0
implies y = 0. In particular R(A) = Rd if and only if N(A) = {0}.
The range of A and the null space of A⊤ are related by the fact that
they form a decomposition of Rd in the sense that any vector z ∈ Rd

can be written uniquely in the form z = x + y where x ∈ R(A) and
y ∈ N(A⊤). In particular dim R(A) + dim N(A⊤) = d. Further,
dim N(A) = dim N(A⊤) so that also dim R(A) + dim N(A) = d.

4.4. Eigenvalues and eigenvectors

In general, a linear transformation can rotate and rescale vectors and it
does this in different degrees to different vectors. In order to establish
some structure on a given transformation, it is natural to ask if there
are vectors on which the transformation acts only to scale the vector.
An eigenvector v of a transformation represented by the matrix A, or
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an eigenvector of A for short, is a non-zero vector that has the property

Av = λv,

for a scalar λ, which is called the eigenvalue of A associated to v. Since
an eigenvector v solves (A − λI)v = 0, where I is the identity matrix,
λ is eigenvalue if and only if the determinant of A − λI vanishes. In
other words, the eigenvalues are the roots of the polynomial equation
det (A−λI) = 0. Since the roots may be complex, it may be convenient
to assume that the scalars are the set of complex numbers. In this case
the transposeA⊤ of a matrix A = (aij) is replaced by the adjoint A∗ with
elements bij where bij = āji, where the bar denotes complex conjugate.
The adjoint satisfies (Ax, y) = (x,A∗y), where (v,w) =

∑
i viw̄i is the

scalar product with complex scalars.
Eigenvectors associated to distinct eigenvalues are linearly indepen-

dent. On the other hand, an eigenvalue of A can be associated to several
eigenvectors. The eigenspace of A corresponding to an eigenvalue is the
subspace formed by taking all linear combinations of the eigenvectors
associated to the eigenvalue.

We recall that the eigenvalues of a diagonal matrix with non-zero
elements only in the diagonal are just the diagonal entries.

Problem 4.12. Prove this claim.

Thus, computing the eigenvalues of a matrix is greatly simplified if the
matrix can be transformed into a diagonal matrix without changing the
eigenvalues. Two matrices A and B are similar if there is an invertible
matrix P such that P−1AP = B. If v is an eigenvector of A correspond-
ing to λ, then w = P−1v is an eigenvector of B corresponding to the
same eigenvalue λ. Thus, similar matrices have the same eigenvalues.
A matrix is diagonalizable if there is an invertible matrix P such that
P−1AP is a diagonal matrix. Recall that a d×d matrix is diagonalizable
if and only if it has d linearly independent eigenvectors forming a basis
for Rd. If P diagonalizes A, then the columns of P are just d linearly
independent eigenvectors of A.

It is possible to show that certain types of matrices are diagonaliz-
able. If A is symmetric, i.e. A = A⊤, then A is diagonalizable with
real eigenvalues, and moreover the (real) matrix P may be chosen to be
orthogonal which means that P−1 = P⊤ and the columns of P , which
are the eigenvectors of A, are orthogonal to each other. We say that A is
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positive definite if (Ax, x) > 0 for all vectors x 6= 0. If A is positive defi-
nite and symmetric, then the eigenvalues of A are positive and moreover
‖x‖A =

√
(x,Ax) is a vector norm. We will encounter several positive-

definite symmetric matrices when computing on differential equations.

More generally, assuming the scalars to be complex, if A has d dis-
tinct (possibly complex) eigenvalues, thenA is diagonalizable: P−1AP =
Λ, where Λ is diagonal with the eigenvalues on the diagonal and the
columns of P are the corresponding eigenvectors. If A is diagonalizable
with P orthogonal so that P−1 = P ∗, then A is said to be normal. A
basic fact of linear algebra states that A is normal if A∗A = AA∗. If A
is real and symmetric so that A = A⊤ = A∗, then A is normal.

4.5. Norms of matrices

It is often necessary to measure the “size” of a linear transformation,
or equivalently the size of a corresponding matrix. We measure the size
by measuring the maximum possible factor by which the transformation
can rescale a vector. We define the matrix norm for a matrix A by

‖A‖p = max v ∈ Rdv 6= 0
‖Av‖p
‖v‖p

, p = 1, 2, or ∞.

Note that the matrix norm is defined in terms of a particular choice of
vector norm for Rd. Generally, matrix norms are harder to compute
than vector norms. It is easiest for the ‖ · ‖1 and the ‖ · ‖∞ norm:

‖A‖1 = max
1≤j≤n

n∑

i=1

|aij | (maximum absolute column sum)

‖A‖∞ = max
1≤i≤n

n∑

j=1

|aij | (maximum absolute row sum).

The ‖ · ‖2 norm is harder to compute, see Problem 4.15. If λ is an
eigenvalue of A, then ‖A‖ ≥ |λ| for any matrix norm.

Problem 4.13. Prove the last claim.

In the case of a symmetric matrix and the l2 norm, the following lemma
can be used to give a converse to this result.
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Lemma 4.2. Let A be a d× d symmetric matrix with eigenvalues {λi}.
Then

‖Av‖2 ≤ max
1≤i≤d

|λi|‖v‖2 (4.3)

Proof. We first show that if P is an orthogonal matrix, then ‖P‖2 =
‖P⊤‖2 = 1, because for any vector v,

‖Pv‖2
2 = (Pv, Pv)2 = (v, P⊤Pv)2 = (v, Iv)2 = (v, v)2 = ‖v‖2

2,

hence
‖Pv‖2

‖v‖2
= 1 for all v 6= 0.

The proof for P⊤ is the same. Let now Λ = P⊤AP be a diagonal matrix
of eigenvalues of A obtained choosing the columns of P to be orthogonal
eigenvectors of A, so that A = PΛP⊤. We can now compute:

‖Av‖2 = ‖PΛP⊤v‖2 = ‖ΛP⊤v‖2 ≤ max
1≤i≤d

|λi| ‖P⊤v‖2 = max
1≤i≤d

|λi| ‖v‖2.

It follows immediately that if A is symmetric, then ‖A‖2 = max
1≤i≤n

|λi|.

Problem 4.14. Prove the last statement.

Problem 4.15. Prove that for any matrix A, we have ‖A‖2 =
√
ρ(A⊤A),

where ρ(A⊤A) is the spectral radius of A⊤A, that is the largest modulus
of the eigenvalues of A⊤A.

4.6. Vector spaces of functions

There are more general vector spaces than Rd. Later on, we use vector
spaces for which the “vectors” are functions defined on an interval (a, b).
A vector space may consist of functions, because two functions f and
g on (a, b) may be added to give a function f + g on (a, b) defined by
(f + g)(x) = f(x)+ g(x), that is the value of f + g at x is the sum of the
values of f(x) and g(x). Moreover, a function f may be multiplied by
a real number α to give a function αf defined by (αf)(x) = αf(x). In
particular, we use vector spaces consisting of polynomials or piecewise
polynomials on (a, b).
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Problem 4.16. Prove that the set of functions v on (0, 1) of the form
v(x) = ax+ b, where a and b are real numbers, is a vector space.

Problem 4.17. Prove that the set of piecewise constant functions on a
partition of an interval, is a vector space of functions.

4.6.1. Scalar product, L2 norm, and Cauchy’s inequality

There are many parallels between vectors in Rd, and functions in a
vector space of functions defined on an interval (a, b). For example, for
functions f and g on (a, b) we may define an analog of the usual scalar
product as follows:

(f, g) =

∫ b

a
f(x)g(x) dx, (4.4)

where we usually suppress the dependence on the interval (a, b). The
associated norm is the L2(a, b) norm defined by

‖f‖L2(a,b) =
√

(f, f) =

(∫ b

a
f2(x) dx

)1/2

.

The L2(a, b) norm measures the “root mean square” area underneath
the graph of f . The inner product (·, ·), which we refer to as the L2

inner product, satisfies Cauchy’s inequality

|(f, g)| ≤ ‖f‖L2(a,b)‖g‖L2(a,b). (4.5)

The terminology from Rd carries over to functions: we say that two
functions f and g are orthogonal on (a, b) if

(f, g) =

∫ b

a
f(x)g(x) dx = 0. (4.6)

This concept of orthogonality is central in this book, and we will become
very familiar with it.

Problem 4.18. Prove the above Cauchy inequality.

Problem 4.19. Find a function that is orthogonal to f(x) = x on (0, 1).

Problem 4.20. Prove that sin(nx) and sin(mx) are orthogonal on (0, π)
if n,m = 1, 2, 3, ..., n 6= m.
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4.6.2. Other norms of functions

Just as for vectors in Rd, there is a need to measure the “size” of a
function over an interval (a, b) in different ways or in different norms. As
an example, consider the two functions f1 and f2 defined on the interval
(a, b) plotted in Fig. 4.3. One could argue that f1 should be considered

a b a b

f1(x)

f2(x)

Figure 4.3: Two functions of different “sizes”.

bigger because it reaches a higher maximum height. On the other hand,
f2 has bigger values over a greater portion of the interval [a, b]. We
may compare the two functions using the L∞(a, b) norm ‖ · ‖L∞(a,b) also
denoted by ‖ · ‖[a,b], which measures a continuous function f on [a, b] by
its maximum absolute height over [a, b]:

‖f‖L∞(a,b) = ‖f‖[a,b] = max
x∈[a,b]

|f(x)|,

Alternatively, we may compare the area underneath the graph of the
absolute value of a function f , that is we may use the L1(a, b) norm
defined by

‖f‖L1(a,b) =

∫ b

a
|f(x)| dx.

In the example above, f2 has a larger L1 norm than f1 on (a, b), while
f1 has a larger L∞ norm.

The L1 and L∞ norms are not associated to inner products, but they
do satisfy the following variant of Cauchy’s inequality

|(f, g)| ≤ ‖f‖L∞(a,b) ‖g‖L1(a,b).

Problem 4.21. Prove this.
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Problem 4.22. Verify that the L1, L2 and L∞ norms defined above
satisfy the requirements of a norm.

Problem 4.23. Prove that if 0 < b−a ≤ 1, then ‖f‖L1(a,b) ≤ ‖f‖L2(a,b) ≤
‖f‖L∞(a,b). Generalize to b > a+ 1.

Problem 4.24. Compute the L∞, L1, and L2 norms of sin(πx), x2, and
ex on (0, 1). Rank the functions in size in the different norms.

For p = 1, 2, or ∞, the set of functions on an interval (a, b) with
finite Lp(a, b) norm form a vector space which we denote by Lp(a, b).
Note that a function can belong to one of the spaces and not another.
For example, x−1/2 belongs to L1(0, 1) but not L∞(0, 1).

Problem 4.25. (a) Determine r such that x−s belongs to L1(0, 1) for
s < r. (b) Do the same for L2(0, 1).

It is, unfortunately, our destiny that, because of a certain aversion
toward light, people love to be returned to darkness. We see this
today, where the great ease for acquiring learning has brought forth
contempt for the doctrines taught, and an abundance of truths of
the highest clarity has led to a love for difficult nonsense... (Leib-
niz)

“You see,” he explained, “I consider that a man’s brain originally
is like a little empty attic, and you have to stock it with such
furniture as you choose. A fool takes in all the lumber of every
sort that he comes across, so that the knowledge which might be
useful to him gets crowded out, or at best is jumbled up with a
lot of other things, so that he has a difficulty laying his hands
upon it. Now the skillful workman is very careful indeed as to
what he takes into his brain-attic. He will have nothing but the
tools which may help him in doing his work, but of these he has a
large assortment, and all in the most perfect order. It is a mistake
to think that the little room has elastic walls and can distend to
any extent. Depend upon it there comes a time when for every
addition of knowledge you forget something that you knew before.
It is of the highest importance, therefore, not to have useless facts
elbowing out the useful ones.”

“But the Solar System!” I protested.

“What the deuce is it to me?” (A. C. Doyle)
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Polynomial Approximation

The best world has the greatest variety of phenomena regulated
by the simplest laws. (Leibniz)

In Chapter 3 we computed approximations of the definite integral of a
function using piecewise constant approximation of the function. The
idea is that on one hand we know how to integrate a piecewise constant
analytically, and on the other hand, that a smooth function is approx-
imately constant on small intervals. We will expand on this idea to
compute solutions of differential equations numerically using piecewise
polynomials.

In this chapter, we discuss different ways of approximating a func-
tion by polynomials on an interval or by piecewise polynomials on a
subdivision of an interval. We also derive different estimates for the
approximation error that are used in the rest of the book. We conclude
the chapter by applying the estimates to quadrature and making some
remarks on approximation by trigonometric polynomials.

5.1. Vector spaces of polynomials

We let Pq(a, b) denote the set of polynomials p(x) =
∑q

i=0 cix
i of degree

at most q on an interval (a, b), where the ci ∈ R are called the coeffi-
cients of p(x). We recall that two polynomials p(x) and r(x) may be
added to give a polynomial p + r defined by (p + r)(x) = p(x) + r(x)
and a polynomial p(x) may be multiplied by a scalar α to give a polyno-
mial αp defined by (αp)(x) = αp(x). Similarly, Pq(a, b) satisfies all the

75
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requirements to be a vector space where each “vector” is a particular
polynomial function p(x).

Problem 5.1. Prove this claim.

A basis for Pq(a, b) consists of a special set of polynomials. A familiar
basis is the set of monomials {1, x, ..., xq} which is a basis because this
set is linearly independent since a0 · 1 + a1 · x + · · · + aqx

q = 0 for all
a < x < b implies a0 = a1 = · · · = aq = 0, and moreover any polynomial
can be written as a linear combination of the monomials. It follows that
the dimension of Pq(a, b) is q+1. Another basis is the set {(x− c)i}qi=0,
where c is a point in (a, b).

Problem 5.2. Find a formula for the coefficients of a polynomial p ∈
Pq(a, b) with respect to the basis {(x − c)i}qi=0 in terms of the value of p
and its derivatives at c.

Problem 5.3. Find the coefficients of p(x) = c0 + c1x+ c2x
2 with respect

to the basis {1, (x− a), (x − a)2} in terms of the ci and a.

Another basis for Pq(a, b) that is useful is the Lagrange basis {λi}qi=0

associated to the distinct q + 1 points ξ0 < ξ1 < · · · < ξq in (a, b),
determined by the requirement that λi(ξj) = 1 if i = j and 0 otherwise.
The explicit expression for the basis function λi is

λi(x) =
(x− ξ0)(x− ξ1) · · · (x− ξi−1)(x− ξi+1) · · · (x− ξq)

(ξi − ξ0)(ξi − ξ1) · · · (ξi − ξi−1)(ξi − ξi+1) · · · (ξi − ξq)

=
∏

j 6=i

x− ξj
ξi − ξj

.

For simplicity of notation, we suppress the dependence of the λi on
q and the points ξi. We plot the Lagrange basis functions λ1(x) =
(x − ξ0)/(ξ1 − ξ0) and λ0(x) = (x − ξ1)(ξ0 − ξ1) for q = 1 in Fig. 5.1.
The polynomial p ∈ Pq(a, b) that has the value pi = p(xi) at the nodes
ξi, i = 0, ..., q, may be expressed in terms of the corresponding Lagrange
basis as

p(x) = p0λ0(x) + p1λ1(x) + · · · + pqλq(x),

so that the values {pi}qi=0 are the coefficients of p(x) with respect to the
Lagrange basis. We also refer to the Lagrange basis as a nodal basis.
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0 1

1

0(x)
1(x)

a b

Figure 5.1: Linear Lagrange basis functions.

We extend the idea behind a nodal basis, i.e. defining a polynomial
by giving its values at an appropriate number of distinct points, by
determining a polynomial by specifying an appropriate number of values
of the polynomial and its derivatives at a given set of points. A nodal
basis with respect to a given set of values has the property that the
coefficients of a general polynomial with respect to the basis are precisely
these values. For example, a polynomial p ∈ P2(a, b) may be specified
by the values p(a), p((a+ b)/2), and p(b) and a corresponding Lagrange
basis λ0, λ1, and λ2 related to the points ξ0 = a, ξ1 = (a + b)/2 and
ξ2 = b. We might also specify the values of p(a), p(b), and p′(b). To
determine a nodal basis with respect to these values, we seek polynomials
µ0, µ1, and µ2 such that

µ0(a) = 1, µ0(b) = 0, µ′0(b) = 0,

µ1(a) = 0, µ1(b) = 1, µ′1(b) = 0,

µ2(a) = 0, µ2(b) = 0, µ′2(b) = 1.

A polynomial p ∈ P2(a, b) can then be written p(x) = p(a)µ0(x) +
p(b)µ1(x) + p′(b)µ2(x) . Straightforward calculation shows that

µ0(x) = (b− x)2/(b− a)2,

µ1(x) = (x− a)(2b− x− a)/(b − a)2,

µ2(x) = (x− a)(x− b)/(b− a).

Problem 5.4. Verify the formulas for µ1, µ2, and µ3.

Problem 5.5. Find the nodal basis corresponding to specifying the values
p′(a), p(b), and p′(b).
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Problem 5.6. (Harder.) (a) Prove that specifying the information p(a),
p′(a), p(b), and p′(b) suffices to determine polynomials in P3(a, b) uniquely.
Determine the nodal basis for this set of values.

5.2. Polynomial interpolation

One familiar example of a polynomial approximation of a function is
the Taylor polynomial of degree q. This gives an approximation of a
function u(x) based on the values of u(x̄) and the derivatives Dru(x̄) for
r = 1, ..., q, at a specific point x̄. Taylor’s theorem gives a formula for
the error between the function u and its Taylor polynomial. We consider
an alternative approximation based on constructing a polynomial that
agrees with a function at a set of distinct points.

We assume that f is continuous on [a, b] and choose distinct interpo-
lation nodes a ≤ ξ0 < ξ1 < · · · < ξq ≤ b and define a polynomial inter-
polant πqf ∈ Pq(a, b), that interpolates f(x) at the nodes {ξi} by requir-
ing that πqf take the same values as f at the nodes, i.e. πqf(ξi) = f(ξi)
for i = 0, ..., q. Using the Lagrange basis corresponding to the ξi, we can
express πqf using Lagrange’s formula:

πqf(x) = f(ξ0)λ0(x) + f(ξ1)λ1(x) + · · · + f(ξq)λq(x) for a ≤ x ≤ b.
(5.1)

We show two examples for q = 0 in Fig. 5.2, where π0(x) = f(ξ0) with
ξ0 = a and ξ0 = b. In the case q = 1, choosing ξ0 = a and ξ1 = b, see

0=a b

f(x)

0(x)

a 0=b

f(x)

0(x)

Figure 5.2: Two constant interpolants of a function.

Fig. 5.3, we get

π1f(x) = f(a)
x− b

a− b
+ f(b)

x− a

b− a
. (5.2)
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a b

f(x)

1(x)

Figure 5.3: The linear interpolant π1f of a function f .

Problem 5.7. Compute formulas for the linear interpolant of a continuous
function f through the points a and (b + a)/2. Plot the corresponding
Lagrange basis functions.

Problem 5.8. Write down the polynomial of degree 3 that interpolates
sin(x) at ξ0 = 0, ξ1 = π/6, ξ2 = π/4, and ξ3 = π/3, and plot p3 and sin on
[0, π/2].

5.2.1. A pointwise estimate of the interpolation error

The following theorem gives a pointwise error estimate for nodal inter-
polation.

Theorem 5.1. Assume that f has q+1 continuous derivatives in (a, b)
and let πqf ∈ Pq(a, b) interpolate f at the points a ≤ ξ0 < ξ1 < .. <
ξq ≤ b. Then for a ≤ x ≤ b,

|f(x) − πqf(x)| ≤
∣∣∣∣
(x− ξ0) · · · (x− ξq)

(q + 1)!

∣∣∣∣ max
[a,b]

|Dq+1f |. (5.3)

Proof. We present a proof for q = 0 and q = 1 that can be extended to
functions of several variables; see Problem 5.12 for an alternative proof
for one variable.

In the case q = 0, the interpolation error depends on the size of f ′

and the distance between x and ξ0, see Fig. 5.4. Taylor’s theorem (or
the mean value theorem) implies that

f(x) = f(ξ0) + f ′(η)(x − ξ0) = π0f(x) + f ′(η)(x − ξ0),
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2 max |f
/

| . (x- 0)

0 x

0(x)

error

f(x)

Figure 5.4: The error of a constant interpolant.

for some η between ξ0 and x, so that

|f(x) − π0f(x)| ≤ |x− ξ0| max
[a,b]

|f ′| for all a ≤ x ≤ b,

proving the desired result.
The proof for q = 1 is a little more involved. In this case, the error

estimate states that the error is proportional to |f ′′|, i.e. to the degree
of concavity of f or the amount that f curves away from being linear,
see Fig. 5.5. We start by recalling that

1=b0=a

1f

1=b0=a

1f

f(x)
f(x)

Figure 5.5: The error of a linear interpolant depends on the size of |f ′′|,
which measures the degree that f curves away from being
linear. Notice that the error of the linear interpolant of
the function on the right is much larger than of the linear
interpolant of the function on the left and the function on
the right has a larger second derivative in magnitude.
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π1f(x) = f(ξ0)λ0(x) + f(ξ1)λ1(x) = f(ξ0)
x− ξ1
ξ0 − ξ1

+ f(ξ1)
x− ξ0
ξ1 − ξ0

.

(5.4)
Fixing x in (ξ0, ξ1) and using Taylor’s theorem for i = 0 and 1, we get

f(ξi) = f(x) + f ′(x)(ξi − x) +
1

2
f ′′(ηi)(ξi − x)2, (5.5)

where ηi lies between x and ξi. Substituting the Taylor expansions (5.5)
into (5.4) and using the identities

λ0(x) + λ1(x) ≡ 1, (ξ0 − x)λ0(x) + (ξ1 − x)λ1(x) ≡ 0, (5.6)

we obtain the error representation

f(x) − π1f(x) = −1

2

(
f ′′(η0)(ξ0 − x)2λ0(x) + f ′′(η1)(ξ1 − x)2λ1(x)

)
.

Note that expanding around the “common point” x, makes it possible
to take into account the cancellation expressed by the second of the two
identities in (5.6).

Problem 5.9. Verify (5.6) and the error representation formula.

From the formulas for λ1 and λ2, for ξ0 ≤ x ≤ ξ1, we get

|f(x)−π1f(x)|

≤ 1

2

( |ξ0 − x|2|x− ξ1|
|ξ0 − ξ1|

|f ′′(η0)| +
|ξ1 − x|2|x− ξ0|

|ξ1 − ξ0|
|f ′′(η1)|

)

≤ 1

2

( |ξ0 − x|2|x− ξ1|
|ξ0 − ξ1|

+
|ξ1 − x|2|x− ξ0|

|ξ1 − ξ0|

)
max
[a,b]

|f ′′|

=
1

2

(
(x− ξ0)

2(ξ1 − x)

ξ1 − ξ0
+

(ξ1 − x)2(x− ξ0)

ξ1 − ξ0

)
max
[a,b]

|f ′′|

=
1

2
|x− ξ0||x− ξ1| max

[a,b]
|f ′′|.

Problem 5.10. Show that (5.3) holds for q = 1 and a ≤ x < ξ0 and
ξq < x ≤ b.

Problem 5.11. (Hard.) Prove the theorem for q = 2.
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Problem 5.12. Give a different proof of Theorem 5.1 by considering the
function

g(y) = f(y) − πqf(y) − γ(x)(y − ξ0)....(y − ξq),

where γ(x) is chosen so that g(x) = 0. Hint: the function g(y) vanishes
at ξ0, ξ1, ..., ξq and x. Show by repeated use of the mean value theorem
that Dq+1g must vanishes at some point ξ, from which it follows that
γ(x) = Dq+1f(ξ)/(q + 1)!.

One advantage gained by using a linear interpolant of f is that it
also approximates the derivative of f .

Theorem 5.2. For ξ0 ≤ x ≤ ξ1,

|f ′(x) − (π1f)′(x)| ≤ (x− ξ0)
2 + (x− ξ1)

2

2(ξ1 − ξ0)
max
[a,b]

|f ′′|.

We illustrate this in Fig. 5.6.

10

slope = ( 1f)
/

slope = f
/

f(x)

10

( 1f)
/f

/

Figure 5.6: The derivative of a linear interpolant of f approximates
the derivative of f . We show f and the linear interpolant
π1f on the left and their derivatives on the right.

Proof. Differentiating (5.4) with respect to x and using (5.5) together
with the identities

λ′0(x) + λ′1(x) ≡ 0, (ξ0 − x)λ′0(x) + (ξ1 − x)λ′1(x) ≡ 1, (5.7)

we get the error representation

f ′(x) − (π1f)′(x) = −1

2

(
f ′′(η0)(ξ0 − x)2λ′0(x) + f ′′(η1)(ξ1 − x)2λ′1(x)

)
.

Taking absolute values, and noting that |λ′i(x)| = (ξ1 − ξ0)
−1 proves the

theorem.
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Problem 5.13. Prove (5.7).

5.2.2. Estimating interpolation errors in different norms

Theorems 5.1 and 5.2 state pointwise error estimates for the function val-
ues and the first derivative. In applications involving differential equa-
tions we use error bounds in various norms such as L1, L2 and L∞

norms for function values or derivatives (recall the material on norms of
functions in the previous chapter).

We first restate the estimates of Theorems 5.1 and 5.2 using the L∞
norm. Choosing a = ξ0 and b = ξq, (5.3) implies

‖f −πqf‖L∞(a,b) ≤
1

(q + 1)!
max
x∈[a,b]

‖(x− ξ0) · · · (x− ξq)‖‖D(q+1)f‖L∞(a,b).

In the case of q = 0, this reduces to

‖f − π0f‖L∞(a,b) ≤ (b− a)‖f ′‖L∞(a,b), (5.8)

while in the case q = 1, we get by Theorem 5.2,

‖f − π1f‖L∞(a,b) ≤
1

8
(b− a)2‖f ′′‖L∞(a,b), (5.9)

and

‖f ′ − (π1f)′‖L∞(a,b) ≤
1

2
(b− a)‖f ′′‖L∞(a,b). (5.10)

These are basic maximum norm estimates for polynomial interpolation.
Note the form of these estimates with the multiplicative factor b− a to
the power one for the function value when q = 0 and the derivative for
q = 1 and the power two for the function value when q = 1. We call the
constants 1, 1/8 and 1/2, interpolation constants.

Problem 5.14. Prove (5.9) and (5.10).

We will also use analogs of these estimates in the L2 and L1 norms.
The interpolation constant, which we call Ci, changes depending on q
and the norm that is used, and may also depend on the ratio mini(ξi −
ξi−1)/(b−a), but does not depend on f or the interval (a, b). The values
of the Ci in the case p = 2 and q = 1 with ξ0 = a and ξ1 = b are given
in Problem 20.4 (Ci = 1/π in (5.11) and Ci = 1/π2 in (5.12)).
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Theorem 5.3. For p = 1, 2,∞, there are constants Ci such that for
q = 0, 1,

‖f − πqf‖Lp(a,b) ≤ Ci(b− a)‖f ′‖Lp(a,b), (5.11)

and for q = 1,

‖f − π1f‖Lp(a,b) ≤ Ci(b− a)2 ‖f ′′‖Lp(a,b), (5.12)

‖f ′ − (π1f)′‖Lp(a,b) ≤ Ci(b− a) ‖f ′′‖Lp(a,b). (5.13)

Problem 5.15. Prove (5.11) for q = 0 with Ci = 1. Hint: use Taylor’s
theorem with the remainder in integral form. Prove (5.11) with q = 1 in
the case p = ∞. (Hard!) Prove (5.12).

Problem 5.16. Compute approximate values of the interpolation con-
stants Ci in Theorem 5.3 by explicit evaluation of the left- and right-hand
sides assuming f ∈ Pq+1(a, b).

Problem 5.17. Prove by a change of variables that it suffices to prove
the interpolation estimates of Theorem 5.3 in the case (a, b) = (0, 1).

Problem 5.18. Similar error bounds hold for interpolants of f that use
values of f and its derivatives. (Hard!) Derive an error bound for the
quadratic interpolating polynomial of f that interpolates the values f(a),
f(b) and f ′(b).

5.2.3. Comparing accuracy

In this section, we compare the accuracy of different approximations of
a function on the interval [a, b]. We caution that accuracy is not an ab-
solute quantity; it must be measured with respect to the computational
work used to produce the approximation. Computational work might
be measured by the number of floating point operations or the amount
of information about f that is required for example.

We first compare the quadratic Taylor polynomial, computed at a,
with the quadratic interpolant computed using ξ0 = a, ξ1 = (a + b)/2,
and ξ2 = b. The error of the Taylor polynomial is bounded by 1

6(x −
a)3 max[a,b] |f ′′′| while the error of p2(x) is bounded by 1

6 |x − ξ0||x −
ξ1||x− ξ2|max[a,b] |f ′′′|. From this, we guess that the Taylor polynomial
is more accurate in the immediate neighborhood of a, but not as accu-
rate over the entire interval. In Fig. 5.7, we plot the errors of the two
approximations of e−x on [0, 1]. In comparing the accuracy of the two
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Figure 5.7: Errors of the quadratic Taylor polynomial and interpolant
of e−x.

approximations, we note that both use three pieces of information about
f . If f, f ′, and f ′′ are known at a, then the Taylor polynomial is prefer-
able if the approximation is needed in the immediate neighborhood of
a. The interpolant is better for the purposes of approximating f over a
larger interval.

We next compare error bounds for the constant and the linear inter-
polants. In this case, the linear interpolant uses two pieces of information
about f , hence to make a fair comparison, we divide the interval [a, b]
into two equal pieces, and compare the linear interpolant π1f to the
piecewise constant interpolant π̃0f(x) defined by

π̃0f(x) =

{
f(a), a ≤ x ≤ (a+ b)/2

f(b), (a+ b)/2 < x ≤ b.

Recalling (5.8) and (5.9), we have for a ≤ x ≤ b,

|f(x) − π̃0f(x)| ≤ 1

2
(b− a)max

[a,b]
|f ′|, (5.14)

and

|f(x) − π1f(x)| ≤ 1

8
(b− a)2 max

[a,b]
|f ′′|. (5.15)

Comparing (5.14) and (5.15), we see that the bound of the error of the
linear interpolant is smaller than that of the piecewise constant inter-
polant when

max
[a,b]

|f ′| > b− a

4
max
[a,b]

|f ′′|.
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As b − a becomes smaller, the error of the linear interpolant generally
becomes smaller than the error of the piecewise constant interpolant.
The size of b− a for which the error of the linear interpolant is smaller
depends on the relative size of max[a,b] |f ′| and 1

4 max[a,b] |f ′′|.
We have to be careful about drawing conclusions about the errors

themselves, since the errors could be much smaller than the bounds. For
example, if f is a constant, then the two approximations have the same
error. However, it is possible to show that the error is about the size
of the bound in (5.3) for almost all functions. We summarize by saying
that the linear interpolant is asymptotically more accurate than a con-
stant interpolant and that the piecewise constant approximation is first
order accurate while the piecewise linear approximation is second order
accurate. In general, increasing the degree of the interpolant increases
the order of accuracy. But, we emphasize the asymptotic nature of this
conclusion; to gain accuracy by increasing the degree, the interval may
have to be decreased.

The final example we present shows that higher degree interpolants
are not necessarily more accurate on a fixed interval. We set f(x) =
e−8x2

and compute π8f(x) using 9 equally spaced points in [−2, 2]. We
plot f and π8f in Fig. 5.8. While π8f(x) agrees with f(x) at the in-

-2 -1 0 1 2

-2

-1

1

e-8x2

8(x)

Figure 5.8: The interpolant of e−8x2
using 9 points in [−2, 2].

terpolation points, the error in between the points is terrible. If we use
larger q, then the oscillations are even larger. The point is that the error
bound depends both on the size of the interval and the derivatives of f ,
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and both have to be taken into account in order to conclude that the
error is small. In this case, e−8x2

does not “act” like any polynomial on
[−2, 2] and as a result, high degree interpolants are not accurate.

Problem 5.19. Compute and graph π4(e
−8x2

) on [−2, 2], which interpo-

lates e−8x2

at 5 equally spaced points in [−2, 2].

Problem 5.20. If you have access to a symbolic manipulating program,
compute the error bound in (5.3) for π8(e

−8x2

) on [−2, 2]. Graphing the
derivatives of f is the easiest way to get the maximums.

5.3. Vector spaces of piecewise polynomials

As an alternative to increasing the order of the interpolating polynomial
on a given interval, we may use piecewise polynomial approximations on
increasingly finer partitions. Recall that we already made good use of
this when proving the Fundamental Theorem of Calculus.

For a given interval I = (a, b), we let a = x0 < x1 < x2 < · · · <
xm+1 = b be a partition or triangulation of (a, b) into sub-intervals Ii =
(xi−1, xi) of length hi = xi−xi−1. We denote by h(x) the mesh function
defined by h(x) = hi for x ∈ Ii and we use Th = {Ii} to denote the
set of intervals or mesh or triangulation. We illustrate the notation in
Fig. 5.9.

h(x)

x0 x1 x2
. . . xm+1

Figure 5.9: A partition of an interval and the corresponding mesh func-
tion.

We consider two vector spaces of piecewise polynomials of degree
q on the mesh Th. The first is the space of discontinuous piecewise
polynomials of degree q on (a, b), which we denote by

W
(q)
h =

{
v : v|Ii ∈ Pq(Ii), i = 1, ...,m + 1

}
.
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Here v|Ii denotes the restriction of v to the interval Ii, that is the function
defined on Ii that agrees with v on Ii. The second is the set of continuous
piecewise polynomials denoted by

V
(q)
h =

{
v ∈W (q)

h : v is continuous on I
}
.

Note that these spaces depend on the underlying mesh, which is indi-
cated with the subscript h, referring to the mesh function. In Fig. 5.12-

Fig. 5.14, we show some typical functions in V
(1)
h and W

(1)
h .

Problem 5.21. Prove that W
(q)
h and V

(q)
h are vector spaces.

A basis for W
(q)
h can be constructed by combining for i = 1, ...,m + 1,

the set of functions that are equal to a basis function for Pq(Ii) for
xi−1 < x ≤ xi and zero elsewhere. For example, to construct a basis for

W
(1)
h , we choose the local basis functions for P1(Ii),

λi,0(x) =
x− xi
xi−1 − xi

and λi,1(x) =
x− xi−1

xi − xi−1
,

and define the basis functions for W
(1)
h by

ϕi,j(x) =

{
0, x /∈ [xi−1, xi],

λi,j(x), x ∈ [xi−1, xi],
i = 1, ...,m + 1, j = 0, 1.

We plot such a basis function in Fig. 5.10. Generalizing this process, we

a x1 xi-1 xi xi+1 b

i,1

Figure 5.10: The basis function ϕi,1 associated to the interval [xi−1, xi].

see that the dimension of W
(q)
h is (m+ 1)(q + 1).

Problem 5.22. Prove this formula.
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Problem 5.23. Write down a basis for the set of piecewise quadratic

polynomials W
(2)
h on (a, b) and plot a sample of the functions.

Constructing a basis for the space V
(q)
h of continuous piecewise poly-

nomials is a little more involved because the local Lagrange basis func-
tions on each sub-interval have to be arranged so that the resulting basis
functions are continuous on (a, b). In the case q = 1, we obtain the hat

functions or nodal basis functions {ϕi} for V
(1)
h illustrated in Fig. 5.11.

The formal definition is

a x1 xi-1 xi xi+1 b

i

Figure 5.11: The hat function ϕi associated to node xi.

ϕi(x) =






0, x /∈ [xi−1, xi+1],
x− xi−1

xi − xi−1
, x ∈ [xi−1, xi],

x− xi+1

xi − xi+1
, x ∈ [xi, xi+1].

The functions associated to the boundary nodes x0 and xm+1 look like

“half hats”. Each hat function ϕi(x) has the property that ϕi ∈ V
(1)
h

and ϕi(xj) = 1 if i = j and ϕi(xj) = 0 otherwise. Observe that each
hat function is defined on the whole of (a, b), but vanishes outside two
intervals (or one interval if i = 0 or m+ 1).

Problem 5.24. Write out equations for ϕ0 and ϕm+1.

Problem 5.25. Prove that the set of functions {ϕi}m+1
i=0 is a basis for

V
(1)
h .

Since there is a hat function associated to each node, the dimension of

the continuous piecewise linears V
(1)
h is m + 2 with one basis function
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for each node. Note that the hat functions are a nodal basis because
the coefficients of v ∈ V

(1)
h are simply the nodal values of v, i.e. each

v ∈ V
(1)
h has the representation

v(x) =

m+1∑

i=0

v(xi)ϕi(x).

Problem 5.26. Prove this.

Problem 5.27. Determine a set of basis functions for the space of con-

tinuous piecewise quadratic functions V
(2)
h on (a, b).

Problem 5.28. Determine a set of basis functions for the space of con-
tinuous piecewise cubic polynomials that have continuous first derivatives.
Hint: see Problem 5.6.

5.4. Interpolation by piecewise polynomials

We now consider approximation using piecewise polynomials building
on the above results for polynomial approximation. We let f be a given
continuous function on an interval [a, b] and consider interpolation into

the spaces V
(1)
h and W

(q)
h for q = 0, 1, based on a partition {xi}m+1

i=0 of
(a, b) with mesh function h(x) = hi = xi − xi−1 on Ii = (xi−1, xi).

5.4.1. Piecewise constant approximation

We define according to Fig. 5.12 a piecewise constant interpolant πhf ∈
W

(0)
h by

πhf(x) = f(xi) for xi−1 < x ≤ xi, i = 1, ...,m + 1.

Using Theorem 5.1 we obtain the following global error estimate:

‖f − πhf‖L∞(a,b) ≤ max
1≤i≤m+1

hi‖f ′‖L∞(Ii) = ‖h f ′‖L∞(a,b). (5.16)

We remark that any value of f on a sub-interval Ii can be used
to define πhf on Ii satisfying (5.16), not just one of the values at an
endpoint as above. In particular, the mean value theorem for integrals
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x0 x1 x2 x3 x4

f(x)

hf(x)

Figure 5.12: An example of a piecewise constant interpolant.

asserts that there is a point xi−1 ≤ ξi ≤ xi such that f(ξi) is equal to
the average value of f on [xi−1, xi], i.e.

f(ξi) =
1

xi − xi−1

∫ xi

xi−1

f(x) dx,

and thus we may define πhf(x) = f(ξi) on Ii as the average of f over Ii.

Problem 5.29. Prove that any value of f on the sub-intervals can be
used to define πhf satisfying the error bound (5.16). Prove that choosing
the midpoint improves the bound by an extra factor 1/2.

Problem 5.30. Prove the mean value theorem for integrals. Hint: use
the mean value theorem.

5.4.2. Piecewise linear approximation

The continuous piecewise linear interpolant πhf ∈ V
(1)
h is defined by

πhf(x) = f(xi−1)
x− xi

xi−1 − xi
+ f(xi)

x− xi−1

xi − xi−1
for xi−1 ≤ x ≤ xi,

for i = 1, ...,m + 1; see Fig. 5.13.

Problem 5.31. Compute the continuous piecewise linear interpolant of
e−8x2

using 9 equally spaced nodes in [0, 2] and compare to the polynomial
interpolant on the same nodes.

A discontinuous linear interpolant πhf ∈ W
(1)
h may be defined by

choosing for i = 1, ...,m + 1, two points ξi,0 6= ξi,1 ∈ [xi−1, xi] and
setting

πhf(x) = f(ξi,0)
x− ξi,1
ξi,0 − ξi,1

+ f(ξi,1)
x− ξi,0
ξi,1 − ξi,0

for xi−1 ≤ x ≤ xi.
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x0 x1 x2 x3 x4

f(x)

hf(x)

Figure 5.13: An example of a continuous piecewise linear interpolant.

The resulting piecewise linear function is in general discontinuous across
the nodes xi, and we introduce some notation to account for this. We let
πhf

+
i = limx↓xi

πhf(x) and πhf
−
i = limx↑xi

πhf(x) denote the right- and
left-hand limits of πhf(x) at xi, and let [πhf ]i = πhf

+
i − πhf

−
i denote

the corresponding jump. We illustrate this in Fig. 5.14.

xi-1 xi

i,1i,0

hf i
-

hf i
+

[ hf]if(x)

xi+1

Figure 5.14: An example of a discontinuous piecewise linear inter-
polant.

The following error bound holds for the nodal interpolant for discon-
tinuous and continuous piecewise linear approximation. The constants
Ci depend on the choice of interpolation points in the case of discontin-
uous piecewise linears.
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Theorem 5.4. For p = 1, 2 and ∞, there are constants Ci such that

‖f − πhf‖Lp(a,b) ≤ Ci‖h2 f ′′‖Lp(a,b), (5.17)

‖f − πhf‖Lp(a,b) ≤ Ci‖h f ′‖Lp(a,b), (5.18)

‖f ′ − (πhf)′‖Lp(a,b) ≤ Ci‖h f ′′‖Lp(a,b). (5.19)

Problem 5.32. Prove (5.17) for approximations computed by interpo-
lation and determine the constant Ci in the continuous and discontinuous
cases.

Problem 5.33. Determine the continuous piecewise quadratic polynomial
that interpolates a function and its derivative at the nodes of a partition.
Note that the quadratic only may interpolate the function’s derivative “on
one side”.

Problem 5.34. (Hard.) Construct a piecewise cubic polynomial function
with a continuous first derivative that interpolates a function and its first
derivative at the nodes of a partition.

5.4.3. Adapted meshes

Suppose f(x) is a given function on an interval I and we want to compute
a piecewise polynomial interpolant πhf of a specified degree such that
the error in a specified norm is less than a given tolerance. It is natural
to ask how to distribute the points efficiently in the sense of using the
least number of points to achieve the desired accuracy. This is motivated
because the cost (measured by computer time) of evaluating the inter-
polant is determined primarily by the number of interpolation points.
The general answer to this question is that the mesh with the minimal
number of mesh points is a mesh that equidistributes the error, so that
the contribution to the total error from each sub-interval of the mesh is
roughly equal. If we are using the maximum norm to measure the error,
this means that the maximum error over each sub-interval is equal to
the given tolerance. If the norm is an L1 norm, equidistribution means
that the integral of the absolute value of the error over each sub-interval
is equal to the tolerance divided by the number of sub-intervals. Essen-
tially, an equidistributed mesh has the minimal number of mesh points
because dividing a sub-interval on which the error is largest reduces the
total error maximally. We return to the principle of equidistribution of
error below.
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We illustrate this with the piecewise constant interpolation of ex on
[0, 1], that we require to be accurate within TOL = .1 in ‖ · ‖L∞(0,1),
where TOL is the error tolerance. The mesh that equidistributes the
error bound (5.16) on each interval Ii satisfies

(xi − xi−1) max
[xi−1,xi]

ex = TOL.

Since ex is monotonically increasing, we have max[xi−1,xi] e
x = exi , and

thus xi = xi−1 + .1e−xi for i ≥ 1. This is a nonlinear equation, which
we approximate by

xi = xi−1 + .1e−xi−1 , i ≥ 1,

where x0 = 0. These equations are easily solved, in a step by step
procedure, and we find that 17 nodes are required. In Fig. 5.15, we plot
the approximation together with ex on the left. On the right, we plot the
error. Note that the error is slightly above the tolerance as a result of the

0 1

0.5

1

1.5

2

2.5

3

exhe
x

xi 0 0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

Figure 5.15: Interpolation on an approximately equidistributed mesh
for ex with TOL= .1 On the left, we show the mesh and
approximation. On the right, we show the error.

approximation we made. If we use a uniform mesh, then we have to use
the spacing of the smallest interval (the one containing 1) to achieve the
same accuracy. This means using 26 nodes, about 50% more than in the
equidistributed mesh. As the tolerance decreases, the relative number
of points increases. Choosing a more wildly varying function can make
the difference huge. In general, computation of an equidistributed mesh
results in nonlinear equations which have to be solved approximately.
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Problem 5.35. Determine the set of nodes {xi} in the above example.

Problem 5.36. Compute an equidistributed mesh for piecewise linear
interpolation of ex on [0, 1] and compare to the mesh above.

Problem 5.37. Compute an equidistributed mesh for piecewise constant
approximation of x2 on [0, 1]. Plot the approximation and the error.

Problem 5.38. A related problem is to fix the number of nodes m + 1
(i.e. the amount of available work) and then compute the mesh that min-
imizes the error for that number of nodes. Once again, an equidistributed
mesh provides the best approximation. This problem, however, results in
a nonlinear system of equations. For piecewise constant interpolation of ex

on [0, 1] using m+1 nodes, write out the system of equations for the nodes
that minimizes the error. Don’t forget that the length of the sub-intervals
has to sum to 1.

5.5. Quadrature

We apply the results in the previous section to the computation of the
definite integral

∫ b
a f(x) dx by replacing f by different piecewise polyno-

mial approximations on a mesh a = x0 < x1 < ... < xm+1 = b. This
generalizes the strategy used in the proof of the Fundamental Theorem
of Calculus in Chapter 3. We refer to the resulting quadratures as com-
posite in the sense that they result from applying the same basic rule
repeatedly over the sub-intervals. We consider a couple of quadrature
rules based on piecewise constant approximation; the rectangle rule, the
endpoint rule, and the midpoint rule. In the rectangle rule, the interpo-
lation point is arbitrary; in the endpoint rule, it is one of the endpoints;
and of course in the midpoint rule, it is the midpoint of each sub-interval.
We also consider two rules based on piecewise linears; the trapezoidal
rule based on continuous piecewise linear nodal interpolation, and the
Gauss rule based on discontinuous piecewise linears.

5.5.1. The composite rectangle rule.

Approximating f by a piecewise constant interpolant interpolating at
the points xi−1 ≤ ξi ≤ xi, i = 1, ...,m + 1, we get the quadrature
formula,

∫ b

a
f(x) dx ≈

m+1∑

i=1

f(ξi)hi, (5.20)
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with the quadrature points {ξi} and the quadrature weights {hi}. This
is the composite rectangle rule, that we used in the proof of the Funda-
mental Theorem.

We denote the absolute value of the quadrature error in computing∫ b
a f(x) dx by the various quadrature formulas by E(f), so in this case

E(f) =

∣∣∣∣∣

∫ b

a
f(x) dx−

m+1∑

i=1

f(ξi)hi

∣∣∣∣∣ .

Recalling (3.32), we have

E(f) ≤ 1

2

m+1∑

i=1

hi max
[xi−1,xi]

|f ′|hi. (5.21)

5.5.2. The composite midpoint rule

In the error analysis giving (5.21), the choice of quadrature points xi−1 ≤
ξi ≤ xi makes no visible difference to the accuracy. However, there is one
choice, namely the midpoint ξi = (xi−1 + xi)/2, that in general yields
more accuracy than any other choice. The resulting quadrature formula
is called the composite midpoint rule and it is the lowest order composite
Gauss rule.

Problem 5.39. Write out the composite midpoint rule explicitly.

We can estimate the error in the composite midpoint rule in a way that
takes into account a cancellation of errors that was lost in the proof of
(5.21). We first consider the integration over one interval [x0, x1], on
which the midpoint quadrature rule is

∫ x1

x0

f(x) dx ≈ f
(x0 + x1

2

)
(x1 − x0).

This formula gives the exact value of the integral for both constant and
linear functions: ∫ x1

x0

1 dx = (x1 − x0)

and ∫ x1

x0

x dx =
x2

1

2
− x2

0

2
=

1

2
(x0 + x1)(x1 − x0).
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while, the endpoint rule in general is exact only if f is constant. We say
that a quadrature rule has precision r if the rule gives the exact value
for the integral of all polynomials of degree r − 1 or less, but there is
some polynomial of degree r for which the quadrature rule is not exact.
The rectangle rule has precision 1 in general, but the midpoint rule has
precision 2.

The precision of a quadrature rule is related to the order of accuracy.
To analyze the error of the midpoint rule we start from Taylor’s theorem

f(x) = f
(x1 + x0

2

)
+f ′

(x1 + x0

2

)(
x−x1 + x0

2

)
+

1

2
f ′′(ηx)

(
x− x1 + x0

2

)2
,

for some ηx between x and (x1 + x0)/2, and integrate to get
∫ x1

x0

f(x) dx =

∫ x1

x0

f
(x1 + x0

2

)
dx+

∫ x1

x0

f ′
(x1 + x0

2

)(
x− x1 + x0

2

)
dx

+

∫ x1

x0

1

2
f ′′(ηx)

(
x− x1 + x0

2

)2

dx. (5.22)

The first integral on the right-hand side of (5.22) is just the quadrature
formula. The second integral on the right is zero because of cancellation.

Problem 5.40. Prove that
∫ x1

x0

f ′
(x1 + x0

2

)(
x− x1 + x0

2

)
dx = 0.

We thus have∣∣∣∣
∫ x1

x0

f(x) dx− f(
x1 + x0

2
)(x1 − x0)

∣∣∣∣

≤ 1

2
max
[x0,x1]

|f ′′|
∫ x1

x0

(
x− x1 + x0

2

)2
dx

≤ 1

24
(x1 − x0)

3 max
[x0,x1]

|f ′′|. (5.23)

Problem 5.41. Verify (5.23).

For the error of the composite midpoint rule, accordingly

E(f) ≤
m+1∑

i=1

1

24
h2
i max

[xi−1,xi]
|f ′′|hi. (5.24)

Problem 5.42. Compare the accuracy of endpoint rule and the midpoint

rule for the computation of
∫ 1

0 e
x dx using m = 10.
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5.5.3. The composite trapezoidal rule

Replacing f by a continuous piecewise linear nodal interpolant of f on
a partition {xi}m+1

i=0 of [a, b], we obtain the composite trapezoidal rule

∫ b

a
f(x) dx ≈

m+1∑

i=1

∫ xi

xi−1

(
f(xi−1)

x− xi
xi−1 − xi

+ f(xi)
x− xi−1

xi − xi−1

)
dx,

that is

∫ b

a
f(x) dx ≈

m+1∑

i=1

f(xi−1) + f(xi)

2
hi

= f(x0)
h1

2
+

m∑

i=1

f(xi)
hi + hi+1

2
+ f(xm+1)

hm+1

2
. (5.25)

Problem 5.43. Verify (5.25).

Problem 5.44. Show that the trapezoidal rule has precision 2.

To estimate the error in the trapezoidal rule, we use (5.3) to get

∣∣∣∣
∫ xi

xi−1

f(x) dx−
∫ xi

xi−1

π1f(x) dx

∣∣∣∣ ≤
1

12
h3
i max

[xi−1,xi]
|f ′′|. (5.26)

Problem 5.45. Prove (5.26).

Applying this estimate to each sub-interval, we find the following esti-
mate for the composite trapezoidal rule

E(f) ≤
m+1∑

i=1

1

12
h2
i max

[xi−1,xi]
|f ′′|hi. (5.27)

Problem 5.46. (a) Derive a quadrature rule based on piecewise quadratic
interpolation using the endpoints and midpoint of each sub-interval. Write
down an explicit formula for the quadrature. This is called Simpson’s
rule. (b) Use (5.3) to prove the following error bound on the error E(f) of
Simpson’s rule:

E(f) ≤
m+1∑

i=1

1

192
h3
i max

[xi−1,xi]
|f (3)|hi.
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(c) Show that Simpson’s rule has precision 4. This suggests that the error
bound in (b) is too large. Show that in fact the error is bounded by

E(f) ≤
m+1∑

i=1

1

2880
h4
i max

[xi−1,xi]
|f (4)|hi.

5.5.4. The composite two-point Gauss rule

Comparing (5.24) and (5.27), the composite midpoint rule appears to
be more accurate than the composite trapezoidal rule, though both ap-
proximations are second order accurate. It is natural to ask if there
is a more accurate quadrature rule based on linear interpolation on the
sub-intervals. This turns out to be the case if we use interpolation nodes
inside, in which case the corresponding interpolant is discontinuous in
general.

The interpolation nodes in [xi−1, xi] are chosen as follows

ξi,0 =
xi + xi−1

2
−

√
3

6
hi and ξi,1 =

xi + xi−1

2
+

√
3

6
hi,

and the resulting quadrature formula is

∫ b

a
πhf(x) dx =

m+1∑

i=1

(
hi
2
f(ξi,0) +

hi
2
f(ξi,1)

)
. (5.28)

Problem 5.47. Prove that the two point Gauss rule has precision 4.

The quadrature error E(f) in the corresponding composite rule is bound-
ed by

E(f) ≤
m+1∑

i=1

1

4320
h4
i max

[xi−1,xi]
|f (4)|hi. (5.29)

It is possible to derive higher order quadrature rules using piecewise
polynomial interpolants of higher degree. The Newton formulas use
equally spaced interpolation nodes in each sub-interval. It is also possible
to derive higher order Gauss formulas. See Atkinson ([2]) for a complete
discussion.

Problem 5.48. Compare the accuracies of the composite trapezoidal,

Simpson’s, and two-point Gauss rules for approximating
∫ 2

0
(1 + x2)−1 dx

using m = 10 and a uniformly spaced mesh.

Problem 5.49. Develop adaptive algorithms for the above quadrature
rules. Compare the performance on different functions f(x).
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5.6. The L2 projection into a space of polynomials

A polynomial interpolating a given function f(x) agrees with point val-
ues of f or derivatives of f . An alternative is to determine the poly-
nomial so that certain averages agree. These could include the usual
average of f over an interval [a, b] defined by

(b− a)−1

∫ b

a
f(x) dx,

or a generalized average of f with respect to a weight g defined by

(f, g) =

∫ b

a
f(x)g(x) dx.

Introducing a weight is like changing scale in the average. Averages of
functions are related naturally to inner products, just as for vectors in
Rd, since the generalized average is just the Euclidean inner product
(f, g) of f and g on (a, b).

Problem 5.50. Prove that the space of continuous functions on an in-
terval [a, b] is a vector space and that the space of polynomials of degree q
and less is a subspace.

The orthogonal projection, or L2-projection, of f into Pq(a, b) is the
polynomial Pf ∈ Pq(a, b) such that

(f − Pf, v) = 0 for all v ∈ Pq(a, b). (5.30)

We see that Pf is defined so that certain average values of Pf are the
same as those of f . Note that the orthogonality relation (5.30) defines
Pf uniquely. Suppose that v and u are two polynomials in Pq(a, b)
such that (f − v,w) = (f − u,w) = 0 for all w ∈ Pq(a, b). Subtracting,
we conclude that (u − v,w) = 0 for all w ∈ Pq(a, b), and choosing
w = u− v ∈ Pq(a, b) we find

∫ b

a
|u− v|2 dx = 0,

which shows that u = v since |u − v|2 is a non-negative polynomial
with zero area underneath its graph. Since (5.30) is equivalent to an
(q+ 1)× (q+ 1) system of equations, we conclude that Pf exists and is
uniquely determined.
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Problem 5.51. Prove the last statement.

As an example, the orthogonal projection of a function into the space
of constant polynomials P0(a, b) is simply the average value of f :

Pf =
1

b− a

∫ b

a
f(x) dx.

For q > 0, computing the orthogonal projection involves solving a system
of linear equations for the coefficients. For example in the case q = 1,
seeking Pf on the form

Pf(x) = α+ β

(
x− a+ b

2

)
.

with the coefficients α and β to determine, we have for v ∈ P1(a, b)

(f − Pf, v) =

∫ b

a

(
f(x) −

(
α+ β

(
x− a+ b

2

)))
v(x) dx.

Choosing first v = 1 and evaluating the integrals we find that

α =
1

b− a

∫ b

a
f(x) dx.

Next, we choose v = x− a+ b

2
and compute to find that

β =
12

(b− a)3

∫ b

a
f(x)

(
x− a+ b

2

)
dx.

We note that to compute the orthogonal projection defined by (5.30), it
suffices to let v vary through a set of basis functions.

Problem 5.52. Prove versions of (5.8) and (5.11) for the L2 projection
of f into the constant polynomials.

Problem 5.53. (a) Compute the formula for the orthogonal projection
of f into the space of quadratic polynomials on [a, b]. (b) Write down a
system of equations that gives the orthogonal projection of a function into
the space of polynomials of degree q.
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Below we will use the L2 projection Phf of a function f on (a, b)

into a space of piecewise polynomials Vh, such as W
(q)
h or V

(q)
h , defined

by the requirement that Phf ∈ Vh and

(f − Phf, v) = 0 for v ∈ Vh.

For discontinuous piecewise polynomials this reduces to the L2 projec-
tion on each sub-interval. For continuous piecewise linear polynomials,
computing an L2 projection requires the solution of a linear system of
algebraic equations in the nodal degrees of freedom for Vh. We return
to this issue at several occasions below, e.g. in Chapter 6, 8 and 14.

The L2 projection of a function into a piecewise polynomial space
Vh is the best approximation in the L2 norm.

Lemma 5.5. The L2 projection Phf of a function f on an interval (a, b)
into a vector space of piecewise polynomials Vh, satisfies

‖f − Phf‖L2(a,b) ≤ ‖f − v‖L2(a,b) for all v ∈ Vh. (5.31)

Problem 5.54. Prove this lemma. Hint: look at the proof of Lemma 4.1
in Chapter 4.

5.7. Approximation by trigonometric polynomials

Let f be defined on R and assume f is periodic with period 2π so that
f(x + 2nπ) = f(x) for n = ±1,±2, .... If f is continuous and f ′ is
continuous, except at a finite number of points in a period, then f(x)
can be represented by a convergent Fourier series as follows

f(x) =
a0

2
+

∞∑

n=1

(
an cos(nx) + bn sin(nx)

)
,

where the Fourier coefficients an and bn are defined by

an =
1

π

∫ 2π

0
cos(nx)f(x) dx and bn =

1

π

∫ 2π

0
sin(nx)f(x) dx. (5.32)

It is thus natural to seek to approximate f by a finite sum

πqf(x) =
a0

2
+

q∑

n=1

(
an cos(nx) + bn sin(nx)

)
,
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where the an and bn are the Fourier coefficients. This corresponds
to choosing πqf as the L2(0, 2π) projection into the space spanned by
1, cos(x), sin(x), ..., cos(qx), sin(qx).

Problem 5.55. Prove this. Hint: use the fact that the functions {1,
cos(x), sin(x), ..., cos(qx), sin(qx)} are pairwise orthogonal.

Problem 5.56. Prove that if f has continuous periodic derivatives of
order q, then there is a constant C such that |an| + |bn| ≤ Cn−q for n =
±1,±2, ....

In principle we could try to use other coefficients an and bn than the
Fourier coefficients just discussed. One possibility is to require πqf to
interpolate f at 2q + 1 distinct nodes {ξi} in the period.

Problem 5.57. Compute for q = 2 trigonometric interpolating polyno-
mials for the periodic functions that reduce to (a) f(x) = x (b) f(x) =
x(2π − x) on [0, 2π).

In general, we have to use quadrature formulas to evaluate the integrals
in (5.32). If we use the composite trapezoidal rule on 2q + 1 equally
spaced intervals in the period, then we obtain the same formulas for
the coefficients obtained by requiring the trigonometric polynomial to
interpolate f at the 2q + 1 nodes.

If f is odd so that f(−x) = f(x), then the an are all zero, and we
may represent f(x) as a sine series. In particular, if f(x) is defined
on (0, π), then we may extend f as an odd 2π-periodic function and
represent f(x) as a sine series:

f(x) =

∞∑

n=1

bn sin(nx), with bn =
2

π

∫ π

0
sin(nx)f(x) dx (5.33)

In order for the extended function to be continuous, it is necessary that
f(0) = f(π) = 0.
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Galerkin’s Method

It is necessary to solve differential equations. (Newton)

Ideally, I’d like to be the eternal novice, for then only, the surprises
would be endless. (Keith Jarret)

In Chapters 3 and 5, we discussed the numerical solution of the sim-
ple initial value problem u′(x) = f(x) for a < x ≤ b and u(a) = u0,
using piecewise polynomial approximation. In this chapter, we intro-
duce Galerkin’s method for solving a general differential equation, which
is based on seeking an (approximate) solution in a (finite-dimensional)
space spanned by a set of basis functions which are easy to differentiate
and integrate, together with an orthogonality condition determining the
coefficients or coordinates in the given basis. With a finite number of
basis functions, Galerkin’s method leads to a system of equations with
finitely many unknowns which may be solved using a computer, and
which produces an approximate solution. Increasing the number of ba-
sis functions improves the approximation so that in the limit the exact
solution may be expressed as an infinite series. In this book, we normally
use Galerkin’s method in the computational form with a finite number of
basis functions. The basis functions may be global polynomials, piece-
wise polynomials, trigonometric polynomials or other functions. The
finite element method in basic form is Galerkin’s method with piecewise
polynomial approximation. In this chapter, we apply Galerkin’s method
to two examples with a variety of basis functions. The first example is
an initial value problem that models population growth and we use a
global polynomial approximation. The second example is a boundary

104



6. Galerkin’s Method 105

value problem that models the flow of heat in a wire and we use piecewise
polynomial approximation, more precisely piecewise linear approxima-
tion. This is a classic example of the finite element method. For the
second example, we also discuss the spectral method which is Galerkin’s
method with trigonometric polynomials.

The idea of seeking a solution of a differential equation as a linear
combination of simpler basis functions, is old. Newton and Lagrange
used power series with global polynomials and Fourier and Riemann used
Fourier series based on trigonometric polynomials. These approaches
work for certain differential equations posed on domains with simple
geometry and may give valuable qualitative information, but cannot be
used for most of the problems arising in applications. The finite ele-
ment method based on piecewise polynomials opens the possibility of
solving general differential equations in general geometry using a com-
puter. For some problems, combinations of trigonometric and piecewise
polynomials may be used.

6.1. Galerkin’s method with global polynomials

6.1.1. A population model

In the simplest model for the growth of a population, like the population
of rabbits in West Virginia, the rate of growth of the population is
proportional to the population itself. In this model we ignore the effects
of predators, overcrowding, and migration, for example, which might be
okay for a short time provided the population of rabbits is relatively
small in the beginning. We assume that the time unit is chosen so
that the model is valid on the time interval [0, 1]. We will consider
more realistic models valid for longer intervals later in the book. If u(t)
denotes the population at time t then the differential equation expressing
the simple model is u̇(t) = λu(t), where λ is a positive real constant
and u̇ = du/dt. This equation is usually posed together with an initial
condition u(0) = u0 at time zero, in the form of an initial value problem:

{
u̇(t) = λu(t) for 0 < t ≤ 1,

u(0) = u0.
(6.1)

The solution of (6.1), u(t) = u0 exp(λt), is a smooth increasing function
when λ > 0.
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6.1.2. Galerkin’s method

We now show how to compute a polynomial approximation U of u in
the set of polynomials V (q) = Pq(0, 1) on [0, 1] of degree at most q us-
ing Galerkin’s method. We know there are good approximations of the
solution u in this set, for example the Taylor polynomial and interpo-
lating polynomials, but these require knowledge of u or derivatives of
u at certain points in [0, 1]. The goal here is to compute a polynomial
approximation of u using only the information that u solves a specified
differential equation and has a specified value at one point. We shall see
that this is precisely what Galerkin’s method achieves. Since we already
know the analytic solution in this model case, we can use this knowledge
to evaluate the accuracy of the approximations.

Because {tj}qj=0 is a basis for V (q), we can write U(t) =
∑q

j=0 ξjt
j

where the coefficients ξj ∈ R are to be determined. It is natural to
require that U(0) = u0, that is ξ0 = u0, so we may write

U(t) = u0 +

q∑

j=1

ξjt
j ,

where the “unknown part” of U , namely
∑q

j=1 ξjt
j , is in the subspace

V
(q)
0 of V (q) consisting of the functions in V (q) that are zero at t = 0,

i.e. in V
(q)
0 = {v : v ∈ V (q), v(0) = 0}.

Problem 6.1. Prove that V
(q)
0 is a subspace of V (q).

We determine the coefficients by requiring U to satisfy the differential
equation in (6.1) in a suitable “average” sense. Of course U can’t satisfy
the differential equation at every point because the exact solution is
not a polynomial. In Chapter 4, we gave a concrete meaning to the
notion that a function be zero on average by requiring the function to
be orthogonal to a chosen subspace of functions. The Galerkin method
is based on this idea. We define the residual error of a function v for
the equation (6.1) by

R(v(t)) = v̇(t) − λv(t).

The residual error R(v(t)) is a function of t once v is specified. R(v(t))
measures how well v satisfies the differential equation at time t. If the



6. Galerkin’s Method 107

residual is identically zero, that is R(v(t)) ≡ 0 for all 0 ≤ t ≤ 1, then the
equation is satisfied and v is the solution. Since the exact solution u is
not a polynomial, the residual error of a function in V (q) that satisfies
the initial condition is never identically zero, though it can be zero at
distinct points.

The Galerkin approximation U is the function in V (q) satisfying
U(0) = u0 such that its residual error R(U(t)) is orthogonal to all func-

tions in V
(q)
0 , i.e.,

∫ 1

0
R(U(t))v(t) dt =

∫ 1

0
(U̇(t) − λU(t))v(t) dt = 0 for all v ∈ V

(q)
0 .

(6.2)
This is the Galerkin orthogonality property of U , or rather of the residual
R(U(t)). Since the coefficient of U with respect to the basis function 1
for V (q) is already known (ξ0 = u0), we require (6.2) to hold only for

functions v in V
(q)
0 . By way of comparison, note that the true solution

satisfies a stronger orthogonality condition, namely

∫ 1

0
(u̇− λu)v dt = 0 for all functions v. (6.3)

We refer to the set of functions where we seek the Galerkin solution U ,
in this case the space V (q) of polynomials w satisfying w(0) = u0, as
the trial space and the space of the functions used for the orthogonality

condition, which is V
(q)
0 , as the test space. In this case, the trial and

test space are different because of the non-homogeneous initial condition
w(0) = u0 (assuming u0 6= 0), satisfied by the trial functions and the
homogeneous boundary condition v(0) = 0 satisfied by the test functions

v ∈ V
(q)
0 . In general, different methods are obtained choosing the trial

and test spaces in different ways.

6.1.3. The discrete system of equations

We now show that (6.2) gives an invertible system of linear algebraic
equations for the coefficients of U . Substituting the expansion for U
into (6.2) gives

∫ 1

0




q∑

j=1

jξjt
j−1 − λu0 − λ

q∑

j=1

ξjt
j



 v(t) dt = 0 for all v ∈ V
(q)
0 .
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It suffices to insure that this equation holds for every basis function for

V
(q)
0 , yielding the set of equations:

q∑

j=1

jξj

∫ 1

0
tj+i−1 dt − λ

q∑

j=1

ξj

∫ 1

0
tj+i dt = λu0

∫ 1

0
ti dt, i = 1, ..., q,

where we have moved the terms involving the initial data to the right-
hand side. Computing the integrals gives

q∑

j=1

(
j

j + i
− λ

j + i+ 1

)
ξj =

λ

i+ 1
u0, i = 1, ..., q. (6.4)

This is a q × q system of equations that has a unique solution if the
matrix A = (aij) with coefficients

aij =
j

j + i
− λ

j + i+ 1
, i, j = 1, ..., q,

is invertible. It is possible to prove that this is the case, though it is
rather tedious and we skip the details. In the specific case u0 = λ = 1
and q = 3, the approximation is

U(t) ≈ 1 + 1.03448t + .38793t2 + .301724t3,

which we obtain solving a 3 × 3 system.

Problem 6.2. Compute the Galerkin approximation for q = 1, 2, 3, and
4 assuming that u0 = λ = 1.

Plotting the solution and the approximation for q = 3 in Fig. 6.1, we
see that the two essentially coincide.

Since we know the exact solution u in this case, it is natural to
compare the accuracy of U to other approximations of u in V (q). In
Fig. 6.2, we plot the errors of U , the third degree polynomial interpo-
lating u at 0, 1/3, 2/3, and 1, and the third degree Taylor polynomial
of u computed at t = 0. The error of U compares favorably with the
error of the interpolant of U and both of these are more accurate than
the Taylor polynomial of u in the region near t = 1 as we would expect.
We emphasize that the Galerkin approximation U attains this accuracy
without any specific knowledge of the solution u except the initial data
at the expense of solving a linear system of equations.
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Figure 6.1: The solution of u̇ = u and the third degree Galerkin ap-
proximation.
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Figure 6.2: The errors of the third degree Galerkin approximation, a
third degree interpolant of the solution, and the third de-
gree Taylor polynomial of the solution.

Problem 6.3. Compute the L2(0, 1) projection into P3(0, 1) of the exact
solution u and compare to U .

Problem 6.4. Determine the discrete equations if the test space is
changed to V (q−1).

6.1.4. A surprise: ill-conditioning

Stimulated by the accuracy achieved with q = 3, we compute the ap-
proximation with q = 9. We solve the linear algebraic system in two
ways: first exactly using a symbolic manipulation package and then ap-
proximately using Gaussian elimination on a computer that uses roughly
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16 digits. In general, the systems that come from the discretization of a
differential equation are too large to be solved exactly and we are forced
to solve them numerically with Gaussian elimination for example.

We obtain the following coefficients ξi in the two computations:

exact coefficients approximate coefficients





.14068...

.48864...

.71125...

.86937...

.98878...
1.0827...
1.1588...
1.2219...
1.2751...









152.72...
−3432.6...
32163.2...

−157267.8...
441485.8...
−737459.5...
723830.3...
−385203.7...
85733.4...





We notice the huge difference, which makes the approximately computed
U worthless. We shall now see that the difficulty is related to the fact
that the system of equations (6.4) is ill-conditioned and this problem is
exacerbated by using the standard polynomial basis {ti}qi=0.

Problem 6.5. If access to a symbolic manipulation program and to nu-
merical software for solving linear algebraic systems is handy, then compare
the coefficients of U computed exactly and approximately for q = 1, 2, ...
until significant differences are found.

It is not so surprising that solving a system of equations Aξ = b,
which is theoretically equivalent to inverting A, is sensitive to errors in
the coefficients of A and b. The errors result from the fact that the
computer stores only a finite number of digits of real numbers. This
sensitivity is easily demonstrated in the solution of the 1 × 1 “system”
of equations ax = 1 corresponding to computing the inverse x = 1/a of a
given real number a 6= 0. In Fig. 6.3, we plot the inverses of two numbers
a1 and a2 computed from two approximations ã1 and ã2 of the same
accuracy. We see that the corresponding errors in the approximations
x̃ = 1/ãi of the exact values x = 1/ai vary greatly in the two cases, since
1/ai−1/ãi = (ãi−ai)/(aiãi). The closer ai is to zero the more sensitive
is the solution 1/ai to errors in ai. This expresses that computing 1/a
is ill-conditioned when a is close to zero.

In general, the solution of Ax = b is sensitive to errors in the entries
of A when A is “close” to being non-invertible. Recall that a matrix
is non-invertible if one row (or column) is a linear combination of the
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Figure 6.3: The sensitivity of the solution of ax = 1 to errors in a.

other rows (or columns). In the example of computing the coefficients
of the Galerkin approximation with q = 9 above, we can see that there
might be a problem if we look at the coefficient matrix A:





0.167 0.417 0.550 0.633 0.690 0.732 0.764 0.789 0.809
0.0833 0.300 0.433 0.524 0.589 0.639 0.678 0.709 0.735
0.0500 0.233 0.357 0.446 0.514 0.567 0.609 0.644 0.673
0.0333 0.190 0.304 0.389 0.456 0.509 0.553 0.590 0.621
0.0238 0.161 0.264 0.344 0.409 0.462 0.506 0.544 0.576
0.0179 0.139 0.233 0.309 0.371 0.423 0.467 0.505 0.538
0.0139 0.122 0.209 0.280 0.340 0.390 0.433 0.471 0.504
0.0111 0.109 0.190 0.256 0.313 0.360 0.404 0.441 0.474
0.00909 0.0985 0.173 0.236 0.290 0.338 0.379 0.415 0.447





which is nearly singular since the entries in some rows and columns are
quite close. On reflection, this is not surprising because the last two
rows are given by

∫ 1
0 R(U, t)t8 dt and

∫ 1
0 R(U, t)t9 dt, respectively, and

t8 and t9 look very similar on [0, 1]. We plot the two basis functions in
Fig. 6.4.

In general, linear systems of algebraic equations obtained from the
discretization of a differential equation tend to become ill-conditioned as
the discretization is refined. This is understandable because refining the
discretization and increasing the accuracy of the approximation makes
it more likely that computing the residual error is influenced by the
finite precision of the computer, for example. However, the degree of
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Figure 6.4: The basis functions t8 and t9.

ill conditioning is influenced greatly by the differential equation and the
choice of trial and test spaces, and even the choice of basis functions
for these spaces. The standard monomial basis used above leads to
an ill-conditioned system because the different monomials become very
similar as the degree increases. This is related to the fact that the
monomials are not an orthogonal basis. In general, the best results with
respect to reducing the effects of ill-conditioning are obtained by using
an orthogonal bases for the trial and test spaces. As an example, the
Legendre polynomials, {ϕi(x)}, with ϕ0 ≡ 1 and

ϕi(x) = (−1)i
√

2i+ 1

i!

di

dxi
(
xi(1 − x)i

)
, 1 ≤ i ≤ q,

form an orthonormal basis for Pq(0, 1) with respect to the L2 inner prod-
uct. It becomes more complicated to formulate the discrete equations
using this basis, but the effects of finite precision are greatly reduced.

Another possibility, which we take up in the second section, is to
use piecewise polynomials. In this case, the basis functions are “nearly
orthogonal”.

Problem 6.6. (a) Show that ϕ3 and ϕ4 are orthogonal.
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6.2. Galerkin’s method with piecewise polynomials

We start by deriving the basic model of stationary heat conduction and
then formulate a finite element method based on piecewise linear ap-
proximation.

6.2.1. A model for stationary heat conduction

We model heat conduction a thin heat-conducting wire occupying the in-
terval [0, 1] that is heated by a heat source of intensity f(x), see Fig. 6.5.
We are interested in the stationary distribution of the temperature u(x)

f(x)

u(x)

Figure 6.5: A heat conducting wire with a source f(x).

in the wire. We let q(x) denote the heat flux in the direction of the
positive x-axis in the wire at 0 < x < 1. Conservation of energy in a
stationary case requires that the net heat flux through the endpoints of
an arbitrary sub-interval (x1, x2) of (0, 1) be equal to the heat produced
in (x1, x2) per unit time:

q(x2) − q(x1) =

∫ x2

x1

f(x) dx.

By the Fundamental Theorem of Calculus,

q(x2) − q(x1) =

∫ x2

x1

q′(x) dx,
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from which we conclude that
∫ x2

x1

q′(x) dx =

∫ x2

x1

f(x) dx.

Since x1 and x2 are arbitrary, assuming that the integrands are contin-
uous, we conclude that

q′(x) = f(x) for 0 < x < 1, (6.5)

which expresses conservation of energy in differential equation form. We
need an additional equation that relates the heat flux q to the tempera-
ture gradient (derivative) u′ called a constitutive equation. The simplest
constitutive equation for heat flow is Fourier’s law:

q(x) = −a(x)u′(x), (6.6)

which states that heat flows from warm regions to cold regions at a rate
proportional to the temperature gradient u′(x). The constant of pro-
portionality is the coefficient of heat conductivity a(x), which we assume
to be a positive function in [0, 1]. Combining (6.5) and (6.6) gives the
stationary heat equation in one dimension:

−(a(x)u′(x))′ = f(x) for 0 < x < 1. (6.7)

To define a solution u uniquely, the differential equation is complemented
by boundary conditions imposed at the boundaries x = 0 and x = 1. A
common example is the homogeneous Dirichlet conditions u(0) = u(1) =
0, corresponding to keeping the temperature zero at the endpoints of the
wire. The result is a two-point boundary value problem:

{
−(au′)′ = f in (0, 1),

u(0) = u(1) = 0.
(6.8)

The boundary condition u(0) = 0 may be replaced by −a(0)u′(0) =
q(0) = 0, corresponding to prescribing zero heat flux, or insulating the
wire, at x = 0. Later, we aslo consider non-homogeneous boundary
conditions of the from u(0) = u0 or q(0) = g where u0 and g may be
different from zero.

Problem 6.7. Determine the solution u of (6.9) with a(x) = 1 by symbolic
computation by hand in the case f(x) = 1 and f(x) = x.
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We want to determine the temperature u in the wire by solving
the heat equation (6.8) with given f , boundary conditions, and heat
conductivity a(x). To compute the solution numerically we use the
Galerkin finite element method.

6.2.2. The Galerkin finite element method

We consider the problem (6.8) in the case a ≡ 1, that is

{
−u′′ = f in (0, 1),

u(0) = u(1) = 0,
(6.9)

and formulate the simplest finite element method for (6.9) based on
continuous piecewise linear approximation.

We let Th : 0 = x0 < x1 < ... < xM+1 = 1, be a partition or
(triangulation) of I = (0, 1) into sub-intervals Ij = (xj−1, xj) of length

hj = xj − xj−1 and let Vh = V
(1)
h denote the set of continuous piecewise

linear functions on Th that are zero at x = 0 and x = 1. We show an
example of such a function in Fig. 6.6. In Chapter 4, we saw that Vh is

xixi-1 xM+1x0

hi 10

Figure 6.6: A continuous piecewise linear function in Vh.

a finite dimensional vector space of dimension M with a basis consisting
of the hat functions {ϕj}Mj=1 illustrated in Fig. 5.11. The coordinates of
a function v in Vh in this basis are the values v(xj) at the interior nodes
xj , j = 1, ...,M , and a function v ∈ Vh can be written

v(x) =
M∑

j=1

v(xj)ϕj(x).

Note that because v ∈ Vh is zero at 0 and 1, we do not include ϕ0 and
ϕM+1 in the set of basis functions for Vh.
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As in the previous example, Galerkin’s method is based on stating
the differential equation −u′′ = f in the form

∫ 1

0
(−u′′ − f)v dx = 0 for all functionsv, (6.10)

corresponding to the residual −u′′−f being orthogonal to the test func-
tions v, cf. (6.3). However, since the functions in Vh do not have second
derivatives, we can’t simply plug a candidate for an approximation of u
in the space Vh directly into this equation. To get around this technical
difficulty, we use integration by parts to move one derivative from u′′

onto v assuming v is differentiable and v(0) = v(1) = 0:

−
∫ 1

0
u′′v dx = −u′(1)v(1) + u′(0)v(0) +

∫ 1

0
u′v′ dx =

∫ 1

0
u′v′ dx,

where we used the boundary conditions on v. We are thus led to
the following variational formulation of (6.9): find the function u with
u(0) = u(1) = 0 such that

∫ 1

0
u′v′ dx =

∫ 1

0
fv dx, (6.11)

for all functions v such that v(0) = v(1) = 0. We refer to (6.11) as a
weak form of (6.10).

The Galerkin finite element method for (6.9) is the following finite-
dimensional analog of (6.11): find U ∈ Vh such that

∫ 1

0
U ′v′ dx =

∫ 1

0
fv dx for all v ∈ Vh. (6.12)

We note that the derivatives U ′ and v′ of the functions U and v ∈ Vh
are piecewise constant functions of the form depicted in Fig. 6.7 and are
not defined at the nodes xi. However, the integral with integrand U ′v′

is nevertheless uniquely defined as the sum of integrals over the sub-
intervals. This is due to the basic fact of integration that two functions
that are equal except at a finite number of points, have the same integral.
We illustrate this in Fig. 6.8. By the same token, the value (or lack of
value) of U ′ and v′ at the distinct node points xi does not affect the
value of

∫ 1
0 U

′v′ dx.
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Figure 6.7: The derivative of the continuous piecewise linear function
in Fig. 6.6.

f(x) f(x)

a b a b

Figure 6.8: Two functions that have a different value at one point have
the same area underneath their curves.

The equation (6.10) expresses the fact that the residual error −u′′−f
of the exact solution is orthogonal to all test functions v and (6.11) is a
reformulation in weak form. Similarly, (6.12) is a way of forcing in weak
form the residual error of the finite element solution U to be orthogonal
to the finite dimensional set of test functions v in Vh.

6.2.3. The discrete system of equations

Using the basis of hat functions {ϕj}Mj=1, we have

U(x) =

M∑

j=1

ξjϕj(x)
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and determine the nodal values xij = U(xj) using the Galerkin orthog-
onality (6.12). Substituting, we get

M∑

j=1

ξj

∫ 1

0
ϕ′
jv

′ dx =

∫ 1

0
fv dx, (6.13)

for all v ∈ Vh. It suffices to check (6.13) for the basis functions {ϕi}Mi=1,
which gives the M ×M linear system of equations

M∑

j=1

ξj

∫ 1

0
ϕ′
jϕ

′
i dx =

∫ 1

0
fϕi dx, i = 1, ...,M, (6.14)

for the unknown coefficients {ξj}. We let ξ = (ξj) denote the vector of
unknown coefficients and define the M ×M stiffness matrix A = (aij)
with coefficients

aij =

∫ 1

0
ϕ′
jϕ

′
i dx,

and the load vector b = (bi) with

bi =

∫ 1

0
fϕi dx.

These names originate from early applications of the finite element
method in structural mechanics. Using this notation, (6.14) is equiv-
alent to the linear system

Aξ = b. (6.15)

In order to solve for the coefficients of U , we first have to compute
the stiffness matrix A and load vector b. For the stiffness matrix, we
note that aij is zero unless i = j − 1, i = j, or i = j + 1 because
otherwise either ϕi(x) or ϕj(x) is zero on each sub-interval occurring
in the integration. We illustrate this in Fig. 6.9. We compute aii first.
Using the definition of the ϕi,

ϕi(x) =

{
(x− xi−1)/hi, xi−1 ≤ x ≤ xi,

(xi+1 − x)/hi+1, xi ≤ x ≤ xi+1,

and ϕi(x) = 0 elsewhere, the integration breaks down into two integrals:

aii =

∫ xi

xi−1

( 1

hi

)2
dx+

∫ xi+1

xi

(−1

hi

)2
dx =

1

hi
+

1

hi+1
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Figure 6.9: Three possibilities to obtain a non-zero coefficient in the
stiffness matrix.

since ϕ′
i = 1/hi on (xi−1, xi) and ϕ′

i = −1/hi+1 on (xi, xi+1), and ϕi is
zero on the rest of the sub-intervals. Similarly,

ai i+1 =

∫ xi+1

xi

−1

hi+1

1

hi+1
dx = − 1

hi+1
.

Problem 6.8. Prove that ai−1 i = −1/hi for i = 2, 3, ...,M .

Problem 6.9. Determine the stiffness matrix A in the case of a uniform
mesh with meshsize hi = h for all i.

We compute the coefficients of b in the same way to get

bi =

∫ xi

xi−1

f(x)
x− xi−1

hi
dx+

∫ xi+1

xi

f(x)
xi+1 − x

hi+1
dx, i = 1, ...,M.

Problem 6.10. Verify this formula.

Problem 6.11. Using a uniform mesh with h = .25, compute the Galerkin
finite element approximation for f(x) = x by hand.

The matrix A is a sparse matrix in the sense that most of its en-
tries are zero. In this case, A is a banded matrix with non-zero entries
occurring only in the diagonal, super-diagonal and sub-diagonal posi-
tions. This contrasts sharply with the coefficient matrix in the first
example which is “full” in the sense that all of its entries are non-zero.
The bandedness of A reflects the fact that the basis functions {ϕi} for
Vh are “nearly” orthogonal, unlike the basis used in the first example.
Moreover, A is a symmetric matrix since

∫ 1
0 ϕ

′
iϕ

′
j dx =

∫ 1
0 ϕ

′
jϕ

′
i dx. Fi-

nally, it is possible to show that A is positive-definite, which means that
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∑M
i,j=1 ηiaijηj > 0 unless all ηi = 0, which implies that A is invertible,

so that (6.15) has a unique solution.
We expect to increase the accuracy of the approximate solution by

increasing the dimension M . Systems of dimension 100 − 1, 000 in one
dimension and up to 100, 000 in higher dimensions are common. Thus,
it is important to study the solution of (6.15) in detail and we begin to
do this in Chapter 7.

Problem 6.12. Prove that A is positive-definite. Hint: use that η⊤Aη =∫ 1

0
(v(x)′)2 dx where v(x) is the function in Vh defined by v(x) =

∑
i ηiϕi(x).

6.2.4. A concrete example

As a concrete example, we consider (6.9) with

f(x) = 10(1 − 10(x− .5)2) e−5(x−.5)2 .

This is an exceptional case in which the solution u(x) can be computed
exactly:

u(x) = e−5(x−.5)2 − e−5/4,

and we may easily compare the approximation with the exact solution.
In this example, f varies quite a bit over the interval. We plot it in

Fig. 6.10. Recalling the discussions in Chapters 3 and 5, we expect the

0 0.2 0.4 0.6 0.8 1
-5

0

5

10 f(x)

Figure 6.10: Load function f for the first example.

mesh size to vary if we want the computational method to be efficient
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with a minimal number of mesh points. The following choice of the mesh
points minimizes ‖u′ − U ′‖L2(0,1) while keeping M = 16:

h1 = h16 ≈ .2012
h2 = h15 ≈ .0673
h3 = h14 ≈ .0493
h4 = h13 ≈ .0417
h5 = h12 ≈ .0376
h6 = h11 ≈ .0353
h7 = h10 ≈ .0341
h8 = h9 ≈ .0335

This partition is the result of applying an adaptive algorithm based on
information obtained from the data f and the computed approximation
U , and does not require any knowledge of the exact solution u. We
will present the adaptive algorithm in Chapter 8 and explain how it is
possible to get around the apparent need to know the exact solution.

In Fig. 6.11, we plot the exact solution u and the Galerkin finite
element approximation U together with their derivatives. Notice that

x
0 1

U

0

0.2

0.4

0.6

0.8

1

x
0 1

U

-2

-1

0

1

2

Figure 6.11: The true solution u and the finite element approximation
U together with their derivatives.

the adaptive procedure has clustered mesh points towards the middle of
the interval. With M = 16 we have ‖u′ − U ′‖2 ≤ .25, while ‖u− U‖2 ≤
.01. If we perform the computation using a mesh with uniform spacing
we need to take M = 24 to obtain the same accuracy for the derivatives.
This disparity increases as the number of elements is increased and may
be much more substantial for more complex problems. We will meet
many examples below.
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6.3. Galerkin’s method with trigonometric polynomials

We noted at the very end of Chapter 3 that for n = 1, 2, ..., the trigono-
metric function sin(nπx) solves the boundary value problem u′′+n2π2u =
0 in (0, 1), u(0) = u(1) = 0. In fact, the functions sin(nπx), n = 1, 2, ...,
are the solutions to the eigenvalue problem of finding nonzero functions
ϕ(x) and scalars λ such that

{
−ϕ′′ = λϕ in (0, 1),

ϕ(0) = ϕ(1) = 0.
(6.16)

Eigenvalue problems play an important role in mathematics, mechanics
and physics and we will study such problems in more detail below. This
gives a different perspective on the trigonometric functions sin(nπx) as
the eigenfunctions of the particular boundary value problem (6.16). In
particular the mutual orthogonality of the functions sin(nπx) on (0, 1)
reflect a general orthogonality property of eigenfunctions. The general
idea of the spectral Galerkin method is to seek a solution of a given
boundary value problem as a linear combination of certain eigenfunc-
tions. The given boundary value and the eigenvalue problem do not
have to be directly related in the sense that the differential operators in-
volved are the same, but the boundary conditions should match. As an
example we consider the application of the spectral Galerkin method to
the model (6.8) of stationary heat flow with variable heat conductivity

{
−
(
(1 + x)u′(x)

)′
= f(x) for 0 < x < 1,

u(0) = u(1) = 0,
(6.17)

where f(x) = 1 + (1 + 3x − x2) exp(−x), based on the eigenfunctions
sin(nπx), n = 1, 2, ..., of (6.16). We then seek to express the solution
u(x) of (6.17) as a sine series, cf. (5.33),

u(x) =

∞∑

n=1

bn sin(nπx).

In the corresponding discrete analog we seek for some fixed q > 0 an
approximate solution U(x) of the form

U(x) =

q∑

j=1

ξj sin(jπx), (6.18)



6. Galerkin’s Method 123

using Galerkin’s method to determine the coefficients ξj. Denoting by
V (q) the space of trigonometric polynomials that are linear combinations
of the functions {sin(iπx)}qi=1, Galerkin’s method reads: find U ∈ V (q)

such that

−
∫ 1

0

(
(1+x)U ′(x)

)′
v(x) dx =

∫ 1

0
f(x)v(x) dx for all v ∈ V (q). (6.19)

Because the functions in V (q) are smooth, we have no difficulty defining
the residual error

(
(1 + x)U ′(x)

)′ − f(x) of the approximate solution

U in V (q). By (6.19), the Galerkin approximation U is the function in
V (q) whose residual error is orthogonal to all functions in V (q). Using
integration by parts, we can rewrite this as

∫ 1

0
(1 + x)U ′(x)v′(x) dx =

∫ 1

0
f(x)v(x) dx for all x ∈ V (q), (6.20)

which is the usual formulation of a Galerkin method for the boundary
value problem (6.17). As before, we substitute the expansion (6.18) for
U into (6.20) and choose v = sin(iπx), i = 1, ..., q. This gives a linear
system of equations

Aξ = d

where A = (aij) and d = (di) have coefficients

aij = π2ij

∫ 1

0
(1 + x) cos(jπx) cos(iπx) dx

di =

∫ 1

0

(
1 + (1 + 3x− x2) exp(−x)

)
sin(iπx) dx. (6.21)

Problem 6.13. Prove that V (q) is a subspace of the continuous functions
on [0, 1] that satisfy the boundary conditions and show that {sin(iπx)}qi=1

is an orthogonal basis for V (q) with respect to the L2 inner product.

Problem 6.14. Derive (6.20).

Problem 6.15. Verify the formulas for A and d then compute explicit
formulas for the coefficients.

In this problem, we are able to compute these integrals exactly using
a symbolic manipulation program, though the computations are messy.
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For a general problem we are usually unable to evaluate the correspond-
ing integrals exactly. For these reasons, it is natural to also consider
the use of quadrature to evaluate the integrals giving the coefficients
of A and d. We examine three quadrature rules discussed in Chap-
ter 5, the composite rectangle, midpoint, and trapezoidal rules respec-
tively. We partition [0, 1] into M+1 intervals with equally spaced nodes
xl = l/(M+1) for l = 0, ..., M+1. For example, the composite rectangle
rule is

aij ≈
π2ij

M + 1

M+1∑

l=1

(1 + xl) cos(jπxl) cos(iπxl)

di ≈
1

M + 1

M+1∑

l=1

(
1 + (1 + 3xl − x2

l ) exp(−xl)
)
sin(iπxl).

Problem 6.16. Write out the corresponding formulas for schemes that
use the midpoint and trapezoidal rules to evaluate the integrals.

From the discussion in Chapter 5, we expect the composite midpoint
and trapezoidal rules to be more accurate than the composite rectan-
gle rule on a given partition. In Fig. 6.12, we plot the results obtained
by using the four indicated methods. In this case, using the lower or-
der accurate rectangle rule affects the results significantly. We list the
coefficients obtained by the four methods below.

q U Ur Um Ut
1 0.20404 0.21489 0.20419 0.20375
2 0.017550 0.031850 0.017540 0.017571
3 0.0087476 0.013510 0.0087962 0.0086503
4 0.0022540 0.0095108 0.0022483 0.0022646
5 0.0019092 0.0048023 0.0019384 0.0018508
6 0.00066719 0.0054898 0.00066285 0.00067495
7 0.00069279 0.0026975 0.00071385 0.00065088
8 0.00027389 0.0038028 0.00026998 0.00028064
9 0.00030387 0.0014338 0.00032094 0.00027024

Several questions about the error arise in this computation. We
would like to know the accuracy of the Galerkin approximation U and
whether the approximation converges as we increase q. Moreover, we
would also like to know the effects of choosing different quadrature rules
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Figure 6.12: On the left, we plot four approximate solutions of (6.17)
computed with q = 9. U was computed by evaluating the
integrals in (6.3) exactly. Ur is computed using the com-
posite rectangle rule, Um is computed using the composite
midpoint rule, and Ut is computed using the composite
trapezoidal rule with M = 20 to evaluate the integrals
respectively. On the right, we plot the errors versus x for
U , Um, and Ut.

on the accuracy. Moreover, since a = (1 + x) and f(x) = 1 + (1 +
3x − x2)e−x vary through [0, 1], it would be better to adapt the mesh
used for the quadrature rules in order to achieve the desired accuracy
in the coefficients (6.3). This also requires knowledge of the effects of
quadrature error on the accuracy of the approximation.

Problem 6.17. Formulate a Galerkin approximation method using trigono-
metric polynomials for (6.9). Note in this case that the linear system giving
the coefficients of the approximation is trivial to solve because it is diag-
onal. Why didn’t this happen when we discretized (6.17)? Interpret the
formula for the coefficients of the data vector in terms of Fourier series.

Problem 6.18. Use the spectral method to discretize −u′′ + u′ = f in
(0, 1) with u(0) = u(1) = 0.

6.4. Comments on Galerkin’s method

We have considered Galerkin’s method for three kinds of approxima-
tions: the q-method (6.2) with global polynomials of order q (this method
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is also often referred to as the p-method), the h-method (6.12) with con-
tinuous piecewise linear polynomials on a partition Th of mesh size h,
and the spectral method (6.20) with global trigonometric polynomials.
In rough terms, we can distinguish different Galerkin approximations by
the following properties of the basis functions:

• local or global support

• (near) orthogonality or non-orthogonality.

The support of a function is the set of points where the function is dif-
ferent from zero. A function is said to have local support if it is zero
outside a set of small size in comparison to the domain, while a function
with global support is non-zero throughout the domain except at a few
points. The h-method uses basis functions with local support, while the
basis functions of the q-method in Section 6.1 or the spectral method
are polynomials or trigonometric polynomials with global support. The
basis functions used for the spectral method are mutually orthogonal,
while the basis functions used in Section 6.1 for the global polynomials
was not. Using orthogonal basis functions tends to reduce the effects
of rounding errors that occur when computing the approximation. For
example, in the spectral method in Section 6.3, the matrix determining
the approximation is sparse with roughly half the coefficients equal to
zero. The basis functions used in the h-method in Section 6.2 are not
orthogonal, but because they have local support, they are “nearly” or-
thogonal and again the matrix determining the approximation is sparse.
Recent years have seen the development of wavelet methods, which are
Galerkin methods with basis functions that combine L2 orthogonality
with small support. Wavelets are finding increasing applications in im-
age processing, for example.

In Galerkin’s method, we expect to increase accuracy by increasing
the dimension of the trial and test spaces used to define the approxima-
tion. In the h-method this is realized by decreasing the mesh size and
in the q − method by increasing the degree of the polynomials. More
generally, we can use a combination of decreasing the mesh size and
increasing the polynomial degree, which is called the (h, q)-method. Fi-
nally, in the spectral Galerkin method, we try to improve accuracy by
increasing the degree of the trigonometric polynomial approximation.

Galerkin was born in 1871 in Russia and was educated at the St. Pe-
tersburg Technological Institute and in the Kharkhov locomotive works.



6. Galerkin’s Method 127

He began doing research in engineering while he was in prison in 1906-
7 for his participation in the anti-Tsarist revolutionary movement. He
later made a distinguished academic career and had a strong influence
on engineering in the Soviet Union. This was due in no small part to the
success of Galerkin’s method, first introduced in a paper on elasticity
published in 1915. From its inception, which was long before the com-
puter age, Galerkin’s method was used to obtain high accuracy with
minimal computational effort using a few cleverly chosen basis func-
tions. Galerkin’s method belongs to the long tradition of variational
methods in mathematics, mechanics and physics going back to the work
by Euler and Lagrange, and including important work by e.g. Hamilton,
Rayleigh, Ritz and Hilbert. The finite element method, first developed in
aerospace engineering in the 1950s, may be viewed as the computer-age
realization of this variational methodology. In the advanced companion
volume we give a more detailed account of the development of the finite
element method into the first general technique for solving differential
equations numerically, starting with applications to elasticity problems
in the 1960s, to the diffusion problems in the 1970s and to fluid flow and
wave propagation in the 1980s.

6.5. Important issues

The examples we have presented raise the following questions concerning
a finite element approximation U of the solution u of a given differential
equation:

• How big is the discretization error u−U or u′−U ′ in some norm?

• How should we choose the mesh to control the discretization error
u−U or u′ −U ′ to a given tolerance in some norm using the least
amount of work (computer time)?

• How can we compute the discrete solution U efficiently and what
is the effect of errors made in computing U?

This book seeks to answer these questions for a variety of problems.

Between my finger and my thumb
The squat pen rests
I’ll dig with it. (Heaney)
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The calculus ratiocinator of Leibniz merely needs to have an en-
gine put into it to become a machina ratiocinatrix. The first step
in this direction is to proceed from the calculus to a system of
ideal reasoning machines, and this was taken several years ago by
Turing. (Wiener)

Figure 6.13: Proposal by Leibniz for a “ball-computer” for the multi-
plication of binary numbers.



7

Solving Linear Algebraic Systems

All thought is a kind of computation. (Hobbes)

In the examples in Chapter 6, the coefficients of the Galerkin approxi-
mations were computed by solving systems of linear algebraic equations.
In general, discretization of a differential equation yields a large system
of equations, whose solution gives the approximation. In fact, a code
for the numerical solution of differential equations typically spends the
greatest portion of computer time solving systems of linear algebraic
equations. In this chapter, we introduce the two basic types of methods
for this purpose, namely direct methods based on Gaussian elimination
that produces the solution after a finite number of arithmetic operations
and iterative methods based on generating a sequence of approximate so-
lutions that (hopefully) converges to the true solution. We consider only
the most basic solution methods in this book. We discuss modern effi-
cient methods in the advanced companion volume, building on the ideas
introduced here.

We are interested in solving a linear system

Aξ = b

where A is a n×n matrix and b is a n-vector. Recall that such a system
has a unique solution if the matrix is invertible, which means there is
a unique matrix A−1 with the property A−1A = AA−1 = I, where I is
the n × n identity matrix. In this case, it is common in linear algebra
to write the solution as ξ = A−1b and pursue the matter no further.
In practice, however, we encounter a couple of difficulties in solving a

129
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system. The first we already encountered in Section 6.1, when we tried
to solve for the high order Galerkin approximation of a differential equa-
tion. In this problem, the matrix is close to being non-invertible, or is
ill conditioned, and this combined with the finite precision of a com-
puter caused the resulting numerical solution to be highly inaccurate.
Therefore, we have to study the effect of the ill conditioning of A on the
solution and estimate the error of the numerical solution. The second
practical problem we encounter is the cost of obtaining the solution of
the system. We study different methods of computing the solution and
analyze their efficiency. We shall see that computing A−1 is never the
most efficient way to compute the solution.

We begin by deriving the linear system of equations describing the
equilibrium position of a system of masses connected by elastic springs.
This system falls into the class of symmetric, positive-definite systems,
which plays a basic role in mathematical modeling. Such systems can
be formulated as equivalent quadratic minimization problems. Mass-
spring systems have a finite number of degrees of freedom and are called
discrete systems as opposed to the continuous systems typically modeled
by a differential equation. The processes of passing from a discrete to a
continuous system by refining the scale of the discrete system, or passing
to the continuum limit, and from a continuous to a discrete system by
discretization, are fundamental in modeling in both mathematics and
physics. In particular, later in the book we consider continuous analogs
of the discrete mass-spring systems discussed here.

After this experience in deriving a linear system, we focus on meth-
ods for computing solutions, beginning with direct methods both for
general systems and some special systems arising from discretization of
differential equations. Then we continue with iterative methods, first
deriving an iterative method for symmetric, positive-definite systems
based on finding the minimum of the equivalent quadratic minimization
problem by computing a sequence of values that successively decrease
the function to be minimized. We analyze the convergence rate of the
iterative method in terms of the ratio of largest to smallest eigenvalue
of the system. After this, we present a general framework for the con-
struction and analysis of iterative methods, and then explain how the
first iterative method fits into this setting.

Finally, we conclude with a section describing a method for estimat-
ing the error of the computed solution of a system of equations based on
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an a posteriori error analysis (which means an analysis that is performed
after the computation is completed).

We emphasize that this chapter serves only as an elementary intro-
duction to the subject of solving linear systems of equations and covers
only the least sophisticated examples of different techniques. We also
consider only the case of scalar computers. Parallel computers require
a different approach to implementation and analysis of costs. In the
advanced companion volume, we discuss in detail so-called multigrid
methods, which are very efficient iterative methods based on using the
simple iterative methods presented in this chapter on a hierarchy of
meshes. We also refer the reader to Atkinson ([2]), Isaacson and Keller
([9]), and Golub and Van Loan ([7]).

7.1. Stationary systems of masses and springs

In this section, we derive a model for stationary mass-spring systems. We
start by considering a body of mass m suspended vertically by an elastic
spring attached to a fixed support; see Fig. 7.1. We seek the elongation,

m

Figure 7.1: A system of one mass and one spring.

or displacement, ξ of the spring under the weight of the mass measured
from the reference configuration with zero spring force. Hooke’s law
states that the spring force σ is proportional to the displacement: σ =
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kξ, where the constant of proportionality k > 0 is called the spring
constant. Hooke’s law is a linear approximation of what happens in a
real spring and is generally valid if the spring is not stretched too much.
The elongation ξ is determined by the fact that at equilibrium the weight
of the body is precisely balanced by the spring force:

kξ = m, (7.1)

where we assume the gravitational constant is one. This is the simplest
linear system of equations. Solving for the unknown ξ, we find ξ = m/k.

We may also derive the equation (7.1) from a basic principle of me-
chanics stating that at equilibrium, the true elongation ξ minimizes the
total energy,

F (η) =
k

2
η2 −mη, (7.2)

over all possible elongations η. The total energy F (η) has contributions
from two sources. The first is the internal elastic energy kη2/2 stored in
the spring when it is stretched a distance η. To obtain this expression
for the internal energy, we notice that the work ∆W needed to change
the length of the spring from η to η + ∆η is equal to kη × ∆η by the
definition of work as “force×distance”. In the limit of small change, this
yields the differential equation W ′(η) = kη with solution W (η) = kη2/2
when W (0) = 0. The second part of the total energy is the loss of
potential energy −mη when the mass is lowered in height a distance η.

To see the connection with the equilibrium equation kξ = m, we
compute the minimum of F (η) using a technique that generalizes natu-
rally to systems of masses and springs. We start by observing that since
ξ minimizes F (η), so F (ξ) ≤ F (η) for all η ∈ R, then for any ζ ∈ R,
F (ξ) ≤ F (ξ+ǫζ) for all ǫ ∈ R. Introducing the function g(ǫ) = F (ξ+ǫζ)
with ξ and ζ fixed, we write the last inequality in the equivalent form
g(0) ≤ g(ǫ) for all ǫ ∈ R. Thus, the function g(ǫ) is minimized for ǫ = 0,
which implies that the derivative g′(ǫ) must vanish for ǫ = 0 if it exists.
But

g(ǫ) =
k

2
ξ2 + kǫξζ +

k

2
ǫ2ζ2 −mξ − ǫmζ,

so that
g′(0) = kξζ −mζ,

which implies that kξ−m = 0, since ζ is arbitrary. Therefore, the min-
imizer ξ is the solution ξ = m/k of the equation kξ = m. Conversely, if
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ξ solves kξ = m, then F ′(ξ) = 0 and ξ must be the minimizer since F
is convex because F ′′ > 0. We now have proved that the condition for
equilibrium of the mass-spring system may be expressed in two equiv-
alent ways: as a linear equation kξ = m, and as minimization of the
total energy, F (ξ) ≤ F (η) for all η. This illustrates the fundamental
connection between two basic physical principles: equilibrium of forces
and energy minimization. We shall see that this useful principle has a
wide range of application.

As the next example, we apply the energy minimization principle to
a stationary system of two masses m1 and m2 connected to each other
and to fixed supports by three springs with spring constants k1, k2, and
k3; see Fig. 7.2. We seek the vertical displacements ξ1 and ξ2 of the

m2

m1

Figure 7.2: A system of two masses and three springs.

masses from the reference position with zero spring forces. The true
displacement ξ = (ξ1, ξ2)

⊤ minimizes the total energy

F (η) =
k1

2
η2
1 +

k2

2
(η2 − η1)

2 +
k3

2
η2
2 −m1η1 −m2η2,

which is the sum of the internal elastic energies and the load potential as
above. For example, the elastic energy of the middle spring is determined
by its elongation η2 − η1. In matrix form, the total energy may be
expressed as

F (η) =
1

2
(DBη,Bη) − (b, η),
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where η = (η1, η2)
⊤, b = (m1,m2)

⊤, (·, ·) = (·, ·)2, and

B =




1 0
−1 1
0 1



 , and D =




k1 0 0
0 k2 0
0 0 k3



 .

Problem 7.1. Verify this.

If ξ ∈ R2 is the minimizer, then for any ζ ∈ R2 the derivative of
F (ξ + ǫζ) with respect to ǫ must vanish for ǫ = 0. Computing, we get
(DBξ,Bζ) = (b, ζ) or (B⊤DBξ, ζ) = (b, ζ). Since ζ is arbitrary, we
obtain the following linear system for the displacement ξ

Aξ = b with A = B⊤DB, (7.3)

where

A =

(
k1 + k2 −k2

−k2 k2 + k3

)
.

Problem 7.2. Provide the details of these computations.

We may rewrite the system (7.3) as

B⊤σ = b with σ = DBξ (7.4)

where σ represents the vector of spring forces. The relation B⊤σ = b
is the equilibrium equation and the relation σ = DBξ expresses Hooke’s
law relating the displacements to the spring forces.

Problem 7.3. Verify that (7.4) correctly expresses the equilibrium of
forces and the relation between displacements and spring forces.

The system matrix A = B⊤DB in (7.3) is symmetric since (B⊤DB)⊤

=B⊤D⊤(B⊤)⊤ =B⊤DB and positive semi-definite since for any vector
v ∈ R2, (B⊤DBv, v) = (DBv,Bv) = (Dw,w) ≥ 0, where w = Bv. Fur-
ther, if (B⊤DBv, v) = (Dw,w) = 0, then w = Bv = 0 and consequently
v = 0, so that A is in fact positive-definite.

Using this approach, we can easily derive the linear system model-
ing the equilibrium position of an arbitrary arrangement of masses and
springs, as long as we assume the displacements to be small so that the
change of geometry of the systems from the unloaded reference position
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due to the weight of the masses is negligible. In every case, we obtain a
symmetric positive-definite linear system of the form B⊤DBξ = b. We
may set up this system for a specific configuration of masses and springs,
either by using equilibrium of forces and Hooke’s law, or minimization
of the total energy. Usually the second alternative is preferable. We il-
lustrate this in the following problem, which we urge the reader to solve
before proceeding.

Problem 7.4. Consider the configuration of 9 masses and 16 springs shown
in the reference position in Fig. 7.3. (a) Assume that the displacements of

Figure 7.3: A system of nine masses in the reference position.

the masses are small, so that the elongation of a spring may be set equal
to the difference of the displacements of the endpoints of the spring in the
direction of the spring in its reference position. Express the total energy in
terms of the displacements from the reference position and then determine
the corresponding linear system of equations satisfied by the minimizer of
the total energy. Hint: the internal energy is a half of the sum of the
squares of the elongations of the springs times the corresponding spring
constants. It is convenient to choose the coordinate system to be aligned
with the frame.
(b) Derive the corresponding system of equations in the general case, con-
sidering also large displacements.
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7.2. Direct methods

We begin by noting that some linear systems Ax = b, with A an n× n-
matrix (where we change notation from ξ to x for convenience), are
easier to solve than others. For example, if A = (aij) is diagonal, which
means that aij = 0 if i 6= j, then the system is solved in n operations:
xi = bi/aii, i = 1, ..., n. Further, if the matrix is upper triangular, which
means that aij = 0 if i > j, or lower triangular, which means that
aij = 0 if i < j, then the system can be solved by backward substitution
or forward substitution respectively; see Fig. 7.4 for an illustration of
these different types. For example, if A is upper triangular, the “pseudo-

0

0 0

0

Figure 7.4: The pattern of entries in diagonal, upper, and lower trian-
gular matrices. A “∗” denotes a possibly nonzero entry.

code” shown in Fig. 7.5 solves the system Ax = b for the vector x = (xi)
given the vector b = (bi) (assuming that akk 6= 0):

for k = n-1, n-2, ..., 1, do

sum = 0

for j = k+1, ..., n, do

sum = sum + akj
. xj

xk = (bk - sum)/akk

xn = bn/ann

Figure 7.5: An algorithm for solving an upper triangular system by
back substitution.
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Problem 7.5. Using a similar format, write down algorithms to solve a
diagonal system and then a lower triangular system using forward substi-
tution. Determine the number of arithmetic operations needed to compute
the solution.

In all three cases, the systems have a unique solution as long as the
diagonal entries of A are nonzero.

Direct methods are based on Gaussian elimination, which in turn
is based on the observation that the solution of a linear system is not
changed under the following elementary row operations:

• interchanging two equations

• adding a multiple of one equation to another

• multiplying an equation by a nonzero constant.

The idea behind Gaussian elimination is to transform using these oper-
ations a given system into an upper triangular system, which is solved
by back substitution. For example, to solve the system

x1 + x2 + x3 = 1

x2 + 2x3 = 1

2x1 + x2 + 3x3 = 1,

we first subtract 2 times the first equation from the third to get the
equivalent system,

x1 + x2 + x3 = 1

x2 + 2x3 = 1

−x2 + x3 = −1.

We define the multiplier to be the factor 2. Next, we subtract −1 times
the second row from the third to get

x1 + x2 + x3 = 1

x2 + 2x3 = 1

3x3 = 0.

In this case, the multiplier is −1. The system is now upper triangular
and using back substitution, we obtain x3 = 0, x2 = 1, and x1 = 0.
Gaussian elimination can be coded in a straightforward way using matrix
notation.
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7.2.1. Matrix factorization

There is another way to view Gaussian elimination that is useful for the
purposes of programming and handling special cases. Namely, Gaussian
elimination is equivalent to computing a factorization of the coefficient
matrix, A = LU , where L is a lower triangular and U an upper triangular
n×n matrix. Given such a factorization of A, solving the system Ax = b
is straightforward. We first set y = Ux, then solve Ly = b by forward
substitution and finally solve Ux = y by backward substitution.

To see that Gaussian elimination gives an LU factorization of A,
consider the example above. We performed row operations that brought
the system into upper triangular form. If we view these operations as
row operations on the matrix A, we get the sequence




1 1 1
0 1 2
2 1 3



→




1 1 1
0 1 2
0 −1 1



→




1 1 2
0 1 2
0 0 3



 ,

which is an upper triangular matrix. This is the “U” in the LU decom-
position.

The matrix L is determined by the observation that the row oper-
ations can be performed by multiplying A on the left by a sequence of
special matrices called Gauss transformations. These are lower trian-
gular matrices that have at most one nonzero entry in the off-diagonal
positions and 1s down the diagonal. We show a Gauss transformation
in Fig. 7.6. Multiplying A on the left by the matrix in Fig. 7.6 has the
effect of adding αij times row j of A to row i of A. Note that the inverse
of this matrix is obtained changing αij to −αij ; we will use this below.

Problem 7.6. Prove the last claim.

To perform the first row operation on A above, we multiply A on
the left by

L1 =




1 0 0
0 1 0
−2 0 1



 ,

to get

L1A =




1 1 1
0 1 2
0 −1 −1



 .
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



1 0 · · · 0
0 1 0 0

. . . 1
. . . 0

...
...

0 0 0
. . . 0

0 αij 0
. . . 1

. . .

0 0 0
. . .

0 1 0
0 · · · 0 1





Figure 7.6: A Gauss transformation.

The effect of pre-multiplication by L1 is to add −2× row 1 of A to row
3. Note that L1 is lower triangular and has ones on the diagonal.

Next we multiply L1A on the left by

L2 =




1 0 0
0 1 0
0 1 1



 ,

and get

L2L1A =




1 1 1
0 1 2
0 0 3



 = U.

L2 is also lower triangular with ones on the diagonal. It follows that
A = L−1

1 L−1
2 U or A = LU , where

L = L−1
1 L−1

2 =




1 0 0
0 1 0
2 −1 1



 .

It is easy to see that L is also lower triangular with 1’s on the diagonal
with the multipliers (with sign change) occurring at the corresponding
positions. We thus get the factorization

A = LU =




1 0 0
0 1 0
2 −1 1








1 1 1
0 1 2
0 0 3



 .
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Note that the entries in L below the diagonal are exactly the multipliers
used to perform Gaussian elimination on A.

A general linear system can be solved in exactly the same fashion
by Gaussian elimination using a sequence of Gauss transformations to
obtain a factorization A = LU .

Problem 7.7. Verify that the product L = L−1
1 L−1

2 has the stated form.

Problem 7.8. Show that the product of two Gauss transformations is
a lower triangular matrix with ones on the diagonal and the inverse of a
Gauss transformation is a Gauss transformation.

Problem 7.9. Solve the system

x1 − x2 − 3x3 = 3

−x1 + 2x2 + 4x3 = −5

x1 + x2 = −2

by computing an LU factorization of the coefficient matrix and using for-
ward/backward substitution.

An LU factorization can be performed in situ using the storage space
allotted to the matrix A. The fragment of code shown in Fig. 7.7 com-
putes the LU factorization of A, storing U in the upper triangular part
of A and storing the entries in L below the diagonal in the part of A
below the diagonal. We illustrate the storage of L and U in Fig. 7.8.

for k = 1, ..., n-1, do

for j = k+1, ..., n, do

ajk = ajk/akk

for m = k+1, ..., n, do

ajm = ajm - ajk akm

(step through rows)

(store the entry of L)

(eliminate entries
below diagonal entry)

(correct entries
down the row)

(store the entry of U)

Figure 7.7: An algorithm to compute the LU factorization of A that
stores the entries of L and U in the storage space of A.
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u11

u22

unn

u12 u1n

l21

ln1 lnn-1

Figure 7.8: The matrix output from the algorithm in Fig. 7.7. L and
U are stored in the space allotted to A.

Problem 7.10. On some computers, dividing two numbers is up to ten
times more expensive than computing the reciprocal of the denominator
and multiplying the result with the numerator. Alter this code to avoid
divisions. Note: the reciprocal of the diagonal element akk has to be com-
puted just once.

Problem 7.11. Write some pseudo-code that uses the matrix gener-
ated by the code in Fig. 7.7 to solve the linear system Ax = b using
forward/backward substitution. Hint: the only missing entries of L are the
1s on the diagonal.

7.2.2. Measuring the cost

The cost of solving a linear system using a direct method is measured
in terms of computer time. In practice, the amount of computer time
is proportional to the number of arithmetic and storage operations the
computer uses to compute the solution. It is traditional (on a sequential
computer) to simplify the cost calculation by equating storing a value,
addition, and subtraction and equating multiplication and division when
counting operations. Moreover, since multiplication (i.e. multiplications
and divisions) generally cost much more than addition on older comput-
ers, it is also common to simply count the number of multiplications
(=multiplications+divisions).

By this measure, the cost of computing the LU decomposition of an
n × n matrix is n3 − n/3 = O(n3/3). We introduce some new notation
here, the big “O”. The actual count is n3/3 − n/3, however when n is
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large, the lower order term −n/3 becomes less significant. In fact,

lim
n→∞

n3/3 − n/3

n3/3
= 1, (7.5)

and this is the definition of the big “O”. (Sometimes the big “O” no-
tation means that the limit of the ratio of the two relevant quantities
is any constant). With this notation, the operations count of the LU
decomposition is just O(n3).

The cost of the forward and backward substitutions is much smaller:

Problem 7.12. Show that the cost of a backward substitution using an
upper triangular matrix of dimension n× n is O(n2/2).

Problem 7.13. Determine the cost of multiplying a n × n matrix with
another.

Problem 7.14. One way to compute the inverse of a matrix is based on
viewing the equation AA−1 = I as a set of linear equations for the columns

of A−1. If a(j) denotes the jth column of A−1, then it satisfies the linear
system

Aa(j) = ej

where ej is the standard basis vector of Rn with a one in the jth position.
Use this idea to write a pseudo-code for computing the inverse of a matrix
using LU factorization and forward/backward substitution. Note that it
suffices to compute the LU factorization only once. Show that the cost of
computing the inverse in this fashion is O(4n3/3).

The general LU decomposition is used when the coefficient matrix
of the system is full. A full matrix has mostly non-zero entries. An
example is the matrix for the coefficients of the Galerkin polynomial
approximation of the first order differential equation in Section 6.1 in
Chapter 6.

Problem 7.15. Write a code that computes the Galerkin polynomial
approximation for the first example in Section 6.1 using LU factorization
and forward/backward substitution routines.

There are special classes of matrices for which the general LU decom-
position is not appropriate because most of the elimination operations
are wasted. For example, there is no point in computing the LU decom-
position of a matrix that is already in upper or lower triangular form
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since the elimination would involve reducing coefficients that are already
zero. Similarly, we do not need to eliminate most of the entries in the
tridiagonal matrix that results from discretizing the two-point boundary
value problem in Section 6.2 using the Galerkin finite element method.
We discuss special forms of the LU factorization in Section 7.3.

7.2.3. Pivoting

During Gaussian elimination, it sometimes happens that the coefficient
of a variable in the “diagonal position” becomes zero as a result of pre-
vious eliminations. When this happens of course, it is not possible to
use that equation to eliminate the corresponding entries in the same
column lying below the diagonal position. If the matrix is invertible,
it is possible to find a non-zero coefficient in the same column and be-
low the diagonal position, and by switching the two rows, the Gaussian
elimination can proceed. This is called zero pivoting, or just pivoting.

Problem 7.16. Solve the system

x1 + x2 + x3 = 2

x1 + x2 + 3x3 = 5

−x1 − 2x3 = −1.

This requires pivoting.

Adding pivoting to the LU decomposition algorithm is straightfor-
ward. Before beginning the elimination using the current diagonal en-
try, we check to see if that entry is non-zero. If it is zero, we search
the entries below in the same column for the first non-zero value, then
interchange the row corresponding to that non-zero entry with the row
corresponding to the current diagonal entry which is zero. Because the
row interchanges involve rows in the “un-factored” part of A, the form
of L and U are not affected. We illustrate this in Fig. 7.9.

To obtain the correct solution of the linear system Ax = b, we have
to mirror all pivots performed on A in the data b. This is easy to do with
the following trick. We define the vector of integers p = (1 2 . . . n)⊤.
This vector is passed to the LU factorization routine and whenever two
rows of A are interchanged, we interchange the corresponding entries
in p. After getting the altered p vector back, we pass it to the for-
ward/backward routine. Here, we address the vector b indirectly using
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for k = 1, ..., n-1, do

for j = k+1, ..., n, do

ajk = ajk/akk

for m = k+1, ..., n, do

ajm = ajm - ajk akm

(step through rows)

(store the entry of L)

(eliminate entries
below diagonal entry)

(correct entries
down the row)

(store the entry of U)

j=k

while ajk = 0, j=j+1

for m = 1, ..., n do

temp = akm

akm = ajm

ajm = temp

(search for the first
non-zero entry in
the current column)

(switch the kth and jth

rows of A)

Figure 7.9: An algorithm to compute the LU factorization of A that
used pivoting to avoid zero-valued diagonal entries.

the vector p, i.e., we use the vector with entries (bpi
)ni=1, which has the

effect of interchanging the rows in b in the correct fashion.

Problem 7.17. Alter the LU decomposition and forward/backward rou-
tines to solve a linear system with pivoting.

There are additional reasons to pivot in practice. As we have noted,
the computation of the LU decomposition can be sensitive to errors
originating from the finite precision of the computer if the matrix A is
close to being non-invertible. We discuss this further below. We mention
here however that a special kind of pivoting, called partial pivoting can
be used to reduce this sensitivity. The strategy behind partial pivoting is
to search the entries in the same column and below the current diagonal
entry for the largest in absolute value. The row corresponding to the
largest entry in magnitude is interchanged with the row corresponding to
the current entry at the diagonal. The use of partial pivoting generally
gives more accurate results than factorization without partial pivoting.
One reason is that partial pivoting insures that the multipliers in the
elimination process are kept as small as possible and consequently the
errors in each entry are magnified by as little as possible during the
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course of the Gaussian elimination. We illustrate this with an example.
Suppose that we solve

.000100x1 + 1.00x2 = 1.00

1.00x1 + 1.00x2 = 2.00

on a computer that holds three digits. Without pivoting, we get

.000100x1 + 1.00x2 = 1.00

−10000x2 = −10000

which implies that x2 = 1 and x1 = 0. Note the large multiplier that
is required for the elimination. Since the true answer is x1 = 1.0001
and x2 = .9999, the computed result has an error of 100% in x1. If we
switch the two rows before eliminating, which corresponds exactly to
the partial pivoting strategy, we get

1.00x1 + 1.00x2 = 2.00

1.00x2 = 1.00

which gives x1 = x2 = 1.00 as a result.

Problem 7.18. Verify the computations in this example.

Problem 7.19. Modify the code in Problem 7.17 to use partial pivoting.

Problem 7.20. Consider Problem 7.15. Compute the Galerkin approx-
imation for q = 1, 2, ..., 9 using LU factorization and forward/backward
substitution with and without partial pivoting.

Remark 7.2.1. There is a collection of high quality software for solving
linear systems called LINPACK that is in the public domain and can be
obtained through NETLIB. NETLIB is an online library of numerous
public domain numerical analysis packages run by a consortium of in-
dustry, government and university groups. Some of these are well tested,
production quality codes while others are in the development stage.

Sending an e-mail to netlib@research.att.com with the message send
index causes NETLIB to return instructions and descriptions of the var-
ious libraries in the main group. More information about a specific
package is obtained by sending an e-mail with the message send in-
dex for linpack for example. The LINPACK index describes the sub-
routines in that library and how to obtain the routines by e-mail. The
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specific calling instructions for a given routine are in the commented
section at the beginning of the listing. Warning: some of the libraries
are very big.

7.3. Direct methods for special systems

It is often the case that the matrices arising from the Galerkin finite el-
ement method applied to a differential equation have special properties
that can be useful during the solution of the associated algebraic equa-
tions. For example, the stiffness matrix for the Galerkin finite element
approximation of the two-point boundary value problem in Section 6.2
in Chapter 6 is symmetric, positive-definite, and tridiagonal. In this
section, we examine a couple of different classes of problems that occur
frequently.

7.3.1. Symmetric, positive-definite systems

As we mentioned, symmetric, positive-definite matrices are often en-
countered when discretizing differential equations (especially if the spa-
tial part of the differential equation is of the type called elliptic). If A
is symmetric and positive-definite, then it can be factored as A = BB⊤

where B is a lower triangular matrix with positive diagonal entries.
This factorization can be computed from the LU decomposition of A,
but there is a compact method of factoring A that requires only O(n3/6)
multiplications called Cholesky’s method.:

b11 =
√
a11

bi1 =
ai1
b11

, 2 ≤ i ≤ n,





bjj =

(
ajj −

∑j−1
k=1 b

2
jk

)1/2
,

bij =
(
aij −

∑j−1
k=1 bikbjk

)
/bjj,

2 ≤ j ≤ n, j + 1 ≤ i ≤ n

Problem 7.21. Count the cost of this algorithm.

This is called a compact method because it is derived by assuming that
the factorization exists and then computing the coefficients of B directly
from the equations obtained by matching coefficients in BB⊤ = A. For
example, if we compute the coefficient in the first row and column of
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BB⊤ we get b211, which therefore must equal a11. It is possible to do
this because A is positive-definite and symmetric, which implies among
other things that the diagonal entries of A remain positive throughout
the factorization process and pivoting is not required when computing
an LU decomposition.

Alternatively, the square roots in this formula can be avoided by
computing a factorization A = CDC⊤ where C is a lower triangular
matrix with ones on the diagonal and D is a diagonal matrix with pos-
itive diagonal coefficients.

Problem 7.22. Compute the Cholesky factorization of




4 2 1
2 3 0
1 0 2





Problem 7.23. Compute the Cholesky factorization of the matrix in the
system in Problem 7.4.

7.3.2. Banded systems

Banded systems are matrices with non-zero coefficients only in some
number of diagonals centered around the main diagonal. In other words,
aij = 0 for j ≤ i− dl and j ≥ i+ du, 1 ≤ i, j ≤ n, where dl is the lower
bandwidth, du is the upper bandwidth, and d = du + dl − 1 is called the
bandwidth. We illustrate this in Fig. 7.10. The stiffness matrix computed
for the two-point boundary value problem in Section 6.2 is an example
of a tridiagonal matrix, which is a matrix with lower bandwidth 2, upper
bandwidth 2, and bandwidth 3.

When performing the Gaussian elimination used to compute the LU
decomposition, we see that the entries of A that are already zero do not
have to be reduced further. If there are only relatively few diagonals with
non-zero entries, then the potential saving is great. Moreover, there is no
need to store the zero-valued entries of A. It is straightforward to adapt
the LU factorization and forward/backward substitution routines to a
banded pattern, once a storage scheme has been devised. For example,
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a11

a22

ann

a12 0
a21

0

a13 a1du
0

adl1

0

ann-dl+10

ann-du+1

0

du

d
l

Figure 7.10: The notation for a banded matrix.

we can store a tridiagonal matrix as a 3 × n matrix:




a21 a31 0 · · · 0
a12 a22 a32 0 · · · 0

0 a13 a23 a33 0 · · · ...
. . .

. . .
. . .

. . .
. . . 0

... 0 a1n−1 a2n−1 a3n−1

0 · · · 0 a1n a2n





.

The routine displayed in Fig. 7.11 computes the LU factorization, while
the routine in Fig. 7.12 performs the forward/backward substitution.

for k = 2, ..., n, do

a1k = a1k/a2k-1

a2k = a2k - a1k a3k-1

Figure 7.11: A routine for computing the LU factorization of a tridi-
agonal system.
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for k = n-1, ..., 1, do

xn = yn/a2n

xk = yk - a3k xk+1 /a2k

for k = 2, ..., n, do

y1 = b1

yk = bk - a1k yk-1

Figure 7.12: Using forward and backward substitution to solve a tridi-
agonal system given the LU factorization.

Problem 7.24. Show that the operations count for solving a tridiagonal
system in this way is O(5n).

The cost of this routine grows linearly with the dimension, rather
than at a cubic rate as in the full case. Moreover, we use only the
equivalent of six vectors of dimension n for storage. A more efficient
version, derived as a compact method, uses even less.

Problem 7.25. Find an algorithm to solve a tridiagonal system that
stores only four vectors of dimension n.

This algorithm assumes that no pivoting is required to factor A.
Pivoting during the factorization of a banded matrix raises the difficulty
that the bandwidth becomes larger. This is easy to see in a tridiago-
nal matrix, in which case we have to store an extra vector to hold the
extra elements above the diagonal that result if two adjacent rows are
switched.

Problem 7.26. Convince yourself of this.

In the case of the two-point boundary value problem in Chapter 6, A is
symmetric and positive-definite as well as tridiagonal. As we mentioned
above, this guarantees that pivoting is not required when factoring A.
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Problem 7.27. A factorization of a tridiagonal solver can be derived as
a compact method. Assume that A can be factored as

A =





α1 0 · · · 0

β2 α2 0
...

0 β3 α3

...
. . . 0

0 · · · 0 βn αn









1 γ1 0 · · · 0
0 1 γ2 0
...

. . .
. . .

1 γn−1

0 · · · 0 1





Multiply out the factors and equate the coefficients to get equations for
α, β, and γ. Derive some code based on these formulas.

Problem 7.28. Write some code to solve the tridiagonal system resulting
from the Galerkin finite element discretization of the two-point boundary
value problem in Section 6.2. Using M = 50, compare the time it takes to
solve the system with this tridiagonal solver to the time using a full LU
decomposition routine.

As for a tridiagonal matrix, it is straightforward to program spe-
cial LU factorization and forward/backward substitution routines for a
matrix with bandwidth d. The operations count is O(nd2/2) and the
storage requirement is a matrix of dimension d× n if no pivoting is re-
quired. If d is much less than n, the savings in a special approach are
considerable.

Problem 7.29. Show that the operations count of a banded solver for a
n× n matrix with bandwidth d is O(nd2/2).

Problem 7.30. Write code to solve a linear system with bandwidth five
centered around the main diagonal. What is the operations count for your
code?

While it is true that if A is banded, then L and U are also banded,
it is also true that in general L and U have non-zero entries in positions
where A is zero. This is called fill-in. In particular, the stiffness matrix
for a boundary value problem in several variables is banded and moreover
most of the sub-diagonals in the band have zero coefficients. However,
L and U do not have this property and we may as well treat A as if all
the diagonals in the band have non-zero entries.

Banded matrices are one example of the class of sparse matrices.
Recall that a sparse matrix is a matrix with mostly zero entries. As for
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banded matrices, it is possible to take advantage of sparsity to reduce
the cost of factoring A in terms of time and storage. However, it is
more difficult to do this than for banded matrices if the sparsity pattern
puts non-zero entries at any location in the matrix. One approach to
this problem is based on rearranging the equations and variables, or
equivalently rearranging the rows and columns to form a banded system.

Remark 7.3.1. In reference to Remark 7.2.1, LINPACK also contains
routines to handle banded matrices.

7.4. Iterative methods

Instead of solving Ax = b directly, we now consider iterative solution
methods based on computing a sequence of approximations x(k), k =
1, 2, ..., such that

lim
k→∞

x(k) = x or lim
k→∞

‖x(k) − x‖ = 0,

for some norm ‖ · ‖ (recall that we discussed norms in Chapter 4).
Note that the finite precision of a computer has a different effect on

an iterative method than it has on a direct method. A theoretically
convergent sequence can not reach its limit in general on a computer
using a finite number of digits. In fact, at the point at which the change
from one iterate to the next occurs outside the range of digits held by
the computer, the sequence simply stops changing. Practically speaking,
there is no point computing iterations past this point, even if the limit
has not been reached. On the other hand, it is often sufficient to have less
accuracy than the limit of machine precision, and thus it is important
to be able to estimate the accuracy of the current iterate.

7.4.1. Minimization algorithms

We first construct iterative methods for a linear system Ax = b where
A is symmetric and positive-definite. In this case, the solution x can be
characterized equivalently as the solution of the quadratic minimization
problem: find x ∈ Rn such that

F (x) ≤ F (y) for all y ∈ Rn, (7.6)
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where

F (y) =
1

2
(Ay, y) − (b, y),

with (·, ·) denoting the usual Euclidean scalar product.

Problem 7.31. Prove that the solution of (7.6) is also the solution of
Ax = b.

We construct an iterative method for the solution of the minimization
problem (7.6) based on the following simple idea: given an approxima-
tion x(k), compute a new approximation x(k+1) such that F (x(k+1)) <
F (x(k)). On one hand, since F is a quadratic function, there must be
a “downhill” direction from the current position, unless we are at the
minimum. On the other hand, we hope that computing the iterates so
that their function values are strictly decreasing, will force the sequence
to converge to the minimum point x. Such an iterative method is called
a minimization method.

Writing x(k+1) = x(k) + αkd
(k), where d(k) is a search direction and

αk is a step length, by direct computation we get

F (x(k+1)) = F (x(k)) + αk
(
Ax(k) − b, d(k)

)
+
α2
k

2

(
Ad(k), d(k)

)
,

where we used the symmetry of A to write (Ax(k), d(k))=(x(k), Ad(k)).
If the step length is so small that the second order term in αk can be
neglected, then the direction d(k) in which F decreases most rapidly, or
the direction of steepest descent, is

d(k) = −(Ax(k) − b) = −r(k),

which is the opposite direction to the residual error r(k) = Ax(k) − b.
This suggests using an iterative method of the form

x(k+1) = x(k) − αkr
(k). (7.7)

A minimization method with this choice of search direction is called a
steepest descent method. The direction of steepest descent is perpendic-
ular to the level curve of F through x(k), which is the curve in the graph
of F generated by the points where F has the same value as at x(k). We
illustrate this in Fig. 7.13.
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d(k)

x(k)

level curves

F

x
x(k)

x

Figure 7.13: The direction of steepest descent of F at a point is per-
pendicular to the level curve of F through the point.

Problem 7.32. Prove that the direction of steepest descent at a point is
perpendicular to the level curve of F through the same point.

Problem 7.33. Show that r(k) = Ax(k) − b = ∇F (x(k)), where ∇F is the
gradient of F , that is the vector formed by the derivatives of F (η1, ..., ηn)
with respect to the variables ηi.

It remains to choose the step lengths αk. Staying with the underlying
principle, we choose αk to give the minimum value of F in the direction
of d(k) starting from x(k). Differentiating F (x(k) + αkr

(k)) with respect
to αk and setting the derivative zero gives

αk = −
(
r(k), d(k)

)

(d(k), Ad(k))
. (7.8)

Problem 7.34. Prove this formula.

As a simple illustration, we consider the case

A =

(
λ1 0
0 λ2

)
, 0 < λ1 < λ2, (7.9)
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and b = 0, corresponding to the minimization problem

min
y∈Rn

1

2

(
λ1y

2
1 + λ2y

2
2

)
,

with solution x = 0.

Problem 7.35. Prove that the level curves of F in this case are ellipses
with major and minor axes proportional to 1/

√
λ1 and 1/

√
λ2, respectively.

Applying (7.7) to this problem, we iterate according to

x(k+1) = x(k) − αkAx
(k),

using for simplicity a constant step length with αk = α instead of (7.8).
In Fig. 7.14, we plot the iterations computed with λ1 = 1, λ2 = 9, and
x(0) = (9, 1)⊤. The convergence in this case is quite slow. The reason

is that if λ2 ≫ λ1, then the search direction −(λ1x
(k)
1 , λ2x

(k)
2 )⊤ and the

direction −(x
(k)
1 , x

(k)
2 )⊤ to the solution at the origin, are very different.

As a result the iterates swing back and forth across the long, narrow
“valley”.

0 2 4 6 8

-1

-0.5

0.5

1

x1

x2

x(0)

x(1)

x(2)

Figure 7.14: A sequence generated by the steepest descent method for
(7.9) plotted together with some level curves of F .
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Problem 7.36. Perform this computation.

It turns out that the rate at which the steepest descent method con-
verges in general depends on the condition number κ(A) = λn/λ1 of
A, where λ1 ≤ λ2 ≤ ... ≤ λn are the eigenvalues of A (counted with
multiplicity). In other words, the condition number of a symmetric pos-
itive definite matrix is the ratio of the largest eigenvalue to the smallest
eigenvalue.

Remark 7.4.1. The general definition of the condition number of a
matrix A in terms of a norm ‖ · ‖ is κ(A) = ‖A‖‖A−1‖. In the ‖ · ‖2

norm, the two definitions are equivalent on symmetric matrices. Using
any definition, a matrix is said to be ill-conditioned if the log(κ(A)) is of
the order of the number of digits used in the computer. As we said, we
can expect to have difficulty solving an ill-conditioned system; which in
terms of direct methods means large errors due to rounding errors and
in terms of iterative methods means slow convergence.

We now analyze the steepest descent method for Ax = b in the case
of a constant step length α, where we iterate according to

x(k+1) = x(k+1) − α(Ax(k) − b).

Since the exact solution x satisfies x = x−α(Ax−b), we get the following
equation for the error e(k) = x− x(k):

e(k+1) = (I − αA)e(k).

The iterative method converges if the error tend to zero. Taking norms,
we get

‖e(k+1)‖ ≤ µ ‖e(k)‖ (7.10)

where we use the spectral estimate (4.3) to write

µ = ‖I − αA‖ = max
j

|1 − αλj |,

since the eigenvalues of the matrix I − αA are 1 − αλj , j = 1, ..., n.
Iterating this estimate we get

‖e(k+1)‖ ≤ µk ‖e(0)‖, (7.11)
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where e(0) is the initial error.
To understand when (7.10), or (7.11), guarantees convergence, con-

sider the scalar sequence {λk} for k ≥ 0. If |λ| < 1, then λk → 0; if
λ = 1, then the sequence is always 1; if λ = −1, the sequence alternates
between 1 and −1 and does not converge; and if |λ| > 1, then the se-
quence diverges. Therefore if we want the iteration to converge for any
initial value, then we must choose α so that µ < 1. Since the λj are pos-
itive by assumption, 1 − αλj < 1 automatically, and we can guarantee
that 1−αλj > −1 if α satisfies α < 2/λn. Choosing α = 1/λn, which is
not so far from optimal, we get

µ = 1 − 1/κ(A).

Problem 7.37. Show that the choice α = 2(λ1 + λn)−1 is optimal, and
gives µ = 1 − 2/(κ(A) + 1).

If κ(A) is large, then the convergence can be slow because then the
reduction factor 1 − 1/κ(A) is close to one. More precisely, the number
of steps required to lower the error by a given amount is proportional
to the condition number; see the following problem.

Problem 7.38. Prove that (1 − 1/κ(A))k ≤ ǫ if k ≥ κ(A) log(1/ǫ) .

When an iteration converges in this fashion, i.e. the error decreases
(more or less) by a given factor in each iteration, then we say that the
iteration converges linearly. We define the rate of convergence to be
− log(µ). The motivation is that the number of iterations are required
to reduce the error by a factor of 10−m is approximately −m log(µ).
Note that a faster rate of convergence means a smaller value of µ.

This is an a priori estimate of the error reduction per iteration, since
we estimate the error before the computation. Such an analysis must
account for the slowest possible rate of convergence because it holds for
all initial vectors.

Consider the system Ax = 0 with

A =




λ1 0 0
0 λ2 0
0 0 λ3



 , (7.12)
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where 0 < λ1 < λ2 < λ3. For an initial guess x(0)=(x0
1, x

0
2, x

0
3)

⊤, the
steepest descent method with α = 1/λ3 gives the sequence

x(k) =

((
1 − λ1

λ3

)k
x0

1,
(
1 − λ2

λ3

)k
x0

2, 0

)
, k = 1, 2, ...,

and,

‖e(k)‖ =

√(
1 − λ1

λ3

)2k (
x0

1

)2
+

(
1 − λ2

λ3

)2k (
x0

2

)2
, k = 1, 2, ...

Problem 7.39. Verify these last two formulas.

Thus for a general initial guess, the size of the error is given by
the root mean square average of the corresponding iterate and the rate
that the errors decrease is the root mean square average of the rates of
decrease of the components. Therefore, depending on the initial vector,
initially the iterates will generally converge more quickly than the rate
of decrease of the first, i.e. slowest, component. In other words, more
quickly than the rate predicted by (7.10), which bounds the rate of
decrease of the errors by the rate of decrease in the slowest component.
However, as the iteration proceeds, the second component eventually
becomes much smaller than the first component (as long as x0

1 6= 0) and
we can neglect that term in the expression for the error, i.e.

‖e(k)‖ ≈
(
1 − λ1

λ3

)k|x0
1| for k sufficiently large. (7.13)

In other words, the rate of convergence of the error for almost all initial
vectors eventually becomes dominated by the rate of convergence of the
slowest component. It is straightforward to show that the number of
iterations that we have to wait for this approximation to be valid is
determined by the relative sizes of the first and second components of
x(0).

Problem 7.40. Compute the iteration corresponding to λ1 = 1, λ2 = 2,
λ3 = 3, and x(0) = (1, 1, 1)⊤. Make a plot of the ratios of successive errors
versus the iteration number. Do the ratios converge to the ratio predicted
by the error analysis?

Problem 7.41. Show that the number of iterations it takes for the second
component of x(k) to be less than 10% of the first component is proportional
to log(|x0

2|/10|x0
1|).
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Problem 7.42. Prove that the estimate (7.13) generalizes to any sym-
metric positive-definite matrix A, diagonal or not. Hint: use the fact that
there is a set of eigenvectors of A that form an orthonormal basis for Rn

and write the initial vector in terms of this basis. Compute a formula for
the iterates and then the error.

This simple error analysis does not apply to the unmodified steepest
descent method with varying αk. However, it is generally true that the
rate of convergence depends on the condition number of A, with a larger
condition number meaning slower convergence. If we again consider the
2 × 2 example (7.9) with λ1 = 1 and λ2 = 9, then the estimate (7.10)
for the simplified method suggests that the error should decrease by a
factor of 1 − λ1/λ2 ≈ .89 in each iteration. The sequence generated by
x(0) = (9, 1)⊤ decreases by exactly .8 in each iteration. The simplified
analysis overpredicts the rate of convergence for this particular sequence,
though not by a lot. By way of comparison, if we choose x(0) = (1, 1)⊤,
we find that the ratio of successive iterations alternates between ≈ .126
and ≈ .628, because αk oscillates in value, and the sequence converges
much more quickly than predicted. On the other hand, there are initial
guesses leading to sequences that converge at the predicted rate.

Problem 7.43. (a) Compute the steepest descent iterations for (7.9)
corresponding to x(0) = (9, 1)⊤ and x(0) = (1, 1)⊤, and compare the rates
of convergence. Try to make a plot like Fig. 7.14 for each. Try to explain
the different rates of convergence.

Problem 7.44. Find an initial guess which produces a sequence that
decreases at the rate predicted by the simplified error analysis.

The stiffness matrix A of the two-point boundary value problem
in Section 6.2 in Chapter 6 is symmetric and positive-definite, and its
condition number κ(A) ∝ h−2. Therefore the convergence of the steepest
descent method is very slow if the number of mesh points is large. We
return to this question Chapters 14 and 19.

7.4.2. A general framework for iterative methods

We now briefly discuss iterative methods for a general, linear system
Ax = b, following the classical presentation of iterative methods in Isaac-
son and Keller ([9]). Recall that some matrices, like diagonal and tri-
angular matrices, are relatively easy and cheap to invert, and Gaussian



7. Solving Linear Algebraic Systems 159

elimination can be viewed as a method of factoring A into such matrices.
One way to view an iterative method is an attempt to approximate A−1

by the inverse of a part of A that is easier to invert. This is called an
approximate inverse of A, and we use this to produce an approximate
solution to the linear system. Since we don’t invert the matrix A, we try
to improve the approximate solution by repeating the partial inversion
over and over. With this viewpoint, we start by splitting A into two
parts:

A = N − P,

where the part N is chosen so that the system Ny = c for some given c is
relatively inexpensive to solve. Noting that the true solution x satisfies
Nx = Px+ b, we compute x(k+1) from x(k) by solving

Nx(k+1) = Px(k) + b for k = 1, 2, ..., (7.14)

where x(0) is an initial guess. For example, we may choose N to be the
diagonal of A:

Nij =

{
aij , i = j,

0, i 6= j,

or triangular:

Nij =

{
aij , i ≥ j,

0, i < j.

In both cases, solving the system Nx(k+1) = Px(k)+b is cheap compared
to doing a complete Gaussian elimination on A. so we could afford to
do it many times.

As an example, suppose that

A =




4 1 0
2 5 1
−1 2 4



 and b =




1
0
3



 , (7.15)

and we choose

N =




4 0 0
0 5 0
0 0 4



 and P =




0 −1 0
−2 0 −1
1 −2 0



 ,
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in which case the equation Nx(k+1) = Px(k) + b reads

4xk+1
1 = −xk2 + 1

5xk+1
2 = −2xk1 − xk3

4xk+1
3 = xk1 − 2xk2 + 3.

Being a diagonal system it is easily solved, and choosing an initial guess
and computing, we get

x(0) =




1
1
1



 , x(1) =




0

−.6
.5



 , x(2) =




.4
−.1
1.05



 , x(3) =




.275
−.37
.9



 ,

x(4) =




.3425
−.29

1.00375



 , · · · x(15) =




.333330098
−.333330695
.999992952



 , · · ·

The iteration appears to converge to the true solution (1/3, −1/3,1)⊤.
In general, we could choose N = Nk and P = Pk to vary with each

iteration.

Problem 7.45. Prove that the method of steepest descent corresponds
to choosing

N = Nk =
1

αk
I, and P = Pk =

1

αk
I −A,

with suitable αk.

To analyze the convergence of (7.14), we subtract (7.14) from the
equation Nx = Px+ b satisfied by the true solution to get an equation
for the error e(k) = x− x(k):

e(k+1) = Me(k),

where M = N−1P is the iteration matrix. Iterating on k gives

e(k+1) = Mk+1e(0). (7.16)

Rephrasing the question of convergence, we are interested in whether
e(k) → 0 as k → ∞. By analogy to the scalar case discussed above, if M
is “small”, then the errors e(k) should tend to zero. Note that the issue
of convergence is independent of the data b.
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If e(0) happens to be an eigenvector of M , then it follows from (7.16)

‖e(k+1)‖ = |λ|k+1‖e(0)‖,

and we conclude that if the method converges then we must have |λ| < 1
(or λ = 1). Conversely, one can show that if |λ| < 1 for all eigenvalues
of M , then the method (7.14) indeed does converge:

Theorem 7.1. An iterative method converges for all initial vectors if
and only if every eigenvalue of the associated iteration matrix is less
than one in magnitude.

This theorem is often expressed using the spectral radius ρ(M) of M ,
which is the maximum of the magnitudes of the eigenvalues of A. An
iterative method converges for all initial vectors if and only if ρ(M) < 1.
In general, the asymptotic limit of the ratio of successive errors computed
in ‖ ‖∞ is close to ρ(M) as the number of iterations goes to infinity. We
define the rate of convergence to be RM = − log(ρ(M)). The number of
iterations required to reduce the error by a factor of 10m is approximately
m/RM .

Problem 7.46. Prove this claim.

Practically speaking, “asymptotic” means that the ratio can vary as
the iteration proceeds, especially in the beginning. In previous examples,
we saw that this kind of a priori error result can underestimate the rate
of convergence even in the special case when the matrix is symmetric and
positive-definite (and therefore has an orthonormal basis of eigenvectors)
and the iterative method uses the steepest descent direction. The general
case now considered is more complicated, because interactions may occur
in direction as well as magnitude, and a spectral radius estimate may
overestimate the rate of convergence initially. As an example, consider
the non-symmetric (even non-normal) matrix

A =

(
2 −100
0 4

)
(7.17)

choosing

N =

(
10 0
0 10

)
and P =

(
8 100
0 6

)
gives M =

(
.9 10
0 .8

)
.
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In this case, ρ(M) = .9 and we expect the iteration to converge. Indeed
it does converge, but the errors become quite large before they start to
approach zero. We plot the iterations starting from x(0) = (1, 1)⊤ in
Fig. 7.15.

i
0 10 20 30 40 50

||e
(i

) || 2

0

5

10

15

20

Figure 7.15: The results of an iterative method computed using a non-
normal matrix.

Problem 7.47. Compute the eigenvalues and eigenvectors of the matrix
A in (7.17) and show that A is not normal.

Problem 7.48. Prove that the matrix

(
1 −1
1 1

)
is normal.

The goal is obviously to choose an iterative method so that the spec-
tral radius of the iteration matrix is small. Unfortunately, computing
ρ(M) in the general case is much more expensive than solving the origi-
nal linear system and is impractical in general. We recall from Chapter
4 that |λ| ≤ ‖A‖ holds for any norm and any eigenvalue λ of A. The
following theorem indicates a practical way to check for convergence.

Theorem 7.2. Assume that ‖N−1P‖ ≤ µ for some constant µ < 1 and
matrix norm ‖ · ‖. Then the iteration converges and ‖e(k)‖ ≤ µk‖e(0)‖
for k ≥ 0.

Problem 7.49. Prove Theorem 7.2. Hint: take norms in (7.16) and use
the assumptions and results from Chapter 4.
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This theorem is also an a priori convergence result and suffers from
the same deficiency as the analysis of the simplified steepest descent
method presented above. In fact, choosing an easily computable matrix
norm, like ‖ ‖∞, generally leads to an even more inaccurate estimate
of the convergence rate than would be obtained by using the spectral
radius. In the worst case, it is entirely possible that ρ(M) < 1 < ‖M‖ for
the chosen norm, and hence the iterative method converges even though
the theorem does not apply. The amount of “slack” in the bound in
Theorem 7.2 depends on how much larger ‖A‖∞ is than ρ(A).

For the 3 × 3 example (7.15), we compute ‖N−1P‖∞ = 3/4 = λ
and therefore we know the sequence converges. The theorem predicts
that the error will get reduced by a factor of 3/4 every iteration. If
we examine the error of each iterate along with the ratios of successive
errors after the first iteration:

i ‖e(i)‖∞ ‖e(i)‖∞/‖e(i−1)‖∞
0 1.333
1 .5 .375
2 .233 .467
3 .1 .429
4 .0433 .433
5 .0194 .447
6 .00821 .424
7 .00383 .466
8 .00159 .414
9 .000772 .487

we find that after the first few iterations, the errors get reduced by a
factor in the range of .4–.5 each iteration and not the factor 3/4 predicted
above. The ratio of e(40)/e(39) is approximately .469. If we compute the
eigenvalues of M , we find that ρ(M) ≈ .476 which is close to the ratio
of successive errors. To decrease the initial error by a factor of 10−4

using the predicted decrease of .75 per iteration, we would compute 33
iterations, while only 13 iterations are actually needed.

Problem 7.50. Compute 10 iterations using the A and b in (7.15) and the
initial guess x(0) = (−1, 1, −1)⊤. Compute the errors and the ratios of
successive errors and compare to the results above.
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Problem 7.51. Repeat Problem 7.50 using

A =




4 1 100
2 5 1
−1 2 4



 and b =




1
0
3



 .

Does Theorem 7.2 apply to this matrix?

We get different methods, and different rates of convergence, by
choosing different N and P . The method used in the example above is
called the Jacobi method. In general, this consists of choosing N to be
the “diagonal part” of A and P to be the negative of the “off-diagonal”
part of A. This gives the set of equations

xk+1
i = − 1

aii

(∑

j 6=i

aijx
k
j − bi

)
, i = 1, ..., n.

To derive a more sophisticated method, we write out these equations
in Fig. 7.16. The idea behind the Gauss-Seidel method is to use the new

x1
k+1 =- 1

a11
(0 + a12x2

k + . . . + a1nxn
k - b1 )

x2
k+1 =- 1

a22
(a21x1

k + 0 + a23x3
k + . . . + a2nxn

k - b2 )

x3
k+1 =- 1

a33
(a31x1

k + a32x2
k + 0 + a34x4

k + . . . - b3 )

xn
k+1 =- 1

ann
(an1x1

k + an2x2
k + . . . + ann-1xk

n-1 + 0 - bn )

Figure 7.16: The Gauss-Seidel method substitutes new values of the
iteration as they become available.

values of the approximation in these equations as they become known.
The substitutions are drawn in Fig. 7.16. Presumably, the new values
are more accurate than the old values, hence we might guess that this
iteration will converge more quickly. The equations can be written

xk+1
i =

1

aii

(
−

i−1∑

j=1

aijx
k+1
j −

n∑

j=i+1

aijx
k
j + bi

)
.
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If we decompose A into the sum of its lower triangular L, diagonal D,
and upper triangular U parts, A = L+D + U , then the equations can
be written Dx(k+1) = −Lx(k+1) − Ux(k) + b or

(D + L)x(k+1) = −Ux(k) + b.

Therefore, N = D + L and P = −U . The iteration matrix is MGS =
N−1P = −(D + L)−1U .

Problem 7.52. Show that for the Jacobi iteration, N = D and P =
−(L+ U) and the iteration matrix is MJ = −D−1(L+ U)

Problem 7.53. (a) Solve (7.15) using the Gauss-Seidel method and
compare the convergence with that of the Jacobi method. Also compare
ρ(M) for the two methods. (b) Do the same for the system in Problem 7.51.

Problem 7.54. (Isaacson and Keller ([9])) Analyze the convergence of the
Jacobi and Gauss-Seidel methods for the matrix

A =

(
1 ρ
ρ 1

)

in terms of the parameter ρ.

In general it is difficult to compare the convergence of the Jacobi
method with that of the Gauss-Seidel method. There are matrices for
which the Jacobi method converges and the Gauss-Seidel method fails
and vice versa. There are two special classes of matrices for which
convergence can be established without further computation. A matrix
A is diagonally dominant if

|aii| >
n∑

j=1

j 6=i

|aij |, i = 1, ..., n.

If A is diagonally dominant then the Jacobi method converges.

Problem 7.55. Prove this claim.

A diagonally dominant matrix often occurs when a parabolic problem is
discretized. We have already seen the other case, if A is symmetric and
positive-definite then the Gauss-Seidel method converges. This is quite
hard to prove, see Isaacson and Keller ([9]) for details.
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7.5. Estimating the error of the solution

How much does it cost to ride this train,
Conductor, won’t you tell me ’fore I go insane.
I don’t want a Greyhound or a fast jet plane.
How much does it cost to ride this train? (D. Singleton)

The issue of estimating the error of the numerical solution of a linear
system Ax = b arises both in Gaussian elimination, because of the cu-
mulative effects of round-off errors, and when using iterative methods,
where we need a stopping criterion. Therefore it is important to be able
to estimate the error in some norm with a fair degree of accuracy.

We discussed this problem in the context of iterative methods in the
last section when we analyzed the convergence of iterative methods and
Theorem 7.2 gives an a priori estimate for the convergence rate. It is
an a priori estimate because the error is bounded before the computa-
tion begins. Unfortunately, as we saw, the estimate may not be very
accurate on a particular computation, and it also requires the size of the
initial error. In this section, we describe a technique of a posteriori error
estimation that uses the approximation after it is computed to give an
estimate of the error of that particular approximation.

We assume that xc is a numerical solution of the system Ax = b
with exact solution x, and we want to estimate the error ‖x − xc‖ in
some norm ‖ · ‖. We should point out that we are actually comparing
the approximate solution x̃c of Ãx̃ = b̃ to the true solution x̃, where
Ã and b̃ are the finite precision computer representations of the true A
and b respectively. The best we can hope to do is compute x̃ accurately.
To construct a complete picture, it would be necessary to examine the
effects of small errors in A and b on the solution x. To simplify things,
we ignore this part of the analysis and drop the ˜ . In a typical use of an
iterative method, this turns out to be reasonable. It is apparently less
reasonable in the analysis of a direct method, since the errors arising in
direct methods are due to the finite precision. However, the initial error
caused by storing A and b on a computer with a finite number of digits
occurs only once, while the errors in the arithmetic operations involved
in Gaussian elimination occur many times, so even in that case it is not
an unreasonable simplification.

We start by considering the residual error

r = Axc − b,
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which measures how well xc solves the exact equation. Of course, the
residual error of the exact solution x is zero but the residual error of xc
is not zero unless xc = x by some miracle. We now seek to estimate the
unknown error e = x− xc in terms of the computable residual error r.

By subtracting Ax − b = 0 from Axc − b = r, we get an equation
relating the error to the residual error:

Ae = −r. (7.18)

This is an equation of the same from as the original equation and by
solving it numerically by the same method used to compute xc, we get
an approximation of the error e. This simple idea will be used in a more
sophisticated form below in the context of a posteriori error estimates
for Galerkin methods.

We now illustrate this technique on the linear system arising in the
Galerkin finite element discretization of the two-point boundary value
problem in Section 6.2. We generate a problem with a known solution
so that we can compute the error and test the accuracy of the error
estimate. We choose the true solution vector x with components xi =
sin(πih), where h = 1/(M + 1), corresponding to the function sin(πx)
and then compute the data by b = Ax, where A is the stiffness matrix.
We use the Jacobi method, suitably modified to take advantage of the
fact that A is tridiagonal, to solve the linear system. We use ‖ ‖ = ‖ ‖2

to measure the error.

Problem 7.56. Derive an algorithm that uses the Jacobi method to
solve a tridiagonal system. Use as few operations and as little storage as
possible.

We compute the Jacobi iteration until the residual error becomes
smaller than a given residual tolerance RESTOL. In other words, we
compute the residual r(k) = Ax(k) − b after each iteration and stop the
process when ‖r(k)‖ ≤ RESTOL. We present computations using the
stiffness matrix generated by a uniform discretization with M = 50 el-
ements yielding a finite element approximation with an error of .0056
in the l2 norm. We choose the value of RESTOL so that the error
in the computation of the coefficients of the finite element approxi-
mation is about 1% of the error of the approximation itself. This is
reasonable since computing the coefficients of the approximation more
accurately would not significantly increase the overall accuracy of the
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approximation. After the computation of x(k) is complete, we use the
Jacobi method to approximate the solution of (7.18) and compute the
estimate of the error.

Using the initial vector x(0) with all entries equal to one, we com-
pute 6063 Jacobi iterations to achieve ‖r‖ < RESTOL = .0005. The
actual error of x(6063), computed using the exact solution, is approxi-
mately .0000506233. We solve (7.18) using the Jacobi method for 6063
iterations, reporting the value of the error estimate every 400 iterations:

iteration estimate of error
1 0.00049862

401 0.00026027
801 0.00014873
1201 0.000096531
1601 0.000072106
2001 0.000060676
2401 0.000055328
2801 0.000052825
3201 0.000051653
3601 0.000051105
4001 0.000050849
4401 0.000050729
4801 0.000050673
5201 0.000050646
5601 0.000050634
6001 0.000050628

We see that the error estimate is quite accurate after 6001 iterations
and sufficiently accurate for most purposes after 2000 iterations. In
general, we do not require as much accuracy in the error estimate as we
do in the solution of the system, so the estimation of the accuracy of the
approximate solution is cheaper than the computation of the solution.

Since we estimate the error of the computed solution of the linear
system, we can stop the Jacobi iteration once the error in the coefficients
of the finite element approximation is sufficiently small so that we are
sure the accuracy of the approximation will not be affected. This is a
reasonable strategy given an estimate of the error. If we do not estimate
the error, then the best strategy to guarantee that the approximation
accuracy is not affected by the solution error is to compute the Jacobi
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iteration until the residual error is on the order of roughly 10−p, where
p is the number of digits that the computer uses. Certainly, there is
not much point to computing further Jacobi iterations after this. If we
assume that the computations are made in single precision, then p ≈ 8.
It takes a total of 11672 Jacobi iterations to achieve this level of residual
error using the same initial guess as above. In fact, estimating the error
and computing the coefficients of the approximation to a reasonable level
of accuracy costs significantly less than this crude approach.

Problem 7.57. Repeat this example using the Gauss-Seidel method.

This approach can also be used to estimate the error of a solution
computed by a direct method, provided the effects of finite precision are
included. The added difficulty is that in general the residual error of
a solution of a linear system computed with a direct method is small,
even if the solution is inaccurate. Therefore, care has to be taken when
computing the residual error because the possibility that subtractive
cancellation makes the calculation of the residual error itself inaccurate.
Subtractive cancellation is the name for the fact that the difference of
two numbers that agree to the first i places has i leading zeroes. If
only the first p digits of the numbers are accurate then their difference
can have at most p − i accurate significant digits. This can have severe
consequences on the accuracy of the residual error if Axc and b agree to
most of the digits used by the computer. One way to avoid this trouble
is to compute the approximation in single precision and the residual
in double precision (which means compute the product Axc in double
precision, then subtract b). The actual solution of (7.18) is relatively
cheap since the factorization of A has already been performed and only
forward/backward substitution needs to be done.

Problem 7.58. Devise an algorithm to estimate the error of the solution
of a linear system using single and double precision as suggested. Repeat
the example using a tridiagonal solver and your algorithm to estimate the
error.



170 7. Solving Linear Algebraic Systems

The principle which I have always observed in my studies and
which I believe has helped me the most to gain what knowledge I
have, has been never to spend beyond a few hours daily in thoughts
which occupy the imagination, and a very few hours yearly in those
which occupy the understanding, and to give all the rest of my
time to the relaxation of the senses and the repose of the mind.
(Descartes)

Figure 7.17: Leibniz’s 1683 study of algorithms (Canonen) for the so-
lution of linear systems of equations.



Part II

The archetypes

In this part, we explore some basic aspects of Galerkin’s method by
applying it in three kinds of problems: scalar linear two-point bound-
ary value problems, scalar linear initial value problems, and initial value
problems for linear systems of ordinary differential equations. Using
these three types of problems, we introduce the three basic types of dif-
ferential equations: elliptic, parabolic, and hyperbolic problems typically
modelling stationary heat conduction, nonstationary heat conduction,
and wave propagation respectively. In doing so, we set up a framework
that we apply to linear partial differential equations in the third part
of this book and to nonlinear systems of differential equations in the
companion volume.
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8

Two-Point Boundary Value

Problems

In all these cases and even in more complicated ones, our methods
are of astonishing and unequaled simplicity. (Leibniz)

If you take a little trouble, you will attain to a thorough under-
standing of these truths. For one thing will be illuminated by
another, and eyeless night will not rob you from your road till you
have looked into the heart of Nature’s darkest mysteries. So surely
will facts throw light upon facts. (Lucretius)

In this chapter, we continue to study the finite element method intro-
duced for the numerical solution of the two-point boundary value prob-
lem (6.9), but now considering the more general problem (6.8) with
variable heat conductivity. We originally derived (6.8) as a model of
stationary heat conduction. We begin this chapter by re-deriving (6.8)
as a model for two problems in elasticity: an elastic string and an elas-
tic bar under load. The two-point boundary value problem (6.8) is an
example of an elliptic problem, which is the kind of problem that typ-
ically arises when modeling stationary phenomena in heat conduction
and elasticity.

We describe the structure of the solution of the two-point boundary
value problem using both a solution formula in terms of integrals and
a formula based on Fourier series. After recalling the Galerkin finite
element method, we begin the mathematical study of the error in the
finite element solution. Two important questions were raised in Chapter
6: what is the error of an approximation computed on a given mesh and

173
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how should we choose a mesh to reach a desired level of accuracy? The
answers to both of these questions are based on the error analysis we
present in this chapter. The techniques we introduce here are funda-
mental in the study of the error of the Galerkin approximation of any
differential equation.

8.0.1. A model of an elastic string

We describe the deflection of an elastic string hung horizontally by its
ends. An example is a clothes line on which wet clothes are hanging.
We assume that the units are chosen so the string occupies the interval
(0, 1) and let u(x) denote the vertical displacement of the string at the
position x under a load of intensity f(x), where we take the displacement
to be zero at the ends. To simplify the model, we assume that the
tension in the string is constant and that u(x) and u′(x) stay small.
This is reasonable as long as the items we hang on the string are not too
heavy. With this assumption, the condition of equilibrium of a segment
(x, x + ∆x) of string can be approximated by the fact that the vertical
load f(x)∆x on the segment must be carried by the vertical resultant
of the forces at the end of the segment. This in turn is proportional
to the difference of the slopes u′ at x and x + ∆x with constant of
proportionality equal to the tension; see Fig. 8.1. In other words,

f(x) x/a
x+ xx

u(x)

f(x)

Figure 8.1: An elastic string subject to the load f(x).

a(−u′(x+ ∆x) + u′(x)) ≈ f(x)∆x,
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where a is the tension. Letting ∆x tend to zero yields (6.8) with a(x) = a
constant.

An interesting modification of this model includes the effects of verti-
cal springs placed to help to support the string (which may be necessary
if the clothes are wet). We assume that there are many springs hanging
vertically between the string and a fixed horizontal level. To simplify
the model, we consider the continuum limit which in this case means
imagining that there is a spring at every point x and we assume that
the spring at x has spring constant c(x) ≥ 0. Equivalently, we can imag-
ine a piece of elastic fabric hanging vertically between the string and a
fixed horizontal level that has the property that the fabric obeys Hooke’s
law for a spring (cf. Chapter 7) when stretched in the vertical direction.
With a = 1, we obtain the model

{
−u′′(x) + c(x)u(x) = f(x) for 0 < x < 1,

u(0) = 0, u(1) = 0.
(8.1)

Problem 8.1. Derive (8.1) based on the discussion of elastic springs in
Chapter 7.

8.0.2. A model of an elastic bar

We consider a horizontal elastic bar occupying the interval [0, 1] subject
to a tangential load with intensity f(x). We let σ(x) denote the total
stress in a cross section of the bar at position x caused by the load and
let u(x) denote the corresponding displacement of a point in the bar
at position x in the positive x direction measured from the reference
position with zero load. For an arbitrary sub-interval (x1, x2) of (0, 1),
equilibrium requires that

−σ(x2) + σ(x1) =

∫ x2

x1

f(x) dx.

By varying x1 and x2, it follows that

−σ′(x) = f(x) for 0 < x < 1.

Hooke’s law in the present context states that the stress σ is proportional
to the strain u′,

σ = au′,
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where the coefficient of proportionality a(x) > 0 is the modulus of elas-
ticity. Hooke’s law is valid if both displacements and strains are small.
Together with the boundary conditions u(0) = u(1) = 0 corresponding
to zero displacements at the end points, this gives another version of
(6.8): {

−(a(x)u′(x))′ = f(x) for 0 < x < 1,

u(0) = 0, u(1) = 0.
(8.2)

Hooke, a contemporary of Newton, was Curator of the Royal Soci-
ety. The duties of the curator were very onerous. According to his
contract at every session of the Society (and they occurred every
week except for the summer vacation) Hooke had to demonstrate
three or four experiments proving new laws of nature...Towards
the end of his life he counted 500 “laws” that he had discovered.
Among other things, Hooke discovered the cellular structure of
plants, the wave nature of light, Jupiter’s red spot and probably
also the inverse square law of gravitation. (Arnold)

8.0.3. The structure of the solutions

The two-point boundary value problem (8.2) is the prototypical exam-
ple of an elliptic problem. We assume that f(x) is continuous in [0, 1]
and that a(x) is positive and continuously differentiable on [0, 1]. The
solution of (8.2) is then required to have two continuous derivatives in
(0, 1) and to satisfy the differential equation at every point in (0, 1) and
the boundary conditions.

We can express the solution u of (8.2) in terms of data using two
integrations:

u(x) =

∫ x

0

w(y)

a(y)
dy + α1, w(y) = −

∫ y

0
f(z) dz + α2,

where the constants are chosen so that u(0) = u(1) = 0. It follows that
u is “twice as differentiable” as the data f , which is known as elliptic
smoothing. The meaning of elliptic smoothing is obvious if a = 1, since
then u′′ = −f .

We also give a solution formula for a solution u of (8.2) in the case
a = 1 in the form of a Fourier sine series:

u(x) =

∞∑

j=1

uj sin(jπx),
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where the uj ∈ R are the Fourier coefficients of u. We recall from
Chapter 5 that a continuous function v(x) with a piecewise continuous
derivative and satisfying v(0) = v(1) = 0 has a unique Fourier sine series
that converges pointwise.

We determine the Fourier coefficients uj by substituting the series
into (8.2) to get

∞∑

j=1

j2π2uj sin(jπx) = f(x). (8.3)

Since ∫ 1

0
sin(jπx) sin(iπx)dx =

{
0, j 6= i,

1/2, j = i,

by multiplying (8.3) by sin(ix) and integrating over (0, 1), we get

1

2
i2π2ui =

∫ 1

0
fϕi dx for i = 1, 2, ...,

that is, the Fourier coefficients uj of u are given by

uj =
1

j2π2
fj,

where

fj = 2

∫ 1

0
f(x) sin(jπx) dx (8.4)

are the Fourier coefficients of f(x). The rate at which Fourier coefficients
fj tend to zero depends on the number of continuous derivatives of an
odd periodic extension of f . If fj = O

(
1/jµ

)
for some µ > 0 then

the Fourier coefficients of u satisfy uj = O
(
1/jµ+2

)
and so the Fourier

coefficients of u decay more quickly than those of f , which corresponds
to the elliptic smoothing.

Problem 8.2. Compute a Fourier series representation of the solutions
of −u′′ = f in (0, 1) with u(0) = u(1) = 0 corresponding to (a) f = x, (b)
f = x if 0 ≤ x < 1/2 and f = 1 − x if 1/2 ≤ x ≤ 1, (c) f = x(1 − x).
(d) Compare the rate at which the Fourier coefficients of the solutions of
(a)-(c) tend to zero as the frequency increases and explain the result.

Problem 8.3. Find some relation between the rate of decay of the Fourier
coefficients (8.4) and the smoothness of an odd periodic extension of f .
Hint: integrate by parts in (8.4).
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In the general case with the coefficient a(x) variable, Fourier’s method
depends on finding a set of Fourier basis functions that are orthogonal
with respect to the weighted L2 inner product with weight a and also
being able to compute the Fourier coefficients of f . Usually, we cannot
do these things and have to use numerical approximation.

8.1. The finite element method

Following the route of Chapter 6, we formulate the finite element method
for the elliptic model problem (8.2) using Galerkin’s method with piece-
wise linear approximations starting from a variational formulation of
(8.2). We begin by assuming that the coefficient a(x) is positive and
bounded in the closed interval [0, 1] so that there are positive constants
a1 and a2 such that a1 ≤ a(x) ≤ a2 for 0 ≤ x ≤ 1.

8.1.1. The variational formulation

The variational formulation of (8.2) is based on the following observa-
tion: multiplying the differential equation −(au′)′ = f by a test function
v(x) satisfying v(0) = v(1) = 0 and integrating by parts, we get

∫ 1

0
fv dx = −

∫ 1

0
(au′)′v dx =

∫ 1

0
au′v′ dx, (8.5)

because of the boundary conditions on v. The variational formulation
is to find a function u in an appropriate space of trial functions that
satisfies (8.5) for all appropriate test functions v. More precisely, if we
choose the space of trial and test functions to be the same, and call it
V , then the variational formulation reads: find u ∈ V such that

∫ 1

0
au′v′ dx =

∫ 1

0
fv dx for all v ∈ V, (8.6)

A natural choice for V turns out to be

V =

{
v :

∫ 1

0
v2 dx <∞,

∫ 1

0
(v′)2 dx <∞, v(0) = v(1) = 0

}
,

or in words, V is the space of functions v defined on (0, 1) satisfying
the boundary conditions v(0) = v(1) = 0, such that both v and v′ are
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square integrable on (0, 1). We note that if both u and v belong to V
and f ∈ L2(0, 1), then the integrals occurring in (8.2) are convergent
and therefore well defined, since by Cauchy’s inequality

∫ 1

0
|au′v′| dx ≤

(∫ 1

0
a(u′)2 dx

)1/2(∫ 1

0
a(v′)2 dx

)1/2

<∞

and ∫ 1

0
|fv| dx ≤

(∫ 1

0
f2 dx

)1/2(∫ 1

0
v2 dx

)1/2

<∞,

where we used the boundedness of the coefficient a(x). Furthermore,
it turns out that functions in V are continuous and therefore have
well defined boundary values v(0) and v(1), so that the specification
v(0) = v(1) = 0 makes sense. We prove this in Chapter 20. Another
important property of V in the context of Galerkin’s method is that the
finite element space Vh of continuous piecewise linear functions on [0, 1]
satisfying the boundary conditions is a subspace of V .

Problem 8.4. Prove this.

8.1.2. The relation between the two-point boundary value
problem and the variational problem

Before getting to the finite element method, we comment on the rela-
tionship between the two-point boundary value problem (8.2) and the
variational problem (8.6), and in particular, whether these problems
have the same solution. A basic difference in the formulation of the two
problems is the number of derivatives required, namely the solution of
the differential equation is required to have two continuous derivatives
while the solution of the variational problem is only required to have a
first derivative that is bounded in the L2(0, 1) norm. In other words, the
formulation of the differential equation requires more regularity (more
derivatives) of its solution than the variational problem. Remember that
the choice of requiring less regularity in the variational formulation is
deliberate, made in particular so that the continuous piecewise linear
approximation U can be substituted into the variational equation.

We have already proved that the solution of (8.2) also is a solution
of the variational problem (8.6). This follows because a function that
is twice continuously differentiable in [0, 1] is automatically in V . This
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observation also indicates the main difficulty in showing that the solution
of the variational problem (8.6) is also the solution of (8.2), namely
to show that the solution of the variational problem is in fact twice
continuously differentiable. Once this is proved, it is relatively easy to
show that the solution of (8.6) in fact also solves (8.2). To see this, we
simply integrate by parts in (8.6) to put two derivatives back on u to
get ∫ 1

0

(
−(au′)′ − f

)
v dx = 0 for all v ∈ V. (8.7)

This says that all the weighted averages of −(au′)′−f for weights v in V
are zero, and from this, we want to conclude that −(au′)′−f ≡ 0. This is
not immediately obvious, because we might think that −(a(x)u′(x))′ −
f(x) could be positive for some x and negative for others in such a
way that there is cancellation in the integral. To see that it is indeed
true, assume that −(a(ξ)u′(ξ))′ − f(ξ) > 0 at some point 0 < ξ < 1.
Because −(au′)′ − f is continuous, it must actually be positive on some
small interval, which we can describe as [ξ− δ, ξ+ δ]. See Fig. 8.2. If we

10

f(x)

1 v(x)

Figure 8.2: Illustration of the variational argument that shows that
−(au′)′ − f ≡ 0.

choose v to be the hat function with peak at ξ and touching zero at ξ−δ
and ξ + δ, see Fig. 8.2, then the integrand

(
−(a(x)u′(x))′ − f(x)

)
v(x)

is non-negative for all x and strictly positive for ξ − δ < x < ξ + δ. But
this means that

∫ 1
0

(
−(au′)′ − f

)
v dx > 0, which is a contradiction. We

get the same result if −(a(ξ)u′(ξ))′ − f(ξ) < 0 at some point ξ.
When can we expect the solution u ∈ V of the variational problem

(8.6) to have two continuous derivatives? It turns out that this is true
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under the regularity conditions for a(x) and f(x) demanded in the dif-
ferential equation formulation. One can understand this by considering
that the differential equation relates the second derivative u′′ in terms
of the first derivative u′ and data,

u′′ = −a−1(a′u′ + f).

The conclusion is that the variational formulation and the differen-
tial equation formulation have the same solution if f(x) is continuous
and a(x) is continuously differentiable and positive. But what if f(x) or
a(x) are discontinuous for example? Such functions makes sense from
a physical point of view; just hang clothes on a part of the clothes line
or use a wire made of two different substances joined together so the
heat conductivity is discontinuous. In such problems, the meaning of
the differential equation formulation is not immediately clear, while the
variational formulation is still perfectly meaningful because the inte-
grals are well defined. This indicates an advantage of the variational
formulation over the differential equation formulation: the variational
formulation covers a larger set of data.

8.1.3. An equivalent minimization problem

In Chapter 7, we saw that certain classes of linear algebraic systems
can be reformulated as minimization problems. Analogously, the vari-
ational formulation (8.6) of the boundary value problem (8.2) can be
reformulated as the following equivalent minimization problem: find the
function u ∈ V such that

F (u) ≤ F (w) for all w ∈ V, (8.8)

where

F (w) =
1

2

∫ 1

0
a(w′)2 dx−

∫ 1

0
fw dx.

The quantity F (w) is the total energy of the function w(x) which is
the sum of the internal energy 1

2

∫ 1
0 a(w

′)2 dx and the load potential

−
∫ 1
0 fw dx. The space V introduced above may be described as the

space of functions w on (0, 1) satisfying the boundary condition w(0) =
w(1) = 0 and having finite total energy F (w). The detailed motivation
behind this statement is given in Chapter 20.
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To see that (8.6) and (8.8) are equivalent, we assume first that u ∈ V
satisfies (8.6). For w ∈ V chosen arbitrarily, we set v = w − u ∈ V and
compute

F (w) = F (u+ v) = F (u) +

∫ 1

0
au′v′ dx−

∫ 1

0
fv dx+

1

2

∫ 1

0
av′v′ dx

= F (u) +
1

2

∫ 1

0
av′v′ dx,

proving that F (w) ≥ F (u). Conversely, if u ∈ V satisfies (8.8) then
the function g(ǫ) = F (u + ǫv), where v ∈ V is fixed but arbitrary
and ǫ ∈ R, has a minimum at ǫ = 0. The derivative of g(ǫ) at ǫ =
0 must be zero since that is a minimum point. Computing, we get
g′(0) =

∫ 1
0 au

′v′ dx−
∫ 1
0 fv dx from which (8.6) follows. For a differential

equation which has an equivalent formulation as a minimization of an
energy, questions such as existence, uniqueness and stability of solutions
may be easier to tackle than for a general equation. For existence the
idea is to construct a sequence of approximate solutions with energies
decreasing to the minimal energy, and then prove that the sequence is a
Cauchy sequence in some suitable space. We use this technique to prove
existence of solutions of e.g. Poisson’s equation in Chapter 20. Also,
the corresponding discrete system obtained by Galerkin’s method often
may be solved efficiently by making use of a minimization formulation.

8.1.4. The finite element method

We consider the Galerkin finite element method for (8.2) based on con-
tinuous piecewise linear approximation, which we call the cG(1) finite el-
ement method (continuous Galerkin method of order one). The method
is constructed following the same pattern we used to discretize (6.9).
Let Th : 0 = x0 < x1 < ... < xM < xM+1 = 1 be a partition of (0, 1)
and let Vh be the corresponding finite element space of continuous piece-
wise linear functions vanishing at x = 0 and x = 1. The finite element
method is obtained by applying Galerkin’s method to (8.6) with the
finite dimensional space Vh replacing V and reads: find U ∈ Vh such
that ∫ 1

0
aU ′v′ dx =

∫ 1

0
fv dx for all v ∈ Vh. (8.9)
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Subtracting (8.9) from (8.6), and using Vh ⊂ V , we obtain the relation

∫ 1

0
a(u− U)′v′ dx = 0 for all v ∈ Vh, (8.10)

which expresses the Galerkin orthogonality property of the error u− U
in variational form.

As before, we write U in terms of the nodal basis functions ϕj , j =
1, ...,M ,

U(x) =

M∑

j=1

ξjϕj(x),

and substitute this expression into (8.9). Choosing v to be each one of
the basis functions ϕi in turn, we obtain the systems of equations Aξ = b
for the coefficients ξ = (ξj) of U , where A = (aij) is the M ×M stiffness
matrix and b = (bi) is the load vector with elements

aij =

∫ 1

0
aϕ′

jϕ
′
i dx, bi =

∫ 1

0
fϕi dx.

The stiffness matrix A is symmetric because the trial and test spaces
are the same, positive-definite since a is strictly positive, and tridiagonal
because the supports of the nodal basis functions overlap only for nearby
nodes.

Problem 8.5. Prove these properties of A.

Problem 8.6. Compute the stiffness matrix and load vector for the
cG(1) method on a uniform triangulation for (8.2) with a(x) = 1 + x and
f(x) = sin(x).

Problem 8.7. Formulate the cG(1) method for (8.1). Compute the
stiffness matrix when c is a constant. Is the stiffness matrix still symmetric,
positive-definite, and tridiagonal?

Problem 8.8. Prove that the Galerkin finite element method can be
reformulated in terms of the minimization problem: find U ∈ Vh such that

F (U) ≤ F (v) for all v ∈ Vh.

Show that this problem takes the matrix form: find the vector ξ = (ξj) ∈
RM that minimizes the quadratic function 1

2η
⊤Aη − b⊤η for η ∈ RM .
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Problem 8.9. Show that the cG(1) solution U of (8.2) is exact at the
nodes xj if a ≡ 1. Hint: show that the error e = u− U can be written

e(z) =

∫ 1

0

g′z(x)e
′(x) dx,

where

gz(x) =

{
(1 − z)x, 0 ≤ x ≤ z,

z(1 − x), z ≤ x ≤ 1,

and then use Galerkin orthogonality and the fact that gxj
∈ Vh for j =

1, ...,M . Does the result extend to variable a?

Problem 8.10. Prove that the function gz(x) defined in the previous
problem satisfies the equation −g′′z = δz in (0, 1), gz(0) = gz(1) = 0, where
δz is the delta function at x = z. Show that a function u solving −u′′ = f
in (0, 1), u(0) = u(1) = 0 can be represented in terms of the right-hand
side f via gz as follows:

u(z) =

∫ 1

0

gz(x)f(x) dx.

The function gz(x) is the Green’s function for the boundary value problem
(8.2) with a = 1.

8.1.5. Different boundary conditions

The boundary conditions of (8.2) are called homogeneous Dirichlet bound-
ary conditions. A commonly encountered alternative is a homogeneous
Neumann boundary condition

a(x)u′(x) = 0 for x = 0 or 1. (8.11)

In the models we have discussed, this corresponds to prescribing zero flux
q(x) = −a(x)u′(x) or stress σ(x) = a(x)u′(x) at x = 0 or 1. Effectively,
this condition reduces to u′(0) = 0 or u′(1) = 0 since we assume that a(x)
is positive on [0, 1]. More generally, we can impose a Robin boundary
condition at x = 1 of the form

a(1)u′(1) + γ(u(1) − u1) = g1, (8.12)

where γ ≥ 0 is a given boundary heat conductivity, u1 is a given outside
temperature and g1 a given heat flux. For example if g1 = 0, then (8.12)
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says that the heat flux −a(1)u′(1) at the boundary is proportional to
the temperature difference u(1) − u1 between the inside and outside
temperatures u(1) and u1. We can experience this kind of boundary
condition in a poorly insulated house on a cold winter day. The size of
heat conductivity γ is a “hot issue” in the real estate business in the
north of Sweden. When γ = 0, (8.12) reduces to a Neumann boundary
condition.

Changing the boundary conditions requires a change in the varia-
tional formulation associated to the two-point boundary value problem.
As an example, we consider the problem

{
−(au′)′ = f in (0, 1),

u(0) = 0, a(1)u′(1) = g1.
(8.13)

To derive the variational formulation of this problem, we multiply the
differential equation −(au′)′ = f by a test function v and integrate by
parts to get

∫ 1

0
fv dx = −

∫ 1

0
(au′)′v dx =

∫ 1

0
au′v′ dx−a(1)u′(1)v(1)+a(0)u′(0)v(0).

Now a(1)u′(1) is specified but a(0)u′(0) is unknown. If we assume that
v satisfies the homogeneous Dirichlet condition v(0) = 0 and replace
a(1)u′(1) by g1, then we are led to the following variational formulation
of (8.13): find u ∈ V such that

∫ 1

0
au′v′ dx =

∫ 1

0
fv dx+ g1v(1) for all v ∈ V, (8.14)

where

V =

{
v :

∫ 1

0
v2 dx <∞,

∫ 1

0
(v′)2 dx <∞, v(0) = 0

}
. (8.15)

Note that we only require that the functions in V satisfy the homoge-
neous Dirichlet boundary condition v(0) = 0.

To see that a solution of the variational problem (8.14) that is twice
continuously differentiable solves the two-point boundary value problem
(8.13), we have to show the solution satisfies the differential equation and
the boundary conditions. The Dirichlet condition at x = 0 is satisfied
of course because of the choice of V , but it is not immediately obvious
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that the Neumann condition is satisfied. To see this, we argue in the
same way as above for the problem with Dirichlet boundary conditions.
We integrate by parts in (8.14) to get

∫ 1

0
fv dx+ g1v(1) = −

∫ 1

0
(au′)′v dx+ a(1)u′(1)v(1). (8.16)

Compared to (8.7), there are two additional boundary terms g1v(1) and
a(1)u′(1) v(1). We first choose v as in Fig. 8.2 with v(1) = 0 so the
boundary terms drop out, which shows that −(au′)′ = f in (0, 1). Con-
sequently, (8.16) reduces to g1v(1) = a(1)u′(1)v(1) for all v in V . Now we
choose a test function v with v(1) = 1, which shows that a(1)u′(1) = g1.
In short, the Neumann boundary condition is included implicitly in the
variational formulation (8.14) through the free variation of the test func-
tions v on the boundary with the Neumann condition.

To construct the cG(1) finite element approximation for (8.13), we
define Vh to be the space of continuous functions v that are piecewise
linear with respect to a partition Th of (0, 1) such that v(0) = 0. Since
the value of v ∈ Vh at xM+1 = 1 is unspecified, we include the “half-
hat” function ϕM+1 in the set of nodal basis functions for Vh. The finite
element method reads: compute U ∈ Vh such that

∫ 1

0
aU ′v′ dx =

∫ 1

0
fv dx+ g1v(1) for all v ∈ Vh. (8.17)

We substitute U(x) =
∑M+1

i=1 ξiϕi(x), now with an undetermined value
at the node xM+1, into (8.17) and choose v = ϕ1, · · · , ϕM+1 in turn to
get a (M + 1) × (M + 1) system of equations for ξ. We show the form
of the resulting stiffness matrix with a = 1 and load vector in Fig. 8.3.

Problem 8.11. Compute the coefficients of the stiffness matrix for the
cG(1) finite element method for (8.17) using a uniform partition and assum-
ing a = f = 1 and g1 = 1. Check if the discrete equation corresponding
to the basis function ϕM+1 at x = 1 looks like a discrete analog of the
Neumann condition.

To conclude, Neumann and Robin boundary conditions, unlike Dirich-
let conditions, are not explicitly enforced in the trial and test spaces used
in the variational formulation. Instead, these conditions are automat-
ically satisfied in the variational formulation. The Dirichlet boundary
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A

-hM+1

-1

-hM+1

-1

hM+1

-1

0

0

0 0 bM+1+g1

b

Figure 8.3: The stiffness matrix and load vector computed from (8.17)
in the case that a ≡ 1. A and b are the stiffness matrix and
load vector previously obtained in the problem with Dirich-
let boundary conditions (8.6) and bM+1 =

∫ 1
0 fϕM+1 dx.

condition is called an essential boundary condition and Neumann and
Robin conditions are called natural boundary conditions. An essential
boundary condition is imposed explicitly in the definition of the trial
and test spaces, i.e. it is a strongly imposed boundary condition, while
natural boundary condition is automatically satisfied in the variational
formulation, and is said to be a weakly imposed boundary condition.

We consider briefly also the case of non-homogeneous Dirichlet bound-
ary conditions. As an example, we consider the equation −(au′)′ = f
in (0, 1) with the boundary conditions u(0) = u0 and u(1) = 0, where
u0 6= 0. The variational formulation of this problem is: find u in

Vu0 =

{
w :

∫ 1

0
w2 dx <∞,

∫ 1

0
(w′)2 dx <∞, w(0) = u0, w(1) = 0

}
,

such that ∫ 1

0
au′v′ dx =

∫ 1

0
fv dx for all v ∈ V0,

where test functions in v ∈ V0 satisfy the homogenous Dirichlet bound-
ary condition v(0) = 0. In this case the space of trial functions Vu0 and
the space of test functions V0 are not the same. The reason a test func-
tion v satisfies the homogeneous Dirichlet boundary condition v(0) = 0
is that v = u− w, where both w(0) = u(0) = u0, cf. Section 8.1.3.

Problem 8.12. Show that the Neumann problem (8.14) takes the follow-



188 8. Two-Point Boundary Value Problems

ing variational form if the Neumann condition is generalized to the Robin
condition (8.12): find u ∈ V such that
∫ 1

0

aU ′v′ dx + γu(1)v(1) =

∫ 1

0

fv dx+ g1v(1) + γu1v(1) for all v ∈ V,

where the space V is still defined by (8.15). Compute the coefficients of the
stiffness matrix of the cG(1) method applied to this problem with a = 1
on a uniform partition and check how the Robin boundary condition is
approximated in the discrete system.

Problem 8.13. Determine the discrete system if cG(1) is applied to the
boundary value problem (8.2) with a = 1 and the boundary conditions
u(0) = 1, u(1) = 0.

8.1.6. Quadrature

In order to construct the discrete equations for U , we have to compute
integrals involving a and f . For example, a typical component of b is

bi =

∫ xi

xi−1

f(x)
(x− xi−1)

hi
dx+

∫ xi+1

xi

f(x)
(x− xi+1)

−hi+1
dx.

In practice, it is often inconvenient or even impossible to compute these
integrals exactly. Hence, we often resort to evaluating the integrals giv-
ing the coefficients of A and b by quadrature formulas. We saw in Section
6.3 that the use of quadrature can have a strong effect on the accuracy
of a Galerkin approximation. A basic principle is to choose a quadra-
ture of sufficient accuracy that the order of convergence of the resulting
method is the same as the order of convergence of the method computed
without quadrature. Since we expect that the piecewise linear finite el-
ement approximation, like the piecewise linear interpolant, should be
second order accurate, we use a quadrature on integrals involving f that
is at least second order accurate. To verify that this does not affect the
convergence rate, we later prove error estimates for methods with and
without quadrature.

As an example, using the trapezoidal rule,
∫ xi

xi−1

g(x) dx ≈ 1

2

(
g(xi) + g(xi−1)

)
hi,

the components of the approximate load vector are

f(xi)
1

2

(
hi + hi−1

)
.
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Problem 8.14. Verify this formula.

In general, we prefer to use the midpoint Gauss rule rather than the
trapezoidal rule because we get the same order of accuracy with fewer
function evaluations. However in this case, the trapezoidal rule requires
the same number of function evaluations as the midpoint rule because
of the properties of the basis functions ϕi.

Problem 8.15. Derive a formula for the approximate load vector b̃ that
is computed using the midpoint Gauss rule to evaluate the integrals.

Problem 8.16. Compute the coefficients of A and b in the equations
for the Galerkin finite element approximation of the problem described in
Problem 8.6 using the trapezoidal rule to evaluate integrals involving a and
f .

8.2. Error estimates and adaptive error control

When conducting scientific experiments in a laboratory or building a
suspension bridge, for example, there is always a lot of worry about
the errors in the process. In fact, if we were to summarize the phi-
losophy behind the scientific revolution, a main component would be
the modern emphasis on the quantitative analysis of error in measure-
ments during experiments and the reporting of the errors along with
the results. The same issue comes up in computational mathematical
modeling: whenever we make a computation on a practical problem, we
must be concerned with the accuracy of the results and the related issue
of how to compute efficiently. These issues naturally fit into a wider
framework which also addresses how well the differential equation mod-
els the underlying physical situation and what effect errors in data and
the model have on the conclusions we can draw from the results.

We address these issues by deriving two kinds of error estimates for
the error u − U of the finite element approximation. First we prove
an a priori error estimate which shows that the Galerkin finite element
method for (8.2) produces the best possible approximation of the solu-
tion u in Vh in a certain sense. If u has continuous second derivatives,
then we know that Vh contains good approximations of u, for example
the piecewise linear interpolant. So the a priori estimate implies that the
error of the finite element approximation can be made arbitrarily small
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by refining the mesh provided that the solution u is sufficiently smooth
to allow the interpolation error to go to zero as the mesh is refined.
This kind of result is called an a priori error estimate because the error
bound does not depend on the approximate solution to be computed.
One the other, it does requires knowledge about the derivatives of the
(unknown) exact solution.

After that, we prove an a posteriori error bound that bounds the
error of the finite element approximation in terms of its residual error.
This error bound can be evaluated once the finite element solution has
been computed and used to estimate the error. Through the a posteriori
error estimate, it is possible to estimate and adaptively control the finite
element error to a desired tolerance level by suitably refining the mesh.

To measure the size of the error e = u− U , we use the energy norm
‖v‖E corresponding to (8.2) defined for v ∈ V by

‖v‖E =

(∫ 1

0
a(x)(v′(x))2 dx

)1/2

.

This norm arises naturally in the analysis of the variational formulation.
If we introduce the weighted L2 norm

‖w‖a =

(∫ 1

0
aw2 dx

)1/2

,

with weight a, then the energy norm satisfies ‖v‖E = ‖v′‖a. In other
words, the energy norm of a function v in V is the a-weighted L2 norm
of the first derivative v′. We will use the following variations of Cauchy’s
inequality with the weight a present:
∣∣∣∣

∫ 1

0
av′w′ dx

∣∣∣∣ ≤ ‖v′‖a‖w′‖a and

∣∣∣∣

∫ 1

0
vw dx

∣∣∣∣ ≤ ‖v‖a‖w‖a−1 . (8.18)

Problem 8.17. Prove these inequalities.

Assuming that a is bounded away from zero, a function v in V that is
small in the energy norm, like the error of the finite element approxima-
tion, is also small pointwise. We illustrate this in

Problem 8.18. Prove the following inequality for functions v(x) on I =
(0, 1) with v(0) = 0,

v(y) =

∫ y

0

v′(x) dx ≤
(∫ y

0

a−1 dx

)1/2 (∫ y

0

a(v′)2 dx

)1/2

, 0 < y < 1.

(8.19)
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Use this inequality to show that if a−1 is integrable on I = (0, 1) so that∫
I a

−1 dx < ∞, then a function v is small in the maximum norm on [0, 1]
if ‖v‖E is small and v(0) = 0.

8.2.1. An a priori error estimate

To estimate the error of the Galerkin finite element approximation, we
compare it to the error of other approximations of the solution in Vh.
The a priori error estimate for (8.9) states that the finite element ap-
proximation U ∈ Vh is the best approximation of u in Vh with respect
to the energy norm. This is a consequence of the Galerkin orthogonality
built into the finite element method as expressed by (8.10).

We have for any v ∈ Vh,

‖(u− U)′‖2
a =

∫ 1

0
a(u− U)′(u− U)′ dx

=

∫ 1

0
a(u− U)′(u− v)′ dx+

∫ 1

0
a(u− U)′(v − U)′ dx

=

∫ 1

0
a(u− U)′(u− v)′ dx,

where the last line follows because v − U ∈ Vh. Estimating using
Cauchy’s inequality, we get

‖(u− U)′‖2
a ≤ ‖(u− U)′‖a‖(u− v)′‖a,

so that
‖(u− U)′‖a ≤ ‖(u− v)′‖a for all v ∈ Vh.

This is the best approximation property of U . We now choose in par-
ticular v = πhu, where πhu ∈ Vh is the nodal interpolant of u, and use
the following weighted analog of (5.19)

‖(u− πhu)
′‖a ≤ Ci‖hu′′‖a,

where Ci is an interpolation constant that depends only on (the variation
of) a, to obtain the following error estimate.

Theorem 8.1. The finite element approximation U satisfies ‖u−U‖E ≤
‖u− v‖E for all v ∈ Vh. In particular, there is a constant Ci depending
only on a such that

‖u− U‖E = ‖u′ − U ′‖a ≤ Ci‖hu′′‖a.
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Problem 8.19. Compute the bound in Theorem 8.1 for the solution of
the example in Section 6.2.

This energy norm estimate says that the derivative of the error of
the finite element approximation converges to zero at a first order rate
in the mesh size h. It does not directly indicate that the error itself, say
pointwise or in the L2 norm, tends to zero. Arguing as in Problem 8.18,
we can derive a pointwise bound on the error by direct integration using
the derivative estimate, but this does not give the best possible results
since this approach yields only first order convergence, when in fact
the finite element method is second order convergent. We return to
the problem of proving precise L2 error estimates for the error itself in
Section 14.5.

8.2.2. An a posteriori error estimate

Recall that we used an a posteriori error estimate to estimate the error
of the numerical solution of a system of linear algebraic equations. That
error estimate was based on the residual error which is the remainder left
after substituting the numerical solution back into the original equation.
Similarly, we measure the error of the finite element approximation in
terms of the residual error of the approximation.

We start by computing the energy norm of the error using the vari-
ational equation (8.6)

‖e′‖2
a =

∫ 1

0
ae′e′ dx =

∫ 1

0
au′e′ dx−

∫ 1

0
aU ′e′ dx

=

∫ 1

0
fe dx−

∫ 1

0
aU ′e′ dx.

We use the Galerkin orthogonality (8.9) with v = πhe denoting the nodal
interpolant of e in Vh to obtain

‖e′‖2
a =

∫ 1

0
f (e− πhe) dx −

∫ 1

0
aU ′(e− πhe)

′ dx

=

∫ 1

0
f (e− πhe) dx −

M+1∑

j=1

∫

Ij

aU ′(e− πhe)
′ dx.
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Now, we integrate by parts over each sub-interval Ij in the last term
and use the fact that all the boundary terms disappear because (e −
πhe)(xj) = 0, to get the error representation formula

‖e′‖2
a =

∫ 1

0
R(U)(e − πhe) dx, (8.20)

where R(U) is the residual error which is a (discontinuous) function
defined on (0, 1) by

R(U) = f + (aU ′)′ on each sub-interval Ij .

From the weighted Cauchy inequality (8.18), we get

‖e′‖2
a ≤ ‖hR(U)‖a−1‖h−1(e− πhe)‖a.

Using the results of Chapter 5, we can show that the interpolation error
is bounded in the weighted L2 norm as

‖h−1(e− πhe)‖a ≤ Ci‖e′‖a,

where Ci is an interpolation constant depending on a. Notice that here
the mesh function h(x) appears on the left-hand side. This proves the
basic a posteriori error estimate:

Theorem 8.2. There is an interpolation constant Ci depending only on
a such that the finite element approximation U satisfies

‖u′ − U ′‖a ≤ Ci‖hR(U)‖a−1 . (8.21)

Problem 8.20. Prove that

‖hR(U)‖a−1 ≤ CCi‖hu′′‖a,

where C is a constant depending on a. This estimate indicates that the
a posteriori error estimate is optimal in the same sense as the a priori
estimate.

Problem 8.21. Write down the a posteriori estimate (8.21) explicitly for
the example in Section 6.2.

Problem 8.22. Prove a priori and a posteriori error estimates for the
cG(1) method applied to (8.13).
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Problem 8.23. Prove a priori and a posteriori error estimates for the
cG(1) method applied to the boundary value problem −u′′ + bu′ + u = f ,
u(0) = u(1) = 0. Consider first the case b = 0 and then try b 6= 0. Consider
also the case of non-homogeneous Dirichlet boundary conditions.

Problem 8.24. If you have written some code that computes the cG(1)
approximation of (8.2), then add a module that computes the a posteriori
error bound and reports an estimate of the error after a computation. Note
that in the case a ≡ 1, R(U) = f on Ij . The constant Ci can be difficult
to estimate precisely, but we can calibrate the a posteriori error bound
in the following way: construct a problem with a known solution, then
for several different meshes, compute the error and the a posteriori error
bound. Average the ratio of these two to get an approximate value for Ci.
Test the code out by constructing another problem with a known solution.

Problem 8.25. Consider the problem of estimating the error in corre-
sponding stress or flux using the cG(1) method.

8.2.3. Adaptive error control

Since the a posteriori error estimate (8.21) indicates the size of the error
of an approximation on a given mesh, it is natural to try to use this
information to generate a better mesh that gives more accuracy. This is
the basis of adaptive error control.

The computational problem that arises once a two-point boundary
value problem is specified is to find a mesh such that the finite element
approximation achieves a given level of accuracy, or in other words, such
that the error of the approximation is bounded by an error tolerance
TOL. In practice, we are also concerned with efficiency, which means in
this case, that we want to determine a mesh with the fewest number of
elements that yields an approximation with the desired accuracy. We
try to reach this optimal mesh by starting with a coarse mesh and suc-
cessively refining based on the size of the a posteriori error estimate. By
starting with a coarse mesh, we try to keep the number of elements as
small as possible.

More precisely, we choose an initial mesh Th, compute the corre-
sponding cG(1) approximation U , and then check whether or not

Ci‖hR(U)‖a−1 ≤ TOL.

This is the stopping criterion, which guarantees that ‖u′ −U ′‖a ≤ TOL
by (8.21), and therefore when it is satisfied, U is sufficiently accurate.
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If the stopping criterion is not satisfied, we try to construct a new mesh
Th̃ of mesh size h̃ with as few elements as possible such that

Ci‖h̃R(U)‖a−1 = TOL.

This is the mesh modification criterion from which the new mesh size h̃
is computed from the residual error R(U) of the approximation on the
old mesh. In order to minimize the number of mesh points, it turns out
that the mesh size should be chosen to equidistribute the residual error in
the sense that the contribution from each element to the integral giving
the total residual error is roughly the same. In practice, this means
that elements with large residual errors are refined, while elements in
intervals where the residual error is small are combined together to form
bigger elements.

We repeat the mesh modification followed by solution on the new
mesh until the stopping criterion is satisfied. By the a priori error es-
timate, we know that if u′′ is bounded, then the error tends to zero as
the mesh is refined. Hence, the stopping criterion will be satisfied even-
tually. In practice, the adaptive error control rarely requires more than
a few iterations.

This is a basic outline of the adaptive error control aimed at produc-
ing an approximation with a given accuracy using as few elements as
possible. This adaptive method is implemented in Femlab and we give
more details in Chapter 14 and in the advanced companion volume.

Problem 8.26. Following Problem 8.21, use the idea of equidistribution
to compute the mesh used in the example in Section 6.2 by solving for h1,
h2, . . . . This requires the use of Newton’s method or something similar,
since we are not computing the mesh by refining from a coarse mesh using
the procedure just described. If you can, compare your results to the mesh
generated by Femlab.

8.2.4. Supporting a sagging tent

We consider a circular horizontal elastic membrane, for example an elas-
tic tent roof, loaded by its own weight and supported by a rim on its
outer boundary of radius 1.01 and by a pole of radius ǫ = 0.01 in its
center. We choose the variables so that the height is zero at the level
of the supports. Since the tent is circular and symmetric through the
center pole, we can use polar coordinates to reduce the problem to one
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dimension. With x representing the distance to the center, we use u(x)
to denote the vertical deflection of the membrane from the zero height,
so that u(x) = 0 at the rim at x = 1.01 and at the pole at x = 0.01.
Assuming the deflection u(x) is small, it satisfies (8.2) with a(x) = x+ ǫ
and f(x) = x + ǫ. This model is analogous to the elastic string model
with the specific coefficient a(x) and the load f(x) entering from the use
of polar coordinates with x representing the radial coordinate. We use
the adaptive code Femlab1d, which implements the adaptive error con-
trol described above, choosing TOL=0.05 and plot the results in Fig. 8.4.
We see that the “valley” is steeper close to the pole. We plot the residual
error R(U), which is large near the pole, and the mesh size h(x), which
is small close to the pole.
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Figure 8.4: Finite element approximation U , residual error R, and
mesh size h for the model of a tent computed with adaptive
error control.

Problem 8.27. Solve this problem using Femlab1d.

Problem 8.28. (For tent manufacturers) Consider (8.2) with a(x) = xα,
where α is a positive real number. In this case, we have a(0) = 0 while
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a(x) > 0 for x > 0. The variational formulation (8.6) formally extends to
this case, but we have to be careful about the boundary conditions and we
now make an investigation into this problem: determine the values of α
so that the boundary value problem (8.2) is meaningful in the sense that
we can expect a unique solution to exist. In particular investigate the case
α = 1 corresponding to the above tent problem with ǫ = 0 and seek to
answer the following question: can a very thin pole help support a mem-
brane (or will the pole just penetrate the membrane and be of no use)?
Hint: compute the cG(1) finite element approximation with Femlab1d us-
ing different values of α to see what happens. (A non-adaptive code can
be used as long as you monitor the errors carefully using the a posteriori
error bound). From a theoretical point of view the basic question takes the
form: for what values of α is there a constant C such that

|v(0)| ≤ C

(∫

I

xα(v′)2 dx

) 1

2

= C‖v‖E

for all functions with v(1) = 0. This inequality is directly related to the
pertinent question if it is possible to impose the boundary condition u(0) =
0 in the boundary value problem (8.2), that is if the elastic energy is strong
enough to allow a “point load”. To prove the inequality, start from the
representation v(0) = −

∫
I
v′ dx and use Cauchy’s inequality in a suitable

way.

Problem 8.29. Justify the statement that the definition of V in (8.6)
is meaningful in the sense that if v and v′ belong to L2(0, 1) then the
boundary values v(0) and v(1) are well defined. Hint: look at the previous
problem.

8.3. Data and modeling errors

In practice, we often compute the finite element function using approx-
imations â(x) and f̂(x) of a(x) and f(x). For example, a and f might
be known only through physical measurements, or we might have to use
quadrature to evaluate integrals involving a and f , or we might sim-
ply be concerned with the effects of round-off error. This means that
we compute a modified finite element approximation Û ∈ Vh using the
orthogonality relation

∫ 1

0
âÛ ′v′dx =

∫ 1

0
f̂ dx for all v ∈ Vh. (8.22)

We now seek to estimate the effect on the energy norm of the error
coming from the perturbations in a and f . We refer to the solution error
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resulting from the perturbation in the coefficient a as the the modeling
error and that from the perturbation of the data f as the data error.

We seek an a posteriori error estimate of the total error ‖u − Û‖E
that includes both the Galerkin discretization error, and the modeling
and data errors. We start by obtaining a modified form of the error
representation (8.20), for e = u− Û ,

‖(u− Û)′‖2
a =

∫ 1

0
(au′e′ − aÛ ′e′) dx =

∫ 1

0
(fe− aÛ ′e′)dx

=

∫ 1

0
f̂(e− πhe) dx−

M+1∑

j=1

∫

Ij

âÛ ′(e− πhe)
′ dx

+

∫ 1

0
(f − f̂)e dx−

M+1∑

j=1

∫

Ij

(a− â)Û ′e′ dx = I + II − III,

where I represents the first two terms, II the third, and III the fourth
term. The first term I is estimated as above. For the new term III, we
have

III ≤ ‖(a− â)Û ′‖a−1‖e′‖a.
Similarly, integration by parts gives

II ≤ ‖F̂ − F‖a−1‖e′‖a,
where F ′ = f , F̂ ′ = f̂ and F (0) = F̂ (0) = 0. Altogether, we obtain:

Theorem 8.3. There is a constant Ci only depending on a, such that
the finite element approximation Û satisfies

‖u− Û‖E ≤ Ci‖hR̂(Û)‖a−1 + ‖F̂ − F‖a−1 + ‖(â− a)Û ′‖a−1 , (8.23)

where R̂(Û) = (âÛ ′)′ + f̂ on each sub-interval.

This estimate can be used to adaptively control the total error with
contributions from Galerkin discretization and perturbations in data and
modeling. It can also be used to analyze the error resulting from the
use of a quadrature formula to evaluate integrals that define U .

Problem 8.30. Use the a posteriori error estimate (8.23) to estimate the
effect of using the composite trapezoidal quadrature rule to approximate

the coefficients of the load vector bi =
∫ 1

0
fϕi dx.

Problem 8.31. Show that if the relative error in a(x) is less than or
equal to δ for x ∈ I, then ‖(â− a)Û ′‖a−1 ≤ δ‖Û ′‖a.
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8.4. Higher order finite element methods

The finite element method can be formulated with piecewise polynomials
of any degree. We illustrate this by describing the cG(2) method which
uses a discrete space Vh consisting of continuous piecewise quadratic
approximating function, on a partition Th of [0, 1] into sub-intervals as
for the cG(1) method. Using the idea of the Lagrange basis described in
Chapter 5, we can describe a quadratic polynomial on a given interval
uniquely by its values at three distinct points. On the sub-interval Ii of
the partition, we use the two endpoints, xi−1 and xi, and in addition,
we use the midpoint xi−1/2 = (xi+xi−1)/2 = xi−1 +hi/2. We illustrate
the Lagrange basis functions for Ii based on these points in Fig. 8.5. A

xi-1 xi-1/2 xi

i-1 i-1/2 i1

0

Figure 8.5: The Lagrange basis functions for P2(Ii).

quadratic polynomial p(x) on Ii can be written

p(x) = p(xi−1)
(x− xi−1/2)(x− xi)

−hi/2 · −hi
+ p(xi−1/2)

(x− xi−1)(x− xi)

hi/2 · −hi/2

+ p(xi)
(x− xi−1)(x− xi−1/2)

hi · hi/2
.

Just as in the case of piecewise linear approximations, we use the
continuity assumption to piece together the Lagrange basis functions on
each interval to form the basis functions for the finite element space Vh.
We find that

ϕi−1/2(x) =






4(xi − x)(x− xi−1)

h2
i

, x ∈ Ii,

0, otherwise,

i = 1, 2, ...,M + 1,
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and

ϕi(x) =






2(x− xi+1/2)(x− xi+1)

h2
i+1

, x ∈ Ii+1,

2(x− xi−1/2)(x− xi−1)

h2
i

, x ∈ Ii,

0, otherwise,

i = 1, 2, ...,M.

is the nodal basis for Vh. We illustrate the different possible shapes of
the basis functions in Fig. 8.6.

x

1

xi xi+1

xi+1/2

0
1

x
0

1

xi

xi-1 xi+1

xi-1/2 xi+1/2

1

Figure 8.6: Basis functions for the cG(2) method.

Problem 8.32. Construct the nodal basis functions for Vh and reproduce
the plot in Fig. 8.6.

This is a nodal basis since v ∈ Vh can be written uniquely as

v(x) =
M+1∑

i=1

v(xi−1/2)ϕi−1/2(x) +
M∑

i=1

v(xi)ϕi(x).

Problem 8.33. Prove this.

We obtain a system of equations Aξ = b for the 2M + 1 coefficients
of U in the expansion

U(x) = ξ 1
2
ϕ 1

2
(x) + ξ1ϕ1(x) + ...+ ξM+1 1

2
ϕM+ 1

2
(x),
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where the sum runs over the half-integers 1/2, 1, ...,M +1/2. By substi-
tuting the expansion into (8.6) and taking the test function v to be each
one of the basis functions ϕi in turn. The stiffness matrix has coefficients

aij =

∫ 1

0
ϕ′
iϕ

′
j dx, i, j = 1/2, 1, ...,M + 1/2.

When i = k + 1/2 for some integer 0 ≤ k ≤ M , then ϕ′
iϕ

′
j is zero

except possibly for j = k, k + 1/2, and k + 1. Likewise, when i = k for
some integer 1 ≤ k ≤ M , ϕ′

iϕ
′
j is zero except possibly for j = k − 1,

k − 1/2, k, k + 1/2, and k + 1. Therefore, A is banded with 5 non-zero
diagonals. Further, A is positive-definite and symmetric. Computing
the coefficients of the stiffness matrix is straightforward, though a little
tedious, so we give it as an exercise. The data vector b has coefficients
bi =

∫ 1
0 fϕi dx for i = 1/2, 1, ...,M + 1/2.

An advantage of the cG(2) method compared to cG(1) is that it
is higher order accurate, which means that the cG(2) approximation
is generally more accurate than the cG(1) approximation computed on
the same mesh. We expect this to be true because a piecewise quadratic
interpolant is more accurate than a piecewise linear interpolant.

Problem 8.34. Prove a version of Theorem 8.1 for the cG(2) method.

Problem 8.35. Write a program that computes the cG(2) finite element
approximation of the two-point boundary value problem (6.9) assuming
that the user supplies the data vector b. Make sure that the code is as
efficient as possible using the material from Chapter 7. Test the code on
the equation −u′′ = 6x which has solution u = x − x3. Compare with
Femlab1d.

Problem 8.36. We can numerically measure the order of convergence of
an approximation on a uniform mesh in the following way. If we assume
that the norm of the error eh corresponding to the mesh with meshsize h
is a function of h of the form ‖eh‖ = Chq for some constants C and q, then
by taking logarithms, we get log(‖eh‖) = log(C) + q log(h). We create a
test problem with a known solution and compute the error for a sequence
of 5 or 6 meshsizes. We then compute the best fit line (or least squares
line fit) through the pairs of data (log h, log(‖eh‖)). The slope of this line
is approximately the order of convergence q. Test this procedure on the
problem in Problem 8.35 using both the cG(1) and cG(2) approximations.
Compare the respective orders.
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8.5. The elastic beam

The techniques used to construct and analyze a finite element method
for the second order two-point boundary value problem (8.2) can also be
used to study higher order problems. For example, we consider a model
for a horizontal clamped beam made of an elastic material subject to a
vertical load of intensity f(x), see Fig. 8.7. The vertical deflection u(x)

u(x)

x

f(x)

Figure 8.7: A clamped beam under a vertical load f .

of the beam satisfies
{
D4u(x) = f(x) for 0 < x < 1,

u(0) = u′(0) = u(1) = u′(1) = 0,
(8.24)

where D = d
dx and f(x) is the intensity of the transversal load. The

boundary conditions correspond to the beam being clamped at its end
points, with both the deflection u and the rotation u′ equal to zero.
The equation D4u = f results from combining an equilibrium equation
of the form m′′ = f , where m(x) represents the bending moment, and
a constitutive equation of the form m = κu′′, where κ > 0 is bending
stiffness parameter, which we set equal to one for the sake of simplicity.

As the first step in the Galerkin discretization of (8.24), we give the
following variational formulation of the problem: find u ∈W such that

∫ 1

0
u′′v′′ dx =

∫ 1

0
fv dx for all v ∈W, (8.25)
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where

W =

{
v :

∫ 1

0

(
v2 + (v′)2 + (v′′)2

)
dx <∞,

v(0) = v′(0) = v(1) = v′(1) = 0

}
.

We note that W is different from the space V used for the second order
differential equation above.

Problem 8.37. Derive (8.25) from (8.24).

Problem 8.38. (a) Define a suitable finite element space Wh for (8.25)
consisting of piecewise cubics. Hint: prove first that a cubic polynomial
p on the interval [xi−1, xi] is uniquely determined by the values p(xi−1),
p′(xi−1), p(xi), and p′(xi). (b) Construct a nodal basis for P3(xi−1, xi)
for which the coefficients of a polynomial p are p(xi−1), p

′(xi−1), p(xi),
and p′(xi). (c) Explain why it is impossible in general to use piecewise
linears or quadratics to construct a suitable discrete space of continuously
diffentiable function for the discretization of (8.25).

Problem 8.39. Construct the global basis functions for Wh. What is the
dimension of Wh? What are the degrees of freedom of a function in Wh

with respect to this basis? Formulate a finite element method for (8.24)
based on Wh. Compute the corresponding stiffness matrix and load vector
assuming a uniform partition.

Problem 8.40. Prove a priori and a posteriori error estimates for the
finite element method for the beam problem.

Problem 8.41. Extend (8.24) to suitable combinations of boundary
conditions of the form: (a) u(0) = u′′(0) = 0 corresponding to a freely
supported beam at x = 0; (b) u′′(0) = D3u(0) = 0 corresponding to a free
beam end at x = 0; and (c) u′(0) = D3u(0) = 0 corresponding to the
rotation and transversal shear force being zero.

8.6. A comment on a priori and a posteriori analysis

In philosophy, a distinction is made between analytic and synthetic state-
ments. A synthetic statement is one that can be verified a posteriori by
experiment or observation, while the truth of an analytic statement is to
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be verified a priori by a purely logical analysis proceeding from defini-
tions and axioms. For example, “A bachelor is an unmarried man” is a
true analytic statement (which simply gives the definition of a bachelor).
Statements of mathematics tend to be analytic in nature; in principle,
to be verified a priori by logical analysis, although the work by Gödel
set limits to this approach. However, also mathematical statements may
sometimes be verified a posteriori by explicitly providing concrete ex-
amples. For example, the statement “There is a prime number larger
than 17” can be verified by first giving the number 19 and then proving
mathematically that this number is prime by trying the factors 2, 3, 5,
and 7 without success. This statement is different from the statement
“There are infinitely large prime numbers”, which cannot be checked
by this concrete case by case a posteriori method, but turns out to be
provable by an a priori argument.

Traditionally, the error analysis of numerical methods for differential
equations has been of a priori type with a dependence on the unknown
exact solution and appears to require a “complete understanding” of the
problem in order to be useful from a quantitative point of view. In the
posteriori error analysis the “understanding” is replaced by computing,
which opens the possibility of quantitative error control also for complex
problems. In the spirit of synthesis, we conclude that a priori and a
posteriori analysis serve different purposes and are both fundamental.

Kurtele, if I compare your lecture with the others, there is no
comparison. (Adele Gödel)



9

Scalar Initial Value Problems

So long as man marked his life only by the cycles of nature – the
changing seasons, the waxing or waning moon – he remained a
prisoner of nature. If he was to go his own way and fill his world
with human novelties, he would have to make his own measures of
time. (D. Boorstin)

This is a very fine theorem and one that is not at all obvious.
(Leibniz)

In this chapter, we consider the numerical solution of the initial value
problem for a linear scalar first order differential equation:

{
u̇(t) + a(t)u(t) = f(t) for 0 < t ≤ T,

u(0) = u0,
(9.1)

where a(t) is a bounded coefficient, the right-hand side f(t) is a pro-
duction or forcing term, and u0 is an initial value. In an initial value
problem, the independent variable t represents time and evolves in a
forward direction so that the solution u(t) at a time t > 0 is determined
by the initial value u(0) and the forcing f(s) for s ≤ t. In particular, the
value u(s) influences the value u(t) if s < t, but not vice versa. For the
numerical solution of initial value problems, it is natural to use “time-
stepping” methods in which the approximation is computed successively
on one time interval after another.

Initial value problems are often classified according to how a per-
turbation of the solution at one time affects the solution later on. A
property that is concerned with behavior, such as growth or decay, of

205
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perturbations of a solution as time passes is generally called a stability
property. If we think of numerical discretization as introducing a kind
of perturbation of the true solution, then the stability properties of an
initial value problem influence the error in a numerical solution of an
initial value problem. In general, we expect the error of a numerical
solution to grow with time, since the error at one time is affected by the
accumulation of errors made at earlier times.

There is a class of problems with particular stability properties to
which we shall pay special attention. This is the class of parabolic prob-
lems characterized by the condition

a(t) ≥ 0 for 0 ≤ t ≤ T. (9.2)

If a(t) ≥ α where α > 0 is constant, then perturbations of solutions
of (9.1) decay as time passes, something akin to a “fading memory”,
and perturbations from different time levels do not accumulate. Such
problems are also called dissipative. We shall see that even the weaker
condition a(t) ≥ 0 implies a kind of “non-accumulation” of perturba-
tions, which allows the problem (9.1) to be solved numerically over long
time. Parabolic problems arise in applications where diffusion plays a
dominant role such as heat conduction and viscous flow as we will see
in Chapters 15 and 20.

We first derive (9.1) as a model in population dynamics and give a
formula for the solution that we use to investigate its properties. In par-
ticular, we prove some stability estimates in the parabolic case which are
used later. We then introduce two Galerkin methods for (9.1) based on
piecewise polynomial approximation: a discontinuous Galerkin method
based on piecewise constant approximation, and a continuous Galerkin
method based on continuous piecewise linear approximation. We give a
detailed error analysis of these methods and present some computational
examples.

This chapter presents the foundation for the discretization in time
of any initial value problem. Studying the material in detail is a good
investment and preparation for the extension to systems of differential
equations in the next chapter and the extensions to linear partial dif-
ferential equations later in the book, and to nonlinear problems in the
advanced companion volume.
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9.1. A model in population dynamics

We now extend the simple model of the population of rabbits in West
Virginia discussed briefly in Chapter 6 to cover more complicated sit-
uations. That model was derived by assuming that the birth rate is
proportional to the population. We use a1(t) to denote the factor of
proportionality, which is now allowed to vary with time. Similarly, the
death rate is also roughly proportional to the population and we use
a2(t) to denote the factor of proportionality. To model emigration and
immigration, we use a function f(t) that gives the net rate at which
rabbits enter West Virginia at time t, i.e. the difference between the im-
migration and emigration rates. A principle of “conservation of rabbits”
implies that the density u(t) must satisfy

{
u̇(t) + a(t)u(t) = f(t) for 0 < t ≤ T,

u(0) = u0,
(9.3)

where a(t) = a2(t)−a1(t). The solution of (9.3) is given by the variation
of constants formula

u(t) = e−A(t)u0 +

∫ t

0
e−(A(t)−A(s))f(s) ds, (9.4)

where A(t) is the primitive function of a(t) satisfying A′(t) = a(t), and
A(0) = 0. We verify this formula by computing the time derivative of
u(t):

u̇(t) = −a(t)e−A(t)u0 + f(t) +

∫ t

0
(−a(t))e−(A(t)−A(s))f(s) ds

= −a(t)
(
e−A(t)u0 +

∫ t

0
e−(A(t)−A(s))f(s) ds

)
+ f(t).

Problem 9.1. Show using the solution formula (9.4) that the solution of
(9.3) with f(t) = 2 sin(t), a = 1, and u0 = −1 is u(t) = sin(t) − cos(t) =√

2 sin
(
t− π

4

)
.

Problem 9.2. Compute the solution when a = 0 and f(t) = 200 cos(t).

Problem 9.3. Compute the solutions corresponding to (a) a(t) = 4 and
(b) a(t) = −t with f(t) = t2 and u0 = 1.

Problem 9.4. Derive the solution formula (9.4). Hint: multiply the
differential equation (9.3) by the integrating factor eA(t) and rewrite the
equation in terms of w = eA(t)u(t) using the product rule.
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9.1.1. Stability features of the parabolic case

In general, the exponential factors in (9.4) can grow and shrink with
time but in the parabolic case with a(t) ≥ 0 for all t, that is if the
death rate is greater than or equal to the birth rate, then A(t) ≥ 0 and
A(t)−A(s) ≥ 0 for all t ≥ s. In this case, both u0 and f are multiplied
by quantities that are less than one if a(t) > 0 and less than or equal
to one if a(t) ≥ 0. We now state these qualitative observations in more
precise quantitative form. First, if a(t) ≥ α, where α > 0 is constant,
then the solution u of (9.4) satisfies for t > 0,

|u(t)| ≤ e−αt|u0| +
1

α

(
1 − e−αt

)
max
0≤s≤t

|f(s)|. (9.5)

Problem 9.5. Prove this estimate.

We see that the effect of the initial data u0 decays exponentially with
time and that the effect of the right-hand side f does not depend on the
length of the time interval t, only on the maximum value of f and on
α. Second, under the more general condition a(t) ≥ 0, the solution u of
(9.4) satisfies for t > 0 (prove this)

|u(t)| ≤ |u0| +
∫ t

0
|f(s)| ds. (9.6)

In this case the influence of u0 stays bounded in time, and the integral
of f expresses an accumulation in time. We conclude in particular that
the contributions from the right-hand side f can accumulate in time in
the second case, but not in the first.

Problem 9.6. Suppose u solves (9.3), where a(t) ≥ α > 0 for t > 0 and
f is continuous, non-decreasing and positive. Determine limt→∞ u(t).

Problem 9.7. Suppose u solves (9.3) with initial data u0 and v solves
(9.3) starting with initial data v0. If a ≥ 0, show that |u(t)−v(t)| ≤ |u0−v0|
for all t. If a ≥ α > 0, show that |u(t) − v(t)| → 0 as t→ ∞.

Problem 9.8. Let f(t) = 3t and plot the solutions corresponding to
a = .01 and a = −.01 over a long time interval. Interpret your results in
terms of the population of rabbits.
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Note that an inequality like (9.6) does not mean that a solution
necessarily must grow as t increases. For example, if u̇ = − sin(t), where
a ≡ 0, then u(t) = cos(t) and u is bounded for all t. In this case, the
cancellation that occurs in the integral of f does not occur in the integral
of |f |.

Problem 9.9. Assume that
∫

Ij

f(s) ds = 0 for j = 1, 2, ..., (9.7)

where Ij = (tj−1, tj), tj = jk with k a positive constant. Prove that if
a(t) ≥ 0, then the solution of (9.3) satisfies

|u(t)| ≤ e−A(t)|u0| + max
0≤s≤t

|kf(s)|. (9.8)

We note that in this estimate the effect of f is independent of t, and that
there is also a factor k multiplying f . We will meet this situation in the
error analysis of Galerkin methods with k representing a time step. Hint:
use (9.7) to see that

u(t) = e−A(t)u0 +

∫ t

0

(ϕ− πkϕ)f(s) ds,

where ϕ(s) = e−(A(t)−A(s)) and πk is the L2 projection into the piecewise
constants on the partition {tj}, together with the estimate

∫ t

0

|ϕ− πkϕ| ds ≤
∫ t

0

ka(s)e−(A(t)−A(s)) ds = k(1 − e−A(t)) ≤ k.

9.2. Galerkin finite element methods

We consider two Galerkin finite element methods for (9.3) based on
piecewise polynomial approximation. The first is defined using continu-
ous trial functions of degree 1 and discontinuous test functions of degree
0. We call this method the continuous Galerkin method of degree 1, or
the cG(1) method. The other method is defined using discontinuous trial
and test functions of degree 0, and we call this method the discontinu-
ous Galerkin method of degree 0, or the dG(0) method. These methods
generalize to piecewise polynomial approximation of general order q and
are then referred to as the cG(q) and dG(q) methods, respectively.
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The methods we consider are based on two variations of the Galerkin
method used in Chapter 6, which applied to (9.3) takes the form: find
U ∈ Pq(0, T ) satisfying U(0) = u0 such that

∫ T

0
(U̇ + aU)v dt =

∫ T

0
fv dt (9.9)

for all v in Pq(0, T ) with v(0) = 0. In other words, the residual R =
U̇ + aU − f is orthogonal to all polynomials in Pq(0, T ) with v(0) = 0.
We called this a global Galerkin method because the interval [0, T ] is
taken as a whole. The piecewise polynomial methods cG(q) and dG(q)
are constructed by applying variations of this global Galerkin method
successively on each sub-interval In = (tn−1, tn) of a partition Tk : 0 =
t0 < t1 < .. < tN = T of (0, T ).

Problem 9.10. Without using (9.4), prove that if a(t) ≥ 0 then a
continuously differentiable solution of (9.3) is unique. Hint: let u and w
be two functions that satisfy (9.3) such that w(0) = u(0) = u0 and find an
equation for the difference e = u − w. Multiply by v(t) and integrate to
obtain a variational equation for e corresponding to (9.9) and show that
the choice v = e leads to an equation that implies that e(t) = 0 for all t.

9.2.1. The continuous Galerkin method

The continuous Galerkin cG(q) method is based on the following varia-
tion of the global Galerkin method: find U in Pq(0, T ) with U(0) = u0

such that
∫ T

0
(U̇ + aU)v dt =

∫ T

0
fv dt for all v ∈ Pq−1(0, T ). (9.10)

We introduce this variation because it yields a more accurate approxi-
mation of degree q than the original global Galerkin method described
above. The difference between the two methods is the choice of test
space. Recall that forcing the Galerkin approximation to satisfy the
initial value exactly reduces the number of degrees of freedom by one.
Consequently, in the original global Galerkin method, we test using the
q polynomials tj, j = 1, ..., q. In the variation, we test against the q
polynomials tj with j = 0, 1, ..., q − 1. With q = 1, we thus choose v = 1
and we get:

U(T ) − U(0) +

∫ T

0
a

(
U(T )

t

T
+ U(0)

(T − t)

T

)
dt =

∫ T

0
f dt. (9.11)
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Since U(0) = u0, this gives an equation for U(T ) that in turn determines
the linear function U on [0, T ].

We now formulate the cG(q) method for (9.3) on the partition Tk
by applying (9.10) successively on each time interval (tn−1, tn] to obtain

an approximation in the space V
(q)
k of continuous piecewise polynomials

of degree q on Tk. We first obtain the formula on (0, t1] by using (9.11)
with T = t1 and U0 = U(t0) = u0. Continuing interval by interval,
assuming that U has already been computed on (tn−2, tn−1], and letting
Un−1 denote the value of U(tn−1), we compute the cG(q) approximation
U on the next interval (tn−1, tn] as the function U ∈ Pq(tn−1, tn) that
satisfies U(tn−1) = Un−1 and

∫ tn

tn−1

(U̇ + aU)v dt =

∫ tn

tn−1

fv dt for all v ∈ Pq−1(tn−1, tn).

In the case q = 1, the piecewise linear function U satisfies

Un − Un−1 +

∫ tn

tn−1

a(t)U(t) dt =

∫ tn

tn−1

f(t) dt for n = 1, ..., N, (9.12)

where U(t) is determined on (tn−1, tn) by its nodal values Un−1 and Un.
For example, the cG(1) approximation for u̇+ cos(t)u = t3 satisfies

(
1 + sin(tn) +

cos(tn) − cos(tn−1)

kn

)
Un

=

(
1 + sin(tn−1) +

cos(tn) − cos(tn−1)

kn

)
Un−1 + (t4n − t4n−1)/4.

Given Un−1 from the previous interval, (9.12) determines Un uniquely
for any kn provided a(t) ≥ 0, and for any sufficiently small time step
kn provided that

∫
In

|a| dt < 1 for general a. Under these conditions on
the step sizes, we can thus compute the nodal values Un successively for
n = 1, 2, ...

Equivalently, we can write the equation for the cG(q) approximation

U in global form as: find U ∈ V
(q)
k such that

∫ tN

0
(U̇ + aU)v dt =

∫ tN

0
fv dt for all v ∈W

(q−1)
k , (9.13)

where W
(q−1)
k is the space of discontinuous piecewise polynomials of

degree q − 1 on Tk and U0 = u0.
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Problem 9.11. Show that if a is constant, then (9.12) reduces to

Un − Un−1 +
Un−1 + Un

2
akn =

∫

In

f dt.

Problem 9.12. Compute the cG(1) approximations for the differential
equations specified in Problem 9.3. In each case, determine the condition
on the step size that guarantees that U exists.

Problem 9.13. Formulate a continuous Galerkin method using piecewise
polynomials based on the original global Galerkin method.

Problem 9.14. Prove that (9.13) and (9.12) determine the same function.
Hint: choose successively for n = 1, ..., N , the test function v to be the basis

function for W
(0)
k that is equal to one on In and zero elsewhere.

9.2.2. The discontinuous Galerkin method

The discontinuous Galerkin dG(q) method is based on the following
variation of the global Galerkin method: find U ∈ Pq(0, T ) such that
∫ T

0
(U̇ + aU)v dt+ (U(0) − u(0))v(0) =

∫ T

0
fv dt for all v ∈ Pq(0, T ).

(9.14)
In this method the trial and test spaces are the same, which turns out
to be an advantage in the error analysis and which also gives improved
stability properties for parabolic problems in comparison to the con-
tinuous Galerkin method. To obtain these advantages, we give up the
requirement that U satisfy the initial condition exactly, since otherwise
the coefficients of U would be over-determined. Instead, the initial con-
dition is imposed in a variational sense through the presence of the term
(U(0) − u(0))v(0). The equation (9.14) expresses the Galerkin orthogo-
nality of the approximation U in the sense that the sum of the residual
U̇ + aU − f inside the interval (0, T ) and the “residual” U(0) − u(0) at
the initial time is “orthogonal” to all discrete test functions.

Actually, we can generalize (9.14) to: find U ∈ Pq(0, 1) such that
∫ T

0
(U̇ +aU)v dt+α(U(0)−u(0))v(0) =

∫ T

0
fv dt for all v ∈ Pq(0, T ),

where α is a coefficient that weights the relative importance of the
residual error U(0) − u(0) at the initial time against the residual er-
ror U̇ + aU − f in solving the differential equation. The method (9.14)
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corresponds to α = 1 which turns out to give the best accuracy and
stability.

The dG(q) method is applied using the method (9.14) successively in
the intervals In = (tn−1, tn) of the partition Tk. We therefore compute

the dG(q) solution U in the space W
(q)
k of discontinuous piecewise poly-

nomials of degree q on Tk. To account for discontinuities of the functions

in W
(q)
k at the time nodes tn, we introduce the notation

v+
n = lim

s→0+
v(tn + s), v−n = lim

s→0+
v(tn − s), and [vn] = v+

n − v−n .

That is, v+
n is the limit “from above”, v−n is the limit “from below”, and

[vn] = v+
n − v−n is the “jump” in v(t) at time tn. We illustrate this in

Fig. 9.1.

tn-1 tn

v-
n

v+
n

tn+1

[vn]

kn

v

Figure 9.1: The notation for dG(0).

We formulate the dG(q) method as follows: for n = 1, ..., N , find
U ∈ Pq(tn−1, tn) such that

∫ tn

tn−1

(U̇ + aU)v dt+ U+
n−1v

+
n−1 =

∫ tn

tn−1

fv dt+ U−
n−1v

+
n−1

for all v ∈ Pq(tn−1, tn). (9.15)

In the piecewise constant case q = 0, we choose v = 1 to get

∫ tn

tn−1

aU dt+ U+
n−1 =

∫ tn

tn−1

f dt+ U−
n−1. (9.16)

Since v ∈W
(0)
k is constant on each sub-interval, it is natural to denote v’s

value on the interval In by vn so that vn = v−n = v+
n−1. This notation will
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be used repeatedly below and should be noticed. Using this notation,
the dG(0) method (9.16) takes the form

∫ tn

tn−1

aUn dt + Un =

∫ tn

tn−1

f dt+ Un−1, (9.17)

where we set U0 = u0. For example, the dG(0) approximation for u̇ +
cos(t)u = t3, satisfies

Un + (sin(tn) − sin(tn−1))Un = Un−1 + (t4n − t4n−1)/4.

As above, (9.17) determines Un uniquely for any kn provided a(t) ≥ 0,
and for any time step kn small enough that

∫
In

|a| dt < 1 for general a.

Equivalently, we can write (9.15) in global form as: find U ∈ W
(q)
k

such that

N∑

n=1

∫ tn

tn−1

(U̇ + aU)v dt+
N∑

n=1

[Un−1]v
+
n−1 =

∫ tN

0
fv dt for all v ∈W

(q)
k ,

(9.18)
where, in [U0] = U+

0 − U−
0 , U−

0 = u0.

Problem 9.15. Formulate the dG(1) method for the differential equations
specified in Problem 9.3.

Problem 9.16. Verify that (9.15) and (9.18) are equivalent.

Problem 9.17. Construct a Galerkin finite element method for U in W
(0)
k

using testfunctions in V
(1)
k , and compute explicit equations for the nodal

values of U in the case a is constant.

9.2.3. Comparing the accuracy and stability of the cG(1) and
dG(0) methods

The error of an approximate solution at the final time, or global error,
is determined by the accuracy and stability properties of the method.
Accuracy is related to the size of the perturbation introduced by the
method of discretization at each time step and stability is related to
the growth, decay, and accumulation of perturbations over many time
steps. Accuracy and stability properties are determined both by the
corresponding properties of the continuous differential equation and the
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choice of discretization method. For example, parabolic problems have
special stability properties that allow long time approximation of solu-
tions by some choices of discretization methods (for example, dG(0)).
In this section, we make a preliminary comparison of the stability and
accuracy properties of the dG(0) and cG(1) finite element methods for
(9.3).

In the first comparison, we demonstrate that the error of the cG(1)
approximation is smaller than that of the dG(0) approximation for a
given a and f over a fixed interval granted that the time steps are suf-
ficiently small. In particular, the cG(1) method converges more rapidly
than the dG(0) method as the mesh is refined to zero. If the time steps
kn = k are constant, the comparison can be made assuming that the
error at the final time T is proportional to kp, that is | error | ≈ Ckp

with the constant of proportionality C depending on the exact solution
of the differential equation, the discretization method, and the final time
T . p is called the order of convergence. We prove error estimates of this
form below. To determine p experimentally, we remark that by taking
logarithms:

log
(
|error|

)
≈ logC + p log(k),

we can determine p as the slope of a line that passes through data
points (log(k), log(|error|)). We construct a problem with a known so-
lution and then compute the numerical solution to time T using a set
of different time steps k. We compute a best fit line through the points
(log(k), log(|error|)) using least squares and finally compute the slope of
the line, which should approximate p.

We illustrate this technique on the problem u̇−.1u = − sin(t), u(0) =
1 with solution u(t) = e.1t/101 + 100 cos(t)/101 + 10 sin(t)/101. We
compute to time T = 1 using the dG(0) and cG(1) methods with time
steps .25, .125, .0625, ..., .00390625. We plot the logarithms of the errors
versus the logarithms of the corresponding steps in Fig. 9.2. The slopes
of the least squares lines are 1.02 for the dG(0) method and 2.00 for
cG(1).

Problem 9.18. (a) Repeat this experiment using the equation u̇ + u =
e−t, u(0) = 0 with solution u = te−t. (b) Do the same for u̇ − u =
−4(1 − t)1/3et/3, u(0) = 1 with solution u(t) = (1 − t)4/3et.

In the second comparison, we show that the stability properties of
the dG(0) method may mean that it gives better results for parabolic
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Figure 9.2: Errors at time T = 1 for the dG(0) and cG(1) method and
least square fitted lines.

problems than the cG(1) method. To explain this, we write out the
formulas for the nodal values of the dG(0) and the cG(1) approximations,
denoted by U and Ũ respectively. In the case that a > 0 is constant and
f ≡ 0 and the time step k is constant, we get

Un =

(
1

1 + ak

)n
u0 and Ũn =

(
1 − ak/2

1 + ak/2

)n
u0.

Problem 9.19. Verify these formulas.

We fix tn = nk and examine the behavior of the error as the size of a
varies. In the figure on the left in Fig. 9.3, we plot the errors of U and
Ũ over the time interval [0, 5] with the moderate value a = 1 and we see
that the cG(1) solution Ũ is more accurate in this case. In the figure on
the right, we plot the errors at time t = 2 computed using k = .02 as
a increases in value. We see that cG(1) is more accurate for moderate
values of a but gets worse as a increases. In fact, Ũ → ±u0 as a → ∞,
while both u and U tend to zero. We conclude that the dG(0) method
is more robust than the cG(1) method for large a due to its stability
properties.

Problem 9.20. Compare dG(1) with dG(0) and cG(1) on the same two
test problems using these techniques.
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Figure 9.3: The plot on the left shows the log of the errors of the dG(0)
and cG(1) methods versus time for a = 1 using a fixed step
k = .01. The plot on the right shows the log of the errors
at t = 2 versus a using the fixed step k = .02.

Problem 9.21. Use these techniques to compare the accuracies of the
methods in Problems 9.13 and 9.17 to the dG(0) and cG(1) methods on
the same test problems.

9.3. A posteriori error analysis and adaptive error control

“Don’t gamble! Take all your savings and buy some good stocks,
and hold it till it goes up. Then sell it.”
“If it don’t go up, don’t buy it.” (W. Rogers)

In this section, we prove a posteriori error estimates for dG(0) and cG(1)
and develop corresponding adaptive algorithms. The a posteriori error
estimate bounds the error in terms of the residual of the computed
solution at earlier times and a quantity called the stability factor that
measures the accumulation of errors. Recall that we use such estimates
for error estimation and adaptive error control. In the next section, we
prove an a priori estimate that shows that the methods converge.

9.3.1. An a posteriori error estimate for the cG(1) method

We begin by deriving an a posteriori error estimate for the cG(1) method.
The analysis is based on representing the error in terms of the solution
of a continuous dual problem related to (9.3), which is used to determine
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the effects of the accumulation of errors, and in terms of the residual
of the computed solution, which measures the step by step production
of error. Specifically, using the dual problem, we can get information
about the final value of a solution using the fact that the solution solves
the differential equation over the time interval. To see this, recall that
we can rewrite the differential equation u̇+ au = f for all 0 < t < T in
variational form as

∫ T

0

(
u̇+ au

)
v dt =

∫ T

0
f v dt,

for all test functions v. Integration by parts gives the equivalent equa-
tion,

u(T )v(T ) − u(0)v(0) +

∫ T

0
u(t)

(
−v̇ + av

)
dt =

∫ T

0
f v dt.

If we now choose v to solve −v̇ + av = 0 in (0, T ), which is the dual
problem, then this relation simplifies to

u(T )v(T ) = u(0)v(0) +

∫ T

0
f v dt.

In other words, by using the fact that u solves the differential equation
u̇ + au = f on (0, T ) and using the solution v of a dual problem, we
can get information about the final value u(T ) in terms of the initial
value u(0) and the right hand side f . This type of representation un-
derlies the error analysis for (9.3) which we shall now present, and also
the corresponding analysis for more general problems developed later in
the book. We will provide further motivation for the dual problem in
Chapter 14.

The dual problem for (9.1) reads: find ϕ(t) such that
{
−ϕ̇+ aϕ = 0 for tN > t ≥ 0,

ϕ(tN ) = eN ,
(9.19)

where eN = uN − UN is the error at time tN that we are trying to
estimate. Note that (9.19) runs “backwards” in time starting at time
tN and that the time derivative term has a minus sign. Starting from
the identity

e2N = e2N +

∫ tN

0
e (−ϕ̇+ aϕ) dt,
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where e = u − U , we integrate by parts and use the fact that e(0) = 0
to get

e2N =

∫ tN

0
(ė+ ae)ϕdt.

Since u solves the differential equation (9.3), this simplifies to give an
equation for the error

e2N =

∫ tN

0
(f − aU − U̇)ϕdt = −

∫ tN

0
r(U)ϕdt, (9.20)

in terms of the residual error r(U) = U̇ +aU − f and the solution of the
dual problem ϕ.

Problem 9.22. Supply the details for this discussion. Give an alternative
motivation for the equation for the error eN , by first showing that the error
e(t) satisfies

ė+ ae = −r(U) in (0, tN ), e(0) = 0,

and then use (9.4) to see that

eN = −
∫ tN

0

e−(A(tN)−A(s))r(U) ds = −e−1
N

∫ tN

0

ϕr(U) ds.

Next, we use the Galerkin orthogonality (9.13) expressing that

∫ tN

0
r(U)v dt for v ∈W

(0)
k ,

choosing v = πkϕ to be the L2 projection of ϕ into the space of piecewise

constants W
(0)
k , that is πkϕ = k−1

n

∫
In
ϕds on In, to obtain from (9.20)

the error representation formula:

e2N = −
∫ tN

0
r(U)(ϕ − πkϕ) dt. (9.21)

We emphasize that this is an exact representation of the error from
which we can obtain a good estimate of the error. Recall that the error
of the L2 projection πk is bounded by

∫

In

|ϕ− πkϕ| dt ≤ kn

∫

In

|ϕ̇| dt.
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Therefore, using the notation |v|J = maxt∈J |v(t)|, we have

e2N ≤
N∑

n=1

|r(U)|In
∫

In

|ϕ− πkϕ|dt ≤
N∑

n=1

|r(U)|In kn
∫

In

|ϕ̇|dt. (9.22)

There are several ways to proceed from this point. Here, we bring out
the max of kn|r(U)|In over n to obtain

e2N ≤ max
1≤n≤N

(kn|r(U)|In)

∫ tN

0
|ϕ̇| dt ≤ S(tN )|eN ||kr(U)|[0,tN ], (9.23)

where the stability factor S(tN ) is defined by

S(tN ) =

∫ tN
0 |ϕ̇| dt
|eN |

,

and the step function k(t) is the piecewise constant function with the
value kn on In. The stability factor measures the effects of the accumula-
tion of error in the approximation and to give the analysis a quantitative
meaning, we have to give a quantitative bound of this factor. The fol-
lowing lemma gives an estimate for S(tN ) both in the general case and
the parabolic case when a(t) ≥ 0 for all t.

Lemma 9.1. If |a(t)| ≤ A for 0 ≤ t ≤ tN then the solution ϕ of (9.19)
satisfies

|ϕ(t)| ≤ exp(AtN )|eN | for all 0 ≤ t ≤ tN , (9.24)

and
S(tN ) ≤ exp(AtN ). (9.25)

If a(t) ≥ 0 for all t, then ϕ satisfies:

|ϕ(t)| ≤ |eN | for all 0 ≤ t ≤ tN . (9.26)

and
S(tN ) ≤ 1. (9.27)

Proof. With the change of variable s = tN − t the dual problem takes
the form dψ/ds+ a(tN − s)ψ(s) = 0 with initial value ψ(0) = eN , where
ψ(s) = ϕ(tN − s). This problem has the same form as the original
problem and therefore we can write an exact formula for the solution of
the dual problem,

ϕ(t) = eA(t)−A(tN )eN . (9.28)
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Problem 9.23. Carry out the indicated change of variables and derive
(9.28).

Considering the parabolic case a(t) ≥ 0, (9.26) follows from (9.28) using
the fact that A(t) −A(tN ) ≤ 0 for t ≤ tN . Further, since a ≥ 0,

∫ tN

0
|ϕ̇| dt = |eN |

∫ tN

0
a(t) exp

(
A(t) −A(tN )

)
dt

= |eN |
(
1 − exp(A(0) −A(tN ))

)
≤ |eN |.

Problem 9.24. Prove (9.24) and (9.25).

By inserting the stability estimates (9.25) or (9.27), as the case may
be, into (9.22), we obtain an a posteriori error estimate for the cG(1)
method:

Theorem 9.2. For N = 1, 2, ..., the cG(1) finite element solution U
satisfies

|u(tN ) − UN | ≤ S(tN )|kr(U)|[0,tN ], (9.29)

where k = kn for tn−1 < t ≤ tn and r(U) = U̇+aU−f . If |a(t)| ≤ A for
0 ≤ t ≤ tN then S(tN ) ≤ exp(AtN ). If a(t) ≥ 0 for all t then S(tN ) ≤ 1.

Based on the numerical experiments performed above, we expect to
get a second order estimate for the cG(1) approximation. In fact, (9.29)
is second order because |r(U)| ≤ Ck is f is smooth. To see the second
order accuracy, we derive a slightly different bound starting from (9.21).
Writing out r(U), we note that since g − πkg is orthogonal to constant
functions for any function g and U̇ is constant on In,

e2N = −
∫ tN

0
(aU − f) (ϕ− πkϕ) dt

= −
∫ tN

0

(
(aU − f) − πk(aU − f)

)
(ϕ− πkϕ) dt. (9.30)

Estimating as above, we obtain

|eN | ≤ S(tN )

∣∣∣∣k
2 d

dt

(
aU − f

)∣∣∣∣
[0,tN ]

, (9.31)



222 9. Scalar Initial Value Problems

and the second order accuracy follows if d
dt(aU − f) is bounded. When

it actually comes to estimating the error, we normally use (9.29) instead
of (9.31), because (9.31) involves computing the time derivative of the
residual.

Problem 9.25. Derive (9.31).

Problem 9.26. Because of round-off error, if nothing else, we usually
cannot specify that U0 − u0 = 0 exactly. State and prove a modified a
posteriori error bound for the cG(1) method assuming that e0 = δ.

9.3.2. An a posteriori error estimate for the dG(0) method

We now derive an a posteriori error bound for the dG(0) approximation.
The proof has the same structure as the proof for the cG(1) method,
but the residual error has a different form and in particular includes
“jump terms” arising from the discontinuities at the time nodes in the
approximation’s values.

Once more starting with the dual problem and the identity

e2N = e2N +
N∑

n=1

∫ tn

tn−1

e (−ϕ̇+ aϕ) dt,

we integrate by parts over each sub-interval In to obtain

e2N =

N∑

n=1

∫ tn

tn−1

(ė+ ae)ϕdt +

N−1∑

n=1

[en]ϕ
+
n + (u0 − U+

0 )ϕ+
0 . (9.32)

Problem 9.27. If v and w are piecewise differentiable functions on the
partition Tk, prove that

N∑

n=1

∫ tn

tn−1

v̇w dt+

N−1∑

n=1

[vn]w
+
n + v+

0 w
+
0

= −
N∑

n=1

∫ tn

tn−1

vẇ dt−
N−1∑

n=1

v−n [wn] + v−Nw
−
N .

Write down the special version of this formula when w is a smooth function
and apply this to prove (9.32).
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Using the facts that u solves the differential equation (9.3), U̇ ≡ 0 on
In, and U−

0 = u0, (9.32) simplifies to

e2N =
N∑

n=1

(∫ tn

tn−1

(f − aU)ϕdt − [Un−1]ϕ
+
n−1

)
.

Problem 9.28. Verify this equation.

Once again we use the Galerkin orthogonality (9.18) by choosing
v = πkϕ to be the L2 projection into the space of piecewise constants

W
(0)
k and obtain the error representation formula:

e2N =

N∑

n=1

(∫ tn

tn−1

(f − aU)(ϕ− πkϕ) dt − [Un−1](ϕ − πkϕ)+n−1

)
. (9.33)

We may now finish as above using the stability estimates (9.25) or (9.27),
and obtain

Theorem 9.3. For N = 1, 2, ..., the dG(0) finite element solution U
satisfies

|u(tN ) − UN | ≤ S(tN )|kR(U)|[0,tN ], (9.34)

where

R(U) =
|Un − Un−1|

kn
+ |f − aU | for tn−1 < t ≤ tn.

If |a(t)| ≤ A for 0 ≤ t ≤ tN then S(tN ) ≤ exp(AtN ) and if a(t) ≥ 0 for
all t then S(tN ) ≤ 1.

Problem 9.29. Supply the details to finish the proof of this theorem.

Based on the experiments above, we expect to get a first order esti-
mate on the error of the dG(0) approximation, which means that R(U)
stays bounded as the mesh size tends to zero if f is bounded. In fact,
this follows from the a priori error estimate that we prove in the next
section. It is interesting that the residual errors R(U) for the dG(0)
method and r(U) for the cG(1) method have a very similar appearance,
but r(U) is much smaller in general. Note that the trick (9.30) we used
for the cG(1) method, indicating that |r(U)| = O(k), will not work for
the dG(0) method unless the discrete solution is continuous (i.e. con-
stant!), because the part of the residual error arising from the jump
terms does not cancel in the same way as the part inside the integral,
and we cannot conclude (9.31) for the dG(0) method.
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9.3.3. Order and estimating the error

We have seen that the a posteriori analysis gives a second order estimate
(9.29) for the error of the cG(1) method and a first order estimate (9.34)
for the dG(0) method. Moreover, the triangle inequality means that for
the cG(1) approximation U , |r(U)| ≤ |R(U)|, and therefore (9.29) can
also be interpreted as a first order estimate like (9.34). When using
the cG(1) method, we can maximize the size of the time steps, and
reduce the computational work, by using whichever order bound gives
the smaller bound on the error. A situation in which the first order
bound can be smaller than the second order occurs for example when the
derivative of the residual is singular, but the residual itself is continuous.
In some situations when the cG(1) method is converging only at a first
order rate, it is more efficient to switch to the dG(0) method since that
also gives first order convergence, but at a lower cost per step. An
efficient general code for solving time dependent differential equations
uses a synthesis of methods and orders and as a part of the error control
makes decisions not only on the step sizes, but also on the order and
choice of method.

9.3.4. Adaptive error control

To guarantee that the dG(0) approximation U satisfies

|u(tN ) − UN | ≤ TOL,

where tN is a given time, we seek to determine the time steps kn so that

S(tN )|kR(U)|In = TOL for n = 1, 2, ..., N. (9.35)

The approach is the same for the cG(1) method after replacing R(U)
by r(U). Using the language introduced for adaptive integration, we
recognize (9.35) as the stopping criterion and we try to satisfy it by
using a “predictor-corrector” strategy. We first compute Un from Un−1

using a predicted step kn, then we compute |kR(U)|In and check to see if
(9.35) is satisfied for this choice of kn. If so then we accept the solution
Un and continue to the next time step, and if not then we recompute
with a smaller step kn. We give more details of this procedure in the
advanced companion volume.

We also have to estimate the stability factor S(tN ). Of course, we
could use the exponential bound exp(AtN ) on S(tN ) in Lemma 9.1, but
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this is usually too crude for most problems. This is particularly true
of course in the parabolic case. In the case of a linear scalar problem,
we have a precise formula for the solution of the dual problem that we
can evaluate. In more general problems, i.e. nonlinear or set in higher
dimensions, we have to solve the dual problem numerically and compute
an approximation to S(tN ) in an auxiliary computation. This raises
some interesting questions that we address in the advanced companion
book. In the present case however, these don’t come up because we have
the exact solution formula.

We illustrate the adaptive error control on three examples. All of
these computations were performed using the Cards code in which the
the stability factor is computed in an auxiliary computation.

For the first example, we return to our rabbits considering a situ-
ation in which the death rate dominates the birth rate and there is a
periodic pattern in emigration and immigration. We model this with
the parabolic problem u̇+ u = sin(t) with u(0) = 1, which has solution
u(t) = 1.5e−t + .5(sin(t) − cos(t)). We compute with dG(0), control-
ling the error by means of the a posteriori error bound using an error
tolerance of .001. The solution and the approximation along with the
stability factor are shown in Fig. 9.4. Note that S(t) tends to 1 as t in-
creases, indicating that the numerical error does not grow significantly
with time, and accurate computations can be made over arbitrarily long
time intervals.
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Figure 9.4: Results for the dG(0) approximation of u̇+u = sin(t) with
u(0) = 1 computed with an error smaller than .001. The
plot on the left shows the approximation and the solution.
The plot on the right shows the stability factor S(t).



226 9. Scalar Initial Value Problems

Problem 9.30. Compute S(t) and the a posteriori error bound explicitly
for this example and compute the steps that will be generated by the error
control. Discuss what happens to the step sizes as time passes.

Next we consider a situation with no immigration or emigration in
which the birth rate dominates the death rate. This situation occurred
in the rabbit population of Australia, causing terrible troubles until a
plague of myxomatosis killed off many rabbits. We model this using the
equation u̇ − u = 0 with u(0) = 1, which has solution u(t) = et. We
compute with dG(0) keeping the error below .025. Since the problem
is not dissipative, we expect to see the error grow. We plot the error
U(t)−u(t) in Fig. 9.5 and the exponential growth rate is clearly visible.
The stability factor is also plotted, and we note that it reflects the error
growth precisely.
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Figure 9.5: Results for the dG(0) approximation of u̇ − u = 0 with
u(0) = 1 computed with an error smaller than .025. The
plot on the left shows the error. The plot on the right
shows the stability factor S(t).

Problem 9.31. Repeat Problem 9.30 for this example. Then compare
the sequence of step sizes produced by the adaptive error control for the
two examples.

Finally, we consider a situation with no emigration or immigration in
which the death rate dominates the birth rate in an oscillatory fashion.
We model this with the problem

{
u̇+ (.25 + 2π sin(2πt))u = 0, t > 0,

u(0) = 1,
(9.36)
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with solution
u(t) = exp(−.25t+ cos(2πt) − 1).

The population oscillates, increasing and decreasing as time passes.
However, the size of the oscillations dampens as time passes. In Fig. 9.6,
we plot the solution together with the dG(0) approximation computed
with error below .12. We also plot the time steps used for the compu-
tation. We see that the steps are adjusted for each oscillation and in
addition that there is an overall trend to increasing the steps as the size
of the solution decreases.
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Figure 9.6: Results for the dG(0) approximation of (9.36) computed
with an error smaller than .12. The plot on the left shows
the solution and approximation. The plot on the right
shows the time steps.

In addition, the solution has changing stability characteristics. In
Fig. 9.7, we plot the stability factor versus time, and this clearly reflects
the fact that the numerical error decreases and increases in an oscillatory
fashion. If a crude “exponential” bound on the stability factor like the
one in the a priori estimate is used instead of a computational estimate,
then the error is greatly overestimated. To demonstrate the efficiency
of the a posteriori estimate for use in error control, we also plot the
ratio of the true error to the computed bound versus time in Fig. 9.7.
The ratio quickly settles down to a constant, implying that the bound
is predicting the behavior of the error in spite of the fact that the error
oscillates a good deal.

Problem 9.32. Compute S(t) explicitly for this example.
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Figure 9.7: Results for the dG(0) approximation of (9.36) computed
with an error smaller than .12. The plot on the left shows
the stability factor S(t). The plot on the right shows the
ratio of the error to the a posteriori error bound.

9.4. A priori error analysis

In this section we give an a priori error analysis of dG(0). We start with
the general case and then consider the parabolic case with a(t) ≥ 0. The
a priori analysis of cG(1) in the general case is similar with k2ü replacing
ku̇.

9.4.1. The general case

We begin by deriving an a priori error estimate in the simplified case
when a(t) = a is constant so that the dG(0) approximation is given by

Un − Un−1 + knaUn =

∫

In

f dt for n = 1, 2, ...,

where U0 = u0. By integrating the equation for the exact solution u, we
see that the exact values un = u(tn) satisfy the following variant of this
relation

un − un−1 + knaun =

∫

In

f dt+ knaun −
∫

In

au dt for n = 1, 2, ..,

so that subtracting, we get the equation en + knaen = en−1 + ρn for the
error en = un − Un, that is

en = (1 + kna)
−1(en−1 + ρn), (9.37)
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where

|ρn| =

∣∣∣∣knaun −
∫

In

au dt

∣∣∣∣ ≤
1

2
|a|k2

n|u̇|In . (9.38)

Problem 9.33. Prove (9.38) using the results in Chapter 5.

We see that the error en at time tn is determined by the error en−1 at
the previous time tn−1 and the contribution ρn made over the interval
In. The task is to “unwind” the recursive relationship (9.37). Assuming
that kn|a| ≤ 1/2, n ≥ 1, and using the inequality (prove it!) 1/(1 − x) ≤
exp(2x) for 0 ≤ x ≤ 1/2, it follows that

|eN | ≤ (1 − kN |a|)−1|eN−1| + (1 − kN |a|)−1|ρN |
≤ e2|a|kN |eN−1| + e2|a|kN |ρN |

Iterating this estimate and noting that e0 = 0, we find that

|eN | ≤ e2|a|kN−1e2|a|kN |eN−2| + e2|a|kN−1e2|a|kN |ρN−1| + e2|a|kN |ρN |
...

≤
N∑

n=1

e2|a|
PN

m=n km |ρn|.

Problem 9.34. Verify this estimate.

Noting that
∑N

m=n km = tN − tn−1 and using (9.38), we conclude that

|eN | ≤
1

2

N∑

n=1

e2|a|(tN−tn−1) |a|kn max
1≤n≤N

kn|u̇|In . (9.39)

To simplify the sum on the right, we set τn = tN − tn−1, 1 ≤ n ≤ N + 1,
and note that under the assumption on kn,

2|a|τn = 2|a|τn+1 + 2|a|kn ≤ 2|a|τn+1 + 1 for 1 ≤ n ≤ N,

while
2|a|τn+1 ≤ 2|a|τ for τn+1 ≤ τ ≤ τn.

Hence,

e2|a|τnkn =

∫ τn

τn+1

e2|a|τn dτ ≤ e1
∫ τn

τn+1

e2|a|τ dτ,
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and thus,

N∑

n=1

e2|a|τn |a|kn ≤ e

∫ τ1

τN+1

|a|e2|a|τ dτ = e

∫ tN

0
|a|e2|a|τ dt.

Evaluating the integral and placing the result in (9.39), we obtain

Theorem 9.4. Assuming that kn|a| ≤ 1/2, n ≥ 1, the error of the
dG(0) approximation U satisfies

|u(tN ) − UN | ≤
e

4

(
e2|a|tN − 1

)
max

1≤n≤N
kn|u̇|In . (9.40)

Problem 9.35. Provide all the details for this proof.

Problem 9.36. Arguing from (9.39) directly, prove the error bound

|eN | ≤ |a|tNe2|a|tN max
1≤n≤N

kn|u̇|In
.

Compare this to the result in the theorem and explain if or when it is
“worse”.

Problem 9.37. Write out the a priori error estimate for the equations
specified in Problem 9.3.

This result proves that the error of UN approaches zero at a first
order rate as the time steps tend to zero as long as u̇ is bounded on
[0, T ]. However, to force the error to be small using this bound, we
have to choose the steps small enough to overcome the size of e2|a|tN as
well as |u̇|, which could be a severe restriction if a, tN , or |u̇| is large.
The exponential factor, which we call the stability factor, is precisely
a bound on the accumulation of errors. Thus, (9.40) is a priori in two
ways: it measures the errors made in each interval using the size of u̇
and it measures the accumulation of error by taking the worst case when
all the errors are of the same sign.

This proof does not make any use of the special properties of parabolic
problems. Since the goal is to obtain accurate error estimates, this is
not satisfactory. We present a more sophisticated analysis below.

Problem 9.38. (Hard!) Combine the techniques used in the proof of the
Fundamental Theorem of Calculus given in Chapter 3 and the proof above
to show that the dG(0) approximation forms a Cauchy sequence. Conclude
that the dG(0) approximation converges to the solution of (9.3).

Problem 9.39. Use the a priori error bound to show that R(U) = O(1)
as the mesh size is refined to zero.
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9.4.2. The parabolic case

We conclude this section with a more sophisticated a priori error esti-
mate for dG(0) for (9.3) that applies to the general case and also gives
a sharp estimate in the parabolic case a(t) ≥ 0. The weaker stability
properties of cG(1) do not allow a corresponding estimate for cG(1).

Theorem 9.5. If |a(t)| ≤ A for all t,then the dG(0) approximation U
satisfies for N = 1, 2, ..,

|u(tN ) − UN | ≤ 3e2AtN |ku̇|[0,tN ],

and if a(t) ≥ 0 for all t,

|u(tN ) − UN | ≤ 3|ku̇|[0,tN ]. (9.41)

Proof. It suffices to estimate the “discrete” error ē ≡ πku−U in W
(0)
k ,

where πku is the L2 projection into W
(0)
k , since u−πku can be estimated

using the results in Chapter 5.
The proof is analogous to the proof of the posteriori estimate and

uses the following discrete dual problem: find Φ in W
(0)
k such that for

n = N,N − 1, .., 1,

∫ tn

tn−1

(−Φ̇ + a(t)Φ)v dt− [Φn]vn = 0, for all v ∈W
(0)
k , (9.42)

where Φ+
N = ΦN+1 = (πku− U)N .

Problem 9.40. Determine the relation between the discrete and contin-
uous dual problems (9.42) and (9.19).

Choosing v = ē, we get

|ēN |2 =
N∑

n=1

∫ tn

tn−1

(−Φ̇ + a(t)Φ)ē dt−
N−1∑

n=1

[Φn]ēn + ΦN ēN .
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We use the Galerkin orthogonality to replace U by u and we obtain an
error representation formula:

|ēN |2 =
N∑

n=1

∫ tn

tn−1

(−Φ̇ + a(t)Φ)(πku− u) dt −
N−1∑

n=1

[Φn](πku− u)n

+ ΦN(πku− u)N

= −
∫ tN

0
(aΦ(u− πku) dt +

N−1∑

n=1

[Φn](u− πku)n − ΦN (u− πku)N ,

where we use the fact that Φ̇ ≡ 0 on each time interval. Combining
estimates on the interpolation error with the following lemma expressing
the weak and strong stability of the discrete dual problem (9.42), we
reach the desired conclusion.

Problem 9.41. Write out the details of these calculations.

Lemma 9.6. If |a(t)| ≤ A for all t ∈ (0, tN ) and kj |a|Ij for j = 1, ..., N ,
then the solution of (9.42) satisfies

|Φn| ≤ exp(2A(tN − tn−1))|ēN |, (9.43)

N−1∑

n=1

|[Φn]| ≤ exp(2AtN )|ēN |, (9.44)

N∑

n=1

∫ tn

tn−1

|aΦn| dt ≤ exp(2AtN )|ēN |. (9.45)

If a(t) ≥ 0 for all t, then

|Φn| ≤ |ēN |, (9.46)

N−1∑

n=1

|[Φn]| ≤ |ēN |, (9.47)

N∑

n=1

∫ tn

tn−1

a|Φn| dt ≤ |ēN |. (9.48)

Proof. The discrete dual problem (9.42) can be written
{
−Φn+1 + Φn + Φn

∫ tn
tn−1

a(t) dt = 0, n = N,N − 1, ...1,

ΦN+1 = ē−N ,
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where Φn denotes the value of Φ on In, so that

Φn =

N∏

j=n

(

1 +

∫

Ij

a dt

)−1

ΦN+1.

In the case that a is bounded, (9.43)-(9.45) follow from standard esti-
mates.

Problem 9.42. Prove this claim.

When a ≥ 0, (9.46) follows immediately. To prove (9.47), we assume
without loss of generality that ΦN+1 is positive, so the sequence Φn

decreases when n decreases, and

N∑

n=1

|[Φn]| =

N∑

n=1

[Φn] = ΦN+1 − Φ1 ≤ |ΦN+1|.

Finally (9.47) follows from the discrete equation.

Problem 9.43. Prove the following stability estimate for the dG(0)
method (9.18) in the case f = 0, a ≥ 0:

|UN |2 +

N−1∑

n=0

|[Un]|2 ≤ |u0|2.

Hint: multiply the equation for Un by Un and sum.

9.5. Quadrature errors

A Galerkin method for (9.3) generally contains integrals involving the
functions a and f . If these integrals are computed approximately then
the resulting quadrature error also contributes to the total error. We met
quadrature errors in the proof of the Fundamental Theorem of Calculus
and we discussed quadrature further in Chapter 5. When solving (9.3)
numerically, it is natural to control the quadrature error on the same
tolerance level as the Galerkin discretization error controlled by (9.2).

To analyze the effect of quadrature errors, we consider the midpoint
and endpoint rules, which on the interval In = (tn−1, tn) take the form

∫

In

g dt ≈ g(tn− 1
2
)kn,

∫

In

g dt = g(tn)kn, (9.49)
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where tn− 1
2

= (tn−1 + tn)/2. We recall the analysis of quadrature for-

mulas in Chapter 5, and in particular the fact that the midpoint rule
is more accurate than the rectangle rule. To simplify the discussion,
we assume that a is constant and analyze the error when a quadrature
rule is used on the integral involving f . We compare dG(0) approxi-
mations computed with the two quadrature rules and conclude that the
endpoint rule is less accurate on many problems, while both methods
have the same cost of one function evaluation per step. The analysis
shows the advantage of separating the Galerkin and quadrature errors
since they accumulate at different rates.

The dG(0) method combined with the endpoint rule is equivalent to
the classic backward Euler difference scheme.

For the midpoint rule, the quadrature error on a single interval is
bounded by

∣∣∣∣

∫

In

g dt− g(tn− 1
2
)kn

∣∣∣∣ ≤ min

{∫

In

|kġ| dt, 1
2

∫

In

|k2g̈| dt
}
. (9.50)

The corresponding error estimate for the endpoint rule reads

∣∣∣∣
∫

In

g dt − g(tn)kn

∣∣∣∣ ≤
∫

In

|kġ| dt. (9.51)

As already noticed, the midpoint rule is more accurate unless |g̈| >> |ġ|,
while the cost of the two rules is the same.

We present an a posteriori error analysis that includes the effects of
using quadrature. We start with the modified form of the error repre-
sentation formula

e2N =
N∑

n=1

(∫ tn

tn−1

(f − aU)(ϕ − πkϕ) dt − [Un−1](ϕ− πkϕ)+n−1

+

∫ tn

tn−1

fπkϕdt − (fπkϕ)nkn

)
, (9.52)

where

gn =

{
g(tn) for the endpoint rule,

g(tn−1/2) for the midpoint rule.

Problem 9.44. Compare (9.21) and (9.52).
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The accumulation of quadrature error is measured by a different
stability factor. We introduce the weak stability factor

S̃(tN ) =

∫ tN
0 |ϕ| dt
|eN |

,

where we recall that ϕ satisfies the dual problem (9.19).

Problem 9.45. Prove that S̃(tN ) ≤ tN (1 + S(tN )). Hint: ϕ(t) =∫ t
tN
ϕ̇ ds+ eN .

Problem 9.46. Assume that a > 0 is constant. Prove that S̃(tN ) >>
S(tN ) if a is small.

Using the facts that πkϕ is piecewise constant and
∫
In

|πkϕ(t)| dt ≤∫
In

|ϕ(t)| dt, we obtain a modified a posteriori error estimate that in-
cludes the quadrature errors.

Theorem 9.7. The dG(0) approximation U computed using quadrature
on terms involving f satisfies for N = 1, 2, ..,

|u(tN ) − UN | ≤ S(tN )|kR(U)|(0,tN ) + S̃(tN )Cj|kjf (j)|(0,tN ),

where

R(U) =
|Un − Un−1|

kn
+ |f − aU |, on In,

and j = 1 for the rectangle rule, j = 2 for the midpoint rule, C1 = 1,
C2 = 1/2, f (1) = ḟ , and f (2) = f̈ .

In general, the two stability factors S(tN ) and S̃(tN ) grow at different
rates. In cases when S̃(tN ) grows more quickly, it is natural to use the
midpoint rule since the size of S̃(tN ) then is compensated by the second
order accuracy. In general, the computational cost of the quadrature
is usually small compared to the Galerkin computational work (which
requires the solution of a system of equations) and the precision of the
quadrature may be increased without significantly increasing the overall
work. Thus, it is possible to choose a higher order quadrature formula to
compensate for rapid accumulation of quadrature errors. This illustrates
the importance of separating Galerkin discretization and quadrature er-
rors since they accumulate differently.
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As an illustration, we consider a situation in which the birth rate
dominates the death rate and there is an increasing rate of immigration.
We model this with the equation u̇−.1u = t3 and u(0) = 1. This problem
is not dissipative, so we expect error accumulation. We compute using
the dG(0), the dG(0) with the rectangle rule quadrature, and the dG(0)
with the midpoint point rule quadrature.

Problem 9.47. Write down explicit equations for the three approxima-
tions.

We plot the dG(0) approximation in Fig. 9.8 together with the er-
rors of the three approximations. The dG(0) with exact and midpoint
quadrature are very close in accuracy, while the error in the rectangle
rule backward Euler computation accumulates at a much faster rate.
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Figure 9.8: Results for three approximations of u̇ − .1u = t3 and
u(0) = 1 based on the dG(0) method. The plot on the
left shows the dG(0) approximation while the plot on the
right shows the errors of the three approximations. Note
that the results for the dG(0) and dG(0) with midpoint
quadrature are nearly identical.

Problem 9.48. Discuss an alternative way of estimating the quadrature
error based on an integral of |kjf (j)| in time instead of the above maximum,
and define the corresponding stability factor.
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9.6. The existence of solutions

We gave an expression for the solution of (9.3) in terms of the data u0

and f using the variation of constants formula (9.4):

u(t) = e−A(t)u0 +

∫ t

0
e−(A(t)−A(s))f(s) ds,

where A(t) is the primitive function of a given by
∫ t
0 a(s) ds and the

exponential function e±t = exp(±t) is defined to be the solution of the
initial value problem

{
u̇(t) = ±u for t > 0,

u(0) = 1.
(9.53)

It is easy to verify that the function defined by (9.4) satisfies (9.3), given
certain properties of the integral and the exponential function. There-
fore, in order to prove the existence of the solution of (9.3), it suffices to
prove the existence of the integral of a and some of its properties, and to
prove the existence and some of the properties of the solution of (9.53).

We already proved the existence of the integral in Chapter 3, and at
the end of that chapter, we promised to outline a proof of the existence
of the solution of (9.53). We do this now. The proof amounts to an
extension of the proof of the Fundamental Theorem of Calculus.

We show the existence of the solution of (9.53) by showing that the
dG(0) approximation converges to a unique function and then showing
this function satisfies the differential equation. We restrict attention to
the parabolic case u̇ = −u since the case u̇ = u is covered noting that
v = 1

u satisfies v̇ = v if u̇ = −u. We show that the dG(0) approximation
converges by showing that it generates a Cauchy sequence. This follows
from an estimate of the difference U (N)−U (M), where U (N) is the dG(0)

approximate solution of (9.53) on a partition T (N)
k of (0, T ) with uniform

time steps 2−N , assuming T = 1 for simplicity, and U (M) a corresponding

dG(0) approximation on a finer partition T (M)
k with time steps 2−M ,

with M > N . This is the same setup as in the proof of the Fundamental
Theorem; see Fig. 3.10. The first step is to prove the following close
analog of the a priori error estimate (9.41) with the exact solution u
replaced by the fine mesh approximation U (M)

|U (M) − U (N)|[0,T ] ≤ 3 · 2−N |U̇ (M)|[0,T ], (9.54)
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where U̇ (M) is the piecewise constant function defined on the partition

T (M)
k = {tn} by

U̇ (M) =
(U

(M)
n − U

(M)
n−1 )

2−M
on (tn−1, tn].

Problem 9.49. Prove this result modifying the proof of (9.41).

The next step is to prove that |U̇ (M)|[0,T ] is bounded independently

of M . By the definition of U̇ (M), we have

U̇ (M) + U (M) = 0 on (tn−1, tn],

and thus, U̇ (M) is bounded if U (M) is bounded. But we know the fol-

lowing formula for U
(M)
n

U (M)
n = (1 + 2−M )−n ≤ 1,

and the desired bound follows. This proves that {U (N)} is a Cauchy
sequence on [0, T ] and therefore converges to a unique function u. By
the construction it follows that u satisfies u̇ + u = 0. We have now
proved the existence of a solution of the initial value problem u̇+ u = 0
in (0, T ], u(0) = 1, and we denote it by u(t) = exp(−t).

Problem 9.50. Prove that limn→∞(1 + 1
n )−n = exp(−1) = e−1. More

generally, prove that limn→∞(1 + x
n )−n = exp(−x).

Problem 9.51. Give a direct proof of existence of a solution to the
problem (9.1) following the same strategy as in the special case above.

Problem 9.52. Prove that exp(t+ s) = exp(t) exp(s) for t, s ≥ 0.

This proof extends rather directly to systems of differential equa-
tions, as we show in the next chapter. The proof illustrates the close
connection between mathematical questions like existence and unique-
ness and convergence of numerical solutions.

Nature that fram‘d us of four elements
Warring within our breasts for regiment,
Doth teach us all to have aspiring minds:
Our souls, whose faculties can comprehend
The wondrous architecture of the world,
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And measure every wandring planet’s course,
Still climbing after knowledge infinite,
And always moving as the restless spheres,
Will us to wear ourselves, and never rest,
Until we reach the ripest fruit of all,
That perfect bliss and sole felicity,
The sweet fruition of an earthly crown. (C. Marlowe, 1564-1593)
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Figure 9.9: The house in Hannover where Leibniz lived from 1698 to
his death.



10

Initial Value Problems for

Systems

The search for general methods for integrating ordinary differential
equations ended about 1755. (Kline)

In this chapter, we study the generalization of the scalar initial value
problem (9.3) to the case of a system of linear ordinary differential equa-
tions of dimension d ≥ 1: find u(t) ∈ Rd such that

{
u̇(t) +A(t)u(t) = f(t) for 0 < t ≤ T,

u(0) = u0,
(10.1)

where A(t) is a d × d matrix, f(t) ∈ Rd is a vector forcing function,
u0 ∈ Rd is an initial vector, and (0, T ] a given time interval. Systems
of equations are more complicated than scalar equations because of the
possibility of interaction between the different components of the system,
and in general numerical computation must be used to obtain detailed
information about the solutions of particular problems.

We begin by presenting some models from mechanics and a simple
model of the climate in the ocean of the form (10.1) and we discuss
the general structure of the solution of such systems. We distinguish
between autonomous systems where A(t) = A is a constant matrix
and non-autonomous systems where A(t) depends on time t. Non-
autonomous systems generally allow richer behavior in their solutions
than autonomous systems while also being more difficult to analyze.
We then extend the Galerkin methods introduced in the previous chap-
ter to systems, derive error bounds, and present some examples. We

241
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pay particular attention to two classes of systems of the form (10.1) re-
ferred to as parabolic and hyperbolic systems. Finally, we conclude with
a short presentation of an initial value problem for a nonlinear system
of ordinary differential equations that describes the motion of a satel-
lite. Nonlinear systems are treated in detail in the advanced companion
volume.

10.0.1. Linear problems and the principle of superposition

In this book we restrict the discussion to linear differential equations.
These are of fundamental importance and in fact much of the study of
nonlinear problems is based on analysis of associated linear problems.
A basic consequence of linearity is the principle of superposition stating
that a linear combination of solutions of a linear differential equation is
a solution of the equation for the corresponding linear combination of
data. In other words, if u satisfies u̇+Au = f with initial data u(0) and
v satisfies v̇ +Av = g with initial data v(0), then w = αu+ βv satisfies
ẇ +Aw = αf + βg with initial data αu(0) + βv(0) for any constants α
and β. We have already used this property many times in the book, for
example it underlies Fourier’s method for solving two point boundary
value problems. This property does not hold for nonlinear problems.

The following consequence of the principle of superposition is often
used: a solution u of u̇+Au = f with initial data u(0), can be written
as u = up + uh where up is any particular solution of u̇p +Aup = f and
uh solves the homogeneous problem u̇h + Auh = 0 with the initial data
u(0) − up(0). This allows the reduction of the general problem to the
homogeneous problem u̇ + Au = 0 if a particular solution up has been
found.

10.1. Model problems

To provide some examples of autonomous problems, we generalize the
models of stationary systems of masses, springs, and dashpots intro-
duced in Chapter 7 to non-stationary dynamical systems including in-
ertial forces from the motion of the masses. After that, we introduce a
simple non-autonomous model of the climate in the ocean.
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10.1.1. Dynamical systems of masses, springs and dashpots

We start by considering a body of mass m resting on a frictionless hor-
izontal surface and connected to a rigid wall by a spring. If the body is
moved a distance u from its rest position, where the spring force is zero,
then the spring reacts with a restoring force σ on the body. By Hooke’s
law, σ is proportional to the displacement: σ = ku, where k is the spring
constant ; see Fig. 10.1. We assume that the mass is also acted upon

0

m

u

Figure 10.1: A mass-spring system.

by an external force f(t) that varies with time t. Newton’s second law
states that the rate of change with respect to time of the momentum mu̇
of the body is equal to the total force, which in this case is the difference
of the applied force and the spring force. We thus obtain the following
model for the dynamics of the mass-spring system:






σ(t) = ku(t) for 0 < t ≤ T,

mü(t) = f(t) − σ(t) for 0 < t ≤ T,

u(0) = u0, u̇(0) = u̇0,

(10.2)

where we denote the initial position and velocity by u0 and u̇0, respec-
tively. Eliminating σ, we obtain an initial value problem for a linear
second order differential equation:

{
mü+ ku = f in (0, T ],

u(0) = u0, u̇(0) = u̇0.
(10.3)

We recall that in the case f = 0 and m = 1, the solution has the form

u(t) = a cos(
√
kt) + b sin(

√
kt) = α cos(

√
k(t− β)), (10.4)
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where the constants a and b, or α and β, are determined by the initial
conditions. We conclude that if f = 0 and m = 1, then the motion of
the mass is periodic with frequency

√
k and phase shift β and amplitude

α depending on the initial data.

Problem 10.1. Verify (10.4) and determine the values of a and b, or α
and β, in terms of u0 and u̇0.

Problem 10.2. (a) Using the notation of Chapter 7, show that the
dynamics of a system of masses and springs modeled by the relation σ =
DBu between the vector of spring forces σ and the vector of displacements
u and the equilibrium equation B⊤σ = f at rest, where f is a vector of
exterior forces acting on the masses, is modeled by






σ = DBu in (0, T ]

Mü+B⊤σ = f in (0, T ]

u(0) = u0, u̇(0) = u̇0,

where M is the diagonal matrix with diagonal entry mj equal to mass j.
(b) Show this system can be written as

{
Mü+ B⊤DBu = f in (0, T ],

u(0) = u0, u̇(0) = u̇0.
(10.5)

Problem 10.3. Consider particular configurations of the form (10.5) with
several masses and springs.

Introducing the new variables u1 = u̇ and u2 = u, and for simplicity
assuming that m = 1, the second order equation (10.3) can be written
as the first order system






u̇1 + ku2 = f in (0, T ],

u̇2 − u1 = 0 in (0, T ],

u1(0) = u̇0, u2(0) = u0,

(10.6)

which has the form (10.1) with u = (u1, u2) and

A =

(
0 k
−1 0

)
.

We next consider a model with the spring replaced by a dashpot,
which is a kind of shock absorber consisting of a piston that moves
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0

m

u

Figure 10.2: Cross section of a dashpot connected to a mass.

inside a cylinder filled with oil or some other viscous fluid see Fig. 10.2.
The resistance of the fluid to flowing past the piston as it moves gives a
force σ = µu̇ that is proportional to the rate of change of displacement
u̇ with the constant of proportionality µ ≥ 0 representing the viscosity
coefficient of the dashpot. Assuming that the mass is acted upon also by
an exterior force f(t), we obtain the following model by using Newton’s
law, {

mü+ µu̇ = f in (0, T ],

u(0) = u0, u̇(0) = u̇0.
(10.7)

If f = 0 and m = 1, then the solution has the form u(t) = a exp(−µt)+b,
in which case the mass approaches a fixed position u = b determined by
the initial data as time increases. Written as a first order system, (10.7)
with m = 1 takes the form






u̇1 + µu1 = f in (0, T ],

u̇2 − u1 = 0 in (0, T ],

u1(0) = u̇0, u2(0) = u0.

(10.8)

Using these ingredients, we can model systems of masses, springs and
dashpots in different configurations. For example, a mass connected to
both a spring and a dashpot coupled in parallel is modeled by






σ = ku+ µu̇, in (0, T ],

mü+ σ = f, in (0, T ],

u(0) = u0, u̇(0) = u̇0.
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where the total force σ is the sum of the forces from the spring and the
dashpot. Eliminating σ and assuming that m = 1, this can be rewritten

{
ü+ µu̇+ ku = f, in (0, T ],

u(0) = u0, u̇(0) = u̇0,
(10.9)

or as a first order system with u1 = u̇ and u2 = u:






u̇1 + µu1 + ku2 = f in (0, T ],

u̇2 − u1 = 0, in (0, T ],

u1(0) = u̇0, u2(0) = u0.

(10.10)

In the case f = 0, the solution of (10.9) is a linear combination of
terms of the form exp(λt), where λ solves the associated polynomial
equation λ2 +µλ+ k = 0, that is λ = (µ±

√
µ2 − 4k)/2. If µ2 − 4k > 0,

then the roots are real and the solution is

u(t) = a exp
(
−1

2

(
µ+

√
µ2 − 4k

)
t
)

+ b exp
(
−1

2

(
µ−

√
µ2 − 4k

)
t
)
,

with the constants a and b determined by the initial condition. In this
case, when the viscous damping of the dashpot dominates, the solution
converges exponentially to a rest position, which is equal u = 0 if k > 0.
If µ2 − 4k < 0, then the roots are complex and the solution is

u(t) = ae−
1
2
µt cos

(
1

2

√
4k − µ2 t

)
+ be−

1
2
µt sin

(
1

2

√
4k − µ2 t

)
.

The solution again converges to the zero rest position as time passes if
µ > 0, but now it does so in an oscillatory fashion. Finally, in the limit
case µ2 − 4k = 0 the solution is

u(t) = (a+ bt)e−
1
2
µt,

and exhibits some non-exponential growth for some time before eventu-
ally converging to the zero rest position as time increases. We illustrate
the three possible behaviors in Fig. 10.3.

Problem 10.4. Verify the solution formulas for the three solutions shown
in Fig. 10.3.
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Figure 10.3: Three solutions of the mass-spring-dashpot model (10.9)
satisfying the initial conditions u(0) = 0 and u̇(0) = 1.
The first solution corresponds to µ = 5 and k = 4, the
second to µ = 2 and k = 5, and the third to µ = 2 and
k = 1.

Problem 10.5. (a) Show that a mass connected to a spring and dashpot
coupled in series is modeled by






u̇ = 1
µσ + 1

k σ̇, in (0, T ],

mü+ σ = f, in (0, T ],

u(0) = u0, u̇(0) = u̇0.,

where the total displacement rate u̇ is the sum of the displacement rates
related to the spring and the dashpot. (b) Show that the system for m = 1
can be written on the form

{
u̇1 − u2 = f, in (0, T ],

u̇2 + k
µu2 + ku1 = 0 in (0, T ],

(10.11)

with suitable initial conditions. (c) Explain the range of behavior that is
possible in the solutions if f = 0.

10.1.2. Models of electrical circuits

There is an analogy between models of masses, dashpots, and springs in
mechanics and models of electrical circuits involving inductors, resistors,
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and capacitors, respectively. The basic model for an electric circuit with
these components has the form

Lü(t) +Ru̇(t) +
1

C
u(t) = f(t) for t > 0, (10.12)

together with initial conditions for u and u̇, where f(t) represents an ap-
plied voltage and u represents a primitive function of the current I. This
model says that the applied voltage is equal to the sum of the voltage
changes V = Lİ, V = RI and V = u/C from the inductor, resistor, and
capacitor, where L, R and C are the coefficients of inductance, resistance
and capacitance, respectively. The system (10.12) takes the same form
as (10.9) and the discussion above (including systems with components
coupled in parallel or series) applies.

10.1.3. A simple model of the climate in the ocean

I was born a simple man, I got no command of the written word.
I can only try and tell you the things I’ve seen and heard.
Listen to the picture forever etched on my mind.
The day that the hell broke loose just north of Marietta,
all along the Kennesaw line.
The day that the hell broke loose just north of Marietta.
Oh, the sun rose high above us that morning on a clear and cloud-
less day.
Well, the heat blistered down through the leaves on the trees.
The air seemed hot enough to catch fire.
The heavens seemed to be made of brass as the sun rose higher
and higher. (D. Oja-Dunnaway)

We consider a model of the temperature variations of the atmosphere
and the ocean taking into account different periodic effects due to the
sun. The model is based on Newton’s law of cooling which states that
the rate of change of heat between two regions is proportional to the
difference between their temperatures. We choose units so that the
temperature of space is 0 while the temperature of the earth is 1, and
we let u1 denote the temperature of the ocean and u2 the temperature
of the atmosphere. See Fig. 10.4. We model the influence of the sun on
the atmosphere and the ocean through two periodic forcing terms with
different time scales (corresponding to daily and yearly variations). We
also allow the factors of proportionality in Newton’s law to vary with
time. In total, the rate of change of heat of the ocean is given by the
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0

u2

u1

1

Figure 10.4: An illustration of the exchange of heat between the earth,
ocean, and atmosphere.

exchange with the earth and with the atmosphere plus the effect of a
forcing term and that of the atmosphere is determined similarly. This
gives a system of the form






u̇1 = α(t)(u2 − u1) + β1(t)(1 − u1) + S1 sin(P1t), 0 < t ≤ T,

u̇2 = α(t)(u1 − u2) − β2(t)u2 + S2 sin(P2t) 0 < t ≤ T,

u(0) = u0,

(10.13)
where α, β1, and β2 are positive, continuous functions. We can rewrite
the system in the form u̇ + Au = f with a positive-definite, symmetric
matrix

A(t) =

(
α(t) + β1(t) −α(t)

−α(t) α(t) + β2(t)

)
.

10.2. The existence of solutions and Duhamel’s formula

To prove existence of a solution to (10.1) in the autonomous case and
with f = 0, we follow the approach used for the scalar problem u̇+u = 0
in Chapter 9. We define an approximate solution U = U (N) by the dG(0)
method on a uniform partition of (0, T ] with time steps k = T2−N and
value Un on ((n− 1)k, nk), as follows:

Un + kAUn = Un−1, for n = 1, 2, ..., (10.14)
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where U0 = u0. We first deal with the simpler case when A is positive
semi-definite (but not necessarily symmetric) so that (Av, v) ≥ 0 for all
v ∈ Rd. Taking the dot product with Un in (10.14) gives (denoting the
Euclidean scalar product and norm by (·, ·) and | · |),

|Un|2 + k(AUn, Un) = (Un−1, Un) ≤ |Un| |Un−1|.

By the positive-definiteness of A this proves that |Un| ≤ |Un−1| ≤ ... ≤
|u0|. It follows that a solution of (10.14) is necessarily unique (since
u0 = 0 implies Un = 0), and since (10.14) is a linear system for Un,
it implies that Un also exists. In the same way as in Chapter 9 we
now prove that {U (N)} forms a Cauchy sequence on [0, T ] and therefore
converges to a solution u of (10.1) with f = 0. We denote the solution
by u(t) = exp(−tA)u0, where we think of exp(−tA) as a matrix which
when applied to the initial data u0 gives the solution u(t). The columns
of exp(−tA) are the solutions of (10.1) with f = 0 corresponding to
choosing u0 equal to the standard basis vectors ei in Rd.

Problem 10.6. Compute the solution matrix exp(−tA) for (10.6), (10.8),
and (10.10) with f ≡ 0 by choosing the indicated data.

Problem 10.7. (Harder) Prove that {U (N)} is a Cauchy sequence. Hint:
follow the corresponding proof in the scalar case closely.

The case of a general matrix A can be reduced to the positive semi-
definite case by introducing the change of variables v(t) = exp(κt)u(t)
for a constant κ > 0, which changes u̇+Au = 0 into v̇+ (A+ κI)v = 0,
where I is the d×d identity matrix. Now, A+κI is positive semi-definite
if κ is sufficiently large and so we know that v, and therefore u, exists.

Once we have the general solution of (10.1) with f = 0, we can write
down the following formula for the solution of (10.1) with f 6= 0:

u(t) = exp(−tA)u0 +

∫ t

0
exp(−(t− s)A)f(s) ds. (10.15)

This is referred to as Duhamel’s formula, and is analogous to the varia-
tion of constants formula for a scalar problem.

Problem 10.8. Using Problem 10.6, write down formulas for the solutions
of (10.6), (10.8), and (10.10) with the forcing function f(t) = t.

Problem 10.9. Prove Duhamel’s formula using the properties of exp(−tA)
just established.
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10.3. Solutions of autonomous problems

We now describe the structure of the solutions of (10.1) in the au-
tonomous case with f = 0 in terms of properties of the eigenvalues
and eigenvectors of A. It is convenient to allow scalars to be com-
plex temporarily. If A is a real matrix, we obtain real-valued solutions
by taking real and imaginary parts of complex-valued solutions. We
start observing that if v is an eigenvector of A corresponding to the
eigenvalue λ so that Av = λv, then u(t) = exp(−λt)v is a solution
of u̇ + Au = 0, which we refer to as an eigenmode. If λ = α + iθ,
where α ∈ R and θ ∈ R are the real and imaginary parts of λ, so
that exp(−λt) = exp(−αt)(cos(θt) + i sin(θt)), then the modulus of the
eigenmode is exponentially decaying (increasing) if α > 0 (α < 0), and
if θ 6= 0 then the eigenmode is oscillating with frequency θ. We conclude
that if there is a basis of eigenvectors of A, then it should be possible to
describe the solutions of (10.1) with f = 0 in terms of eigenmodes. We
make this precise below.

We recall that if the eigenvectors of A form a basis then A is diago-
nalizable, that is there is an invertible matrix P such that P−1AP = Λ,
where Λ is a diagonal matrix with non-zero entries only on the diago-
nal from the upper left corner to the lower right corner. The diagonal
elements of Λ are the eigenvalues of A and the columns of P are the
corresponding eigenvectors. If P is orthogonal so that P−1 = P ∗, then
A is said to be normal. Recall that A∗ denotes the adjoint of A = (aij)
with elements āji, where the bar denotes the complex conjugate so that
λ̄ = α − iθ if λ = α + iθ with α, θ ∈ R. If A is real, then A∗ = A⊤. A
basic fact of linear algebra states that A is normal if A∗A = AA∗. An
important special case is given by a selfadjoint (or symmetric) matrix
satisfying A∗ = A.

We shall see that in the autonomous case the structure of the solu-
tions of (10.1) with f = 0 is entirely determined by the eigenvalues if A
is normal, while if A is not normal then the structure of the eigenvectors
of A is also important.

Note that the eigenvalues and the structure of the eigenvectors of
A(t) do not determine the structure of solutions of non-autonomous
problems in general.
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10.3.1. Diagonalizable and normal systems

We assume that A is diagonalizable with P−1AP = Λ diagonal. Chang-
ing to the new variable v defined by u = Pv, we rewrite (10.1) with
f = 0 as

P v̇ +APv = 0,

which upon pre-multiplication by P−1 gives a diagonal system for v:

{
v̇ + Λv = 0 in (0, T ],

v(0) = v0 = P−1u0,

with solution

v(t) =
(
v0,1 exp(−λ1t), · · · , v0,d exp(−λdt)

)⊤
= exp(−Λt)v0,

where the v0,i are the components of the initial value v(0) and exp(−Λt)
denotes the diagonal matrix with diagonal elements exp(−λit). It follows
that the solution u of (10.1) with f = 0 can be written

u(t) = P exp(−Λt)P−1u0, (10.16)

which gives a complete description of the structure of solutions. If A is
normal so that P is orthogonal, then the relation between the norms of
u = Pv and v is particularly simple, since |u| = |v|.

If A is real, then the real and imaginary parts of u = Pv are real-
valued solutions of u̇ + Au = 0. This means that each component of a
real-valued solution u of u̇+Au = 0 is a linear combination of terms of
the form

exp(−αjt) cos(−θjt) and exp(−αjt) sin(−θjt),

where αj ∈ R and θj ∈ R are the real and imaginary parts of the
eigenvalue λj . The factor exp(−αjt) is exponentially decaying if αj > 0,
is constant if αj = 0, and is exponentially growing if αj < 0. Further,
there are oscillatory factors cos(−θjt) and sin(−θjt) of frequency θj.

We apply this framework to the models above. The matrix for the
mass-spring system (10.5) is diagonalizable with two purely imaginary
eigenvalues ±i

√
k and the solution accordingly has the form a cos(

√
kt)+

b sin(
√
kt). The corresponding matrix A is normal if k = 1. Next,

the matrix of the mass-dashpot system (10.8) is diagonalizable but not
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normal with two real eigenvalues 0 and µ, and the solution components
have the form a+b exp(−µt). Finally, the coefficient matrix for the mass-
spring-dashpot system (10.10) has eigenvalues λj = µ/2 ±

√
µ2/4 − k

and is diagonalizable if µ2/4 − k 6= 0. If µ2/4 − k > 0, then there
are two positive eigenvalues and the solution components are a linear
combination of two exponentially decaying functions. If µ2/4 − k < 0,
then there are two complex conjugate eigenvalues with positive real part
equal to µ/2 and the corresponding solution components both decay
exponentially and oscillate. The matrix is normal only if k = 1 and
µ = 0. The degenerate case µ2/4 − k = 0 is treated in the next section.
We illustrated the range of possible behavior in Fig. 10.3.

Problem 10.10. Verify the statements of the preceeding paragraph.

Problem 10.11. (a) Show that the eigenvalues of the general mass-spring
model (10.5) are purely imaginary assuming that M = I. (b) Compute
the eigenvalues of the mass-spring-dashpot system (10.11) and discuss the
possible behavior of the solutions.

10.3.2. Non-diagonalizable systems

If there is a multiple root λ of the characteristic equation det(A−λI) = 0
for the eigenvalues, i.e. if λ is an eigenvalue of multiplicity m > 1, and
there are less than m linearly independent eigenvectors associated to
λ, then A is not diagonalizable. In this case, the components of the
solution of (10.1) with f = 0 have the form pj(t) exp(−λjt), where the
pj are polynomials in t of degree at most m − 1. An example is given

by A =

(
0 1
0 0

)
which has the eigenvalue zero of multiplicity 2 with

a one-dimensional eigenspace spanned by (1, 0)⊤. The corresponding
solution of (10.1) with f = 0 is given by u(t) = (u0,1 − tu0,2, u0,2)

⊤.
Another example is given by the mass-spring-dashpot system (10.10) in
the degenerate case µ2/4 − k = 0, where the matrix has an eigenvalue
µ/2 of multiplicity 2 and a corresponding one-dimensional eigenspace
spanned by (−µ/2, 1)⊤. The corresponding solution of (10.1) with f = 0
is

u(t) = exp
(
−µ

2
t
) (u0,1 − µ

2 (u0,1 + µ
2u0,2)t

u0,2 +
(
u0,1 + µ

2u0,2

)
t

)
. (10.17)

Problem 10.12. Verify (10.17).
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The degeneracy of the eigenspace may be viewed as a limit case of
almost colinear eigenvectors. This cannot occur if A is normal because
the eigenvectors are orthogonal. We give an example:

Problem 10.13. Consider the initial value problem associated to the

coefficient matrix A =

(
µ −1
−ǫ µ

)
with ǫ > 0. Determine the eigenvalues

and eigenvectors and show how degeneracy of the eigenspace develops as
ǫ→ 0.

10.4. Solutions of non-autonomous problems

The above proof of existence of solution of (10.1) directly extends to the
non-autonomous case assuming e.g, that A(t) depends continuously on
t. There is also a corresponding generalization of Duhamel’s formula,
namely

u(t) = X(t)u0 +X(t)

∫ t

0
X(s)−1f(s) ds, (10.18)

where X(t) is the fundamental solution of the matrix differential equa-
tion {

Ẋ(t) +A(t)X(t) = 0 in (0, T ],

X(0) = I,
(10.19)

where I is the identity matrix. This simply means that the columns of
X(t) are the solutions of (10.1) with f = 0 and initial data u0 equal to
the standard basis vectors ei in Rd.

Problem 10.14. Verify the solution formula (10.18).

Problem 10.15. Use (10.18) to compute the solution of (10.13) in the
case that α, β1, β2 are constant.

We remark that the general solution of a non-autonomous differ-
ential equation cannot be described in terms of the eigenvalues of the
coefficient matrix A(t) even if A(t) is diagonalizable for each t. This
can be understood by attempting the change of variables used in the
constant coefficient case. Assuming that P (t) diagonalizes A(t) so that
P (t)−1A(t)P (t) = Λ(t) for every t with Λ(t) diagonal, and using the
change of variables u(t) = P (t)v(t), we obtain the following system for
v:

v̇ = Λv + P−1Ṗ v.
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This system is not diagonal in general and the term P−1Ṗ v may drasti-
cally change the nature of solutions as compared to solutions of v̇ = Λv
that are determined by the eigenvalues of A.

Problem 10.16. Verify the differential equation in the new variable.

To illustrate, we present an example constructed by the mathemati-
cian Vinograd. Let u solve u̇+A(t)u = 0 where

A(t) =

(
1 + 9 cos2(6t) − 6 sin(12t) −12 cos2(6t) − 9

2 sin(12t)
12 sin2(6t) − 9

2 sin(12t) 1 + 9 sin2(6t) + 6 sin(12t)

)
.

(10.20)
The eigenvalues of A are 1 and 10, independent of time. In the constant
coefficient case, we would conclude that the solution decays to zero as
time passes. However, the solution is

u(t) = C1e
2t

(
cos(6t) + 2 sin(6t)
2 cos(6t) − sin(6t)

)
+ C2e

−13t

(
sin(6t) − 2 cos(6t)
2 sin(6t) + cos(6t)

)
,

where C1 and C2 are constants, which in fact increases exponentially in
size as t becomes large for a non-zero C1.

Problem 10.17. (a) Compute the eigenvalues of the coefficient matrix for
Vinograd’s example, and verify the formula given for the solution. Plot the
solution for C1 = C2 = 1. (b) (Messy.) Compute the change of variables
map P and the matrix P−1Ṗ .

10.5. Stability

The stability properties of a solution of (10.1) refers to the sensitivity of
the solution to perturbations in the data f and u0. By the principle of
superposition, we know that if u solves u̇ + Au = f with initial value
u(0) = u0 and v solves v̇+Av = f+g with initial value v(0) = v0 = u0+
w0, where g and w0 are perturbations of data, then the corresponding
solution perturbation w = u − v solves ẇ + Aw = g with initial data
w(0) = w0, i.e. a problem of the same form as (10.1). A stability
estimate bounds the perturbation w in terms of the perturbations g and
w0 of the data, or equivalently bounds the solution u of (10.1) in terms
of f and u0.

The stability properties of the problem (10.1) may be expressed
through different stability estimates on the solutions. Consideration of
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the stability properties is crucial when analyzing the error of a numeri-
cal solution. We shall give a rough classification of ordinary differential
equations into (a) general problems (b) parabolic problems and (c) hy-
perbolic problems. Each class is characterized by a particular stability
property. General problems allow errors to accumulate at an exponential
rate; hyperbolic problems allow the errors to accumulate at a linear rate;
and parabolic problems are characterized by no, or very slow, accumu-
lation of errors. In the autonomous case, we may identify the following
basic models of parabolic and hyperbolic type:

• parabolic: A is symmetric positive semidefinite, that is, A is nor-
mal with non-negative real eigenvalues

• hyperbolic: A is normal with purely imaginary eigenvalues.

The parabolic model case with A symmetric positive semidefinite corre-
sponds to assuming the coefficient a in the scalar problem (9.3) to be a
nonnegative constant, and the hyperbolic model case to assuming a to
be a purely imaginary constant.

10.5.1. General problems

We assume that |A(t)| ≤ A for 0 ≤ t ≤ T , where A is a constant and | · |
denotes the Euclidean norm and the corresponding matrix norm so that
|A(t)| = ‖A(t)‖2 with the notation from Chapter 4. The basic stability
estimates for the solution u of (10.1) with f = 0 read:

|u(t)| ≤ exp(At)|u0| for 0 ≤ t ≤ T, (10.21)

and ∫ t

0
|u̇(s)|ds ≤ eAt|u0|. (10.22)

We note the presence of the exponential stability factor exp(At) which
grows very quickly with t unless A is small.

Problem 10.18. (a) Prove (10.21). Hint: multiply both sides of (10.1)
with f = 0 by u, estimate, and then integrate. Use the fact that (u, u̇) =
1
2
d
dt |u|2 = |u| ddt |u|. (b) Prove (10.22) using (10.21).

Problem 10.19. Compute bounds for the coefficient matrices in the
three models (10.6), (10.8), and (10.10) and write out the stability bounds
(10.21) for each problem. Compare the bounds to the actual sizes of the
solutions of the three models (with f ≡ 0).
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Problem 10.20. Compute a bound for the coefficient matrix of Vino-
grad’s example (10.20) and compare the bound (10.21) to the size of the
solution.

10.5.2. Parabolic model problem: A is symmetric positive
semi-definite

We consider (10.1) with f = 0 and assume that A is a constant sym-
metric and positive semi-definite matrix, that is A⊤ = A and (Av, v) ≥ 0
for all v.

We first prove that the norm of a solution cannot grow as time passes,
that is

|u(t)| ≤ |u0| for 0 ≤ t ≤ T. (10.23)

To prove this, we multiply the differential equation u̇+Au = 0 by u to
get

0 = (u̇, u) + (Au, u) =
d

dt

1

2
|u|2 + (Au, u).

It follows after integration that

|u(t)|2 + 2

∫ t

0
(Au, u) ds = |u0|2, (10.24)

which by the positive semi-definiteness of A implies (10.23).

Problem 10.21. If we know that A is strictly positive-definite, then we
can show that the norm of a solution actually decreases as time passes. For
example, assuming that A is symmetric and there is a function a(t) ≥ 0
for all t such that (A(t)v, v) ≥ a(t)|v|2 for all v ∈ Rd and t ≥ 0, prove that
a solution u of (10.1) with f = 0 satisfies

|u(t)| ≤ |u(0)| exp

(
−
∫ t

0

a(s) ds

)
for t ≥ 0.

Hint: first verify that d
dt |u| + a(t)|u| ≤ 0 (or 1

2
d
dt |u|2 + a(t)|u|2 ≤ 0) and

multiply by an integrating factor. What can you conclude if there is a
constant α such that a(t) ≥ α > 0 for all t?

Using the symmetry of A in addition, we can prove a strong stability
estimate that bounds the derivative of u,

∫ t

0
s|u̇(s)|2 ds ≤ 1

4
|u0|2 for all t ≥ 0. (10.25)
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To prove (10.25), we multiply the differential equation u̇ + Au = 0 by
tAu(t) and use the symmetry of A to get

1

2

d

dt
(u(t), tAu(t)) + (Au(t), tAu(t)) =

1

2
(u(t), Au(t)).

Integrating and recalling (10.24), we obtain

1

2
t(u(t), Au(t)) +

∫ t

0
s|Au(s)|2 ds =

1

2

∫ t

0
(u,Au) ds ≤ 1

4
|u0|2, (10.26)

from which (10.25) follows.
Note that from (10.25), it follows by Cauchy’s inequality that for

0 < ǫ < t,

∫ t

ǫ
|u̇(s)| ds ≤

(∫ t

ǫ

ds

s

)1/2 (∫ t

ǫ
s|u̇(s)|2 ds

)1/2

=
1

2

(
log(t/ǫ)

)1/2 |u0|.

Furthermore, (10.23) implies

∫ ǫ

0
|u̇(s)| ds ≤ ǫ|A||u0|.

Adding these estimates together we find that

∫ t

0
|u̇(s)| ds ≤

(
|A|τ +

1

2

(
log
( t
τ

))1/2
)

|u0|, (10.27)

where we took ǫ = τ = min{t, |A|−1} to essentially minimize the re-
sulting bound. Compared to (10.22), we get a slow logarithmic growth
instead of the exponential growth of the general case.

Problem 10.22. Prove that the indicated choice of ǫ gives the best
possible result essentially.

Note that the proof of the estimate (10.23) does not use the symme-
try of A and directly generalizes to the non-autonomous case if A(t) is
positive semi-definite for 0 ≤ t ≤ T . The proof of (10.25) on the other
hand needs both the symmetry and time-independence of A.

Problem 10.23. Fill in the missing details of the proofs of (10.26) and
(10.25).
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Problem 10.24. (a) Show that (10.25) implies that |u̇| → 0 as t → ∞.
Hint: assume that there is some ǫ > 0 such that |u̇| ≥ ǫ and reach a
contradiction. (b) Show that for small t, (10.25) is satisfied even if |u̇(t)| =
t−1/2|u0|.

Problem 10.25. Even though the norm of u cannot increase when the
system is symmetric and positive semi-definite, individual components ui
may increase initially. As an example, consider the linear homogeneous

system u̇+Au = 0 with A = 1
2

(
a+ b a− b
a− b a+ b

)
, where a and b are constants

with b > a > 0. (a) Show that the eigenvalues of A are a and b and compute
the general solution by computing the matrix P that diagonalizes A. (b)
Write out the solution u corresponding to the initial data (1, 3)⊤. (c) By
explicit computation, show that d

dt |u(t)|2 < 0 always. What does this
mean? (d) Show that one component of u decreases monotonically, but
the other component increases for some time before beginning to decrease.
Show that the time where the maximum value of this component is reached
is inversely proportional to b− a, which is the gap between the eigenvalues
of A.

Problem 10.26. Give a physical interpretation of a system of the form

(10.1) with A =

(
1 −1
−1 1

)
. Analyze the stability properties of the sys-

tem.

The technique we used to prove the stability estimates are generally
called the energy method. Characteristically, the equation u̇ + Au = 0
is multiplied by u or Au. We will use analogous arguments below for
partial differential equations.

10.5.3. Hyperbolic model problem: A is normal with purely
imaginary eigenvalues

We now assume that A is normal with purely imaginary eigenvalues. In
this case, the norm of a solution u of u̇+Au = 0 is conserved in time:

|u(t)| = |u(0)| for all t. (10.28)

If |u(t)| is the energy of u(t), this corresponds to conservation of energy.

A different route to energy conservation comes from assuming that
A is skew-symmetric, that is (Av,w) = −(v,Aw), so that in particular
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(Av, v) = 0. An example of a skew-symmetric matrix is given by the

matrix A =

(
0 1
−1 0

)
.

Below, we shall use the following strong stability estimate for u̇ re-
sulting from (10.28): ∫ t

0
|u̇|ds ≤ t|A||u0|. (10.29)

Problem 10.27. (a) Prove (10.28). Hint: diagonalize A. (b) Prove
(10.28) assuming A is skew-symmetric.

Problem 10.28. Prove (10.29).

10.5.4. An example with A non-normal

Above, we considered two cases with A normal: the parabolic model
case with the eigenvalues of A real non-negative, and the hyperbolic
model case with the eigenvalues purely imaginary. We now consider the

non-normal matrix A =

(
µ −1
0 µ

)
, where µ > 0. The matrix A has

a single positive eigenvalue µ of multiplicity two with a corresponding
one-dimensional eigenspace spanned by (1, 0)⊤. The solution of (10.1)
with f = 0 is given by u(t) = e−µt(u0,1 + tu0,2, u0,2)

⊤. Note the factor t
in the first component. Choosing u0 = (0, 1)⊤ gives the solution u(t) =
e−µt(t, 1) for which the first component reaches a maximum (eµ)−1,
which is large if µ is small. We conclude that there is an initial transient
period where the norm of the solution may grow significantly, before
eventually tending to zero. In this case, energy conservation or decay is
far from being satisfied (in the sense that |u(t)| ≤ |u0|), and the solution
actually gains energy temporarily, although the sign of the eigenvalue
would seem to indicate decay.

The above type of non-normal system arises in the study of stability
of fluid flow and explains how perturbations of fluid flow may grow in
transition to turbulent flow by “stealing energy from the mean flow”.
We will return to this topic in the advanced companion book.

Problem 10.29. (a) Verify the computations in this example and plot
the solution. (b) Determine approximately the “width” of the initial tran-
sient. Hint: using a plot, explain why the point of inflection of |u(t)|2
considered as a function of t is related to the length of the transient pe-
riod, then compute the point(s) of inflection. Extend the considerations
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to A =

(
µ −1
ǫ µ

)
where ǫ is small positive, and study the relation to the

limit case with ǫ = 0.

10.6. Galerkin finite element methods

The finite element methods for the scalar problem (9.3) naturally extend

to the system (10.1). We let W
(q)
k denote the space of piecewise polyno-

mial vector functions of degree q with respect to a partition Tk = {tn}
of [0, T ] with tN = T , that is v ∈W

(q)
k if v|In ∈ Pq(In)

d for each interval

In. Similarly, V
(q)
k denotes the space of continuous piecewise polyno-

mials vector functions of degree q on Tk. As in the scalar case, we use

v±n = lims→±0 v(tn+s) to denote the two values of v in W
(q)
k at the time

node tn and [vn] = v+
n − v−n to denote the “jump” in value at the node.

The discontinuous Galerkin method of degree q (dG(q)) method

reads: compute U ∈W (q)
k such that

N∑

n=1

∫ tn

tn−1

(U̇ +AU, v) dt +
N∑

n=1

([Un−1], v
+
n−1) =

N∑

n=1

∫ tn

tn−1

(f, v) dt

for all v ∈W
(q)
k , (10.30)

or equivalently for n = 1, ..., N,

∫ tn

tn−1

(U̇ +AU, v) dt + ([Un−1], v
+
n−1) =

∫ tn

tn−1

(f, v) dt

for all v ∈ Pq(In)
d, (10.31)

where U−
0 = u0. In particular, the dG(0) method takes the form: for

n = 1, ..., N , find Un ∈ P0(In)
d such that

Un +

∫ tn

tn−1

AUn dt = Un−1 +

∫ tn

tn−1

f dt,

where Un = U−
n and U0 = u0.
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The continuous Galerkin method of degree q (cG(q)) reads: compute

U ∈ V
(q)
k such that

N∑

n=1

∫ tn

tn−1

(U̇ +AU, v) dt =

N∑

n=1

∫ tn

tn−1

(f, v) dt for all v ∈W
(q−1)
k ,

(10.32)
where U(0) = u0. In particular, the cG(1) method takes the form: find

U ∈ V
(1)
k such that for n = 1, ..., N

U(tn) +

∫ tn

tn−1

A(t)U(t) dt = U(tn−1) +

∫ tn

tn−1

f dt.

Problem 10.30. (a) Show that (10.31) is equivalent to (10.30).

Problem 10.31. Show that (10.31) and (10.32) specify unique approxi-
mations provided that

∫
In

|A| dt is sufficiently small for n ≥ 1.

Problem 10.32. (a) Find a change of variables that brings (10.6) into the
form 





u̇1 + au2 = f1 for t > 0,

u̇2 − au1 = f2 for t > 0,

u1(0) = u0,1, u2(0) = u0,2

(10.33)

for a constant a. (b) Using Un = (Un,1, Un,2)
⊤ to denote the value of U

on In, show that dG(0) for this problem takes the form

{
Un,1 + aknUn,2 = Un−1,1 +

∫
In
f1 dt,

−aknUn,1 + Un,2 = Un−1,2 +
∫
In
f2 dt.

(c) Show that the cG(1) with the nodal values Un takes the form

{
Un,1 + aknUn,2/2 = Un−1,1 − aknUn−1,2/2 +

∫
In
f1 dt,

−aknUn,1/2 + Un,2 = Un−1,2 + aknUn−1,1/2 +
∫
In
f2 dt.

Problem 10.33. (Messy!) Show that coefficients of the matrix in the
equationBUn = Un−1 for the dG(0) approximation for Vinograd’s example
(10.20) are

B1,1 = 1 +
1

2

(
cos(12tn) − cos(12tn−1)

)

+
3

4

(
sin(tn) cos(tn) − sin(tn−1) cos(tn−1)

)
+

11

2
kn
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B1,2 =
3

8

(
cos(12tn) − cos(12tn−1)

)

−
(
sin(tn) cos(tn) − sin(tn−1) cos(tn−1)

)
− 6kn

B2,1 =
3

8

(
cos(12tn) − cos(12tn−1)

)

−
(
sin(tn) cos(tn) − sin(tn−1) cos(tn−1)

)
+ 6kn

B2,2 = 1 +
1

2

(
cos(12tn) − cos(12tn−1)

)

− 3

4

(
sin(tn) cos(tn) − sin(tn−1) cos(tn−1)

)
+

11

2
kn.

Problem 10.34. (a) Compute equations for the dG(0) and cG(1) approx-
imations for (10.8). (b) Do the same for (10.13) in the case of constant
coefficients.

Problem 10.35. (Messy!) Compute equations for the dG(1) approxima-
tion for (10.6), (10.8), and (10.13) (with constant coefficients).

Problem 10.36. (Messy!) Repeat Problems 10.32- 10.35 using quadra-
ture formula of the appropriate orders. When discretizing (10.13), treat
the non-constant coefficient case.

10.7. Error analysis and adaptive error control

The a priori and a posteriori error estimates for the finite element meth-
ods for scalar problems extend directly to systems. We let A = |A|[0,tN ],
where as before |v|[a,b] = maxa≤t≤b |v(t)| . We first treat the general
case, then we examine a parabolic problem in which there is essentially
no accumulation of errors and a hyperbolic problem with linear growth
in time.

10.7.1. The general problem

The a priori error estimate for the dG(0) method in the general case is:

Theorem 10.1. Assuming that knA ≤ 1/2 for n ≥ 1, the dG(0) ap-
proximation U satisfies

|u(tN ) − UN | ≤
e

2

(
e2AtN − 1

)
max

1≤n≤N
kn|u̇|In . (10.34)
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Problem 10.37. Prove this theorem. Hint: the proof follows the scalar
case very closely.

For the a posteriori result, we let ϕ solve the dual problem

{
−ϕ̇+A(t)⊤ϕ = 0 for tN > t ≥ 0,

ϕ(tN ) = eN ,
(10.35)

and define the stability factor by

S(tN ) =

∫ tN
0 |ϕ̇|dt
|eN |

.

Note the transpose on the coefficient matrix. The a posteriori result for
dG(0) in the general case is:

Theorem 10.2. The dG(0) approximation U satisfies for N = 1, 2, ..,

|u(tN ) − UN | ≤ S(tN )|kR(U)|[0,tN ],

where k = kn for tn−1 < t ≤ tn and

R(U) =
|Un − Un−1|

kn
+ |f − aUn| for tn−1 < t ≤ tn.

If |A(t)| ≤ A for 0 ≤ t ≤ tN , then S(tN ) ≤ exp(AtN ).

Proof. While the proof follows the scalar case closely, we write out the
details to show how the solution of the dual problem enters into the
analysis in the present system case. By (10.35) we have trivially

|eN |2 = (eN , eN ) = (eN , eN ) +
N∑

n=1

∫ tn

tn−1

(e,−ϕ̇+A⊤ϕ) dt,

which, after integration by parts over each sub-interval In and using the
definition of the transpose, gives

|eN |2 =
N∑

n=1

∫ tn

tn−1

(ė+Ae,ϕ) dt +
N−1∑

n=1

(
[en], ϕ

+
n

)
+
(
u0 − U+

0 , ϕ
+
0

)
.

Problem 10.38. Verify this formula.
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As in the scalar case, using the Galerkin orthogonality (10.31) with

v the L2 projection πkϕ into the piecewise constants W
(0)
k , this equation

simplifies to the error representation formula:

|eN |2 =

N∑

n=1

(∫ tn

tn−1

(f −AU,ϕ− πkϕ) dt −
(
[Un−1], (ϕ − πkϕ)+n−1

))
.

Problem 10.39. Derive this equality.

We now use the following extension of the error estimate for the L2

projection to vector functions:

|ϕ− πkϕ|In ≤
∫

In

|ϕ̇| dt,

and obtain

|eN | ≤ S(tN ) max
n=1,..,N

(
|[Un−1]| + |k(f −AU)|In

)
,

and the proof is completed by estimating the stability factor. The fol-
lowing lemma states a bound in the general case.

Lemma 10.3. If |A(t)| ≤ A for 0 ≤ t ≤ tN , then the solution ϕ of
(9.19) satisfies

|ϕ(t)| ≤ eAt|eN | for all 0 < t < tN , (10.36)

and
S(tN ) ≤ eAtN − 1. (10.37)

Proof. Taking the inner product of the differential equation in (10.35)
with ϕ, we get

(ϕ, ϕ̇) = (Aϕ,ϕ),

from which we obtain
d

dt
|ϕ|2 ≤ 2A|ϕ|2.

Integrating this equation and taking a square root gives (10.36). From
the differential equation in (10.35), we get

∫ tN

0
|ϕ̇| dt ≤ A|eN |

∫ tN

0
|ϕ| dt,

which gives (10.37) after substituting using (10.36) and computing the
resulting integral.
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Problem 10.40. State and prove a version of Theorem 9.7 that considers
the additional effects of quadrature errors.

We base adaptive error control on Theorem 10.2 following the al-
gorithm used for scalar problems. We saw that the exponential bound
on the stability factor can be much too large for use in adaptive error
control for a scalar problem and instead we compute an approximation
of the stability factor during the course of a computation. In a sys-
tem of equations, there is even more possibility for cancellation of errors
because the error can change direction as different components interact.

We present a computation made on Vinograd’s example (10.20) using
the dG(1) method with an error tolerance of .05. In Fig. 10.5, we show
the components of the approximate solution together with the stability
factor S(t). The slope of a line fitted using least squares to the loga-
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Figure 10.5: Results for a dG(1) approximation of the Vinograd ex-
ample (10.20) with initial value (−1 3)⊤ computed with
an error tolerance of .05. The plot on the left shows the
two components of the numerical solution. The plot on
the right shows a log-log plot of S(t) versus time. A line
fitted to the data using least squares is also drawn. The
slope of this line is about .94

rithms of the time and stability factor is about .94, and there is a good
fit, indicating that the errors indeed are accumulating at an exponential
rate in this case.
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10.7.2. A parabolic model problem

We now consider the parabolic model case with A symmetric and pos-
itive semi-definite. We may then apply the general result of Theorem
10.2 together with the following stability estimate:

Lemma 10.4. If A is symmetric positive semi-definite, then the solu-
tion ϕ of dual problem (9.19) satisfies

|ϕ(t)| ≤ |eN | for all 0 ≤ t ≤ tN , (10.38)

and

S(tN ) ≤ |A|τ +
1

2

(
log
( tN
τ

))1/2

, (10.39)

where τ = min{tN , |A|−1}. In particular S(tN ) ≤ 1 + 1
2 (log(tN |A|))1/2

if tN ≥ |A|−1.

This result says that S(tN ) grows at most linearly with time for
small times, i.e if tN < |A|−1, then S(tN ) ≤ |A|tN . But for sufficiently
large times, i.e. tN ≥ |A|−1, then S(tN ) grows at most at a logarithmic
rate, which is very slow. This is the system generalization of the scalar
parabolic estimate S(t) ≤ 1.

Proof. Changing the time variable and using the symmetry of A, the
dual problem (10.35) can be written on the form ϕ+Aϕ = 0 for 0 < t ≤
tN with ϕ(0) = eN . Applying the estimate (10.27) proves the desired
result.

Problem 10.41. Perform the indicated change of time variable.

We describe a computation on the atmosphere-ocean model (10.13)
using constant parameters α = .1 and β1 = β2 = .01, which amounts to
assuming that the heat exchange between the water and the air is faster
than that between water and land and between the air and space which
are equal. We choose the forcing functions with parameters S1 = .005,
P1 = π/180, S2 = .3, and P2 = π. With the time unit in days, this
assumes that the temperature of the water varies bi-annually with the
effects of the sun, while the temperature of the atmosphere is assumed
to vary daily. We made a computation using the dG(1) method with an
error tolerance of .018. We show the components of the approximation
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in the Fig. 10.6, and we can see that after a relatively short initial
transient of a few days, the temperatures of the water and air settle to
a regular pattern. The rapid daily effect of the sun on the air makes
that plot appear almost solid as the temperature of the air oscillates
on a frequency of a day. The slower effect of the sun on the water is
visible in both components as the oscillation occurring at a frequency
of approximately 360 days. In the plot on the left in Fig. 10.7, we show
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Figure 10.6: Results for a dG(1) approximation of the model of tem-
peratures in the atmosphere and ocean (10.13) with ini-
tial value (.75 .25)⊤ computed with an error tolerance of
.018. The two plots on top show the two components of
the numerical solution.

the solution’s components for the first fifty days. The initial transient
and the daily oscillations are both visible. On the right, we plot the
stability factor S(t). Overall S(t) is growly only slowly as time passes.
In this problem, we thus can compute for a very long time without the
accumulation of error ruining the accuracy.

It is possible to prove a more accurate a priori error bound in the
parabolic case as well.

Problem 10.42. (Hard!) Prove the analog of the more precise priori
error bound of Theorem 9.5 for (10.1) in the case A is symmetric positive
semi-definite.
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Figure 10.7: Results for a dG(1) approximation of the model of tem-
peratures in the atmosphere and ocean (10.13) with initial
value (.75 .25)⊤ computed with an error tolerance of .018.
The plot on the left shows the two components of the nu-
merical solution. The plot on the right shows a plot of
S(t) versus time.

10.7.3. A hyperbolic model problem

We now consider the hyperbolic model problem model (10.33) with the
normal matrix A = [0 a, 0 − a] with purely imaginary eigenvalues ±a.
An important generalization of this problem is the wave equation, which
we discuss in Chapter 16. We prove that the errors of the cG(1) method
for (10.33) accumulate at most at a linear rate in time.

Lemma 10.5. If |a| ≤ A, then the cG(1) approximation of the solution
of (10.33) satisfies

|u(tN ) − UN | ≤ A tN |kR|[0,tN ], (10.40)

where the residual vector R is defined

R(t)|In =

(
U̇1(t) + aU2(t) − f1(t)

U̇2(t) − aU1(t) − f2(t)

)
.

Proof. The proof starts off in the same way as the proof of Theorem
10.2. Using Galerkin orthogonality, we obtain an error representation
formula for the cG(1) approximation

|eN |2 = −
∫ tN

0

(
R,ϕ− πkϕ

)
dt, (10.41)
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where πkϕ is the L2 projection of ϕ into W
(0)
k , that is πkϕ|In is the

average value of ϕ on In.

Problem 10.43. Derive (10.41).

The dual problem for (10.33) reads





−ϕ̇1 − aϕ2 = 0 for tN > t ≥ 0,

−ϕ̇2 + aϕ1 = 0 for tN > t ≥ 0,

ϕ(tN ) = eN .

(10.42)

To prove a stability estimate, we multiply the first two equations in
(10.42) by ϕ1 and ϕ2, respectively. Adding them together, we obtain
using that the terms ±aϕ1ϕ2 cancel,

d

dt

(
ϕ2

1 + ϕ2
2

)
≡ 0.

Integrating, we obtain

|ϕ(t)| = |eN | for 0 ≤ t ≤ T,

and under the assumption on a, we conclude that

|ϕ̇|[0,tN ] ≤ A|eN |.
We now obtain (10.40) using the usual error bound for the error ϕ−πkϕ.

We illustrate with computations on the problem:





u̇1 + 2u2 = cos(πt/3), t > 0,

u̇2 − 2u1 = 0, t > 0,

u1(0) = 0, u2(0) = 1.

In Fig. 10.8, we first plot the two components of the cG(1) approxima-
tion computed to keep the error below .2. Note that the error control
chooses the time steps to maintain accuracy in all the components of
U simultaneously. We plot the stability factor as well, and the linear
growth is clearly demonstrated.

Problem 10.44. Derive error estimates, including stability estimates, for
the dG(0) method for






u̇1 + u2 = f1, t > 0,

u̇2 = f2, t > 0,

u(0) = u0.
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Figure 10.8: Results for the cG(1) approximation of (10.33) computed
with error tolerance .2. The figure on the left shows the
components of the solution and the figure on the right
shows the approximation of the stability factor S(t)

10.8. The motion of a satellite

In the advanced companion volume, we will extend the scope to non-
linear differential equations modeling many-body systems, chemical re-
actions, fluid flow and wave propagation, among other phenomena. To
illustrate some of the complications that can arise due to nonlinearity,
we discuss a simple example of an n-body system. A classic problem
of celestial mechanics is to determine the long time behavior of our so-
lar system, which consists of the sun, the nine planets together with a
variety of smaller bodies like moons, comets and asteroids. This is an
example of an n-body system. A set of model equations for the mo-
tion of the bodies in an n-body system can be formulated readily using
Newton’s law of gravitation. However, the resulting nonlinear system of
differential equations in general cannot be solved analytically if n > 2.
Thus, to determine the fate of our solar system, we are left with approx-
imate numerical solutions and the accuracy of computed solutions over
long time becomes a major issue.

To illustrate, we consider the motion of a satellite under the influence
of the gravitational force of the earth. This is called the restricted two-
body problem when the heavy body is considered fixed. This problem
was solved by Newton in the Principia in the case the motion takes
place in a plane, and is one of the few problems of celestial mechanics
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that can be solved analytically. The analytical solution shows that the
light body either moves in an elliptical orbit, if it is captured by the
gravitational field of the heavy body, or otherwise along a parabolic or
hyperbolic curve (see Chapter 11 below).

Letting x(t) ∈ R3 denote the coordinates of the satellite at time t,
assuming that the center of the earth is at the origin, Newton’s inverse
square law of gravitation states that

ẍ = − x

|x|3 , (10.43)

where we chose the units to make the constant of proportionality one.
Here we assumed the system acts as if all of the mass of the earth
is located at its center of gravity, which is justifiable if the earth is
approximately a homogeneous sphere (cf. Problem 10.8). We note that
for nearly circular orbits with |x| ≈ 1, the system (10.43) resembles
the familiar equation ẍ + x = 0. Introducing the new variable u =
(x1, x2, x3, ẋ1, ẋ2, ẋ3) the system changes into a first order system of the
form {

u̇+ f(u) = 0 in (0, T ],

u(0) = u0.
(10.44)

where the initial data u0 is determined by initial position x(0) and ve-
locity ẋ(0).

Problem 10.45. Determine f in (10.44).

We can directly apply the cG(q) and dG(q) methods to this problem.
For instance, the dG(0) method takes the form

Un + knf(Un) = Un−1,

which gives a nonlinear system of equations to solve to determine Un ∈
R6 from Un−1. In Fig. 10.9, we present computations made with dG(1)
for (10.44) over the time interval [0, 1000] starting with the initial data
x(0) = (.4, 0, 0), ẋ(0) = (0, 2, 0) in which case the satellite moves in the
plane x3 = 0.

Without further knowledge of the solution, from Fig. 10.9, we would
conclude that the satellite slowly moves towards the earth and eventu-
ally enters the atmosphere and burns up. But to be confident in our
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Figure 10.9: The orbit of a dG(1) solution of the two body problem.
The heavy planet is located at the origin and the satellite
begins at (.4, 0).

prediction, we need to know something about the error of the numer-
ical approximation. In fact, the exact analytical solution in this case
is known to be a periodic elliptic orbit and the numerical results are
misleading. The dG(1) method adds a kind of energy dissipation to
the system that causes the satellite’s orbit to decay. In more general
n-body systems, we do not have a formula for the solution and this case
it is critical to address the issue of error estimation if we want to make
accurate predictions based on numerical results.

More appealing than knowledge itself is the feeling of knowing.
(D. Boorstin)

I’ll be here in this cell,
till my body’s just a shell,
and my hair turns whiter than snow.
I’ll never see that love of mine,
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Lord, I’m in Georgia doin’ time.
And I hear that lonesome whistle blow. (H. Williams Sr.)

Figure 10.10: Design sketches for a calculator by Leibniz.
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Calculus of Variations

Dans les modifications des mouvements, l’action devient ordinaire-
ment un Maximum ou un Minimum. (Leibniz)

The calculus of variations was created by Euler and Lagrange in
the 18th century to formulate problems in mechanics and physics as
minimization problems, or more generally, variational problems. A basic
minimization problem considered by Euler and Lagrange is to find a
function u(x) that minimizes the integral

F (v) =

∫ 1

0
f(v, v′) dx (11.1)

over all functions v(x) defined on the interval I = (0, 1) satisfying v(0) =
u0 and v(1) = u1, where f(v,w) is a given function of two variables,
and u0 and u1 are given boundary conditions. We refer to F (v) as the
Lagrangian of the function v, and thus the problem is to minimize the
Lagrangian over some set of functions. It turns out that the solution
of the minimization problem also solves a differential equation that is
related to the Lagrangian. As an example, consider the model of the
elastic string with elastic modulus one loaded by a transversal weight
g(x) derived in Chapter 8. The corresponding Lagrangian F (v) defined
by (11.1) with

f(v, v′) =
1

2
(v′)2 − gv, (11.2)

represents the total energy with contributions from the internal elastic
energy

∫
I

1
2(v′)2 dx and the load potential −

∫
I gv dx of a deflection v(x)

275
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satisfying v(0) = v(1) = 0. In Chapter 8, we saw that the minimizing
function u(x) satisfies the differential equation −u′′ = g in (0, 1) and
of course the boundary conditions u(0) = u(1) = 0, which illustrates
the basic connection between the calculus of variations and differential
equations. This connection is particularly useful for computing numer-
ical approximations of solutions and in fact, this book may be viewed
as an extended application of the calculus of variations. Furthermore,
questions about solutions of a differential equation, such as existence,
are often approachable after reformulating the problem as a variational
problem on which analysis might be easier. We use this approach in
Chapter 20.

The calculus of variations was extended in the 19th century by
Hamilton among others to more general variational principles. Hamil-
ton’s principle describes solutions to basic dynamical problems in me-
chanics and physics as stationary points (instead of minimum points)
of a Lagrangian, or action integral, representing a time integral of the
difference between the kinetic and potential energies.

We start by considering the minimization problem (11.1) and de-
riving the corresponding differential equation, referred to as the Euler-
Lagrange equation, satisfied by a minimizing function. We then give a
couple of basic examples. After that we discuss Hamiltonian formula-
tions, including some basic examples.

Note the abuse of our standard notation: In this chapter, f does
not represent a load as usual; rather the integrand in the integral to be
minimized is denoted by f(v, v′), and the load is denoted by g(x).

11.1. Minimization problems

We shall prove that the function u(x) that minimizes the Lagrangian
F (v) given by (11.1) over all functions v(x) satisfying v(0) = u0 and
v(1) = u1, solves the differential equation

fu(u, u
′) − d

dx
fu′(u, u

′) = 0 in (0, 1), (11.3)

where we denote the partial derivatives of f(v,w) with respect to v and
w by fv and fw respectively. This is the Euler-Lagrange equation for
the minimization problem (11.1). For example, in the case of the elastic
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string with f(v, v′) defined by (11.2), we have fv = −g and fv′ = v′ and
the Euler-Lagrange equation takes the expected form −g − u′′ = 0.

To prove the claim, we first observe that the minimization property
of u implies that

F (u) ≤ F (u+ ǫv) for all ǫ ∈ R, (11.4)

for any function v(x) satisfying v(0) = v(1) = 0 (note that u(x) + ǫv(x)
should satisfy the same boundary conditions as u). We conclude from
(11.4) that the function g(ǫ) = F (u+ ǫv) has a minimum for ǫ = 0 and
therefore g′(0) = 0 if the derivative g′(ǫ) exists for ǫ = 0. We compute
the derivative of g(ǫ) using the chain rule and set ǫ = 0 to get

0 = g′(0) =

∫ 1

0

(
fu(u, u

′)v + fu′(u, u
′)v′
)
dx (11.5)

for all v(x) with v(0) = v(1) = 0. Integrating by parts and using the
fact the boundary terms vanish, we get

∫ 1

0

(
fu(u, u

′) − d

dx
fu′(u, u

′)
)
v dx = 0,

for all v(x) with v(0) = v(1) = 0. Under appropriate assumptions that
guarantee that the integrand is continuous, by varying v(x) we conclude
that u(x) must satisfy (11.3).

We refer to (11.5) as the weak form or variational form of the Euler-
Lagrange equation and the corresponding differential equation (11.3)
as the strong form. The weak form requires only first derivatives of
the unknown u, while the strong form involves second derivatives of u.
The two formulations are thus not completely equivalent because of the
different regularity requirements; see the discussion in Section 8.1.2.

In the example above, the Lagrangian is convex, i.e.

F (θv + (1 − θ)w) ≤ θF (v) + (1 − θ)F (w) for 0 ≤ θ ≤ 1,

because it is the sum of a quadratic and a linear function. A stationary
point of a convex function is necessarily a global minimum point, but
this does not have to be true for non-convex functions.

When can we expect a unique minimizing function to exist? Based
on our experience in solving minimization problems in one-variable cal-
culus, we expect a continuous function F (x) defined on R to have a
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unique minimum if F is convex and F (x) → ∞ as x → ±∞. A
corresponding result holds for the more general minimization problem
(11.1). The Euler-Lagrange equation (11.3) results from the equation
d
dǫF (u+ǫv)|ǫ=0 = 0 which can be expressed formally as F ′(u) = 0 where
F ′ is the “derivative” of the functional F (v).

We now consider some examples. Further examples are given in
Chapters ?? and 20.

The elastic bar

The Euler-Lagrange equation for the Lagrangian

F (v) =

∫ 1

0

(1
2
a(v′)2 − fv

)
dx,

which represents the total energy of an elastic bar with modulus of
elasticity a including contributions from the internal elastic energy and
the load potential defined for functions v(x) satisfying v(0) = v(1) = 0,
is the differential equation (8.2) for the displacement u under the load
f , i.e. −(au′)′ = f in (0, 1), together with the boundary conditions
u(0) = 0, u(1) = 0.

The weak form of the Euler-Lagrange equation reads: find the dis-
placement u(x) with u(0) = u(1) = 0 such that

∫ 1

0
au′v′ dx =

∫ 1

0
fv dx, (11.6)

for all displacements v with v(0) = v(1) = 0. This is also referred to as
the principle of virtual work in mechanics which states that the stress
σ = au′ satisfies ∫ 1

0
σv′ dx =

∫ 1

0
fv dx, (11.7)

for all displacements v with v(0) = v(1) = 0. The principle states that
for any displacement v the internal elastic “virtual work” on the left is
equal to the external virtual work on the right. In general, we may think
of the Euler-Lagrange equation as expressing a balance of external and
internal forces.
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The shortest distance between two points

The minimization problem of finding the curve u(x) of minimal length
connecting the two points (0, u0) and (1, u1) in R2 takes the form: min-
imize the integral ∫ 1

0

√
1 + (v′)2 dx

over all functions v(x) such that v(0) = u0 and v(1) = u1. The Euler-
Lagrange equation is

( u′√
1 + (u′)2)

)′
= 0 in (0, 1),

together with the boundary conditions u(0) = u0, and u(1) = u1. Differ-
entiating, we see that the Euler-Lagrange equation is satisfied if u′′ = 0,
and we conclude that the minimizing curve is a straight line, as expected.

The brachistochrone problem

The brachistochrone problem is to find the shape of a piece of wire
connecting two points so that a bead that slides down the wire under
the force of gravity, neglecting friction, does so in the least amount of
time; see Fig. 11.1 for an illustration. It was first formulated by Johann
Bernoulli and solved by Leibniz. To formulate the minimization prob-
lem, we denote in a (x, u) coordinate system with the u-axis downward,
the two points by (x0, u0) and (x1, u1) with x1 > x0 and u1 > u0. We
note that the total time of descent is given by

∫ s1

0

ds

v
=

∫ x1

x0

√
1 + (u′)2

v
dx,

where (cf. Chapter ??) the element of curvelength is ds and s1 is the
total length of the wire, v = v(x) is the absolute velocity of the bead
at the point (x, u(x)), and the set of points (x, u(x)) with x0 ≤ x ≤ x1

defines the shape of the wire. Conservation of energy states (assuming

the gravity constant is one) that v2(x)
2 = u(x) − u0, which leads to the

minimization problem: find the function u(x) that minimizes

1√
2

∫ x1

x0

√
1 + (w′)2√
w − u0

dx,
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over all functions w(x) such that w(x0) = u0 and w(x1) = u1.
The solution curve is given in parameterized form by x = x0 + a(θ−

sin(θ)), u = u0 + a(1 − cos(θ)), where 0 ≤ θ ≤ θ1 is the parameter and
the constants a and θ1 are determined by the condition that u(x1) = u1.
The solution curve is a cycloid generated by the motion of a fixed point
on the circumference of a circle that rolls on the positive side of the
given line u = u0.

Problem 11.1. Verify that this is the solution.

In Fig. 11.1, we show some copies of sketches made by Leibniz in
working out the solution of the brachistochrone problem. His solution
can be viewed as the first application of the finite element method with
piecewise linear approximation. The objective of Leibniz’ construction
was to derive the differential equation for the brachistochrone problem
through minimization over piecewise linear functions.
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C B

A
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M P
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Figure 11.1: Some sketches made by Leibniz in his solution of the
brachistochrone problem. Note the successive refinement
involving piecewise linear functions.

11.2. Hamilton’s principle

The Euler-Lagrange equation, in weak or strong form, states that the
Lagrangian is stationary at a minimum point. Above, we considered con-
vex Lagrangian functions for which a stationary point is necessarily the
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unique minimum point. Lagrangian functions which are not convex also
play a fundamental role in modelling in mechanics and physics. Hamil-
ton’s principle states that the dynamics of certain physical systems may
be characterized as stationary points of a Lagrangian function that rep-
resents the difference of the kinetic and potential energies. A stationary
point of a Lagrangian F (v) is a function u such that for all perturbations
w, d

dǫF (u+ ǫw) = 0 at ǫ = 0.
We now consider some basic example of applications of Hamilton’s

principle.

Mass-spring system

The equation mü + ku = 0 describing a system consisting of one mass
m connected to a spring with spring constant k, see (10.3), is the Euler-
Lagrange equation that results when Hamilton’s principle is applied to
the Lagrangian or action integral

F (v) =

∫ t2

t1

(m
2
v̇2 − k

2
v2
)
dt,

where the integrand is the difference between the kinetic and potential
energies related to the displacement v(x), and t1 and t2 are two arbitrary
times, considering v(t1) and v(t2) to be fixed. To see how the equation
mü + ku = 0 arises, we compute the derivative of F (u + ǫw) = 0 with
respect to ǫ at ǫ = 0, where w(x) is a perturbation satisfying w(t1) =
w(t2) = 0, to get ∫ t2

t1

(
mu̇ẇ − kuw

)
dt,

which gives the desired equation after integration by parts and varying
the function w.

The pendulum

We consider a pendulum of mass one attached to a string of unit length
under the action of a vertical gravity force normalized to one. The ac-
tion integral, which again is the difference between kinetic and potential
energy, is given by

∫ t2

t1

(1
2
v̇2 − (1 − cos(v)

)
dt,
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where v(t) represents the angle measured from the lowest point of the
pendulum range of motion. See Fig. 11.2. The corresponding Euler-

1

u
cos(u)

sin(u)

tension

u

Figure 11.2: The notation for a model of a pendulum.

Lagrange equation is ü + sin(u) = 0, which is a nonlinear differential
equation. The equation is complemented by initial conditions for the
position u and velocity u̇.

Problem 11.2. Supply the missing details in the derivation of the equa-
tion for the pendulum. If the angle u stays small during the motion, then
the simpler linearized model ü+u = 0 may be used. Solve this equation an-
alytically and compare with numerical results for the nonlinear pendulum
equation to determine limits of validity of the linear model.

The two-body problem

We return to the two-body problem considered in Chapter 10 of a satel-
lite orbiting around the globe. We assume that the motion takes place
in a plane and use polar coordinates (r, θ) to denote the position of the
satellite measured from the orbit center. The action integral, represent-
ing the difference between kinetic and potential energy, is given by

∫ t2

t1

(1
2
ṙ2 +

1

2
(θ̇r)2 +

1

r

)
dt (11.8)

because the velocity is (ṙ, rθ̇) in the radial and angular directions respec-
tively, and the gravity potential is −r−1 = −

∫∞
r s−2 ds corresponding
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to the work needed to move a particle of unit mass a distance r from the
orbit center to infinity. The corresponding Euler-Lagrange equations are

{
r̈ − rθ̇2 = − 1

r2
, t > 0,

d
dt(r

2θ̇) = 0, t > 0,
(11.9)

which is a second order system to be complemented with initial values
for position and velocity.

We construct the analytical solution of this system in the following
set of problems, which may be viewed as a short course on Newton’s
Principia. We hope the reader will take this opportunity of getting on
speaking terms with Newton himself.

Problem 11.3. Prove that the stationary point of the action integral
(11.8) satisfies (11.9).

Problem 11.4. Prove that the total energy is constant in time.

Problem 11.5. Introducing the change of variables u = r−1, show that
θ̇ = cu2 for c constant. Use this relation together with the fact that the
chain rule implies that

dr

dt
=
dr

du

du

dθ

dθ

dt
= −cdu

dθ
and r̈ = −c2u2d

2u

dθ2

to rewrite the system (11.9) as

d2u

dθ2
+ u = c−2. (11.10)

Show that the general solution of (11.10) is

u =
1

r
= γ cos(θ − α) + c−2,

where γ and α are constants.

Problem 11.6. Prove that the solution is either an ellipse, parabola, or
hyperbola. Hint: Use the fact that these curves can be described as the loci
of points for which the ratio of the distance to a fixed point and to a fixed
straight line, is constant. Polar coordinates are suitable for expressing this
relation.

Problem 11.7. Prove Kepler’s three laws for planetary motion using the
experience from the previous problem.

What we know is very slight, what we don’t know is immense.
(Laplace)
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Computational Mathematical

Modeling

Quand on envisage les divers poblèmes de Calcul Intégral qui se
posent naturellement lorsqu’on veut approfondir les parties les plus
différentes de la Physique, il est impossible de n’etre pas frappé par
des analogies que tous ce problèmes présentent entre eux. Qu’il
s’agisse de l’electricité ou de l’hydrodynamique, on est toujours
conduit à des équations différentielles de même famille et les con-
ditions aux limites, quoique différentes, ne sont pas pourtant sans
offrir quelques resemblances. (Poincaré)

Was mann mit Fehlerkontrolle nicht berechnen kann, darüber muss
man schweigen. (“Wittgenstein”)

In this chapter, we discuss the basic issues of computational mathemati-
cal modeling based on differential equations and computation. We have
already met most of these issues and we now seek to formulate a frame-
work. This book and the advanced companion volume give body to this
framework.

We consider a mathematical model of the generic form

A(u) = f (12.1)

where A describes a mathematical model in the form of a differential
operator with certain coefficients and boundary conditions, f represents
given data, and u is the unknown solution. As formulated, this rep-
resents a typical forward problem, where we assume that the model A
and the data f are given and we seek the unknown solution u. In an

284
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inverse problem, we would try to determine the model A, for example
the coefficients of the differential operator such as heat conductivity or
modulus of elasticity, or the right-hand side f , from data corresponding
to solutions u that is obtained from measurements for example. We fo-
cus in this volume on forward problems and discuss inverse problems in
the advanced companion book.

Sources of error in mathematical modeling

There are three basic sources contributing to the total error in compu-
tational mathematical modeling of physical phenomena:

• modeling (A)

• data imprecision (f)

• numerical computation (u).

We refer to the effect on the solution from these sources as the error
from modeling or modeling error, the error from data or data error, and
the error from computation or computational error. Modeling errors
result from approximations in the mathematical description of real phe-
nomena, for example in the coefficients of the differential operator A
related to material properties such as heat capacity. Data errors come
about because data related to initial or boundary conditions or forcing
terms like f often cannot be measured or determined exactly. Finally,
the computational error results from the numerical computation of the
solution u. The total error thus has contributions from all these three.

Sources of computational error

In the finite element method, the total computational error also has
contributions from three sources:

• the Galerkin discretization of the differential equation

• quadrature errors arising from the construction of the discrete equa-
tions

• numerical solution of the discrete equations.



286 12. Computational Mathematical Modeling

The Galerkin discretization error arises from using Galerkin’s method
to compute an approximation of the true solution in a finite dimensional
function space like piecewise polynomials, assuming that the integrals
that occur in the Galerkin formulation are evaluated exactly and the
resulting discrete equations are solved exactly. The quadrature error
comes from evaluating the integrals arising in the Galerkin formulation
using numerical quadrature. Finally, the discrete solution error is the
error resulting from solving the discrete system of equations only ap-
proximately. It is important to distinguish the three sources of error
because the different errors propagate and accumulate differently.

For now, we focus on the Galerkin discretization error, leaving quadra-
ture and discrete solution errors mostly to the advanced companion vol-
ume. However, we do discuss quadrature error briefly in Chapter 9 and
discrete solution error in Chapter 7.

The goal of computational mathematical modeling

A natural goal is to seek to control the total error in some given norm to
some given tolerance with minimal total computational work. We may
formulate this goal as a combination of

• reliability

• efficiency.

Reliability means that the total error is controlled in a given norm on a
given tolerance level with some degree of security; for instance, the total
error is guaranteed to be within 1 percent at every point in space and
time with a probability of 95 percent. Efficiency means that the total
work to achieve this error control is essentially as small as possible. In
this volume, we mainly focus on the computational error, and mostly
leave modeling and data errors to the advanced volume. However, we
do give an example of control of modeling and data errors in Chapter 8.

Thus we formulate our goal as reliable and efficient control of the
computational error. We have seen that realizing this goal in general re-
quires adaptive computational methods. Typically, the adaptivity con-
cerns the underlying mesh in space and time.
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Adaptive methods

An adaptive method consists of a computational method together with
an adaptive algorithm. An adaptive algorithm consists of

• a stopping criterion guaranteeing control of the computational er-
ror on a given tolerance level

• a modification strategy in case the stopping criterion is not satisfied.

The goal of the adaptive algorithm is to determine through computation
the “right” mesh satisfying the reliability and efficiency criteria. In prac-
tice, this usually results from an iterative process, where in each step
an approximate solution is computed on a given mesh. If the stopping
criterion is satisfied, then the mesh and the corresponding approximate
solution are accepted. If the stopping criterion is not satisfied, then
a new mesh is determined through the modification strategy and the
process is continued. To start the procedure, a first mesh is required.
Central in this process is the idea of feedback in the computational pro-
cess. Information concerning the nature of the underlying problem and
exact solution is successively revealed through computation, and this
information is used to determine the right mesh.

Adaptive methods are based on error estimates. We now turn to
error estimates focusing on estimates for the computational error.

Error estimates for Galerkin discretization errors

We sum up so far: our general objective is to control the total error using
a reliable and efficient adaptive method. Here we have narrowed down
our goal to adaptive control of the Galerkin discretization error and we
now turn to error estimates for this error. Analogous error estimates and
related adaptive error control for modeling, data, quadrature and dis-
crete solution errors, are presented in detail in the advanced companion
volume.

The basic concepts underlying error estimates are

• stability

• accuracy.

Accuracy refers to the effect of discretization in localized regions in space
and time. Stability measures how these effects or perturbations are
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propagated and accumulated to add up to the Galerkin discretization
error.

Different numerical methods generally have different accuracy and
stability properties, and a “good” numerical method for a given differ-
ential equation is a method which combines “good” local accuracy with
“good” stability, which means that the stability properties of the dis-
crete equation appropriately reflect those of the differential equation.
We saw an example of this in Chapter 9 in a comparison of the dG(0)
and cG(1) methods for a parabolic model problem.

Galerkin discretization error estimates come in two forms:

• a priori error estimates

• a posteriori error estimates.

An a priori error estimate measures the Galerkin discretization error in
terms of the error in direct interpolation of the exact solution and the
stability properties of the discretized differential equation or discrete
equation. The basic form of an a priori error estimate is

error ∝ stability factor for the discrete equation × interpolation error.

The stability factor for the discrete equation, or the discrete stability
factor, measures the perturbation growth through a stability estimate
for a dual discrete equation. The interpolation error involves derivatives
of the exact solution and thus represents quantities that are not known.
If we have some information on these derivatives, then we can estimate
the interpolation error (a priori) without solving the discrete equations.
To give the a priori error error estimate a quantitative meaning, the
discrete stability factor has to be estimated. This can sometimes be
done analytically. The alternative is to estimate this factor by solving
the discrete dual problem.

An a posteriori error estimate measures the Galerkin discretization
error in terms of the residual of the computed approximate solution and
stability properties of the differential equation. The basic form of an a
posteriori error estimate is

error ∝ stability factor for the differential equation × residual error.

The residual error can be evaluated (a posteriori) once the approximate
solution has been computed. The stability factor for the differential
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equation, or the continuous stability factor, measures the growth of per-
turbations through a stability estimate for a dual differential equation.
To give the a posteriori error estimate a quantitative meaning, the cor-
responding continuous stability factor has to be estimated. This may
be done analytically in special cases and in general computationally by
solving the dual problem numerically. The reliability of the adaptive
method is directly related to the reliability in the estimate of the con-
tinuous stability factor. In the advanced companion volume, we discuss
in considerable detail how to reliably compute continuous stability fac-
tors in a variety of contexts.

The stopping criterion of an adaptive method is usually based di-
rectly on an a posteriori error estimate. The modification criterion may
be based on both a priori and a posteriori error estimates. The in-
terpolation error in the a priori error estimate may then be estimated
replacing the required derivatives of the exact solution by computed
approximations.

Different errors are connected to different stability factors measur-
ing the accumulation of the specific error. The orthogonality property of
Galerkin methods couples naturally to a certain stability concept mea-
suring derivatives of solutions of dual problems in terms of given data.
This is referred to as strong stability. The orthogonality property of
Galerkin perturbations sometimes cause the Galerkin discretization er-
ror to accumulate more favorably than, for example, quadrature errors.
In general each specific error naturally couples to a specific stability con-
cept and stability factor. We saw examples of this in Chapters 8, 9 and
10.

If stability factors are large, then perturbations are amplified consid-
erably and more computational work, and greater accuracy in modelling
and data, is needed to reach a certain tolerance for the total error. The
Lorenz system (see the advanced companion volume for a detailed dis-
cussion), is an example of a problem where stability factors quickly grow
with time, which reflects a strong sensitivity to initial data (the butterfly
effect) and makes prediction difficult over long time intervals (limits of
weather prediction).

There is nothing without reason, there is no cause without effect.
(Leibniz)

Yesterday, when weary with writing, I was called to supper, and a
salad I had asked for was set before me. “It seems then,” I said,
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“if pewter dishes, leaves of lettuce, grains of salt, drops of water,
vinegar, oil and slices of eggs had been flying about in the air from
all eternity, it might at last happen by chance that there would
come a salad.” “Yes,” responded my lovely, “but not so nice as
this one of mine.” (Kepler)

The investigation of nature is an infinite pasture-ground, where all
may graze, and where the more bite, the longer the grass grows,
the sweeter is its flavor, and the more it nourishes. (T. Huxley)

The discovery of nature, of the ways of the planets, and plants
and animals, require first the conquest of common sense. Science
would advance, not by authenticating everyday experience but by
grasping paradox, adventuring into the unknown. (D. Boorstin)

Figure 12.1: From a summary of Leibniz’s philosophy dedicated to
Prince Eugen von Savoyen.



Part III

Problems in several dimensions

In the last part of this book, we extend the scope to the real world
of two and three dimensions. We start by recalling some basic results
from calculus of several variables including some facts about piecewise
polynomial approximation. We then consider the basic types of lin-
ear partial differential equations including the elliptic Poisson equation,
the parabolic heat equation, the hyperbolic wave equation, and the
mixed parabolic/elliptic-hyperbolic convection-diffusion equation. We
also consider eigenvalue problems and conclude with an abstract devel-
opment of the finite element method for elliptic problems.
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Piecewise Polynomials in Several

Dimensions

The universal mathematics is, so to speak, the logic of the imagi-
nation. (Leibniz)

In this chapter, we prepare for the application of the finite element
method to partial differential equations by discussing approximation of
functions by piecewise polynomial functions in several dimensions. We
consider three main topics. The first is the construction of a mesh, or
triangulation, for a domain in R2 or R3, the second is the construction of
spaces of piecewise polynomials on a triangulation, and the third topic
is the estimation of the interpolation errors.

Recall that in Chapter 8, we used mesh adaptivity to compute an
approximation of a two-point boundary value problem of a desired ac-
curacy using a minimum of computational work. We will use mesh
adaptivity for similar purposes in higher dimensions. In addition, in
higher dimensions, there are geometric considerations that did not arise
in one dimension, and in particular the mesh will also be adapted to re-
solve the features of the domain of the problem. We plot some examples
in Fig. 13.1. The construction of a mesh in higher dimensions is more
complicated than in one dimension and we give only a brief description
of the issues here. We will discuss the details in the advanced companion
volume.

We further discuss the construction of vector spaces of piecewise
polynomial functions, concentrating mainly on piecewise linear and quadratic
functions on triangulations in two dimensions. We conclude by analyzing

293
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Figure 13.1: The mesh on the left was used in a computation of the
flow of air around two airfoils. The mesh on the right,
provided through the courtesy of Roy Williams, Cen-
ter for Advanced Computing Research at Caltech, see
http://www.ccsf.caltech.edu/∼roy, was used to discretize
a piece of metal that has been punched with a fancy char-
acter. In both cases, the meshes are adapted to allow
accurate computation, taking into account both the be-
havior of the solution and the shape of the domain.

the error in piecewise linear interpolation on triangles noting in particual
that the error in the gradient is affected by the shape of the triangles.
We also briefly discuss the L2 projection and quadrature in two space
dimensions.

13.1. Meshes in several dimensions

We start by considering a two-dimensional domain Ω with a polygonal
boundary Γ. A triangulation Th = {K} is a sub-division of Ω into a non-
overlapping set of triangles, or elements, K constructed so that no vertex
of one triangle lies on the edge of another triangle. We use Nh = {N}
to denote the set of nodes N , or corners of the triangles, and Sh = {S}
to denote the set of edges S of the triangles. Depending on the problem,
we may or may not distinguish internal nodes and edges, which do not
lie on Γ, from the boundary nodes and edges that lie on Γ. We illustrate
the notation in Fig. 13.2.

We measure the size of a triangle K ∈ Th, by the length hK of its
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K
hK

S

N

K

K K

Figure 13.2: A triangulation of a domain Ω.

largest side, which is called the diameter of the triangle. The mesh
function h(x) associated to a triangulation Th is the piecewise constant
function defined so h(x) = hK for x ∈ K for each K ∈ Th. We measure
the degree of isotropy of an element K ∈ Th by its smallest angle τK .
If τK ≈ π/3 then K is almost isosceles, while if τK is small then K is
thin, see Fig. 13.3. For the error analysis we present in this book, we
need to limit the degree of anisotropy of the mesh. We use the smallest
angle among the triangles in Th, i.e.

τ = min
K∈Th

τK

as a measure of the degree of anistropy of the triangulation Th, and we
control the degree by assuming that τ is greater than a fixed value.

Problem 13.1. For a given triangle K, determine the relation between
the smallest angle τK , the triangle diameter hK and the diameter ρK of
the largest inscribed circle.

The basic problem of mesh generation is to generate a triangulation
of a given domain with mesh size given (approximately) by a prescribed
mesh function h(x). This problem arises in each step of an adaptive
algorithm, where a new mesh function is computed from an approximate
solution on a given mesh, and a new mesh is constructed with mesh size
given by the new mesh function. The process is then repeated until
a stopping criterion is satisfied. The new mesh may be constructed
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K
K

K~~ /3 K << /3

Figure 13.3: Measuring the isotropy of the triangle.

from scratch or by modification of the previous mesh including local
refinement or coarsening.

In the advancing front strategy a mesh with given mesh size is con-
structed beginning at some point (often on the boundary) by successively
adding one triangle after another, each with a mesh size determined by
the mesh function. The curve dividing the domain into a part already
triangulated and the remaining part is called the front. The front sweeps
through the domain during the triangulation process. An alternative is
to use a h-refinement strategy, where a mesh with a specified local mesh
size is constructed by successively dividing elements of an initial coarse
triangulation with the elements referred to as parents, into smaller ele-
ments, called the children. We illustrate the refinement and advancing
front strategies in Fig. 13.4. It is often useful to combine the two strate-
gies using the advancing front strategy to construct an initial mesh that
represents the geometry of the domain with adequate accuracy, and use
adaptive h-refinement.

There are various strategies for performing the division in an h-
refinement aimed at limiting the degree of anisotropy of the elements.
After the refinements are completed, the resulting mesh is fixed up by
the addition of edges aimed at avoiding nodes that are located in the
middle of element sides. This causes a mild “spreading” of the adapted
region. We illustrate one technique for h-refinement in Fig. 13.5. In
general, refining a mesh tends to introduce elements with small angles,
as can be seen in Fig. 13.5 and it is an interesting problem to construct
algorithms for mesh refinement that avoid this tendency in situations
where the degree of anisotropy has to be limited. On the other hand,
in certain circumstances, it is important to use “stretched” meshes that
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Figure 13.4: The mesh on the left is being constructed by successive
h refinement starting from the coarse parent mesh drawn
with thick lines. The mesh on the right is being con-
structed by an advancing front strategy. In both cases,
high resolution is required near the upper right-hand cor-
ner.

have regions of thin elements aligned together to give a high degree
of refinement in one direction. In these cases, we also introduce mesh
functions that give the local stretching, or degree of anisotropy, and the
orientation of the elements. We discuss the construction and use of such
meshes in the advanced companion volume.

Problem 13.2. Draw the refined mesh that results from sub-dividing the
smallest two triangles in the mesh on the right in Fig. 13.5.

Mesh generation in three dimensions is similar to that in two dimen-
sions with the triangles being replaced by tetrahedra. In practice, the
geometric constraints involved become more complicated and the num-
ber of elements also increases drastically. We show some examples in
Fig. 13.6 and Fig. 13.7.

Problem 13.3. Identify the tetrahedrons shown in the figure on the left
in Fig. 13.6.

13.2. Vector spaces of piecewise polynomials

We focus on the case of a triangulation Th = {K} of a two-dimensional
domain Ω with piecewise polynomial boundary Γ. We begin by dis-
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Figure 13.5: On the left, two elements in the mesh have been marked
for refinement. The refinement uses the Rivara algorithm
in which an element is divided into two pieces by inserting
a side connecting the node opposite the longest side to
the midpoint of the longest side. Additional sides are
added to avoid having a node of one element on the side of
another element. The refinement is shown in the mesh on
the right along with the boundary of all the elements that
had to be refined in addition to those originally marked
for refinement.

cussing the finite dimensional vector space Vh consisting of the continu-
ous piecewise linear functions on Th defined by

Vh =
{
v : v is continuous on Ω, v|K ∈ P1(K) for K ∈ Th

}
,

where P1(K) denotes the set of linear functions on K, i.e., the set of
functions v of the form v(x) = c0 + c1x1 + c2x2 for some constants ci.
We can describe functions in Vh by their nodal values N ∈ Nh because
of two facts. The first is that a linear function is uniquely determined by
its values at three points, as long as they don’t lie on a straight line. To
prove this claim, let K ∈ Th have vertices ai = (ai1, a

i
2), i = 1, 2, 3, see

Fig. 13.8. We want to show that v ∈ P1(K) is determined uniquely by
{v(a1), v(a2), v(a3)} = {v1, v2, v3}. A linear function v can be written
v(x1, x2) = c0+c1x1+c2x2 for some constants c0, c1, c2. Substituting the
nodal values of v into this expression yields a linear system of equations:




1 a1

1 a1
2

1 a2
1 a2

2

1 a3
1 a3

1








c0
c1
c2



 =




v1
v2
v3



 .
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Figure 13.6: On the left, we plot an “exploded” sequence of cubes di-
vided into tetrahedral elements. The nodes of the mesh
are marked with circles. On the right, we plot a tetra-
hedral mesh constructed for a model of the high speed
flow of fluid inside a three dimensional channel with an
indent in the top. The flow is from the upper right to the
lower left. Notice the refinement in the wake caused by
the obstacle. These figures provided by the courtesy of
Roy Williams, Center for Advanced Computing Research
at Caltech, see http://www.ccsf.caltech.edu/∼roy.

It is straightforward to check that the matrix is invertible as long as the
points {ai} do not fall on a line.

Problem 13.4. Prove this claim. Hint: relate the area of K to the
determinant of the coefficient matrix.

The second fact is that if a function is linear in each of two neighboring
triangles and its nodal values on the two common nodes of the triangles
are equal, then the function is continuous across the common edge. To
see this, let K1 and K2 be adjoining triangles with common boundary
∂K1 = ∂K2; see the figure on the left in Fig. 13.9. Parametrizing v along
this boundary, we see that v is a linear function of one variable there.
Such functions are determined uniquely by the value at two points, and
therefore since the values of v on K1 and K2 at the common nodes agree,
the values of v on the common boundary between K1 and K2 agree, and
v is indeed continuous across the boundary.
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Figure 13.7: The surface mesh on the body, and parts of a tetrahedral
mesh around a Saab 2000. Mesh generated by an advanc-
ing front mesh generator developed by P. Hansbo and P.
Möller in a project supported by the Swedish Institute of
Applied Mathematics.

To construct a set of basis functions for Vh, we begin by describing
a set of element basis functions for triangles. Once again, assuming that
a triangle K has nodes at {a1, a2, a3}, the element nodal basis is the set
of functions λi ∈ P1(K), i = 1, 2, 3, such that

λi(a
j) =

{
1, i = j,

0, i 6= j.

We show these functions in Fig. 13.10.

Problem 13.5. Compute explicit formulas for the λi.

We construct the global basis functions for Vh by piecing together the
element basis functions on neighboring elements using the continuity
requirement, i.e. by matching element basis functions on neighboring
triangles that have the same nodal values on the common edge. The
resulting set of basis functions {ϕj}Mj=1, where N1, N2,..., NM is an
enumeration of the nodes N ∈ Nh, is called the set of tent functions.
The tent functions can also be defined by specifying that ϕj ∈ Vh satisfy

ϕj(Ni) =

{
1, i = j,

0, i 6= j,
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(a1
1,a1

2)

(a2
1,a2

2)
(a3

1,a3
2)

K

Figure 13.8: On the left, we show that the three nodal values on a
triangle determine a linear function. On the right, we
show the notation used to describe the nodes of a typical
triangle.

K2

K1

Ni

Nj

v(Nj)

v(Ni) K1= K1

K1
K2

Figure 13.9: On the left, we show that a function that is piecewise lin-
ear on triangles reduces to a linear function of one variable
on triangle edges. On the right, we plot a function that is
piecewise linear on triangles whose values at the common
nodes on two neighboring triangles do not agree.

for i, j = 1, ...,M . We illustrate a typical tent function in Fig. 13.10.
We see in particular that the support of ϕi is the set of triangles that
share the common node Ni.

The tent functions are a nodal basis for Vh because if v ∈ Vh then

v(x) =
M∑

i=1

v(Ni)ϕi(x).

Problem 13.6. Prove this.

Problem 13.7. Let K be a triangle with nodes {ai} and let the midpoints
of the edges be denoted {aij , 1 ≤ i < j ≤ 3} (see Fig. 13.11). (a) Show that
a function v ∈ P1(K) is uniquely determined by the degrees of freedom
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a1

a2

a3
2

3

1

1

Ni

i

Figure 13.10: On the left, we show the three element nodal basis func-
tions for the linear functions on K. On the right, we
show a typical global basis “tent” function.

{v(aij), 1 ≤ i < j ≤ 3}. (b) Are functions continuous in the corresponding
finite element space of piecewise linear functions?

Problem 13.8. Let K be a tetrahedron with vertices {ai, i = 1, ..., 4}.
Show that a function v ∈ P1(K) is uniquely determined by the degrees of
freedom {v(ai), i = 1, ..., 4}. Show that the corresponding finite element
space Vh consists of continuous functions.

Problem 13.9. Explain in what sense the tent functions are “nearly
orthogonal” with respect to the L2 inner product.

13.2.1. Continuous piecewise quadratic functions

The finite element method may be used with piecewise polynomial ap-
proximation of degree q > 1. We refer to the finite element method
in this general form as the (h, q)-method, where both the mesh size h
and the degree q may vary from element to element. We have seen that
taking q large may lead to technical numerical difficulties, but using
moderately large q such as q = 2 and q = 3 can lead to substantial
increase in overall computational efficiency. We now consider the case
of piecewise quadratic polynomial functions on triangles.

We let Vh denote the space of continuous piecewise quadratic poly-
nomials on a triangulation Th:

Vh = {v : v is continuous in Ω, v ∈ P2(K), K ∈ Th},
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where P2(K) is the set of polynomials on K of degree at most 2, that is

P2(K) =




v : v(x) =
∑

0≤i+j≤2

cijx
i
1x
j
2 for x = (x1, x2) ∈ K, cij ∈ R




 .

Each polynomial v ∈ P2(K) is determined by the six coefficients c00, c10,
c01, c20, c11 and c02, and the dimension of P2(K) is thus six. We seek
suitable degrees of freedom to describe continuous piecewise quadratic
functions. These turn out to be the vertex values together with the
values at midpoints of the edges. Let K be a triangle with vertices a1, a2

and a3 and let a12, a23 and a13 denote the midpoints of the triangle sides,
see Fig. 13.11. We call these points the element nodes. The claim is

a1 a12 a2

a23

a3

a13

Figure 13.11: Nodes marking the degrees of freedom for quadratic
functions.

that a function v ∈ P2(K) is uniquely determined by its values at the
6 element nodes. Since the dimension of P2(K) is 6, it suffices to show
uniqueness, that is to show that if v ∈ P2(K) satisfies v(ai) = 0 and
v(aij) = 0, for i < j, i = 1, 2, 3, j = 2, 3, then v ≡ 0 in K.

Problem 13.10. Assuming this fact, show that if v and w are functions
in P2(K) and agree in value at ai and aij , for i < j, i = 1, 2, 3, j = 2, 3,
then v ≡ w in K.

Along the side a2a3, the function v|a2a3 varies like a quadratic polynomial
of one variable. Such a function is determined uniquely by the values at
three points. Hence, v|a2a3 = 0 at a2, a23, and a3 implies that v|a2a3 ≡ 0
on all of a2a3. This implies that v can be factored

v(x) = λ1(x)v1(x),
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where λ1 is the linear element basis function for P1(K) with the property
that λ1(a

1) = 1 and λ1(a
j) = 0 for 1 6= j, and v1 ∈ P1(K).

Problem 13.11. Prove this claim. Hint: this is similar to “factoring”
out a root of a polynomial in one dimension. Note that λ1 ≡ 0 on a2a3.

Since a similar argument shows that v ≡ 0 on a1a3 as well, we must
also be able to factor out λ2 and write

v(x) = λ1(x)λ2(x)v2,

where v2 is a constant. So far we have used the information at a1, a13,
a2, a23, and a3. At a12 we know that λ1(a

12) 6= 0 and λ2(a
12) 6= 0.

Problem 13.12. Prove this.

Since v(a12) = 0, we conclude that v2 = 0 and therefore v ≡ 0.
To prove that the indicated degrees of freedom may be used to de-

scribe Vh, we have to show that this choice leads to continuous functions.
In other words, we have to show that a piecewise quadratic polynomial,
whose values agree on the three nodes on the common side between
neighboring triangles, is continuous. We leave this as a problem.

Problem 13.13. Prove that if K1 and K2 are neighboring triangles and
w1 ∈ P2(K1) and w2 ∈ P2(K2) agree at the three nodes on the common
boundary, then w1 ≡ w2 on the common boundary.

To determine the element basis, we note that v ∈ P2(K) may be
represented as follows

v(x) =
3∑

i=1

v(ai)λi(x)(2λi(x) − 1) +
∑

1≤i<j≤3

v(aij)4λi(x)λj(x).

Problem 13.14. Verify this claim. Hint: it suffices to check that the
expansion on the right agrees with v at the six nodal points.

It follows that the element nodal basis functions {ψi}6
i=1 for P2(K1) are

given by

ψ1 = λ1(2λ1 − 1), ψ2 = λ2(2λ2 − 1), ψ3 = λ3(2λ3 − 1),

ψ4 = 4λ1λ2, ψ5 = 4λ1λ3, ψ6 = 4λ2λ3.
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1

Figure 13.12: Two of six element basis functions for quadratics.

We plot ψ1 and ψ6 in Fig. 13.12.
In the same way as for piecewise linear functions, we construct the

corresponding global basis functions by piecing together the element
basis functions using the continuity requirement.

Problem 13.15. Construct the global basis functions for the space of
piecewise quadratic functions on a uniform triangulation of a square into
right-angled triangles. Plot a sample of the basis functions and determine
the total number.

Problem 13.16. Let K be a tetrahedron with vertices {ai, i = 1, ..., 4}.
Let aij denote the midpoint of the segment aiaj for i < j. (a) Show that
a function v ∈ P2(K) is uniquely determined by the degrees of freedom
{v(ai), v(aij), i, j = 1, ..., 4, i < j}. (b) Show that the corresponding finite
element space Vh has continuous functions.

13.2.2. Examples with polynomials of higher degree

As the degree q of the piecewise polynomial functions increases, there
are more choices for the degrees of freedom for a given element K and
space Pq(K) of polynomials on K of degree at most q. As an example,
we consider the space of continuous piecewise cubic polynomials

Vh = {v : v is continuous and v ∈ P3(K), K ∈ Th, v = 0 on Γ}.

As degrees of freedom we may choose the function values at the nodal
points

aiij =
1

3
(2ai + aj), i, j = 1, 2, 3, i 6= j and a123 =

1

3
(a1 + a2 + a3),
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a1 a2

a3

a112 a221

a223

a332a331

a113

a123

Figure 13.13: One choice of nodes for cubic polynomials on triangles.

where {ai} are the vertices of K as usual; see Fig. 13.13. Another choice
of degrees of freedom is the set of values

{
v(ai),

∂v

∂xj
(ai), v(a123), i = 1, 2, 3, j = 1, 2

}
.

In both cases the corresponding finite elements space of piecewise cubics
consists of continuous functions.

Problem 13.17. Prove the above claims.

We conclude by describing a finite element space of functions with con-
tinuous gradients. Such spaces would be needed in direct applications of
the finite element method to partial differential of fourth order, such
as the two-dimensional analogs of the beam equation modeling thin
plates. The requirement of continuity of the gradient forces the use
of higher degree polynomials; with low degree polynomials it is not
known how to conveniently choose the degrees of freedom. One pos-
sibility is to use the following space of piecewise quintics: Vh = {v :
v and∇v are continuous, v ∈ P5(K), K ∈ Th} on a triangulation of the
domain. Using the node notation defined above for quadratics, the de-
grees of freedom for v ∈ Vh may be chosen as the values of the partial
derivatives of v of total order less than or equal to two at ai, i = 1, 2, 3,
together with ∂nij

v(aij), i, j = 1, 2, 3, i < j, where nij is the outward
normal to the side aiaj.

Problem 13.18. It is possible to use other basic geometric shapes as
elements. One example is to use rectangles when Ω ⊂ R2 is a rectangular
domain. Assume the sides of Ω are parallel to the coordinate axes and let
K be a smaller rectangle in a “triangulation” of Ω with vertices {ai, i =
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1, ..., 4} and sides parallel to the coordinate axes as well. Define the space
Q1(K) to be the set of bilinear functions on K, i.e., v ∈ Q1(K) implies
that

v = c0 + c1x1 + c2x2 + c12x1x2,

for some constants c0, c1, c2, c12. (a) Prove that a function in Q1(K) is
uniquely determined by the element degrees of freedom {v(ai)}. (b) Show
that it is possible to define Vh to be the space of continuous functions that
are in Q1(K) on K. (c) Define an appropriate “triangulation” of Ω into
rectangles. (d) Assuming that Ω and the elements K are squares, describe
the element and global basis functions.

13.3. Error estimates for piecewise linear interpolation

In this section we prove the basic pointwise maximum norm error es-
timate for linear interpolation on a triangle, which states that the in-
terpolation error depends on the second order partial derivatives of the
function being interpolated, i.e. on the “curvature” of the function, the
mesh size and the shape of the triangle. Analogous results hold for
other norms. The results also extend directly to more than two space
dimensions.

Let K be a triangle with vertices ai, i = 1, 2, 3. Given a continuous
function v defined on K, let the linear interpolant πhv ∈ P1(K) be
defined by

πhv(a
i) = v(ai), i = 1, 2, 3.

We illustrate this in Fig. 13.14.

K

a1a2

a3

hv

v

Figure 13.14: The nodal interpolant of v.
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Theorem 13.1. If v has continuous second derivatives, then

‖v − πhv‖L∞(K) ≤
1

2
h2
K‖D2v‖L∞(K), (13.1)

‖∇(v − πhv)‖L∞(K) ≤
3

sin(τK)
hK‖D2v‖L∞(K), (13.2)

where hK is the largest side of K, τK is the smallest angle of K, and

D2v =




2∑

i,j=1

( ∂2v

∂xi∂xj

)2



1/2

.

Remark 13.3.1. Note that the gradient estimate depends on the re-
ciprocal of the sine of the smallest angle of K, and therefore this error
bound deteriorates as the the triangle gets thinner.

Proof. The proof follows the same general outline as the proofs of The-
orem 5.1 and Theorem 5.2. Let λi, i = 1, 2, 3, be the element basis
functions for P1(K) defined by λi(a

j) = 1 if i = j, and λi(a
j) = 0

otherwise. Recall that a function w ∈ P1(K) has the representation

w(x) =

3∑

i=1

w(ai)λi(x) for x ∈ K,

so that

πhv(x) =
3∑

i=1

v(ai)λi(x) for x ∈ K, (13.3)

since πhv(a
i) = v(ai). We shall derive representation formulas for the

interpolation errors v − πhv and ∇(v − πhv), using a Taylor expansion
at x ∈ K:

v(y) = v(x) + ∇v(x) · (y − x) +R(x, y),

where

R(x, y) =
1

2

2∑

i,j=1

∂2v

∂xi∂xj
(ξ)(yi − xi)(yj − xj),

is the remainder term of order 2 and ξ is a point on the line segment
between x and y. In particular choosing y = ai = (ai1, a

i
2), we have

v(ai) = v(x) + ∇v(x) · (ai − x) +Ri(x), (13.4)
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where Ri(x) = R(x, ai). Inserting (13.4) into (13.3) gives for x ∈ K

πhv(x) = v(x)

3∑

i=1

λi(x) + ∇v(x) ·
3∑

i=1

(ai − x)λi(x) +

3∑

i=1

Ri(x)λi(x).

We shall use the following identities that hold for j, k = 1, 2, and x ∈ K,

3∑

i=1

λi(x) = 1,

3∑

i=1

(aij − xj)λi(x) = 0, (13.5)

3∑

i=1

∂

∂xk
λi(x) = 0,

3∑

i=1

(aij − xj)
∂λi
∂xk

= δjk, (13.6)

where δjk = 1 if j = k and δjk = 0 otherwise.

Problem 13.19. Prove these identities. Hint: use the fact that πhv = v
if v ∈ P1(K). For example, choosing v(x) ≡ 1 shows the first of the
identities in (13.5). The second follows by choosing v(x) = d1x1 + d2x2

with di ∈ R. Also, show the identities by direct computation for the
reference triangle with corners at (0, 0), (1, 0) and (0, 1). Finally, (13.6)
follows by differentiating (13.5).

Using (13.5), we obtain the following representation of the interpolation
error,

v(x) − πhv(x) = −
3∑

i=1

Ri(x)λi(x).

Since |ai − x| ≤ hK , we can estimate the remainder term Ri(x) as

|Ri(x)| ≤
1

2
h2
K‖D2v‖L∞(K), i = 1, 2, 3.

Problem 13.20. Prove this using Cauchy’s inequality twice to estimate
an expression of the form

∑
ij xicijxj =

∑
i xi
∑
j cijxj .

Now, using the fact that 0 ≤ λi(x) ≤ 1 if x ∈ K, for i = 1, 2, 3, we
obtain

|v(x) − πhv(x)| ≤ max
i

|Ri(x)|
3∑

i=1

λi(x) ≤
1

2
h2
K‖D2v‖L∞(K) for x ∈ K,

which proves (13.1).
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To prove (13.2), we differentiate (13.3) with respect to xk, k = 1, 2
to get

∇(πhv)(x) =

3∑

i=1

v(ai)∇λi(x),

which together with (13.4) and (13.6) gives the following error represen-
tation:

∇(v − πhv)(x) = −
3∑

i=1

Ri(x)∇λi(x) for x ∈ K.

We now note that

max
x∈K

|∇λi(x)| ≤
2

hK sin(τK)
,

which follows by an easy estimate of the shortest height (distance from
a vertex to the opposite side) of K. We now obtain (13.2) as above and
the proof is complete.

Problem 13.21. Complete the proof by proving the last claims.

We also use πh to denote the continuous piecewise linear interpola-
tion operator into Vh.

Problem 13.22. Using these element error results, state and derive error
bounds for the error of a continuous piecewise linear interpolant πhv of a
function v on a domain Ω triangulated by Th.

13.3.1. A general result in the L2 norm

The following theorem summarizes the interpolation error estimates that
we need in the analysis of the finite element approximation for Poisson’s
equation. This result estimates the error of the continuous piecewise
linear interpolant of a function over the entire domain in the L2 norm.

Theorem 13.2. There are interpolation error constants Ci, depending
only on the minimum angle in the mesh τ and the order of the esti-
mate m, such that the piecewise linear nodal interpolant πhw ∈ Vh of a
function w satisfies for m = 0 and 1,

‖Dm(w − πhw)‖ ≤ Ci ‖h2−mD2w‖, (13.7)
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where D1w = Dw = ∇w, and

‖h−2+mDm(w − πhw)‖ +
( ∑

K∈Th

h−3
K ‖w − πhw‖2

∂K

)1/2 ≤ Ci ‖D2w‖.

(13.8)
Furthermore, there is an interpolant π̃hwh in Vh of w such that for m = 0
and 1,

‖h−1+mDm(w−π̃hw)‖+
( ∑

K∈Th

h−1
K ‖w−π̃hw‖2

∂K

)1/2 ≤ Ci ‖Dw‖. (13.9)

The interpolant π̃hw is defined using suitable averages of w around the
nodal points, because ‖Dw‖ < ∞ does not necessarily guarantee that
the nodal values of w are well defined (while ‖D2w‖ < ∞ does). Note
the presence of an additional square root of h in the second term on the
left that acts to balance the integrals over ∂K compared to the integrals
over K in the other two terms. The boundary integral term will be used
in some a posteriori error estimates we derive below.

The proof is similar to the proof of the maximum norm result pre-
sented above. A full proof is given in the advanced companion volume,
see also Brenner and Scott ([4]).

13.3.2. The error of a piecewise quadratic interpolant

The interpolation properties of the piecewise quadratics are similar to
those of the piecewise linears with an increase of one power of the mesh
size h and one derivative of the function being interpolated. For ex-
ample, we have the following L2 norm interpolation error estimate for
the piecewise quadratic interpolant πh ∈ Vh taking the same values as a
given function u at the nodes:

‖u− πhu‖ ≤ Ci‖h3D3u‖,
where Ci is an interpolation constant and D3u is the square-root of the
sum of squares of all the third order derivatives of u.

13.3.3. The L2 projection

The L2 projection Phu ∈ Vh of a function u ∈ L2(Ω) into the space of
continuous piecewise linear functions Vh on a triangulation Th = {K} of
a domain Ω is defined by

(u− Phu, v) = 0 for all v ∈ Vh. (13.10)
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In other words, the error u − Phu is orthogonal to Vh. (13.10) yields a
linear system of equations for the coefficients of Phu with respect to the
nodal basis of Vh. We discuss the computation of the system and its
solution in Chapter 14.

The L2 projection arises as a natural alternative to nodal interpo-
lation in some situations. For example, the L2 projection of a function
u ∈ L2 is well defined, while the nodal interpolation in general requires
u to be continuous, which is a more stringent requirement. Further, the
L2 projection conserves the total “mass” in the sense that

∫

Ω
Phu dx =

∫

Ω
u dx,

which follows by choosing v(x) ≡ 1 in (13.10), while the nodal interpola-
tion operator does not preserve total mass in general. The L2 projection
also gives the best approximation of a function u in Vh with respect to
the L2 norm. Using (13.10) for v ∈ Vh and Cauchy’s inequality, we
estimate

‖u− Phu‖2 = (u− Phu, u− Phu)

= (u− Phu, u− v) + (u− Phu, v − Phu) = (u− Phu, u− v)

≤ ‖u− Phu‖ ‖u− v‖,

or
‖u− Phu‖ ≤ ‖u− v‖ for all v ∈ Vh. (13.11)

Choosing v = πhu and recalling Theorem 13.2, we conclude

Theorem 13.3. If u has square integrable second derivatives, then the
L2 projection Ph satisfies

‖u− Phu‖ ≤ Ci‖h2D2u‖.

13.4. Quadrature in several dimensions

In the process of computing finite element approximations, we have to
compute integrals of the form

∫
K g(x) dx, whereK is a finite element and

g a given function. Sometimes we may evaluate these integrals exactly,
but usually it is either impossible or inefficient. In this case, we have
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to evaluate the integrals approximately using quadrature formulas. We
briefly present some quadrature formulas for integrals over triangles.

In general, we would like to use quadrature formulas that do not
affect the accuracy of the underlying finite element method, which of
course requires an estimate of the error due to quadrature. A quadrature
formula for an integral over an element K has the form

∫

K
g(x) dx ≈

q∑

i=1

g(yi)ωi, (13.12)

for a specified choice of nodes {yi} in K and weights {ωi}. We now
list some possibilities using the notation aiK to denote the vertices of a

triangle K, aijK to denote the midpoint of the side connecting aiK to ajK ,
and a123

K to denote the center of mass of K, see Fig. 13.11 and Fig. 13.13,
and denote by |K| the area of K:

∫

K
g dx ≈ g

(
a123
K

)
|K|, (13.13)

∫

K
g(x) dx ≈

3∑

j=1

g(ajK)
|K|
3
, (13.14)

∫

K
g dx ≈

∑

1≤i<j≤3

g
(
aijK
) |K|

3
, (13.15)

∫

K
g dx ≈

3∑

j=1

g
(
aiK
) |K|

20
+

∑

1≤i<j≤3

g
(
aijK
)2|K|

15
+ g
(
a123
K

)9|K|
20

. (13.16)

We refer to (13.13) as the center of gravity quadrature, to (13.14) as the
vertex quadrature, and to (13.15) as the midpoint quadrature. Recall
that the accuracy of a quadrature formula is related to the precision
of the formula. A quadrature formula has precision r if the formula
gives the exact value of the integral if the integrand is a polynomial of
degree at most r − 1, but there is some polynomial of degree r such
that the formula is not exact. The quadrature error for a quadrature
rule of precision r is proportional to hr, where h is the mesh size. More
precisely, the error of a quadrature rule of the form (13.12) satisfies

∣∣∣∣∣

∫

K
g dx−

q∑

i=1

g(yi)ωi

∣∣∣∣∣ ≤ ChrK
∑

|α|=r

∫

K
|Dαg| dx,
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where C is a constant. Vertex and center of gravity quadrature have pre-
cision 2, midpoint quadrature has precision 3, while (13.16) has precision
4.

In finite element methods based on continuous piecewise linear func-
tions, we often use nodal quadrature, often also referred to as lumped
mass quadrature, because the mass matrix computed this way becomes
diagonal.

Problem 13.23. Prove the above quadrature formulas have the indicated
precision.

Problem 13.24. Prove that using nodal quadrature to compute a mass
matrix for piecewise linears, gives a diagonal mass matrix where the diag-
onal term is the sum of the terms in the corresponding exactly computed
mass matrix. Motivate the term “lumped”.

Problem 13.25. In reference to Problem 13.18, construct a quadrature
formula for integrals over rectangles by using the two point Gauss rule for
integration over an interval in each direction. Check the precision of the
resulting formula.

I walked in the restaurant
for something to do.
The waitress yelled at me,
and so did the food.
And the water tastes funny
when you’re far from your home.
But it’s only the thirsty
that hunger to roam. (J. Prine)
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Figure 13.15: Leibniz choosing between the old and new philosophy at
the age of 15.



14

The Poisson Equation

Nature resolves everything to its component atoms and never re-
duces anything to nothing. (Lucretius)

In this chapter, we extend the material of Chapter 8 to Poisson’s equa-
tion −∆u = f in a domain Ω ⊂ Rd, where d = 2 or d = 3, together
with various boundary conditions. We begin by presenting some models
from physics and mechanics that are modeled by Poisson’s equation and
describing some of the properties of its solutions. We then discuss the fi-
nite element method for the Poisson equation: constructing the discrete
system of linear equations determining the approximation, deriving a
priori and a posteriori error estimates, formulating an adaptive error
control algorithm, and briefly addressing some implementation issues.
The material directly extends e.g. to problems with variable coefficients
of the form (??) and to three space dimensions using piecewise linear
approximation based on tetrahedral meshes.

14.0.1. Applications of Poisson’s equation

We derived Poisson’s equation in Chapter ?? as a model of stationary
heat conduction. Poisson’s equation is the prototype of the class of ellip-
tic equations and has numerous applications in physics and mechanics.
These include

• Elasticity. The model (8.1) of the deflection of an elastic string
discussed in Chapter 8 can be extended to describe the transversal
deflection due to a transverasal load of a horizontal elastic mem-
brane of uniform tension stretched over a plane curve Γ enclosing

316
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a region Ω in R2; see Fig. 14.1. The equation takes the form of
the Poisson equation −∆u = f in Ω together with the boundary
condition u = 0 on Γ, where f(x) is the transversal load.

u

f

Figure 14.1: An elastic membrane under the load f supported at Γ.

• Electrostatics. A basic problem in electrostatics is to describe the
electric field E(x) in a volume Ω containing charges of density ρ(x)
and enclosed by a perfectly conducting surface Γ. Coulomb’s law,
one of the famous Maxwell equations describing electromagnetic
phenomena, can be written

∇ · E = ρ in Ω. (14.1)

It follows from Faraday’s law ∇× E = 0 (see Chapter 15 below),
that the electric field E is the gradient of a scalar electric potential
ϕ, i.e. E = ∇ϕ. This leads to the Poisson equation ∆ϕ = ρ with
a Dirichlet boundary condition ϕ = c on Γ, where c is a constant.

• Fluid mechanics. The velocity field u of rotation-free fluid flow
satisfies ∇ × u = 0, from which it follows that u = ∇ϕ where
ϕ is a (scalar) velocity potential. If the fluid is incompressible,
then ∇·u = 0, and we obtain the Laplace equation ∆ϕ = 0 for the
potential of rotation-free incompressible flow. At a solid boundary,
the normal velocity is zero, which translates to a homogeneous
Neumann boundary condition for the potential. Note that fluid
flow is rarely rotation-free in the whole region occupied by the
fluid. In particular, if the fluid is viscous, then rotation is generated
at solid boundaries.

• Statistical physics. The problem is to describe the motion of par-
ticles inside a container Ω that move at random until they hit the



318 14. The Poisson Equation

1
2

Figure 14.2: An illustration of Brownian motion.

boundary where they stop. We illustrate this in Fig. 14.2. Suppose
the boundary Γ of Ω is divided into two pieces Γ = Γ1 ∪ Γ2. Let
u(x) be the probability that a particle starting at x ∈ Ω winds up
stopping at some point on Γ1, so that u(x) = 1 means that it is
certain and u(x) = 0 means it never happens. It turns out that
u solves ∆u = 0 in Ω together with u = 1 on Γ1 and u = 0 on
Γ2. Note that the solution of this problem is not continuous on
the boundary.

14.0.2. Solution by Fourier series

One time I was sitting visiting the show at the Old Copley The-
atre, an idea came into my mind which simply distracted all my
attention from the performance. It was the notion of an optical
machine for harmonic analysis. I had already learned not to disre-
gard these stray ideas, no matter when they came to my attention,
and I promptly left the theatre to work out some of the details of
my new plan....The projected machine will solve boundary value
problems in the field of partial differential equations. (Wiener)

For special domains, it is possible to write down a formula for the solu-
tion of Poisson’s equation using Fourier series. For example in Cartesian
coordinates, this is possible if the domain is a square or cube. Using po-
lar, cylindrical or spherical coordinates, the set of domains for which
Fourier’s method may be used includes discs, cylinders, and spheres.

As an illustration, we use Fourier series to solve Poisson’s equation
−∆u = f in a cube Ω = (0, π)×(0, π)×(0, π) with homogeneous Dirichlet
boundary conditions. Because the sides of the cube are parallel to the
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coordinate axes, we can use separation of variables to reduce the problem
to finding a Fourier series in each variable independently. We start by
seeking a solution of the eigenvalue problem −∆v = λv in Ω, with v = 0
on the boundary of Ω, of the form

v(x1, x2, x3) = V1(x1)V2(x2)V3(x3),

where each factor satisfies an independent boundary condition Vi(0) =
Vi(π) = 0, i = 1, 2, 3. Substituting this into the differential equation
yields

V ′′
1

V1
+
V ′′

2

V2
+
V ′′

3

V3
= −λ.

Because x1, x2, and x3 vary independently, each term V ′′
i /Vi must be

constant. Denoting this constant by λi we find that each Vi must solve

V ′′
i + λiVi = 0 in (0, π), Vi(0) = Vi(π) = 0.

This is the one-dimensional eigenvalue problem considered in Section
6.3 with solution Vi(xi) = sin(jxi) and λi = j2, where j is an arbitrary
integer. It follows that

λ = λjkl = j2 + k2 + l2, (14.2)

for integers j, k, and l with the corresponding eigenfunction

v = vjkl = sin(jx1) sin(kx2) sin(lx3).

Using the orthogonality of the eigenfunctions, the solution u can be
expressed as a Fourier series

u(x) =
∑

j,k,l

Ajkl sin(jx1) sin(kx2) sin(lx3),

with Fourier coefficients

Ajkl = λ−1
jkl

(
2

π

)3 ∫

Ω
f(x) sin(jx1) sin(kx2) sin(lx3) dx.

The discussion about convergence is nearly the same as in one dimension.
In particular, if f ∈ L2(Ω) then the Fourier series of u converges and
defines a solution of the given Poisson equation.
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Problem 14.1. Prove the formula for Ajkl .

Problem 14.2. Prove that the set of eigenfunctions {vjkl} are pairwise
orthogonal.

Problem 14.3. (a) Compute the Fourier series for the solution of −∆u =
1 in the square (0, π)× (0, π) with homogeneous Dirichlet boundary condi-
tions. (b) Do the same with the Dirichlet condition replaced by a Neumann
condition on one side of the square.

Note that there can be several different eigenfunctions for a specific
eigenvalue. The multiplicity of an eigenvalue is the number of linearly
independent eigenvectors that share that eigenvalue. Computing the
multiplicity of an eigenvalue λ given by (14.2) is equivalent to deter-
mining the number of ways λ be written as a sum of the squares of
three integers counting order. For example, λ = 6 has multiplicity three
because 6 = 22 + 1 + 1 = 1 + 22 + 1 = 1 + 1 + 22.

Problem 14.4. Show that λ = 17 is an eigenvalue of the Poisson equa-
tion posed on (0, π)3 with Dirichlet boundary conditions and compute its
multiplicity.

14.0.3. Gravitational fields and fundamental solutions

... on aura donc ∆u = 0; cette équation remarquable nous sera de
la plus grande utilité dans la theorie de la figure des corps célestes.
(Laplace)

In his famous treatise Mécanique Céleste in five volumes published 1799-
1825, Laplace extended Newton’s theory of gravitation and in particu-
lar developed a theory for describing gravitational fields based on using
gravitational potentials that satisfy Laplace’s equation, or more gener-
ally Poisson’s equation.

We consider a gravitational field in R3 with gravitational force F (x)
at position x, generated by a distribution of mass of density ρ(x). We
recall that the work of a unit mass, moving along a curve Γ joining a
point A to a point B, is given by

∫

Γ
Fτ ds,

where Fτ is the component of F in the direction of the tangent to the
curve. We illustrate this in Fig. 14.3. If the path Γ is closed, then
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F

F

Figure 14.3: The motion of a particle in a field F along a curve Γ.

the total work performed is zero. By Stokes’ theorem, it follows that a
gravitational field F satisfies ∇×F = 0 and using the results in Chapter
??, we conclude that F is the gradient of a scalar potential u, i.e.

F = ∇u. (14.3)

Laplace proposed the following relation between the gravitational field
F and the mass distribution ρ:

−∇ · F = gρ, (14.4)

where g is a gravitational constant. This is analogous to Coulomb’s law
∇ · E = ρ in electrostatics, see (14.1), and also to the energy balance
equation ∇·q = f for stationary heat conduction, where q is the heat flux
and f a heat source, which we derived in Chapter ??. A corresponding
“derivation” of (14.4) does not appear to be available, reflecting that
the nature of gravitation is not yet understood. In particular, (14.4)
suggests that ∇ · F (x) = 0 at points x where there is no mass so that
ρ(x) = 0. Combining (14.3) and (14.4), we obtain Poisson’s equation
−∆u = gρ for the gravitational potential u. In particular, the potential
satisfies Laplace’s equation ∆u = 0 in empty space.

Newton considered gravitational fields generated by point masses.
We recall that a unit point mass at a point z ∈ R3 is represented mathe-
matically by the delta function δz at z, which is defined by the property
that for any smooth function v,

∫

R3

δz v dx = v(z),

where the integration is to be interpreted in a generalized sense. Actu-
ally, δz is a distribution, not a proper function, and there is no conven-
tional “formula” for it; instead we define the delta function by its action
inside an average of a smooth function.
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Formally, the gravitational potential E(x) (avoid confusion with the
notation for an electric field used above) corresponding to a unit point
mass at the origin should satisfy

−∆E = δ0 in R3, (14.5)

where we assumed that the gravitational constant is equal to one. To
give a precise meaning to this equation, we first formally multiply by a
smooth test function v vanishing outside a bounded set, to get

−
∫

R3

∆E(x)v(x) dx = v(0). (14.6)

Next, we rewrite the left-hand side formally integrating by parts using
Green’s formula (??) to move the Laplacian from E to v, noting that
the boundary terms dissappear since v vanishes outside a bounded set.
We may thus reformulate (14.5) as seeking a potential E(x) satisfying

−
∫

R3

E(x)∆v(x) dx = v(0), (14.7)

for all smooth functions v(x) vanishing outside a bounded set. This is
a weak formulation of (14.5), which is perfectly well defined since now
the Laplacian acts on the smooth function v(x) and the potential E is
assumed to be integrable. We also require the potential E(x) to decay
to zero as |x| tends to infinity, which corresponds to a “zero Dirichlet
boundary condition at infinity”.

In Chapter ??, we showed that the function 1/|x| satisfies Laplace’s
equation ∆u(x) = 0 for 0 6= x ∈ R3, while it is singular at x = 0.
We shall prove that the following scaled version of this function satisfies
(14.7):

E(x) =
1

4π

1

|x| . (14.8)

We refer to this function as the fundamental solution of −∆ in R3. We
conclude in particular that the gravitational field in R3 created by a unit
point mass at the origin is proportional to

F (x) = ∇E(x) = − 1

4π

x

|x|3 ,

which is precisely Newton’s inverse square law of gravitation. Laplace
thus gives a motivation why the exponent should be two, which New-
ton did not (and therefore was criticized by Leibniz). Of course, it
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still remains to motivate (14.4). In the context of heat conduction, the
fundamental solution E(x) represents the stationary temperature in a
homogeneous body with heat conductivity equal to one filling the whole
of R3, subject to a concentrated heat source of strength one at the origin
and with the temperature tending to zero as |x| tends to infinity.

We now prove that the function E(x) defined by (14.8) satisfies
(14.7). We then first note that since ∆v is smooth and vanishes outside
a bounded set, and E(x) is integrable over bounded sets, we have

∫

R3

E∆v dx = lim
a→0+

∫

Da

E∆v dx, (14.9)

where Da = {x ∈ R3 : a < |x| < a−1}, with a small, is a bounded region
obtained from R3 by removing a little sphere of radius a with boundary
surface Sa and also points further away from the origin than a−1, see
Fig. 14.4. We now use Green’s formula (??) on Da with w = E. Since v

Da

a

a-1

Sa

Figure 14.4: A cross-section of the domain Da.

is zero for |x| large, the integrals over the outside boundary vanish when
a is sufficiently small. Using the fact that ∆E = 0 in Da, E = 1/(4πa)
on Sa and ∂E/∂n = 1/(4πa2) on Sa with the normal pointing in the
direction of the origin, we obtain

−
∫

Da

E∆v dx =

∫

Sa

1

4πa2
v ds−

∫

Sa

1

4πa

∂v

∂n
ds = I1(a) + I2(a),

with the obvious definitions of I1(a) and I2(a). Now, lima→0 I1(a) = v(0)
because v(x) is continuous at x = 0 and the surface area of Sa is equal
to 4πa2, while lima→0 I2(a) = 0. The desired equality (14.7) now follows
recalling (14.9).
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The corresponding fundamental solution of −∆ in R2 is given by

E(x) =
1

2π
log(

1

|x| ). (14.10)

In this case the fundamental solution is not zero at infinity.

Problem 14.5. Prove that (14.10) is a fundamental solution of −∆ in
R2.

Problem 14.6. Because the presented mathematical models of heat flow
and gravitation, namely Poisson’s equation, are the same, it opens the
possibility of thinking of a gravitational potential as “temperature” and a
gravitational field as “heat flux”. Can you “understand” something about
gravitation using this analogy?

Replacing 0 by an arbitrary point z ∈ R3, (14.7) becomes

−
∫

R3

E(z − x)∆v(x) dx = v(z), (14.11)

which leads to a solution formula for Poisson’s equation in R3. For ex-
ample, if u satisfies the Poisson equation −∆u = f in R3 and |u(x)| =
O(|x|−1) as |x| → ∞, then u may be represented in terms of the funda-
mental solution E and the right-hand side f as follows:

u(z) =

∫

R3

E(z − x)f(x) dx =
1

4π

∫

R3

f(x)

|z − x| dx. (14.12)

We see that u(z) is a mean value of f centered around z weighted so
that the influence of the values of f(x) is inversely proportional to the
distance from z.

Problem 14.7. Present a corresponding solution formula in the case
d = 2.

Similarly, the potential u resulting from a distribution of mass of
density ρ(x) on a (bounded) surface Γ in R3 is given by

u(z) =
1

4π

∫

Γ

ρ(·)
|z − ·| ds, (14.13)

where the dot indicates the integration variable. Formally we obtain this
formula by simply adding the potentials from all the different pieces of
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mass on Γ. One can show that the potential u defined by (14.13) is
continuous in R3 if ρ is bounded on Γ, and of course u satisfies Laplace’s
equation away from Γ. Suppose now that we would like to determine
the distribution of mass ρ on Γ so that the corresponding potential u
defined by (14.13) is equal to a given potential u0 on Γ, that is we seek
in particular a function u solving the boundary value problem ∆u = 0
in Ω and u = u0 on Γ, where Ω is the volume enclosed by Γ. This leads
to the following integral equation: given u0 on Γ find the function ρ on
Γ, such that

1

4π

∫

Γ

ρ(y)

|x− y| ds = u0(x) for x ∈ Γ. (14.14)

This is a Fredholm integral equation of the first kind, named after the
Swedish mathematician Ivar Fredholm (1866-1927). In the beginning
of the 20th century, Fredholm and Hilbert were competing to prove the
existence of solutions of the basic boundary value problems of mechanics
and physics using integral equation methods. The integral equation
(14.14) is an alternative way of formulating the boundary value problem
of finding u such that ∆u = 0 in Ω, and u = u0 on Γ. Integral equations
may also be solved using Galerkin methods. We return to the topic of
integral equations and their numerical solution in the advanced volume.

Problem 14.8. Show that the potential from a uniform distribution of
mass on the surface of a sphere is given as follows: (a) outside the sphere
the potential is the same as the potential from a point mass at the origin
of the sphere with the same mass as the total surface mass. (b) inside
the sphere the potential is constant. Hint: rewrite the surface integral in
spherical coordinates and consult a calculus book to evaluate the resulting
standard integral.

14.0.4. Green’s functions

There is an analog of the formula (14.12) for the solution of Poisson’s
equation in a bounded domain Ω based on using a Green’s function,
which is the analog of the fundamental solution on a domain different
from Rd. The Green’s function Gz(x) for the Laplace operator with
homogeneous Dirichlet boundary conditions on a bounded domain Ω
with boundary Γ satisfies:

{
−∆Gz(x) = δz(x) for x ∈ Ω,

Gz(x) = 0 for x ∈ Γ.
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Gz(x) has a singularity at z corresponding to that of the fundamental
solution and in this sense, it is a modified fundamental solution that sat-
isfies the Dirichlet boundary condition. In heat conduction, the Green’s
function Gz(x) represents the stationary temperature in a homogeneous
heat conducting body occupying Ω with zero temperature at its bound-
ary subjected to a concentrated heat source at z ∈ Ω. It is possible to
compute Gz for special domains. For example if Ω = {x : |x| < a} is the
ball of radius a in R3 centered at the origin, then

Gz(x) =
1

4π|x− z| −
1

4π| |z|x/a − az/|z| | . (14.15)

Problem 14.9. Verify (14.15).

Problem 14.10. Determine the Green’s function for a “half space” de-
fined as a part of R3 that has a given plane as a boundary. Hint: consider
the function (|x− z|−1 − |x− z∗|−1)/(4π), where z∗ is obtained from z by
reflection in the plane defining the half space.

If u satisfies −∆u = f in Ω and u = g on Γ, then using Green’s
formula as above we find that the solution u can be represented as

u(z) = −
∫

Γ
g ∂nGz ds+

∫

Ω
f Gz dx. (14.16)

In the case Ω is the ball of radius a and f = 0, so that

u(z) =
a2 − |z|2
2d−1πa

∫

Sa

gKz ds, (14.17)

with Sa = {x : |x| = a} and Kz(x) = |x − z|−d, the representation
(14.16) is called Poisson’s formula for harmonic functions. We note in
particular that the value at the center of the sphere Sa is equal to the
mean value of u on the surface of the sphere, i.e.

u(0) =
1

(2a)d−1π

∫

Sa

u ds.

Thus a harmonic function has the property that the value at a point is
equal to its spherical mean values.
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Problem 14.11. Verify (14.16) and (14.17).

In general it is difficult to use (14.16) to compute a solution of Pois-
son’s equation, since finding a formula for the Green function for a gen-
eral domain is difficult. Moreover, integrals over the entire domain and
its boundary have to be evaluated for each value u(z) desired.

14.0.5. The differentiability of solutions

The Poisson formula may be used to show that a bounded function u
satisfying ∆u = 0 in a domain Ω has derivatives of any order inside
Ω. Thus a harmonic function is smooth inside the domain where it is
harmonic. This is because the function |z − x|−d is differentiable with
respect to z any number of times as long as x 6= z, and if x is strictly
inside Ω then the sphere |z − x| = a is contained in Ω for a sufficiently
small, so that the Poisson representation formula may be used. Thus a
bounded solution u of ∆u = 0 in Ω is smooth away from the boundary
of Ω. On the other hand, it may very well have singularities on the
boundary; we discuss this below. These results carry over to solutions
of the Poisson equation −∆u = f in Ω: if f is smooth inside Ω then so
is u.

14.1. The finite element method for the Poisson equation

In this section, we develop the finite element method with piecewise lin-
ear approximation for the Poisson equation with homogeneous Dirichlet
boundary conditions

{
−∆u(x) = f(x) for x ∈ Ω,

u(x) = 0 for x ∈ Γ,
(14.18)

where Ω is a bounded domain in R2 with polygonal boundary Γ,

14.1.1. The variational formulation

Generalizing the procedure used in one dimension from Chapter 8, we
first give (14.18) the following variational formulation: find u ∈ V such
that

(∇u,∇v) = (f, v) for all v ∈ V, (14.19)



328 14. The Poisson Equation

where

(w, v) =

∫

Ω
wv dx, (∇w,∇v) =

∫

Ω
∇w · ∇v dx,

and

V =

{
v :

∫

Ω
(|∇v|2 + v2)dx <∞ and v = 0 on Γ

}
. (14.20)

A detailed motivation for the choice of V is given in Chapter 20. Here
we note that if v and w belong to V , then (∇v,∇w) is well defined, and
if v ∈ V and f ∈ L2(Ω), then (f, v) is well defined. This follows from
Cauchy’s inequality. Thus, (14.19) makes sense. In fact, we may think
of V as the largest space with this property.

As in the one-dimensional case, we now seek to show that (14.18)
and (14.19) have the same solution if f is smooth. First, to see that a
solution u of (14.18) with continuous second derivatives (requiring f to
be continuous) also is a solution of the variational problem (14.19), we
multiply −∆u = f by v ∈ V and use Green’s formula to get
∫

Ω
fv dx = −

∫

Ω
∆u v dx = −

∫

Γ
∂nuv ds+

∫

Ω
∇u·∇v dx =

∫

Ω
∇u·∇v dx,

where the boundary condition v = 0 on Γ was used to eliminate the
boundary integral over Γ. Conversely, assuming that the solution of
(14.19) has continuous second derivatives, we can use Green’s formula
in (14.19) to put two derivatives back on u, again using the boundary
conditions on v, to get

∫

Ω
(−∆u− f) v dx = 0 for all v ∈ V. (14.21)

Now suppose that −∆u − f is non-zero, say positive, at some point
x ∈ Ω. Since −∆u−f is continuous, it is therefore positive in some small
neighborhood of x contained in Ω. We choose v to be a smooth “hill”
that is zero outside the neighborhood and positive inside. It follows that
(−∆u−f)v is positive in the small neighborhood and zero outside, which
gives a contradiction in (14.21). It remains to show that the solution u of
(14.19) in fact has continuous second order derivatives if f is continuous;
we prove such a regularity result in Chapter 20. We conclude that the
differential equation (14.18) and the variational problem (14.19) have
the same solution if the data f is continuous. As in the one-dimensional
case, the variational problem (14.19) is meaningful for a wider set of
data including f ∈ L2(Ω).
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Problem 14.12. Prove that the set of functions that are continuous and
piecewise differentiable on Ω and vanish on Γ, is a subspace of V .

Problem 14.13. Assuming that a solution of (14.19) is continuous on
Ω ∪ Γ, show that it is unique. Hint: choose v = u and use the continuity
of u.

Problem 14.14. Provide the details of the equivalence of (14.18) and
(14.19).

The variational problem (14.19) is equivalent to the following quad-
ratic minimization problem: find u ∈ V such that

F (u) ≤ F (v) for all v ∈ V, (14.22)

where

F (v) =
1

2

∫

Ω
|∇v|2 dx−

∫

Ω
fv dx.

The quantity F (v) may be interpreted as the total energy of the function
v ∈ V composed of the internal energy 1

2

∫
Ω |∇v|2 dx and the load poten-

tial −
∫
Ω fv dx. Thus, the solution u minimizes the total energy F (v)

over V . In Chapter 20 we prove existence of a unique solution to the
minimization problem (14.22) and thus existence of a unique solution to
the variational problem (14.19) and consequently to (14.18).

Problem 14.15. Prove the equivalence of (14.22) and (14.19).

14.1.2. The finite element method

Let Th = {K} be a triangulation of Ω with mesh function h(x) and let Vh
be the corresponding finite element space of continuous piecewise linear
functions vanishing on Γ. The finite element space Vh is a subspace of
the space V defined by (14.20). Let Nh = {N} denote the set of internal
nodes N and Sh = {S} the set of internal edges S of Th. We exclude the
nodes and edges on the boundary because of the homogeneous Dirichlet
boundary condition. Let {N1, ..., NM} be an enumeration of the internal
nodes Nh, and {ϕ1, ..., ϕM} the corresponding nodal basis for Vh.

The finite element method for (14.18) reads: find U ∈ Vh such that

(∇U,∇v) = (f, v) for all v ∈ Vh. (14.23)
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As in one dimension, we can interpret this as demanding that U solve
the Poisson equation in an “average” sense corresponding to the residual
of U being “orthogonal” in a certain sense to Vh. More precisely, using
the fact that (∇u,∇v) = (f, v) for v ∈ Vh because Vh ⊂ V , (14.23) is
equivalent to

(∇u−∇U,∇v) = 0 for all v ∈ Vh, (14.24)

which expresses the Galerkin orthogonality of the finite element approx-
imation.

Problem 14.16. Prove that if (14.23) holds with v equal to each of the
nodal basis functions Vh, then (14.23) holds for all v ∈ Vh.

14.1.3. The discrete system of equations

Expanding U in terms of the basis functions {ϕi} as

U =

M∑

j=1

ξjϕj , where ξj = U(Nj),

substituting this into (14.23) and choosing v = ϕi, gives

M∑

j=1

(∇ϕj ,∇ϕi)ξj = (f, ϕi), i = 1, ...,M.

This is equivalent to the linear system of equations

Aξ = b, (14.25)

where ξ = (ξi) is the vector of nodal values, A = (aij) is the stiffness
matrix with elements aij = (∇ϕj ,∇ϕi) and b = (bi) = (f, ϕi) is the
load vector. The stiffness matrix A is obviously symmetric and it is also
positive-definite since for any v =

∑
i ηiϕi in Vh,

M∑

i,j=1

ηiaijηj =

M∑

i,j=1

ηi(∇ϕi,∇ϕj)ηj

=



∇
M∑

i=1

ηiϕi,∇
M∑

j

ηjϕj



 = (∇v,∇v) > 0,
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unless ηi = 0 for all i. This means in particular that (14.25) has a unique
solution ξ.

Similarly, we determine the linear system determining the L2 pro-
jection Phv of a function v ∈ L2(Ω) into Vh defined by

(Phv,w) = (v,w) for all w ∈ Vh.

Substituting Phv =
∑

j ηjϕj and choosing w = ϕi, i = 1, ...,M , we
obtain the linear system

Mη = b, (14.26)

where the mass matrix M has coefficients (ϕj , ϕi) and the data vector
b has coefficients (v, ϕi).

Problem 14.17. Prove that the mass matrix is symmetric and positive
definite.

14.1.4. The discrete Laplacian

It will be convenient below to use a discrete analog ∆h of the Laplacian
∆ defined as follows: For a given w ∈ V , let ∆hw be the unique function
in Vh that satisfies

−(∆hw, v) = (∇w,∇v) for all v ∈ Vh. (14.27)

In particular, if w ∈ Vh, denoting the nodal values of w by the vector
η and those of ∆hw by ζ, we find that (14.27) is equivalent to the
system of equations −Mζ = Aη, where M is the mass matrix and A the
Poisson stiffness matrix. In other words, the nodal values of the discrete
Laplacian ∆hw of the function w ∈ Vh with nodal values η, are given by
−M−1Aη. We may think of ∆h as a linear operator on Vh corresponding
to multiplication of nodal values by the matrix −M−1A. Using ∆h, we
may express the finite element problem (14.23) as finding U ∈ Vh such
that

−∆hU = Phf, (14.28)

where Ph is the L2 projection onto Vh. If w is smooth we may write
(14.27) also as

(∆hw, v) = (∆w, v) for all v ∈ Vh, (14.29)

which is the same as to say that ∆hw = Ph∆w. Usually, we don’t
actually compute ∆hw, but we shall see that the notation is handy.

Problem 14.18. Verify (14.28).
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14.1.5. An example: uniform triangulation of a square

A man who was famous as a tree climber was guiding someone in
climbing a tall tree. He ordered the man to cut the top branches,
and, during this time, when the man seemed in great danger, the
expert said nothing. Only when the man was coming down and
had reached the height of the eaves did the expert call out, “Be
careful! Watch your step coming down!” I asked him, “Why did
you say that? At that height he could jump the rest of the way if
he chose.”
“That’s the point,” said the expert. “As long as the man was up
at a dizzy height and the branches were threatening to break, he
himself was so afraid I said nothing. Mistakes are always made
when people get to easy places.” (Kenko, translated by D. Keene)

We compute the stiffness matrix and load vector explicitly on the uni-
form triangulation of the square Ω = [0, 1] × [0, 1] pictured in Fig. 14.5.
We choose an integer m ≥ 1 and set h = 1/(m + 1), then construct the
triangles as shown. The diameter of the triangles in Th is

√
2h and there

are M = m2 internal nodes. We number the nodes starting from the
lower left and moving right, then working up across the rows.

(0,0) (h,0) (2h,0) ((m-1)h,0) (mh,0) ((m+1)h,0)

(0,h)

(0,2h)

(0,(m+1)h)

(0,mh)

N1 N2 Nm-1

N2m
Nm+1 Nm+2

Nm

N2m+1

Nm2

N3m

N(m-1)m

(1,1)

Figure 14.5: The standard triangulation of the unit square.

In Fig. 14.6, we show the support of the basis function corresponding
to the nodeNi along with parts of the basis functions for the neighboring
nodes. As in one dimension, the basis functions are “almost” orthogonal
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i

Figure 14.6: The support of the basis function ϕi together with parts
of the neighboring basis functions.

in the sense that only basis functions ϕi and ϕj sharing a common
triangle in their supports yield a non-zero value in (∇ϕi,∇ϕj). We
show the nodes neighboring Ni in Fig. 14.7. The support of any two

i-m i-m+1

i+1i-1

i+mi+m-1

i

i

Figure 14.7: The indices of the nodes neighboring Ni and an “expl-
oded” view of ϕi.

neighboring basis functions overlap on just two triangles, while a basis
function “overlaps itself” on six triangles.

We first compute

(∇ϕi,∇ϕi) =

∫

Ω
|∇ϕi|2 dx =

∫

support of ϕi

|∇ϕi|2 dx,

for i = 1, ...,m2. As noted, we only have to consider the integral over
the domain pictured in Fig. 14.7, which is written as a sum of integrals
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over the six triangles making up the domain. Examining ϕi on these
triangles, see Fig. 14.7, we see that there are only two different integrals
to be computed since ϕi looks the same, except for orientation, on two of
the six triangles and similarly the same on the other four triangles. We
shade the corresponding triangles in Fig. 14.6. The orientation affects
the direction of ∇ϕi of course, but does not affect |∇ϕi|2.

We compute (∇ϕi,∇ϕi) on the triangle shown in Fig. 14.8. In this

Ni
h

i=0

i=0

i=1

h

(0,0) (h,0)

(0,h)

x1

x2

x2=h-x1

Figure 14.8: First case showing ϕi on the left together with the vari-
ables used in the reference triangle.

case, ϕi is one at the node located at the right angle in the triangle
and zero at the other two nodes. We change coordinates to compute
(∇ϕi,∇ϕi) on the reference triangle shown in Fig. 14.8. Again, changing
to these coordinates does not affect the value of (∇ϕi,∇ϕi) since ∇ϕi
is constant on the triangle. On the triangle, ϕi can be written ϕi =
ax1 + bx2 + c for some constants a, b, c. Since ϕi(0, 0) = 1, we get c = 1.
Similarly, we compute a and b to find that ϕi = 1−x1/h−x2/h on this
triangle. Therefore, ∇ϕi =

(
−h−1,−h−1

)
and the integral is

∫

⊲
|∇ϕi|2 dx =

∫ h

0

∫ h−x1

0

2

h2
dx2 dx1 = 1.

In the second case, ϕi is one at a node located at an acute angle of
the triangle and is zero at the other nodes. We illustrate this in Fig. 14.9.
We use the coordinate system shown in Fig. 14.9 to write ϕi = 1−x1/h.
When we integrate over the triangle, we get 1/2.

Problem 14.19. Verify this.

Summing the contributions from all the triangles gives

(∇ϕi,∇ϕi) = 1 + 1 +
1

2
+

1

2
+

1

2
+

1

2
= 4.
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Ni

i=0

i=1

h
(0,0) (h,0)

(h,h)

x1

x2=x1

i=0

i=1

Figure 14.9: Second case showing ϕi and the reference triangle.

Next, we compute (∇ϕi,∇ϕj) for indices corresponding to neighbor-
ing nodes. For a general node Ni, there are two cases of inner products
(see Fig. 14.6 and Fig. 14.7):

(∇ϕi,∇ϕi−1) = (∇ϕi,∇ϕi+1) = (∇ϕi,∇ϕi−m) = (∇ϕi,∇ϕi+m),

and
(∇ϕi,∇ϕi−m+1) = (∇ϕi,∇ϕi+m−1).

The orientation of the triangles in each of the two cases are different, but
the inner product of the gradients of the respective basis functions is not
affected by the orientation. Note that the the equations corresponding
to nodes next to the boundary are special, because the nodal values
on the boundary are zero, see Fig. 14.5. For example, the equation
corresponding to N1 only involves N1, N2 and Nm+1.

For the first case, we next compute (∇ϕi,∇ϕi+1). Plotting the in-
tersection of the respective supports shown in Fig. 14.10, we conclude

i+1
i

Figure 14.10: The overlap of ϕi and ϕi+1.

that there are equal contributions from each of the two triangles in the
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intersection. We choose one of the triangles and construct a reference
triangle as above. Choosing suitable variables, we find that

∇ϕi · ∇ϕi+1 =
(
−1

h
,−1

h

)
·
(1
h
, 0
)

= − 1

h2
,

and integrating over the triangle gives −1/2.

Problem 14.20. Carry out this computation in detail.

Since there are two such triangles, we conclude that (∇ϕi,∇ϕi+1) = −1.

Problem 14.21. Prove that (∇ϕi,∇ϕi−m+1) = (∇ϕi,∇ϕi+m−1) = 0.

We can now determine the stiffness matrix A using the informa-
tion above. We start by considering the first row. The first entry is
(∇ϕ1,∇ϕ1) = 4 since N1 has no neighbors to the left or below. The
next entry is (∇ϕ1,∇ϕ2) = −1. The next entry after that is zero, be-
cause the supports of ϕ1 and ϕ3 do not overlap. This is true in fact of
all the entries up to and including ϕm. However, (∇ϕ1,∇ϕm+1) = −1,
since these neighboring basis functions do share two supporting trian-
gles. Finally, all the rest of the entries in that row are zero because
the supports of the corresponding basis functions do not overlap. We
continue in this fashion working row by row. The result is pictured
in Fig. 14.11. We see that A has a block structure consisting of banded
m×m submatrices, most of which consit only of zeros. Note the pattern
of entries around corners of the diagonal block matrices; it is a common
mistake to program these values incorrectly.

Problem 14.22. Compute the stiffness matrix for the Poisson equation
with homogeneous Dirichlet boundary conditions for (a) the union jack
triangulation of a square shown in Fig. 14.12 and (b) the triangulation of
triangular domain shown in Fig. 14.12.

Problem 14.23. Compute the coefficients of the mass matrix M on the
standard triangulation of the square of mesh size h. Hint: it is possible to
use quadrature based on the midpoints of the sides of the triangle because
this is exact for quadratic functions. The diagonal terms are h2/2 and the
off-diagonal terms are all equal to h2/12. The sum of the elements in a
row is equal to h2.
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Figure 14.11: The stiffness matrix.

Problem 14.24. Compute the stiffness matrix A for the continuous piece-
wise quadratic finite element method for the Poisson equation with ho-
mogeneous boundary conditions on the unit square using the standard
triangulation.

Problem 14.25. Compute the matrix −M̂−1A on the standard triangu-
lation, where M̂ is the lumped mass matrix obtained computing the mass
matrix using nodal quadrature. Give an interpretation of −M̂−1A related
to ∆h.

The storage of a sparse matrix and the solution of a sparse system
are both affected by the structure or sparsity pattern of the matrix. The
sparsity pattern is affected in turn by the enumeration scheme used to
mark the nodes.

Problem 14.26. Describe the sparsity pattern of the stiffness matri-
ces A for the Poisson equation with homogeneous Dirichlet data on the
unit square corresponding to the continuous piecewise linear finite element
method on the standard triangulation using the three numbering schemes
pictured in Fig. 14.13.
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(0,0) (h,0) (2h,0) ((m-1)h,0) (mh,0) ((m+1)h,0)

(0,h)

(0,2h)

(0,(m+1)h)

(0,mh)

N2 Nm-1

N2m
Nm+1

N(m-1)m

(1,1)

N1

Figure 14.12: The “union jack” triangulation of the unit square and a
uniform triangulation of a right triangle.

1

m2

1

m2

2

3

4

(a) (b) (c)

1 m

2m

5

m

Figure 14.13: Three node numbering schemes for the standard trian-
gulation of the unit square.

There are several algorithms for reordering the coefficients of a sparse
matrix to form a matrix with a smaller bandwidth. Reordering the
coefficients is equivalent to computing a new basis for the vector space.

The load vector b is computed in the same fashion, separating each
integral ∫

Ω
fϕi dx =

∫

support of ϕi

f(x)ϕi(x) dx

into integrals over the triangles making up the support of ϕi. To compute
the elements (f, ϕi) of the load vector, we often use one of the quadrature
formulas presented in Chapter 13.
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Problem 14.27. Compute the load vector b for f(x) = x1 + x2
2 on the

standard triangulation of the unit square using exact integration and the
lumped mass (trapezoidal rule) quadrature.

14.1.6. General remarks on computing the stiffness matrix
and load vector

To compute the finite element approximation U , we have to compute
the coefficients of the stiffness matrix A and load vector b and solve the
linear system of equations (14.25). This is relatively easy to do on a
uniform mesh, but it is a considerable programming problem in general
because of the complexity of the geometry involved.

The first task is to compute the non-zero elements aij = (∇ϕj ,∇ϕi)
of the stiffness matrix A. As we saw above, aij = 0 unless both Ni and
Nj are nodes of the same triangle K because this is the only way that
the support of different basis functions overlap. The common support
corresponding to a non-zero coefficient is equal to the support of ϕj if
i = j and equal to the two triangles with the common edge connecting
Nj and Ni if i 6= j. In each case aij is the sum of contributions

aKij =

∫

K
∇ϕj · ∇ϕi dx (14.30)

over the triangles K in the common support. The process of adding
up the contributions aKij from the relevant triangles K to get the aij , is
called assembling the stiffness matrix A. Arranging for a given triangle
K the numbers aKij , where Ni and Nj are nodes of K, into a 3 × 3
matrix (renumbering locally the nodes 1, 2 and 3 in some order), we
obtain the element stiffness matrix for the element K. We refer to the
assembled matrix A as the global stiffness matrix. The element stiffness
matrices were originally introduced as a way to organize the computation
of A. They are also useful in iterative methods where the assembly (and
storage) of A may be avoided completely, and the coefficients aij are
assembled as they are required for the computation of discrete residuals.

Problem 14.28. (a) Show that the element stiffness matrix (14.30) for
the linear polynomials on a triangle K with vertices at (0, 0), (h, 0), and
(0, h) numbered 1, 2 and 3, is given by




1 −1/2 −1/2

−1/2 1/2 0
−1/2 0 1/2



 .
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(b) Use this result to verify the formula computed for the stiffness matrix
A for the continuous piecewise linear finite element method for the Poisson
equation with homogeneous boundary conditions on the unit square using
the standard triangulation. (c) Compute the element stiffness matrix for a
triangle K with nodes {ai}.

Problem 14.29. (a) Compute the element stiffness matrix for Pois-
son’s equation for the quadratic polynomials on the reference triangle with
vertices at (0, 0), (h, 0) and (0, h). (b) Use the result to compute the corre-
sponding global stiffness matrix for the standard triangulation of the unit
square assuming homogeneous boundary conditions; cf. Problem 14.24.

Problem 14.30. (a) Compute the element stiffness matrix AK for the
continuous bilinear finite element method for the Poisson equation with
homogeneous boundary conditions on the unit square using a triangulation
into small squares. (b) Use the result to compute the global stiffness matrix.

Problem 14.31. There are speculations that the coupling of two nodes
Ni and Nj corresponding to a non-zero coefficient aij in the stiffness matrix
A = (aij), is established through the exchange of particles referred to as
femions. The nature of these hypothetical particles is unknown. It is
conjectured that a femion has zero mass and charge but nevertheless a
certain “stiffness”. Give your opinion on this question.

14.1.7. Basic data structures

To compute the element stiffness matrices aKij , we need the physical coor-
dinates of the nodes of K, and to perform the assembly of A we need the
global numbering of the nodes. Similar information is needed to com-
pute the load vector. This information is arranged in a data structure, or
data base, containing a list of the coordinates of the nodes and a list of
the global numbers of the nodes of each triangles. Additional informa-
tion such as a list of the neighboring elements of each element and a list
of the edges, may also be needed for example in adaptive algorithms. It
is desirable to organize the data structure so that mesh modification can
be handled easily. We discuss this further in the advanced companion
book.

14.1.8. Solving the discrete system

Once we have assembled the stiffness matrix, we solve the linear system
Aξ = b to obtain the finite element approximation. We discuss this
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briefly based on the material presented in Chapter 7. The stiffness ma-
trix resulting from discretizing the Laplacian is symmetric and positive-
definite and therefore invertible. These properties also mean that there
is a wide choice in the methods used to solve the linear system for ξ,
which take advantage of the fact that A is sparse.

In the case of the standard uniform discretization of a square, we saw
that A is a banded matrix with five non-zero diagonals and bandwidth
m + 1, where m is the number of nodes on a side. The dimension of
A is m2 and the asymptotic operations count for using a direct method
to solve the system is O

(
m4
)

= O
(
h−4

)
. Note that even though A has

mostly zero diagonals inside the band, fill-in occurs as the elimination
is performed, so we may as well treat A as if it has non-zero diagonals
throughout the band. Clever rearrangement of A to reduce the amount
of fill-in leads to a solution algorithm with an operations count on the
order of O(m3) = O(h−3). In contrast, if we treat A as a full matrix,
we get an asymptotic operations count of O

(
h−6

)
, which is considerably

larger for a large number of elements.

Problem 14.32. Compute the asymptotic operations count for the direct
solution of the systemAξ = b using the threeA computed in Problem 14.26.

Problem 14.33. Write a code to solve the system Aξ = b that uses the
band structure of A.

In general, we get a sparse stiffness matrix, though there may not be
a band structure. If we want to use direct methods efficiently in general,
then it is necessary to first reorder the system to bring the matrix into
banded form.

We can also apply both the Jacobi and Gauss-Seidel methods to solve
the linear system arising from discretizing the Poisson equation. In the
case of the uniform standard discretization of a square for example, the
operations count is O

(
5M
)

per iteration for both methods if we make
use of the sparsity of A. Therefore a single step of either method is much
cheaper than a direct solve. The question is: How many iterations do
we need to compute in order to obtain an accurate solution?

It is not to difficult to show that the spectral radius of the iteration
matrix of the Jacobi method MJ is ρ(MJ) = 1−h2π2/2 +O(h4), which
means that the convergence rate is RJ = h2π2/2 + O(h4). The Gauss-
Seidel method is more difficult to analyze, see Isaacson and Keller ([9]),
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but it can be shown that ρ(MGS) = 1−h2π2 +O(h4) yielding a conver-
gence rate of RGS = h2π2 +O(h4), which is twice the rate of the Jacobi
method. Therefore, the Gauss-Seidel method is preferable to the Ja-
cobi method. On the other hand, the convergence rate of either method
decreases like h2 so as we refine the mesh, both methods become very
slow. The number of operations to achieve an error of 10−σ is of order
5σ/(π2h4) . This is the same order as using a direct banded solver.

There has been a lot of activity in developing iterative methods that
converge more quickly. For example, a classic approach is based on
modifyingMGS in order to decrease the spectral radius, and the resulting
method is called an accelerated or over-relaxed Gauss-Seidel iteration.
In recent years, very efficient multi-grid methods have been developed
and are now becoming a standard tool. A multi-grid method is based
on a sequence of Gauss-Seidel or Jacobi steps performed on a hierarchy
of successively coarser meshes and are optimal in the sense that the
solution work is proportional to the total number of unknowns. We
discuss multigrid methods in detail in the advanced companion volume.

Problem 14.34. Program codes to solve Aξ = b using both the Jacobi
and Gauss-Seidel iteration methods, making use of the sparsity of A in
storage and operations. Compare the convergence rate of the two methods
using the result from a direct solver as a reference value.

14.2. Energy norm error estimates

In this section, we derive a priori and a posteriori error bounds in the
energy norm for the finite element method for Poisson’s equation with
homogeneous Dirichlet boundary conditions. The energy norm, which is
the L2 norm of the gradient of a function in this problem, arises naturally
in the error analysis of the finite element method because it is closely tied
to the variational problem. The gradient of the solution, representing
heat flow, electric field, flow velocity, or stress for example, can be a
variable of physical interest as much as the solution itself, representing
temperature, potential or displacement for example, and in this case,
the energy norm is the relevant error measure. We also prove optimal
order error estimates in the L2 norm of the solution itself. We discuss
analysis in other norms in the advanced companion book.
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14.2.1. A priori error estimate

We first prove that the Galerkin finite element approximation is the
best approximation of the true solution in Vh with respect to the energy
norm.

Theorem 14.1. Assume that u satisfies the Poisson equation (14.18)
and U is the Galerkin finite element approximation satisfying (14.23).
Then

‖∇(u− U)‖ ≤ ‖∇(u− v)‖ for all v ∈ Vh. (14.31)

Proof. Using the Galerkin orthogonality (14.24) with U − v ∈ Vh, we
can write

‖∇e‖2 = (∇e,∇(u− U)) = (∇e,∇(u− U)) + (∇e,∇(U − v)).

Adding the terms involving U on the right, whereby U drops out, and
using Cauchy’s inequality, we get

‖∇e‖2 = (∇e,∇(u− v)) ≤ ‖∇e‖ ‖∇(u − v)‖,

which proves the theorem after dividing by ‖∇e‖.

Using the interpolation results of Theorem 13.2 choosing v = πhu,
we get the following concrete quantitative a priori error estimate:

Corollary 14.2. There exists a constant Ci depending only on the min-
imal angle τ in Th, such that

‖∇(u− U)‖ ≤ Ci‖hD2u‖. (14.32)

14.2.2. A posteriori error estimate

We now prove an a posteriori error estimate following the strategy used
for the two-point boundary value problem in Chapter 8. A new feature
occurring in higher dimensions is the appearance of integrals over the
internal edges S in Sh. We start by writing an equation for the error
e = u− U using (14.19) and (14.23) to get

‖∇e‖2 = (∇(u− U),∇e) = (∇u,∇e) − (∇U,∇e)
= (f, e) − (∇U,∇e) = (f, e− π̃he) − (∇U,∇(e− π̃he)),
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where π̃he ∈ Vh is an interpolant of e chosen as in (13.9). We may think
of π̃he as the usual nodal interpolant of e, although from a technical
mathematical point of view, π̃he will have to be defined slightly differ-
ently. We now break up the integrals over Ω into sums of integrals over
the triangles K in Th and integrate by parts over each triangle in the
last term to get

‖∇e‖2 =
∑

K

∫

K
(f+∆U)(e−π̃he) dx−

∑

K

∫

∂K

∂U

∂nK
(e−π̃he) ds, (14.33)

where ∂U/∂nK denotes the derivative of U in the outward normal di-
rection nK of the boundary ∂K of K. In the boundary integral sum in
(14.33), each internal edge S ∈ Sh occurs twice as a part of each of the
boundaries ∂K of the two triangles K that have S as a common side.
Of course the outward normals nK from each of the two triangles K
sharing S point in opposite directions. For each side S, we choose one of
these normal directions and denote by ∂Sv the derivative of a function
v in that direction on S. We note that if v ∈ Vh, then in general ∂Sv is
different on the two triangles sharing S; see Fig. 13.9, which indicates
the “kink” over S in the graph of v. We can express the sum of the
boundary integrals in (14.33) as a sum of integrals over edges of the
form ∫

S
[∂SU ](e− π̃he) ds,

where [∂SU ] is the difference, or jump, in the derivative ∂SU computed
from the two triangles sharing S. The jump appears because the out-
ward normal directions of the two triangles sharing S are opposite. We
further note that e− π̃he is continuous across S, but in general does not
vanish on S, even if it does so at the end-points of S if π̃h is the nodal in-
terpolant. This makes a difference with the one-dimensional case, where
the corresponding sum over nodes does indeed vanish, because e − πhe
vanishes at the nodes. We may thus rewrite (14.33) as follows with the
second sum replaced by a sum over internal edges S:

‖∇e‖2 =
∑

K

∫

K
(f + ∆U)(e− π̃he) dx+

∑

S∈Sh

∫

S
[∂SU ](e− π̃he) ds.

Next, we return to a sum over element edges ∂K by just distributing
each jump equally to the two triangles sharing it, to obtain an error
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representation of the energy norm of the error in terms of the residual
error:

‖∇e‖2 =
∑

K

∫

K
(f + ∆U)(e− π̃he) dx

+
∑

K

1

2

∫

∂K
h−1
K [∂SU ](e− π̃he)hK ds,

where we prepared to estimate the second sum by inserting a factor
hK and compensating. In crude terms, the residual error results from
substituting U into the differential equation −∆u− f = 0, but in real-
ity, straightforward substitution is not possible because U is not twice
differentiable in Ω. The integral on the right over K is the remainder
from substituting U into the differential equation inside each triangle
K, while the integral over ∂K arises because ∂SU in general is different
when computed from the two triangles sharing S.

We estimate the first term in the error representation by inserting a
factor h, compensating and using the estimate ‖h−1(e− π̃he)‖ ≤ Ci‖∇e‖
of Theorem 13.2, to obtain

|
∑

K

∫

K
h(f + ∆U)h−1(e− π̃he) dx|

≤ ‖hR1(U)‖‖h−1(e− π̃he)‖ ≤ Ci‖hR1(U)‖‖∇e‖,
whereR1(U) is the function defined on Ω by setting R1(U) = |f+∆U | on
each triangle K ∈ Th. We estimate the contribution from the jumps on
the edges similarly. Formally, the estimate results from replacing hK ds
by dx corresponding to replacing the integrals over element boundaries
∂K by integrals over elements K. Dividing by ‖∇e‖, we obtain the
following a posteriori error estimate:

Theorem 14.3. There is an interpolation constant Ci only depending
on the minimal angle τ such that the error of the Galerkin finite element
approximation U of the solution u of the Poisson equation satisfies

‖∇u−∇U‖ ≤ Ci‖hR(U)‖, (14.34)

where R(U) = R1(U) +R2(U) with

R1(U) = |f + ∆U | on K ∈ Th,

R2(U) =
1

2
max
S⊂∂K

h−1
K

∣∣[∂SU ]
∣∣ on K ∈ Th.
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As we mentioned, R1(U) is the contribution to the total residual from
the interior of the elements K. Note that in the case of piecewise linear
approximation, R1(U) = |f |. Further, R2(U) is the contribution to the
residual from the jump of the normal derivative of U across edges. In
the one dimensional problem considered in Chapter 8, this contribution
does not appear because the interpolation error may be chosen to be
zero at the node points. We observe that the presence of the factor
of h in front of the residual error R(U) in (14.34) originates from the
Galerkin orthogonality and the estimate ‖h−1(e− π̃he)‖ ≤ Ci‖∇e‖.

Problem 14.35. Derive a priori and a posteriori error bound in the energy
norm for the finite element approximation of the solution of the Poisson
equation in which the integrals involving the data f are approximated using
the one point Gauss quadrature on each triangle or the “lumped mass”
nodal quadrature. Hint: recall the modeling error estimate in Chapter 8.

Problem 14.36. Give a more precise proof of the estimate for the jump
term in Theorem 14.3 using Theorem 13.2 starting from the error repre-
sentation.

Problem 14.37. Implement an “error estimation” routine for a code that
approximates the Poisson problem using the continuous piecewise linear
finite element method. Construct a test problem with a known solution by
choosing a function u(x) that is zero on the boundary of the unit square
and setting f = −∆u, then compare the error estimate to the true error
on a few meshes.

14.3. Adaptive error control

An immediate use of an a posteriori error bound is to estimate the
error of a computed solution which gives important information to the
user. We may also base an adaptive algorithm on the a posteriori error
estimate seeking to optimize the computational work needed to reach a
certain accuracy.

More precisely, we formulate the basic goal of adaptive error control
as: for a given tolerance TOL, find a triangulation Th that requires the
least amount of computational work to achieve

‖∇u−∇U‖ ≤ TOL, (14.35)

where U ∈ Vh is the finite element approximation corresponding to Th.
Measuring the computational work in terms of the number of nodes
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of the triangulation Th and estimating the unknown error by the com-
putable a posteriori error bound, we are led to the problem of finding
the triangulation Th with the least number of nodes such that the corre-
sponding finite element approximation U satisfies the stopping criterion

Ci‖hR(U)‖ ≤ TOL. (14.36)

This is a nonlinear constrained minimization problem with U depending
on Th. If (14.34) is a reasonably sharp estimate of the error, then a
solution of this optimization problem will meet our original goal.

We cannot expect to be able to solve this minimization problem
analytically. Instead, a solution has to be sought by an iterative process
in which we start with a coarse initial mesh and then successively modify
the mesh by seeking to satisfy the stopping criterion (14.36) with a
minimal number of elements. More precisely, we follow the following
adaptive algorithm:

1. Choose an initial triangulation T (0)
h .

2. Given the jth triangulation Th(j) with mesh function h(j), compute
the corresponding finite element approximation U (j).

3. Compute the corresponding residuals R1(U
(j)) and R2(U

(j)) and
check whether or not (14.36) holds. If it does, stop.

4. Find a new triangulation Th(j+1) with mesh function h(j+1) and
with a minimal number of nodes such that Ci‖h(j+1)R(U (j))‖ ≤
TOL, and then proceed to #2.

The success of this iteration hinges on the mesh modification strategy
used to perform step #4. A natural strategy for error control based on
the L2 norm uses the principle of equidistribution of the error in which
we try to equalize the contribution from each element to the integral
defining the L2 norm. The rationale is that refining an element with
large contribution to the error norm gives a large pay-off in terms of
error reduction per new degree of freedom.

In other words, the approximation computed on the optimal mesh
Th in terms of computational work satisfies

‖∇e‖2
L2(K) ≈

TOL2

M
for all K ∈ Th,
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where M is the number of elements in Th. Based on (14.34), we would
therefore like to compute the triangulation at step #4 so that

C2
i

(∥∥h(j+1)R
(
U (j+1)

)∥∥2

L2(K)
≈ TOL2

M (j+1)
for all K ∈ Th(j+1) , (14.37)

where M (j+1) is the number of elements in Th(j+1) . However, (14.37) is
a nonlinear equation, since we don’t know M (j+1) and U (j+1) until we
have chosen the triangulation. Hence, we replace (14.37) by

C2
i

(∥∥h(j+1)R
(
U (j)

)∥∥2

L2(K)
≈ TOL2

M (j)
for all K ∈ Th(j+1), (14.38)

and use this formula to compute the new mesh size h(j+1).
There are several questions that need to be answered about the pro-

cess described here, including: how much efficiency is lost by replacing
(14.35) by (14.36)? In other words, how much bigger is the right-hand
side of (14.34) than the left-hand? Does the iterative process #1–#4
converge to a solution of the minimization problem? How should the
initial triangulation Th(0) be chosen and how does this affect the conver-
gence of the adaptive procedure? Is the approximation (14.38) justified?
We address these issues in the advanced companion volume.

We conclude this section with an example that illustrates the behav-
ior of this adaptive algorithm in a situation in which the forcing function
is highly localized. We use Femlab to approximate the solution

u(x) =
a

π
exp
(
−a(x2

1 + x2
2)
)
, a = 400,

of Poisson’s equation −∆u = f on the square (−.5, .5) × (−.5, .5) with
f(x) the following “approximate delta function”:

f(x) =
4

π
a2
(
1 − ax2

1 − ax2
2

)
exp
(
−a(x2

1 + x2
2)
)
,

We plot f in Fig. 14.14 (note the vertical scale), together with the initial
mesh with 224 elements. The adaptive algorithm took 5 steps to achieve
an estimated .5% relative error. We plot the final mesh together with
the associated finite element approximation in Fig. 14.15. The algo-
rithm produced meshes with 224, 256, 336, 564, 992, and 3000 elements
respectively.
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f(x)

0

5.105

1.106

1.5.106

2.106

x2

-0.5-0.250.00.250.5x1

-0.5 -0.25 0.0 0.25 0.5

Figure 14.14: The approximate delta forcing function f and the initial
mesh used for the finite element approximation.

Problem 14.38. Let ω(x) be a positive weight function defined on the
domain Ω ⊂ R2. Assume that the mesh function h(x) minimizes the in-
tegral

∫
Ω h

2(x)ω(x) dx under the constraint
∫
Ω h

−1(x) dx = N , where N
is a given positive integer. Prove that h3(x)ω(x) is constant. Interpret
the result as equidistribution in the context of error control. Hint: use
the Lagrange multiplier method with the Lagrange function L(h, λ) =∫
Ω
h2(x)ω dx+ λ(

∫
Ω
h−1(x) dx −N).

14.4. Dealing with different boundary conditions

The variational problem has to be modified when the boundary condi-
tions are changed from homogeneous Dirichlet conditions.

14.4.1. Non-homogeneous Dirichlet boundary conditions

We first discuss the Poisson’s equation with non-homogeneous Dirichlet
boundary conditions: {

−∆u = f in Ω,

u = g on Γ,
(14.39)

where g is the given boundary data. The variational formulation takes
the following form: find u ∈ Vg, where

Vg =

{
v : v = g on Γ and

∫

Ω
(|∇v|2 + v2)dx <∞

}
,
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Figure 14.15: The finite element approximation with a relative error
of .5% and the final mesh used to compute the approx-
imation. The approximation has a maximum height of
roughly 5.

such that
(∇u,∇v) = (f, v) for all v ∈ V0, (14.40)

with

V0 =

{
v : v = 0 on Γ and

∫

Ω
(|∇v|2 + v2)dx <∞

}
.

Recall that Vg, where we look for u, is called the trial space, while V0,
from which we choose test functions, is called the test space. In this case,
the trial and test spaces satisfy different boundary conditions, namely,
the trial functions satisfy the given non-homogeneous Dirichlet condition
u = g on Γ while the test functions satisfy the homogeneous Dirichlet
boundary condition. This is important in the construction of the vari-
ational formulation (14.40) because when we multiply the differential
equation by a test function v ∈ V0 and use integration by parts, the
boundary integral vanishes because v = 0 on Γ. The need to choose test
functions satisfying homogeneous Dirichlet boundary conditions can also
be understood by considering the minimization problem that is equiva-
lent to (14.40): find u ∈ Vg such that F (u) ≤ F (w) for all w ∈ Vg, where
F (w) = 1

2(∇w,∇w)−(f,w). The variational formulation (14.40) results

from setting the derivative d
dǫF (u+ ǫv) equal to zero, where v ∈ V0 is a

perturbation satisfying zero boundary conditions so that u+ ǫv ∈ Vg.
We compute a finite element approximation on a triangulation Th,

where we now also include the nodes on the boundary, denoting the



14. The Poisson Equation 351

internal nodes by Nh as above and the set of nodes on the boundary by
Nb. We compute an approximation U of the form

U =
∑

Nj∈Nb

ξjϕj +
∑

Nj∈Nh

ξjϕj , (14.41)

where ϕj denotes the basis function corresponding to node Nj in an enu-
meration {Nj} of all the nodes, and, because of the boundary conditions,
ξj = g(Nj) for Nj ∈ Nb. Thus the boundary values of U are given by g
on Γ and only the coefficients of U corresponding to the interior nodes
remain to be found. To this end, we substitute (14.41) into (14.19) and
compute inner products with all the basis functions corresponding to
the interior nodes, which yields a square system of linear equations for
the unknown coefficients of U :
∑

Nj∈Nh

ξj(∇ϕj ,∇ϕi) = (f, ϕi) −
∑

Nj∈Nb

g(Nj)(∇ϕj ,∇ϕi), Ni ∈ Nh.

Note that the terms corresponding to the boundary values of U become
data on the right-hand side of the system.

Problem 14.39. Show that Vg is not a vector space. Prove that the
solution of the weak problem is unique.

Problem 14.40. Compute the discrete equations for the finite element
approximation for −∆u = 1 on Ω = (0, 1)×(0, 1) with boundary conditions
u = 0 for x1 = 0, u = x1 for x2 = 0, u = 1 for x1 = 1 and u = x1 for
x2 = 1 using the standard triangulation (Fig. 14.5).

14.4.2. Laplace’s equation on a wedge-shaped domain

We consider Laplace’s equation with Dirichlet boundary conditions
in a wedge-shaped domain making an angle ω:






−∆u = 0 in Ω = {(r, θ) : 0 ≤ r < 1, 0 < θ < ω}
u(r, 0) = u(r, ω) = 0, 0 ≤ r < 1,

u(1, θ) = sin(γθ), 0 ≤ θ ≤ ω,

(14.42)
where γ = π/ω, see Fig. 14.16. The boundary conditions are chosen so
that the exact solution u is given by the following simple explicit formula

u(r, θ) = rγ sin(γθ). (14.43)
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u=0

u=sin( / )

Figure 14.16: A domain with an interior corner.

Note that the solution satisfies homogenous Dirichlet boundary condi-
tions on the straight sides joining the corner.

Problem 14.41. Verify the formula (14.43) by direct computation using
the equation for the Laplacian in polar coordinates.

We noted in Section 14.0.5 that a solution of Laplace’s equation in a
domain (a harmonic function) is smooth inside the domain. We now
show using the above example that a harmonic function may have a
singularity at a corner of the boundary of the domain. Denoting the
derivative with respect to r by Dr, we have from (14.43)

Dru(r, θ) = γrγ−1 sin(γθ), D2
ru(r, θ) = γ(γ − 1)rγ−2 sin(γθ),

and so on, which shows that sufficiently high derivatives of u become
singular at r = 0, with the number depending on γ or ω. For example if
ω = 3π/2, then u(r, θ) ≈ r2/3 andDru(r, θ) ≈ r−1/3 with a singularity at
r = 0. The gradient ∇u corresponds to e.g. stresses in an elastic mem-
brane or to an electric field. The analysis shows that these quantities
become infinite at corners of angle ω > π, which thus indicates extreme
conditions at concave corners. If the boundary conditions change from
Dirichlet to Neumann at the corner, then singularities may occur also
at convex corners; see Problem 14.42.

More generally, a solution of Poisson’s equation with smooth right
hand side in a domain with corners, e.g. a polygonal domain, is a sum
of terms of the form (14.43) plus a smooth function.
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Problem 14.42. Solve the wedge problem with the Dirichlet condition re-
placed by a Neumann condition on one of the straight parts of the bound-
ary.

14.4.3. An example: an L-shaped membrane

We present an example that shows the performance of the adap-
tive algorithm on a problem with a corner singularity. We consider the
Laplace equation in an L-shaped domain that has a non-convex cor-
ner at the origin satisfying homogeneous Dirichlet boundary conditions
at the sides meeting at the origin and non-homogeneous conditions on
the other sides, see Fig. 14.17. We choose the boundary conditions so
that the exact solution is u(r, θ) = r2/3 sin(2θ/3) in polar coordinates
(r, θ) centered at the origin, which has the typical singularity of a corner
problem. We use the knowledge of the exact solution to evaluate the
performance of the adaptive algorithm.

We compute using Femlab with energy norm control based on (14.34)
to achieve an error tolerance of TOL = .005 using h refinement mesh
modification. In Fig. 14.17, we show the initial mesh Th(0) with 112
nodes and 182 elements. In Fig. 14.18, we show the level curves of

(0,0)

u=0

Figure 14.17: The L-shaped domain and the initial mesh.

the solution and the final mesh with 295 nodes and 538 elements that
achieves the desired error bound. The interpolation constant was set to
Ci = 1/8. The quotient between the estimated and true error on the
final mesh was 1.5.

Since the exact solution is known in this example, we can also use
the a priori error estimate to determine a mesh that gives the desired
accuracy. We do this by combining the a priori error estimate (14.32)
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Figure 14.18: Level curves of the solution and final adapted mesh on
the L-shaped domain.

and the principle of equidistribution of error to determine h(r) so that
Ci‖hD2u‖ = TOL while keeping h as large as possible (and keeping the
number of elements at a minimum). Since D2u(r) ≈ r−4/3, as long as
h ≤ r, that is up to the elements touching the corner, we determine that

(
hr−4/3

)2
h2 ≈ TOL2

M
or h2 = TOLM−1/2r4/3,

where M is the number of elements and h2 measures the element area.
To compute M from this relation, we note that M ≈

∫
Ω h

−2 dx, since
the number of elements per unit area is O(h−2), which gives

M ≈M1/2TOL−1

∫

Ω
r−4/3 dx.

Since the integral is convergent (prove this), it follows thatM ∝ TOL−2,
which implies that h(r) ∝ r1/3 TOL. Note that the total number of
unknowns, up to a constant, is the same as that required for a smooth
solution without a singularity, namely TOL−2. This depends on the
very local nature of the singularity in the present case. In general, of
course solutions with singularies may require a much larger number of
elements than smooth solutions do.

Problem 14.43. Use Femlab to approximate the solution of the Poisson
equation on the L-shaped domain using the stated boundary conditions.
Start with a coarse triangulation and use a smallish error tolerance. Print
out the final mesh and use a ruler to measure the value of h versus r roughly,
and then plot the points on a log-log plot. Compute a line through the
data and compare the slope of this to the relation h ≈ r1/3 TOL based on
the a priori result.
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14.4.4. Robin and Neumann boundary conditions

Next, we consider Poisson’s equation with homogeneous Dirichlet con-
ditions on part of the boundary and non-homogeneous Robin conditions
on the remainder: 





−∆u = f in Ω,

u = 0 on Γ1,

∂nu+ κu = g on Γ2,

(14.44)

where Γ = Γ1 ∪ Γ2 is a partition of Γ into two parts and κ ≥ 0. The
natural trial space is

V =

{
v : v = 0 on Γ1 and

∫

Ω

(
|∇v|2 + v2

)
dx <∞

}
,

where the trial functions satisfy the homogeneous Dirichlet condition
but the Robin condition is left out. The test space is equal to the trial
space, because of the homogeneous Dirichlet condition.

To find the variational formulation, we multiply the Poisson equation
by a test function v ∈ V , integrate over Ω, and use Green’s formula to
move derivatives from u to v:

(f, v) = −
∫

Ω
∆u v dx =

∫

Ω
∇u · ∇v dx−

∫

Γ
∂nuv ds

=

∫

Ω
∇u · ∇v dx+

∫

Γ2

κuv ds−
∫

Γ2

gv ds,

where we use the boundary conditions to rewrite the boundary integral.
We are thus led to the following variational formulation: find u ∈ V
such that

(∇u,∇v) +

∫

Γ2

κuv ds = (f, v) +

∫

Γ2

gv ds for all v ∈ V. (14.45)

It is clear that a solution of (14.44) satisfies (14.45). Conversely, we
show that a solution of (14.45) that has two continuous derivatives also
satisfies the differential equation (14.44). We integrate (14.45) by parts
using Green’s formula to put all the derivatives onto u to get

−
∫

Ω
∆u v dx+

∫

Γ
∂nuv ds +

∫

Γ2

κuv ds =

∫

Ω
fv dx+

∫

Γ2

gv ds

for all v ∈ V
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or
∫

Ω
(−∆u− f)v dx+

∫

Γ2

(∂nu+ λu− g)v ds = 0 for all v ∈ V. (14.46)

By first varying v inside Ω as above while keeping v = 0 on the whole of
the boundary Γ, it follows that u solves the differential equation −∆u =
f in Ω. Thus (14.46) reduces to

∫

Γ2

(∂nu+ κu− g)v ds = 0 for all v ∈ V.

The same argument works here; if ∂nu+κu−g is non-zero, say positive,
at some point of Γ, then it is positive in some small neighborhood of the
point in Γ and choosing v to be a positive “hill” centered at the point and
zero outside the neighborhood, gives a contradiction. Thus by varying
v on Γ2, we see that the Robin boundary condition ∂nu+ λu = g on Γ2

must be satisfied (provided ∂nu+ κu− g is continuous).
We recall that boundary conditions like the Dirichlet condition that

are enforced explicitely in the choice of the space V are called essen-
tial boundary conditions. Boundary conditions like the Robin condition
that are implicitly contained in the weak formulation are called natural
boundary conditions. (To remember that we must assume essential
conditions: there are two “ss” in assume and essential.)

To discretize the Poisson equation with Robin boundary conditions
on part of the boundary (14.44), we triangulate Ω as usual, but we
number both the internal nodes and the nodes on Γ2, where the Robin
boundary conditions are posed. We do not number the nodes on Γ1

where the homogeneous Dirichlet conditions are imposed. Nodes located
where Γ1 and Γ2 meet should then be considered Dirichlet nodes. We
then write U as in (14.41) with Nb denoting the nodes on Γ2. In this
problem, however, the coefficients of U corresponding to nodes in Nb

are unknown. We substitute (14.41) into the weak form (14.45) and
compute the inner products with all the basis functions corresponding
to nodes in Nh∪Nb to get a square system. The boundary value g enters
into the discrete equations as data on the right-hand side of the linear
system for U .

Note that the stiffness matrix and load vector related to (14.45)
contain contributions from both integrals over Ω and Γ2 related to the
basis functions corresponding to the nodes on the boundary Γ2.
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To illustrate, we compute the solution of Laplace’s equation with a
combination of Dirichlet, Neumann and Robin boundary conditions on
the domain shown in Fig. 14.19 using Femlab. We show the boundary
conditions in the illustration. The problem models e.g. stationary heat
flow around a hot water pipe in the ground. We show the mesh that

u=0

u
n =0u

n =0

u
n =-u

- u=0

u=1

Figure 14.19: A problem with Robin boundary conditions.

Femlab used to compute the approximation so that the error in the L2

norm is smaller than .0013 together with a contour plot of the approx-
imation in Fig. 14.20. We notice that the level curves are parallel to a
boundary with a homogeneous Dirichlet condition, and orthogonal to a
boundary with a homogeneous Neumann condition.

Figure 14.20: The adaptive mesh and contour lines of the approximate
solution of the problem shown in Fig. 14.19 computed
with error tolerance .0013.

Problem 14.44. Compute the discrete system of equations for the finite
element approximation of the problem −∆u = 1 in Ω = (0, 1)× (0, 1) with
u = 0 on the side with x2 = 0 and ∂nu+ u = 1 on the other three sides of
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Ω using the standard triangulation. Note the contribution to the stiffness
matrix from the nodes on the boundary.

Problem 14.45. (a) Show that the variational formulation of the Neu-
mann problem {

−∇ · (a∇u) + u = f in Ω,

a∂nu = g on Γ,
(14.47)

where a(x) is a positive coefficient, is to find u ∈ V such that

∫

Ω

a∇u · ∇v dx+

∫

Ω

uv dx =

∫

Ω

fv dx+

∫

Γ

gv ds for all v ∈ V, (14.48)

where

V =

{
v :

∫

Ω

a|∇v|2dx+

∫

Ω

v2dx <∞
}
.

(b) Apply the finite element method to this problem and prove a priori and
a posteriori error estimates. (c) Derive the discrete equations in the case
of a uniform triangulation of a square and a = 1.

Problem 14.46. Apply the finite element method with piecewise linear
approximation to the Poisson equation in three dimensions with a variety
of boundary conditions. Compute the stiffness matrix and load vector in
some simple case.

14.5. Error estimates in the L2 norm

Major scientific progress in different directions can only be gained
through extended observation in a prolonged stay in a specific re-
gion, while observations during a balloon expedition cannot escape
being of a superficial nature. (Nansen, in Farthest North, 1897)

So far in this chapter we have used the energy norm to measure the
error. The main reason is that the energy norm arises naturally from the
variational problem. However, it is often desirable to measure the error
in different norms. In fact, specifying the quantities to be approximated
and the norm in which to measure the error is a fundamentally important
part of modeling, and directly affects the choice of approximation and
error control algorithm.

As an example, we develop an error analysis in the L2 norm. Actu-
ally, it is possible to derive an L2 error estimate directly from the energy
norm error estimates. In the two-point boundary value model problem
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(8.2) with a = 1, this follows by first expressing a function v defined on
[0, 1] and satisfying v(0) = 0 as the integral of its derivative:

v(y) = v(0) +

∫ y

0
v′(x) dx =

∫ y

0
v′(x) dx for 0 ≤ y ≤ 1,

and then using Cauchy’s inequality to estimate

|v(y)| ≤
∫ 1

0
|v′(x)| dx ≤

(∫ 1

0
12 dx

)1/2

‖v′‖ = ‖v′‖,

where ‖ · ‖ denotes the L2 norm on (0, 1). Squaring this inequality and
integrating from 0 to 1 in x, we find

‖v‖ ≤ ‖v′‖.

Applying this estimate with v = U − u and recalling the a priori energy
norm error estimate 8.1, we thus obtain the following L2 error estimate
for the two-point boundary value problem (8.2) with a = 1:

‖u− U‖ ≤ Ci‖hu′′‖.

However, this estimate is not optimal because we expect the L2 error of
a good approximation of u in Vh, like for example the piecewise linear
interpolant, to decrease quadratically in the mesh size h and not linearly
as in the estimate. We now improve the estimate and show that the
error of the finite element approximation indeed is optimal in order with
respect to the L2 norm. This is remarkable, because it requires the error
in the derivative to be “in average” better than first order.

Problem 14.47. Prove that if e is zero on the boundary of the unit
square Ω, then

(∫

Ω

|e|2 dx
)1/2

≤
(∫

Ω

|∇e|2 dx
)1/2

.

Hint: extend the proof of the corresponding result in one dimension. Use
the result to obtain an error estimate in the L2-norm for the finite ele-
ment method for Poisson’s equation with homogeneous Dirichlet boundary
conditions.
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14.5.1. Error analysis based on duality

An approach to error analysis in a general norm is to use the idea of
duality to compute the norm of a function by maximizing weighted aver-
age values, or inner products, of the function over a set of weights. For
example,

‖u‖L2(Ω) = max
v∈L2(Ω),v 6=0

∫
Ω u v dx

‖v‖L2(Ω)
,

which follows because Cauchy’s inequality shows that the right-hand side
is bounded by the left-hand side, while choosing v = u shows the equal-
ity. The fact that the norm of a function can be measured by computing
a sufficient number of average values is both fundamentally important
and widely applicable in a variety of situations. In fact, we already used
this technique in the analysis of the parabolic model problem discussed
in Chapter 9, though without much background. We now give a more
careful development.

We illustrate the idea behind a duality argument by first estimating
the error of a numerical solution of a linear n × n system of equations
Aξ = b. Recall that we discussed this previously in Chapter 7. We let
ξ̄ denote a numerical solution obtained for instance using an iterative
method and estimate the Euclidean norm |e| of the error e = ξ − ξ̄. We
start by posing the dual problem A⊤η = e, where e is considered to be
the data. Of course, we don’t know e but we will get around this. Using
the dual problem, we get the following error representation by using the
definition of the transpose,

|e|2 = (e,A⊤η) = (Ae, η) = (Aξ −Aξ̄, η) = (b−Aξ̄, η) = (r, η)

where r = b − Aξ̄ is the residual error. Suppose that it is possible to
estimate the solution η of the equation A⊤η = e in terms of the data e
as

|η| ≤ S|e|, (14.49)

where S is a stability factor. It follows by Cauchy’s inequality that

|e|2 ≤ |r||η| ≤ S|r||e|,

or
|e| ≤ S|r|.
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This is an a posteriori error estimate for the error e in terms of the
residual r and the stability factor S.

We can guarantee that (14.49) holds by defining the stability factor
by

S = max
θ∈Rn, θ 6=0

|ζ|
|θ|

where ζ solves A⊤ζ = θ.
The point of this example is to show how duality can be used to get

an error representation in terms of the residual and the dual solution,
from which the error can be estimated in terms of the residual and a
stability factor. We use this approach repeatedly in this book, and also
take advantage of the Galerkin orthogonality.

14.5.2. An a posteriori estimate for a two-point boundary
value problem

We first prove an a posteriori error estimate in the L2(0, 1) norm , de-
noted by ‖ · ‖, for the problem

{
−(au′)′ + cu = f, in (0, 1),

u(0) = 0, u(1) = 0,
(14.50)

where a(x) > 0 and c(x) ≥ 0. We denote by U the cG(1) solution to the
problem using the usual finite element space Vh of continuous piecewise
linear functions. The dual problem takes just the same form as (14.50)
because the given problem is symmetric:

{
−(aϕ′)′ + cϕ = e, in (0, 1),

ϕ(0) = 0, ϕ(1) = 0,
(14.51)

where e = u−U . We now use (14.50), (14.51), and the Galerkin orthog-
onality with the test function v = πhe ∈ Vh, to obtain
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‖e‖2 =

∫ 1

0
e(−(aϕ′)′ + cϕ) dx =

∫ 1

0
(ae′ϕ′ + ceϕ) dx

=

∫ 1

0
(au′ϕ′ + cuϕ) dx −

∫ 1

0
(aU ′ϕ′ + cUϕ) dx

=

∫ 1

0
fϕdx−

∫ 1

0
(aU ′ϕ′ + cUϕ) dx

=

∫ 1

0
f(ϕ− πhϕ) dx −

M+1∑

j=1

∫

Ij

(aU ′(ϕ− πhϕ)′ + cU(ϕ− πhϕ)) dx.

Integrating by parts over each sub-interval Ij, we find that all the bound-
ary terms disappear, and we end up with

‖e‖2 ≤ ‖h2R(U)‖‖h−2(ϕ− πhϕ)‖,

where R(U) = f +(aU ′)′− cU on each sub-interval. Using an interpola-
tion error estimate of the form ‖h−2(ϕ− πhϕ)‖ ≤ Ci‖ϕ′′‖, and defining
the strong stability factor by

S = max
ξ∈L2(I)

‖ϕ′′‖
‖ξ‖ (14.52)

where ϕ satisfies (14.51) with e replaced by ξ, we obtain the following a
posteriori error estimate:

Theorem 14.4. The finite element approximation U of (8.9) satisfies

‖u− U‖ ≤ SCi‖h2R(U)‖.

Note that the size of the stability factor S varies with the choice of the
coefficients a(x) and c(x).

Problem 14.48. Prove that if a > 0 and c ≥ 0 are constant, then
S ≤ a−1.

The implementation of an adaptive error control based on Theorem
14.51 is the same as for error control based on the energy norm. For
an example, we choose a = 0.01, c = 1 and f(x) = 1/x and compute
using Femlab1d with the L2 norm of the error bounded by TOL = .01.
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We plot the finite element approximation, the residual, and the mesh
size in Fig. 14.21. In this example, there are two sources of singularities
in the solution. First, because the diffusion coefficient a is small, the
solution may become steep near the boundaries, forming what are called
boundary layers. Secondly, the source term f itself is large near x = 0
and undefined at 0. The singularity in the data f affects the residual,
while the size of a affects both the residual and the stability factor S.
The adaptive algorithm approximates the stability factor S by solving
the dual problem (14.51) with e replaced by an approximation. In this
example, S ≈ 37.
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Figure 14.21: Finite element approximation, residual error, and mesh-
size computed with adaptive error control based on the
L2 norm.
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14.5.3. A priori error estimate for a two-point boundary value
problem

We also prove an a priori error estimate in the L2 norm assuming for
simplicity that the mesh size h is constant, and c = 0. Note the presence
of the weighted norm ‖ · ‖a.

Theorem 14.5. The finite element approximation U of (8.9) satisfies

‖u− U‖ ≤ CiSa‖h(u− U)′‖a ≤ C2
i Sa‖h2u′′‖a,

where Sa = maxξ 6=0 ‖ϕ′′‖a/‖ξ‖ with ϕ satisfying (14.51) with e replaced
by ξ.

Proof. Assuming that ϕ satisfies (14.51) with c = 0, and using the
Galerkin orthogonality (8.10) and an L2 estimate for the interpolation
error, we obtain

‖e‖2 =

∫ 1

0
ae′ϕ′ dx =

∫ 1

0
ae′(ϕ− πhϕ)′ dx

≤ ‖he′‖a‖h−1(ϕ− πhϕ)′‖a ≤ Ci‖he′‖a‖ϕ′′‖a,

where Ci = Ci(a). The proof is completed by using the definition of Sa
and noting that multiplying the energy norm error estimate by h gives

‖he′‖a ≤ Ci‖h2u′′‖a. (14.53)

This estimate generalizes to the case of variable h assuming that the
mesh size h does not change too rapidly from one element to the next.

Problem 14.49. Prove that if a > 0 then Sa ≤ 1/
√
a. Note that S

and Sa involve somewhat different norms, which is compensated by the
presence of the factor a in R(U).

14.5.4. A priori and a posteriori error estimates for the Pois-
son equation

We now carry through the same program for the Poisson equation in two
dimensions. We here assume that the mesh function h(x) is differentiable
and there is a constant τ1 > 0 such that τ1hK ≤ h(x) ≤ hK for x ∈ K
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for each K in Th. This may be realized by smoothing of the original
piecewise constant mesh function.

The proofs are based on a basic strong stability (or elliptic regular-
ity) estimate for the solution of the Poisson equation (14.18) giving an
estimate of the strong stability factor S. In Chapter 20, we give the
proof in the case of a convex domain with smooth boundary. In this
case S = 1, and the stability estimate states that all second derivatives
of a function u vanishing on the boundary of Ω can be bounded by the
particular combination of second derivatives given by ∆u.

Theorem 14.6. If Ω is convex with polygonal boundary, or if Ω is a
general domain with smooth boundary, then there is a constant S inde-
pendent of f , such that the solution u of (14.18) satisfies

‖D2u‖ ≤ S‖∆u‖ = S‖f‖. (14.54)

If Ω is convex, then S = 1.

The a priori error estimate is

Theorem 14.7. Let Ω be convex with polygonal boundary or a general
domain with smooth boundary. Then there exists a constant Ci only
depending on τ and τ1, such that the finite element approximation U of
the Poisson problem (14.18) satisfies

‖u− U‖ ≤ SCi‖h∇(u− U)‖, (14.55)

where S is defined in Theorem 14.6. Furthermore, if |∇h(x)|∞ ≤ µ for
x ∈ Ω for some sufficiently small positive constant µ, then

‖h∇(u− U)‖ ≤ Ci‖h2D2u‖, (14.56)

where Ci also depends on µ. In particular, if Ω is convex then

‖u− U‖ ≤ Ci‖h2D2u‖. (14.57)

Proof. Letting ϕ solve the dual problem −∆ϕ = e in Ω together with
ϕ = 0 on Γ, we obtain by integration by parts, using the Galerkin
orthogonality and the interpolation estimate Theorem 13.2

‖e‖2 = (u− U, u− U) = (∇(u− U),∇ϕ)

= (∇(u− U),∇(ϕ − πhϕ)) ≤ Ci‖h∇(u− U)‖‖D2ϕ‖,
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from which the first estimate follows using the strong stability result.
The second estimate (14.56) follows directly from the energy norm er-
ror estimate if h is constant and we discuss the general result in the
advanced companion volume. The final result (14.57) is obtained using
the regularity estimate (14.54).

The a posteriori error estimate is

Theorem 14.8. There are constants Ci and S such that, if U is the
finite element approximation of (14.18), then with the residual R defined
as in Theorem 14.3,

‖u− U‖ ≤ SCi‖h2R(U)‖. (14.58)

If Ω is convex, then S = 1.

Proof. With ϕ defined as in the previous proof, we have

‖e‖2 = (∇(u− U),∇ϕ) = (f, ϕ) − (∇U,∇ϕ)

= (f, ϕ− πhϕ) − (∇U,∇(ϕ − πhϕ)).

The desired result follows by an argument similar to that used in the a
posteriori energy norm estimate by estimating ‖h−2(ϕ−πhϕ)‖ in terms
of Ci‖D2ϕ‖ and using the strong stability estimate to close the loop.

It is like an attempt, over and over again, to reveal the heart of
things. (K. Jarret)

A poem should be equal to:
Not true ...
A poem should not mean
But be. (Archibald MacLeish)
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The Heat Equation

The simpler a hypothesis is, the better it is. (Leibniz)

In this chapter, we consider the numerical solution of the heat equation,
which is the prototype of a linear parabolic partial differential equa-
tion. Recall that we originally derived the heat equation in Chapter ??
to model heat flow in a conducting object. More generally, the same
equation may be used to model diffusion type processes. From a quite
different point of view, we begin this chapter by deriving the heat equa-
tion as a consequence of Maxwell’s equations under some simplifying
assumptions. After that, we recall some of the properties of solutions of
the heat equation, focussing on the characteristic parabolic “smoothing”
and stability properties. We then proceed to introduce a finite element
method for the heat equation, derive a posteriori and a priori error esti-
mates and discuss adaptive error control. The analysis follows the basic
steps used in the analysis of the parabolic model problem in Chapter 9
and of Poisson’s equation in Chapter 14.

15.1. Maxwell’s equations

Thus then, we are led to the conception of a complicated mech-
anism capable of a vast variety of motion... Such a mechanism
must be subject to the general laws of Dynamics, and we ought
to be able to work out all the consequences of its motion, pro-
vided we know the form of the relation between the motions of
the parts... We now proceed to investigate whether the proper-
ties of that which constitutes the electromagnetic field, deduced

367
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from electromagnetic phenomena alone, are sufficient to explain
the propagation of light through the same substance. (Maxwell)

We met in the previous chapter a special case of Maxwell’s equations in
the form of Poisson’s equation for an electric potential in electrostatics.
Here, we consider another special case that leads to a parabolic problem
for a magnetic potential, which in the simplest terms reduces to the heat
equation. Another important special case gives rise to the wave equation
studied in Chapter 16.

It is remarkable that the complex phenomena of interaction between
electric and magnetic fields can be described by the relatively small set
of Maxwell’s equations:






∂B

∂t
+ ∇× E = 0,

−∂D
∂t

+ ∇×H = J,

∇ ·B = 0, ∇ ·D = ρ,

B = µH, D = ǫE, J = σE,

(15.1)

where E is the electric field, H is the magnetic field, D is the electric
displacement, B is the magnetic flux, J is the electric current, ρ is the
charge, µ is the magnetic permeability, ǫ is the dielectric constant, and σ
is the electric conductivity. The first equation is referred to as Faraday’s
law, the second is Ampère’s law, ∇ ·D = ρ is Coulomb’s law, ∇ ·B = 0
expresses the absence of “magnetic charge”, and J = σE is Ohm’s law.
Maxwell included the term ∂D/∂t for purely mathematical reasons and
then using calculus predicted the existence of electromagnetic waves
before these had been observed experimentally. We assume to start
with that ∂D/∂t can be neglected; cf. Problem 15.1 and Problem 15.40.

Because ∇ · B = 0, B can be written as B = ∇ × A, where A is a
magnetic vector potential. Inserting this into Faraday’s law gives

∇×
(
∂A

∂t
+ E

)
= 0,

from which it follows that

∂A

∂t
+ E = ∇V,
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for some scalar potential V . Multiplying by σ and using the laws of Ohm
and Ampère, we obtain a vector equation for the magnetic potential A:

σ
∂A

∂t
+ ∇×

(
µ−1∇×A

)
= σ∇V.

To obtain a scalar equation in two variables, we assume that B =
(B1, B2, 0) is independent of x3. It follows that A has the form A =
(0, 0, u) for some scalar function u that depends only on x1 and x2, so
that B1 = ∂u/∂x2 and B2 = −∂u/∂x1, and we get a scalar equation for
the scalar magnetic potential u of the form

σ
∂u

∂t
−∇ ·

(
µ−1∇u

)
= f, (15.2)

for some function f(x1, x2). This is a parabolic equation with variable
coefficients σ and µ. Choosing σ = µ = 1 leads to the heat equation:






∂
∂tu(x, t) − ∆u(x, t) = f(x, t) for x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0 for x ∈ Γ, 0 < t ≤ T,

u(x, 0) = u0(x) for x ∈ Ω,

(15.3)

where Ω ⊂ R2 with boundary Γ, and we posed homogeneous Dirichlet
boundary conditions.

Problem 15.1. What equation is obtained if ∂D/∂t is not neglected, but
the x3 independence is kept?

Problem 15.2. Show that the magnetic field H around a unit current
along the x3-axis is given by 1

2π|x|(−x2, x1, 0), where |x| = (x2
1 + x2

2)
1

2 .

15.2. The basic structure of solutions of the heat equation

The structure of solutions of the heat equation is closely related to the
properties of solutions of the initial value problems discussed in Chapter
10 and the boundary value problems discussed in Chapters 8 and 14.

15.2.1. Separation of variables and Fourier series

For some domains the method of separation of variables can be em-
ployed to find analytic solutions of the heat equation in terms of series
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expansions into eigenfunctions. We illustrate this approach for the one-
dimensional, homogeneous heat equation






u̇(x, t) − u′′(x, t) = 0 for 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0 for t > 0,

u(x, 0) = u0(x) for 0 < x < π.

(15.4)

We start by seeking solutions of the differential equation and the bound-
ary conditions in (15.4) of the form u(x, t) = ϕ(x)ψ(t) with ϕ(0) =
ϕ(π) = 0. Substituting this into (15.4) and separating the functions
depending on x and t, gives

ψ̇(t)

ψ(t)
=
ϕ′′(x)

ϕ(x)
.

Since x and t are independent variables, each fraction must be equal to
the same constant −λ ∈ R and we are led to the eigenvalue problem

{
−ϕ′′(x) = λϕ(x) for 0 < x < π,

ϕ(0) = ϕ(π) = 0,
(15.5)

and the initial value problem

{
ψ̇(t) = −λψ(t) for t > 0,

ψ(0) = 1,
(15.6)

where ψ(0) is normalized to 1. Thus, seeking solutions in the form of
a product of functions of one variable decouples the partial differential
equation into two ordinary differential equations. It is important to this
technique that the differential equation is linear, homogeneous, and has
constant coefficients.

The problem (15.5) is an eigenvalue problem with eigenfunctions
ϕj(x) = sin(jx) and corresponding eigenvalues λj = j2, j = 1, 2, ... For
each eigenvalue, we can solve (15.6) to get the corresponding solution
ψ(t) = exp(−j2t). We obtain a set of solutions {exp(−j2t) sin(jx)}
of (15.4) with corresponding initial data {sin(jx)} for j = 1, 2, .., which
are called the eigenmodes. Each eigenmode decays exponentially as time
passes and the rate of decay increases with the frequency j. We illustrate
this in Fig. 15.1. Any finite linear combination of eigenmodes
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1 = e-t sin(x)
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Figure 15.1: The solutions of the heat equation corresponding to fre-
quencies j = 1 and j = 3.

J∑

j=1

aj exp(−j2t) sin(jx),

with coefficients aj ∈ R, is a solution of the homogeneous heat equation
corresponding to the initial data

u0(x) =

J∑

j=1

aj sin(jx). (15.7)

More generally, if the initial data u0 has a convergent Fourier series,

u0(x) =
∞∑

j=1

u0,j sin(jx),

with Fourier coefficients given by u0,j = 2π−1
∫ π
0 u0(x) sin(jx) dx, then

the function defined by

u(x, t) =
∞∑

j=1

u0,j exp(−j2t) sin(jx), (15.8)

solves u̇ − u′′ = 0. This is seen by differentiating the series term by
term, which is possible because the coefficients u0,j exp(−j2t) decrease
very quickly with j as long as t > 0. Moreover u(0) = u(π) = 0, so to
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show that u is a solution of (15.4), we only have to check that u(x, t)
equals the initial data u0 at t = 0. If we only require that u0 ∈ L2(0, π),
then it is possible to show that

lim
t→0

‖u(·, t) − u0‖ = 0. (15.9)

If u0 has additional smoothness and also satisfies the boundary condi-
tions u0(0) = u0(π) = 0 (which is not required if we only assume that
u0 ∈ L2(0, π)), then the initial data is assumed in the stronger pointwise
sense, i.e.

lim
t→0

u(x, t) = u0(x) for 0 < x < π. (15.10)

Recalling that the rate at which a function’s Fourier coefficients tends
to zero reflect the smoothness of the function, we see from the solution
formula (15.8) that a solution u(x, t) of the homogeneous heat equation
becomes smoother with increasing time. This is known as parabolic
smoothing. We illustrate the smoothing in Fig. 15.2, where we plot the
solution starting with the discontinuous function

u0(x) =

{
x, 0 ≤ x ≤ π/2,

x− π, π/2 < x ≤ π,

at various times (the solution formula is given in Problem 15.3). This
corresponds well with intuition about a diffusive process in which sharp
features are smoothed out for positive time. Nonsmooth functions have
slowly decreasing Fourier coefficients, so that the Fourier coefficients
of the high modes with j large are relatively large compared to those
of smooth functions. As soon as t > 0, these high modes are damped
rapidly because of the presence of the factor exp(−j2t), and the solution
becomes smoother as t increases.

Problem 15.3. Verify the following formulas for the solutions of the heat
equation corresponding to the indicated initial data:

1. u0(x) = x(π − x),

u(x, t) =
∞∑

j=1

8

(2j − 1)3
e−(2j−1)2t sin((2j − 1)x).
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Figure 15.2: The evolution of discontinuous initial data for the heat
equation.

2. u0(x) =

{
x, 0 ≤ x ≤ π/2

π − x, π/2 < x ≤ π
,

u(x, t) =

∞∑

j=1

4(−1)j+1

π(2j − 1)2
e−(2j−1)2t sin((2j − 1)x).

3. u0(x) =

{
x, 0 ≤ x ≤ π/2

x− π, π/2 < x ≤ π
,

u(x, t) =

∞∑

j=1

(−1)j+1

j
e−4j2t sin(2jx).

Problem 15.4. Find a formula for the solution of (15.4) with the Dirichlet
boundary conditions replaced by the Neumann conditions u′(0) = 0 and
u′(π) = 0. Hint: the series expansion is in terms of cosine functions. Do
the same with the boundary conditions u(0) = 0 and u′(π) = 0.

Problem 15.5. (a) Prove (15.10) assuming that
∑∞
j=1 |u0,j | < ∞. (b)

Prove (15.9) assuming that u0 ∈ L2(0, π), that is
∑∞

j=1 |u0,j |2 <∞.

Problem 15.6. (Strauss ([18])) Waves in a resistant
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medium are described by the problem





ü(x, t) + cu̇(x, t) − u′′(x, t) = 0, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < π,

where c > 0 is a constant. Write down a series expansion for the solution
using separation of variables. Can you say something about the behavior
of the solution as time passes?

Problem 15.7. Give the Fourier series formula for the solution of the
homogeneous heat equation (15.3) posed on the unit square Ω = (0, 1) ×
(0, 1). Hint: first use separation of variables to get an ordinary differential
equation in t and an eigenvalue problem for the Laplacian in (x1, x2). Then,
use separation of variables to decompose the eigenvalue problem for the
Laplacian into independent eigenvalue problems for x1 and x2. Hint: see
Chapter 14.

Problem 15.8. Consider the backward heat eaquation





u̇(x, t) + u′′(x, t) = 0 for 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0 for t > 0,

u(x, 0) = u0(x) for 0 < x < π.

(15.11)

Write down a solution formula in the case u0 is a finite Fourier series of the
form (15.7). Investigate how the different components of u0 get amplified
with time. Why is the equation called the backward heat equation? Can
you find a connection to image reconstruction?

15.2.2. The fundamental solution of the heat equation

The solution of the homogeneous heat equation
{
u̇− ∆u = 0 in R2 × (0,∞),

u(·, 0) = u0 in R2,
(15.12)

with u0 equal to the delta function at the origin δ0, is called the funda-
mental solution of the heat equation and is given by

u(x, t) = E(x, t) =
1

4πt
exp

(
−|x|2

4t

)
. (15.13)

Direct computation shows that E(x, t) solves Ė−∆E = 0 for x ∈ R2 and
t > 0. Further E(·, t) approaches the delta function δ0 as t → 0+ since
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E(x, t) ≥ 0,
∫

R2 E(x, t) dx = 1 for t > 0, and E(x, t) rapidly decays as

|x|/
√
t increases, so that the support of E(x, t) becomes more and more

concentrated around x = 0 as t → 0+. In terms of a model of heat,
E(x, t) corresponds to choosing the initial conditions to be a “hot spot”
at the origin. In Fig. 15.3 we plot E(x, t) at three different times.
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Figure 15.3: The fundamental solution E(x, t) at three times.

Problem 15.9. Show that E defined by (15.13) solves Ė − ∆E = 0 for
t > 0, and verify that

∫
R
E(x, t) dx = 1.

Problem 15.10. Determine the fundamental solution of the heat equation
in Rd, d=1,3.

Problem 15.11. Give the formula for the fundamental solution Eǫ(x, t)
for the heat equation u̇ − ǫ∆u = 0 in two space dimensions, where ǫ is a
positive constant. Determine, as a function of ǫ and t, the diameter of the
set of points x outside which Eǫ(x, t) is essentially zero.

The solution of (15.12) can be expressed in terms of the fundamental
solution and the initial data as follows:

u(x, t) =
1

4πt

∫

R2

u0(y) exp

(
−|x− y|2

4t

)
dy. (15.14)

Problem 15.12. Motivate this formula.

From the solution formula we see that the value u(x, t) at a point x ∈ R2

and t > 0 is a weighted mean value of all the values u0(y) for y ∈ Ω. The
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influence of the value u0(y) on u(x, t) decreases with increasing distance
|x−y| and decreasing time t. In principle, information appears to travel
with an infinite speed of propagation because even for very small time t
there is an influence on u(x, t) from u0(y) for |x − y| arbitrarily large.
However, the nature of the fundamental solution causes the influence to
be extremely small if t is small and |x − y| is large. In particular, the
solution formula shows that if u0 ≥ 0 is concentrated around x = 0, say
u0(x) ≡ 0 for |x| ≥ d for some small d > 0, then u(x, t) “spreads out”
over a disk of radius proportional to

√
t for t > 0 and rapidly decays to

zero outside this disk.

Problem 15.13. (a) Write a code that inputs an x and t and then uses
the composite trapezoidal rule to approximate the integrals in (15.14) when
u0(x) is 1 for |x| ≤ 1 and 0 otherwise and use the code to generate plots
of the solution at several different times. (b) (Harder.) Verify the claim
about the rate of spread of the solution.

15.3. Stability

Throughout the book, we emphasize that the stability properties of
parabolic problems are an important characteristic. To tie into the pre-
vious stability results for parabolic-type problems, we prove a strong
stability estimate for an abstract parabolic problem of the form: find
u(t) ∈ H such that

{
u̇(t) +Au(t) = 0 for t > 0,

u(0) = u0,
(15.15)

where H is a vector space with inner product (·, ·) and norm ‖ · ‖, A is
a positive semi-definite symmetric linear operator defined on a subspace
of H, i.e. A is a linear transformation satisfying (Aw, v) = (w,Av) and
(Av, v) ≥ 0 for all v and w in the domain of definition of A, and u0 is
the initial data. In the parabolic model problem of Chapter 10, H = Rd

and A is a positive semi-definite symmetric d× d matrix. In the case of
the heat equation (15.3), A = −∆ is defined on the infinite-dimensional
space of functions v in L2(Ω) which are square integrable and satisfy
homogeneous Dirichlet boundary conditions.
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Lemma 15.1. The solution u of (15.15) satisfies for T > 0,

‖u(T )‖2 + 2

∫ T

0
(Au(t), u(t)) dt = ‖u0‖2, (15.16)

∫ T

0
t‖Au(t)‖2 dt ≤ 1

4
‖u0‖2, (15.17)

‖Au(T )‖ ≤ 1√
2T

‖u0‖. (15.18)

Proof. The proof uses the same ideas used to show (10.26). Taking the
inner product of (15.15) with u(t), we obtain

1

2

d

dt
‖u(t)‖2 + (Au(t), u(t)) = 0,

from which (15.16) follows.
Next, taking the inner product of the first equation of (15.15) with

tAu(t) and using the fact that

(u̇(t), tAu(t)) =
1

2

d

dt

(
t(Au(t), u(t))

)
− 1

2
(Au(t), u(t)),

since A is symmetric, we find after integration that

1

2
T (Au(T ), u(T )) +

∫ T

0
t‖Au(t)‖2 dt =

1

2

∫ T

0
(Au(t), u(t)) dt,

from which (15.17) follows using (15.16) and the fact that (Av, v) ≥ 0.
Finally, taking the inner product in (15.15) with t2A2u(t), we obtain

1

2

d

dt

(
t2‖Au(t)‖2

)
+ t2(A2u(t), Au(t)) = t‖Au(t)‖2,

from which (15.18) follows after integration and using (15.17).

Problem 15.14. Assuming that there is an a > 0 such that A is strictly
positive-definite, so that (Av, v) ≥ a‖v‖2 for all v, show that the solution
of u̇+Au = f , u(0) = u0, satisfies

‖u(T )‖2 + a

∫ T

0

‖u(t)‖2 dt ≤ ‖u0‖2 +
1

a

∫ T

0

‖f‖2 dt.

Hint: use that |(v, w)| ≤ (4ǫ)−1‖v‖2 + ǫ‖w‖2 for any ǫ > 0.
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In the case of a solution of the heat equation (15.3), these estimates
read

‖u(T )‖2 + 2

∫ T

0
(∇u(t),∇u(t)) dt ≤ ‖u0‖2, (15.19)

∫ T

0
t‖∆u(t)‖2 dt ≤ 1

4
‖u0‖2, (15.20)

‖∆u(T )‖ ≤ 1√
2T

‖u0‖. (15.21)

Problem 15.15. (a) Consider u and ũ solving (15.3) with initial data
u0(x) and ũ0(x) = u0(x)+ ǫ(x) respectively. Show that the difference ũ−u
solves (15.3) with initial data ǫ(x). (b) Give estimates for the difference
between u and ũ. (c) Prove that the solution of (15.3) is unique.

Recall that we call these strong stability estimates because they pro-
vide bounds on derivatives of the solution as well as the solution itself.
Such estimates are related to parabolic smoothing. For example, (15.21)
implies that the L2 norm of the derivative u̇(T ) = ∆u(T ) decreases
(increases) like 1/T as T increases (decreases), which means that the
solution becomes smoother as time passes.

Problem 15.16. Compute (exactly or approximately) the quantities on
the left-hand sides of (15.16), (15.17), and (15.18) for the solutions of (15.4)
computed in Problem 15.3. Compare to the bounds on the right-hand sides.

Problem 15.17. Prove the stability estimates of Lemma 15.1 applied to
the one-dimensional heat equation (??) using the Fourier series formula for
the solution.

15.4. A finite element method for the heat equation

The time discretization of the heat equation (15.3) is based on a par-
tition 0 = t0 < t1 < · · · < tN = T of the time interval I = [0, T ] into
sub-intervals In = (tn−1, tn) of length kn = tn − tn−1. We divide each
space-time slab Sn = Ω × In into space-time prisms K × In, where
Tn = {K} is a triangulation of Ω with mesh function hn; see Fig. 15.4.
Note that the space mesh may change from one time interval to the next.
We construct a finite element method using approximations consisting
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x
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Figure 15.4: Space-time discretization for the cG(1)dG(r) method.

of continuous piecewise linear functions in space and discontinuous poly-
nomials of degree r in time, which we call the cG(1)dG(r) method. We

define the trial space W
(r)
k to be the set of functions v(x, t) defined on

Ω × I such that the restriction v|Sn of v to each space-time slab Sn is
continuous and piecewise linear in x and a polynomial of degree r in t,
that is, v|Sn belongs to the space

W
(r)
kn =

{
v(x, t) : v(x, t) =

r∑

j=0

tjψj(x), ψj ∈ Vn, (x, t) ∈ Sn

}
,

where Vn = Vhn
is the space of continuous piecewise linear functions

vanishing on Γ associated to Tn. The “global” trial space W
(r)
k is the

space of functions v defined on Ω × I, such that v|Sn ∈ W
(r)
kn for n =

1, 2, ..., N . The functions in W
(r)
k in general are discontinuous across the

discrete time levels tn and we use the usual notation [wn] = w+
n − w−

n

and w
+(−)
n = lims→0+(−) w(tn + s).

Problem 15.18. Describe a set of basis functions for (a) W
(0)
kn and (b)

W
(1)
kn .

The cG(1)dG(r) method is based on a variational formulation of

(15.3) as usual and reads: find U ∈W (r)
k such that for n = 1, 2, . . . , N ,

∫

In

(
(U̇ , v) + (∇U,∇v)

)
dt+

(
[Un−1], v

+
n−1

)
=

∫

In

(f, v) dt

for all v ∈W (r)
kn , (15.22)
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where U−
0 = u0 and (·, ·) is the L2(Ω) inner product.

Using the discrete Laplacian ∆n, se (14.27), we may write (15.22)in
the case r = 0 as follows: find Un ∈ Vn:

(I − kn∆n)Un = PnUn−1 +

∫

In

Pnf dt, (15.23)

where we set Un = U−
n = U |In ∈ Vn, and Pn is the L2(Ω)-projection

onto Vn. Note that the “initial data” Un−1 ∈ Vn−1 from the previous
time interval In−1 is projected into the space Vn. If Vn−1 ⊂ Vn, then
PnUn−1 = Un−1. In the case r = 1, writing U(t) = Φn + (t − tn−1)Ψn

on In with Φn, Ψn ∈ Vn, then (15.22) becomes





(I − kn∆n)Φn +
(
I − kn

2
∆n

)
Ψn = PnUn−1 +

∫

In

Pnf dt,

(1
2
I − kn

3
∆n

)
Ψn −

kn
2

∆nΦn =

∫

In

t− tn−1

kn
Pnf dt,

(15.24)

which gives a system of equations for Φn and Ψn.

Problem 15.19. Verify (15.23) and (15.24).

Problem 15.20. Writing U(t) = Φn(tn − t)/kn + Ψn(t− tn−1)/kn on In
with Φn, Ψn ∈ Vn, formulate equations for the cG(1)dG(1) approximation
using the discrete Laplacian.

15.4.1. Constructing the discrete equations

To construct the matrix equation that determines Un in the case r = 0
according to (15.23), we introduce some notation. We let {ϕn,j} denote
the nodal basis of Vn associated to the Mn interior nodes of Tn numbered
in some fashion, so Un can be written

Un =
Mn∑

j=1

ξn,jϕn,j ,

where the coefficients ξn,j are the nodal values of Un. We abuse notation
to let ξn =

(
ξn,j
)

denote the vector of coefficients. We define the Mn ×
Mn mass matrix Bn, stiffness matrix An, and again abusing notation,
the Mn × 1 data vector bn with coefficients

(Bn)ij = (ϕn,j , ϕn,i), (An)ij = (∇ϕn,j,∇ϕn,i), (bn)i = (f, ϕn,i),
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for 1 ≤ i, j ≤Mn. Finally, we define the Mn×Mn−1 matrix Bn−1,n with
coefficients

(Bn−1,n)ij = (ϕn,j , ϕn−1,i) 1 ≤ i ≤Mn, 1 ≤ j ≤Mn−1. (15.25)

The discrete equation for the cG(1)dG(0) approximation on In is

(Bn + knAn)ξn = Bn−1,nξn−1 + bn. (15.26)

The coefficient matrix Bn + knAn of this system is sparse, symmetric,
and positive-definite and the system can be solved using a direct or an
iterative method.

Problem 15.21. Prove that Bn−1,nξn−1 = Bnξ̂n−1 where ξ̂n−1 are the
coefficients of PnUn−1 with respect to {ϕn,j}.

Problem 15.22. Specify the matrix equations for the cG(1)dG(1) method.
Hint: consider (15.24).

Problem 15.23. Assume that Ω = (0, 1)×(0, 1] and the standard uniform
triangulation is used on each time step. Compute the coefficient matrix in
(15.26).

Problem 15.24. (a) Formulate the cG(1)dG(r) with r = 0, 1, for the heat
equation in one dimension with homogeneous Dirichlet boundary condi-
tions. (b) Write out the matrix equations for the coefficients of Un in the
case of a uniform partition and r = 0. (c) Assume that Tn is obtained by
dividing each element of Tn−1 into two intervals. Compute Bn−1,n explic-
itly. (d) Repeat (c) assuming that Tn−1 has an even number of elements
and that Tn is obtained by joining together every other neighboring pair
of elements.

Problem 15.25. Repeat Problem 15.24 for the modified heat equation
u̇− ∆u+ u = f with homogeneous Neumann boundary conditions.

15.4.2. The use of quadrature

In general it may be difficult to compute the integrals in (15.26) exactly,
and therefore quadrature is often used to compute the integrals approxi-
mately. If K denotes an element of Tn with nodes NK,1, NK,2, and NK,3

and area |K|, then we use the lumped mass quadrature for a function
g ∈ Vn,

QK(g) =
1

3
|K|

3∑

j=1

g(NK,j) ≈
∫

K
g(x) dx.
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For the integration in time, we use the midpoint rule,

g

(
tn + tn−1

2

)
kn ≈

∫ tn

tn−1

g(t) dt.

We define the approximations B̃n, B̃n−1,n, and b̃n by

(B̃n)ij =
∑

K∈Tn

QK(ϕn,iϕn,j), (B̃n−1,n)ij =
∑

K∈Tn

QK(ϕn,iϕn−1,j),

and (b̃n)i =
∑

K∈Tn

QK
(
f
(
· , (tn + tn−1)/2

)
ϕn,i(·)

)
kn,

for indices in the appropriate ranges. Note that the terms in the sums
over K ∈ Tn for B̃n and B̃n−1,n are mostly zero, corresponding to the
near orthogonality of the nodal basis functions. We find that ξ̃n, the
vector of nodal values of the cG(1)dG(0) approximation computed using
quadrature, satisfies

(B̃n + knAn)ξ̃n = B̃n−1,nŨn−1 + b̃n. (15.27)

If we use the rectangle rule with the right-hand end point of In instead,
the resulting scheme is called the backward Euler-continuous Galerkin
approximation.

Problem 15.26. Repeat Problem 15.23 using B̃n, B̃n−1,n, and b̃n instead
of Bn, Bn−1,n, bn respectively.

Problem 15.27. Repeat Problem 15.24 using B̃n, B̃n−1,n, and b̃n instead
of Bn, Bn−1,n, bn respectively.

Problem 15.28. Formulate the cG(1)dG(1) finite element method for
the heat equation using the lumped mass quadrature rule in space and the
two point Gauss quadrature rule for the time integration over In.

Problem 15.29. (a) Formulate the cG(1)dG(0) finite element method
for the non-constant coefficient heat equation

u̇(x, t) − (a(x, t)u′(x, t))′ = f(x, t), (x, t) ∈ (0, 1) × (0,∞),

together with homogeneous Dirichlet boundary conditions and initial data
u0, using lumped mass quadrature rule in space and the midpoint rule in
time to evaluate Bn, Bn−1,n, and any integrals involving a and f . (b)
Assuming that a(x, t) ≥ a0 > 0 for all x and t, prove the modified mass
and stiffness matrices are positive definite and symmetric. (c) Write down
the matrix equations explicitly. (d) Assuming that the same space mesh is
used for every time step, compute explicit formulas for B̃n, Ãn, and b̃n.
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15.5. Error estimates and adaptive error control

In this section, we state a posteriori and a priori error estimates for the
cG(1)dG(0) method (15.22) and discuss an adaptive algorithm based
on the a posteriori estimate. We also illustrate the performance of the
algorithm in an example. The proofs of the error estimates are presented
in the next section. For simplicity, we assume that Ω is convex so that the
strong stability estimate (14.54) of Lemma 14.6 with stability constant
S = 1 holds. We also assume that u0 ∈ V1; otherwise an additional term
accounting for an initial approximation of u0 appears in the estimates.
We define τ = minn τn, where τn is the minimal angle of Tn.

15.5.1. The error estimates

We begin by stating the a posteriori error estimate including residual
errors associated to space discretization, time discretization, and mesh
changes between space-time slabs. Here ‖ · ‖ denotes the L2(Ω)-norm
and ‖v‖J = maxt∈J ‖v(t)‖.

Theorem 15.2. There is a constant Ci only depending on τ such that
for N ≥ 1,

‖u(tN ) − UN‖ ≤ LNCi max
1≤n≤N

(
‖h2

nR2(U)‖In + ‖h2
nf‖In

+‖[Un−1]‖ + ‖knf‖In +
∥∥h

2
n

kn
[Un−1]

∥∥∗),

where u(tN ) = u(·, tN ),

LN = 2 + max
1≤n≤N

max

{(
log
( tn
kn

))1/2

, log
( tn
kn

)
}
,

R2(U) =
1

2
max
S⊂∂K

h−1
K

∣∣[∂SU ]
∣∣ on K ∈ Tn,

and the starred term is present only if Vn−1 * Vn.

The two first terms on the right of (15.2) measure the residual error
of the space discretization with f the contribution from the element
interiors (there ∆U = 0), and R2(U) the contribution from the jumps in
the normal derivative [∂SU ] on elements edges S, cf. Chapter 14. The
next two terms measure the residual error of the time discretization and
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finally the last term reflects the effect of changing from one mesh to the
next. The case Vn−1 * Vn occurs e.g. when Tn is obtained from Tn−1

by removing some nodes, introducing the L2-projection PnUn−1 ∈ Vn of
Un−1 ∈ Vn−1. The starred term is of the same order as the time residual
term ‖[Un−1]‖ if h2

n/kn is kept bounded by a moderate constant, which
usually may be arranged.

Problem 15.30. Draw examples in one space dimension that show a
mesh coarsening in which Vn−1 * Vn and a mesh refinement in which
Vn−1 ⊆ Vn.

In the proof of the a priori error estimate, we use the following
bounds on the change of mesh size on consecutive slabs. We assume
there are positive constants γi, with γ2 sufficiently small, such that for
n = 1, ..., N ,

γ1kn ≤ kn+1 ≤ γ−1
1 kn, (15.28)

γ1hn(x) ≤ hn+1(x) ≤ γ−1
1 hn(x) for x ∈ Ω, (15.29)

h̄2
n ≤ γ2kn, (15.30)

where h̄n = maxx∈Ω̄ hn(x), and (15.30) only enters if Vn−1 * Vn. The a
priori error estimate reads as follows:

Theorem 15.3. If Ω is convex and γ2 sufficiently small, there is a con-
stant Ci depending only on τ and γi, i = 1, 2, such that for N ≥ 1,

‖u(tN ) − UN‖ ≤ CiLN max
1≤n≤N

(
kn‖u̇‖In + ‖h2

nD
2u‖In

)
. (15.31)

15.5.2. Adaptive error control

The a posteriori error bound can be used to estimate the error of a
particular computation and also as the basis of an adaptive algorithm.

Suppose we seek an approximation U(t) satisfying

max
0≤t≤T

‖u(t) − U(t)‖ ≤ TOL,

for a given error tolerance TOL, while using the least amount of com-
putational work. We try to achieve this goal by computing a sequence
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of triangulations {Tn} and time steps {kn} so that for n = 1, ..., N, with
tN = T ,

CiLN max
1≤n≤N

(
‖h2

nR2(Un)‖ + ‖[Un−1]‖

+‖(kn + h2
n)f‖In + ‖h2

nk
−1
n [Un−1]‖∗

)
= TOL, (15.32)

while the total number of degrees of freedom is minimal. This is a
nonlinear constrained minimization problem that we try to solve ap-
proximately using an iterative process based on the L2 equidistribution
strategy for elliptic problems described in Chapter 14 and the time step
control described in Chapter 9. From the current time level tn−1, we
compute Un using a predicted time step kn and predicted mesh size hn
and then we check whether (15.32) holds or not. If not, we compute
a new time step kn and mesh size hn using (15.32) seeking to balance
the error contributions from space and time. It is relatively rare for the
error control to require more than a few iterations.

We illustrate the adaptive error control using Femlab. We choose
Ω = (−1, 1)×(−1, 1) and approximate the solution of (15.3) with forcing

f(x, t) =

{
103, (x1 + .5 − t)2 + (x2 + .5 − t)2 < .1,

0, otherwise,

which in the context of a model of heat flow, amounts to swiping a hot
blowtorch diagonally across a square plate. We compute the approxima-
tion using TOL=.05 and plot the results at the second, sixth, and tenth
time steps in Fig. 15.5-Fig. 15.7. The time steps used are k1 ≈ .017,
k2 ≈ .62, and kn ≈ .1 for n ≥ 3. In Fig. 15.5, we can see the refined
region centered around the heated region. At later times, we can see
further refinement in the direction that the hot region moves and mesh
coarsening in regions which have been passed by. Notice the shape of the
refined region and the solution at later times indicating residual heat.

Problem 15.31. Implement an error estimation block in a code for
the heat equation using the cG(1)dG(0) method. Construct several test
problems with known solutions and compare the error bound to the true
error.
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Figure 15.5: The approximation and mesh at t ≈ .64.

Figure 15.6: The approximation and mesh at t ≈ 1.04.

15.6. Proofs of the error estimates

The proofs are based on a combination of the techniques used to prove
the error estimates for the parabolic model problem in Chapter 9 and
the Poisson problem of Chapter 14.

15.6.1. The a posteriori analysis

Let Pn be the L2 projection into Vn, and πk the L2 projection into the
piecewise constants on the time partition {tn}, that is, πkv on In is the
average of v on In. We use the following error estimate for Pn which is
analogous to the interpolation error estimates discussed in Chapter 5.

Lemma 15.4. There is a constant Ci only depending on τ such that if
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Figure 15.7: The approximation and mesh at t ≈ 1.44.

ϕ = 0 on Γ, then for all w ∈ Vn,

|(∇w,∇(ϕ − Pnϕ))| ≤ Ci‖h2
nR2(w)‖‖D2ϕ‖.

In particular, if Ω is convex, then for all w ∈ Vn,

|(∇w,∇(ϕ − Pnϕ))| ≤ Ci‖h2R2(w)‖‖∆ϕ‖. (15.33)

The proof of this lemma is a little technical, so we put it off until the
advanced book. Note that the second estimate follows from the first
using (14.54).

We introduce the continuous dual problem






−ϕ̇− ∆ϕ = 0 in Ω × (0, tN ),

ϕ = 0 on Γ × (0, tN ),

ϕN (·, tN ) = eN in Ω,

(15.34)

where eN = u(tN ) − UN . By the definition,

‖eN‖2 = (eN , ϕN ) +

N∑

n=1

∫

In

(e,−ϕ̇− ∆ϕ) dt,

with e = u− U and ϕN = ϕ(·, tN ). After integrating by parts in t over
each interval In and using Green’s formula in space, we get

‖eN‖2 =

N∑

n=1

∫

In

(ė, ϕ) dt +

N∑

n=1

∫

In

(∇e,∇ϕ) dt +

N∑

n=1

([en−1], ϕn−1).
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Using the facts that u̇ − ∆u = f , [un] = 0, U̇ ≡ 0 on each In, and

U−
0 = u0 together with (15.22) with v = πkPhϕ ∈ W

(0)
k , we obtain the

error representation:

‖eN‖2 =

N∑

n=1

∫

In

(
∇U,∇(πkPhϕ− ϕ)

)
dt

+

N∑

n=1

(
[Un−1], (πkPhϕ)+n−1 − ϕn−1

)

+

∫ T

0
(f, ϕ− πkPhϕ) dt = T1 + T2 + T3.

This formula is analogous to the error representation for the model prob-
lem studied in Chapter 9. We now estimate the terms T1, T2 and T3 by
repeatedly using the splitting πkPhϕ − ϕ = (πk − I)Phϕ + (Ph − I)ϕ,
where I is the identity, which is a way to split the time and space ap-
proximations. First, noting that
∫

In

(
∇U,∇(πkPhϕ−Phϕ)

)
dt =

∫

In

(−∆hU, πkϕ−ϕ) dt = 0, 1 ≤ n ≤ N,

because U is constant on In, the term T1 reduces to

T1 =
N∑

n=1

∫

In

(
∇U,∇(Ph − I)ϕ

)
dt =

N∑

n=1

(
∇Un,∇(Pn − I)

∫

In

ϕdt

)
.

Recalling (15.33), we find that

|T1| ≤ Ci

N∑

n=1

‖h2
nR2(Un)‖

∥∥∥∥∆
∫

In

ϕdt

∥∥∥∥

≤ Ci max
1≤n≤N

‖h2
nR2(Un)‖

(∫ tN−1

0
‖∆ϕ‖ dt + 2‖ϕ‖IN

)
,

where on the interval IN , we used the fact that

∆

∫

IN

ϕdt =

∫

IN

∆ϕdt =

∫

IN

ϕ̇ dt = ϕ(tN ) − ϕ(tN−1).

To estimate T2, we again use (15.33) to get

|([Un−1], (Pn − I)ϕn−1)| ≤ Ci‖h2
n[Un−1]‖∗‖∆ϕn−1‖,
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where the star is introduced since the left-hand side is zero if Vn−1 ⊂ Vn.
Using the interpolation estimate ‖ϕn−1 − (πkϕ)+n−1‖ ≤ min

{∫
In

‖ϕ̇‖ dt,
‖ϕ‖In

}
combined with the stability estimate ‖Pnv‖ ≤ ‖v‖, we further

have
∣∣([Un−1], ((πk − I)Phϕ)+n−1)

∣∣ ≤ ‖[Un−1]‖min
{∫

In

‖ϕ̇‖ dt, ‖ϕ‖In
}
,

and we conclude that

|T2| ≤ Ci max
1≤n≤N

‖h2
n[Un−1]/kn‖∗

N∑

n=1

kn‖∆ϕn−1‖

+ max
1≤n≤N

‖[Un−1]‖
(∫ tN−1

0
‖ϕ̇‖ dt + ‖ϕ‖IN

)
.

Finally to estimate T3, we have arguing as in the previous estimates

∣∣∣∣∣

N∑

n=1

∫

In

(f, Phϕ− πkPhϕ) dt

∣∣∣∣∣

≤ max
1≤n≤N

‖knf‖In
(∫ tN−1

0
‖ϕ̇‖ dt + ‖ϕ‖IN

)
,

∣∣∣∣∣

N−1∑

n=1

∫

In

(f, (I − Ph)ϕ) dt

∣∣∣∣∣

≤ Ci max
1≤n≤N−1

‖h2
nf‖In

(∫ tN−1

0
‖∆ϕ‖ dt

)
,

and ∣∣∣∣
∫

IN

(f, (I − Ph)ϕ) dt

∣∣∣∣ ≤ ‖kNf‖IN‖ϕ‖IN .

To complete the proof, we bound the different factors involving ϕ in the
estimates above in terms of ‖eN‖ using the strong stability estimates
(15.19)-(15.21) applied to the dual problem (15.34) with time reversed.
We obtain with w = ϕ̇ = ∆ϕ,

∫ tN−1

0
‖w‖ dt ≤

(∫ tN−1

0
(tN − t)−1 dt

)1/2(∫ tN

0
(tN − t)‖w‖2 dt

)1/2

≤
(

log
( tN
kN

))1/2

‖eN‖,
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N−1∑

n=1

kn‖wn−1‖ ≤
N−1∑

n=1

kn
tN − tn−1

‖eN‖

≤
∫ tN−1

0
(tN − t)−1 dt‖eN‖,

and
kN‖∆ϕN−1‖ ≤ ‖eN‖.

Together, the above estimates prove the a posteriori error estimate.

Problem 15.32. (a) Write out the details of the proof in the case of the
heat equation in one dimension with Ω = (0, 1) and r = 0. (b) (Hard.) Do
the same for r = 1.

Problem 15.33. (Ambitious.) Formulate and prove an a posteriori error
estimate for the cG(1)dG(0) method that uses the lumped mass and mid-
point quadrature rules as described above. Less ambitious is to do the same
for the method that uses quadrature only to evaluate integrals involving f .

15.6.2. The a priori analysis

The a priori analysis follows the same line as the a posteriori analysis,
after we introduce a discrete dual problem. The proof of the stability
estimate on the solution of the discrete dual problem simplifies if Vn ⊂
Vn−1, and in particular, only assumption (15.28) is needed. We present
this case below, and leave the general case to a later time.

The discrete strong stability estimate reads.

Lemma 15.5. Assume that Vn−1 ⊂ Vn and that (15.28) holds. Then
there is a constant C depending on γ1 such that the solution U of (15.22)
with f ≡ 0 satisfies for N = 1, 2, ...,

‖UN‖2 + 2

N∑

n=1

‖∇Un‖2kn +

N−1∑

n=0

‖[Un]‖2 = ‖U0‖2, (15.35)

N∑

n=1

tn‖∆nUn‖2kn ≤ C‖U0‖2, (15.36)

and
N∑

n=1

‖[Un−1]‖ ≤ C
(
2 +

(
log(

tN
k1

)
)1/2)‖U0‖. (15.37)
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Proof. We recall the equation satisfied by U :

(I − kn∆n)Un = Un−1, (15.38)

where we used that Vn−1 ⊂ Vn. Multiplying by Un gives

‖Un‖2 + kn‖∇Un‖2 = (Un−1, Un)

or
1

2
‖Un‖2 + ‖Un − Un−1‖2 + kn‖∇Un‖2 =

1

2
‖Un−1‖2,

which upon summation proves (15.35).
Next, multiplying (15.38) by −tn∆nUn gives

tn‖∇Un‖2 + tn‖∆nUn‖2kn = tn(∇Un−1,∇Un),

that is

1

2
tn‖∇Un‖2 + tn‖∇(Un − Un−1)‖2 + tn‖∆nUn‖2kn

=
1

2
tn−1‖∇Un−1‖2 +

1

2
‖∇Un−1‖2kn.

Summing over n = 2, ..., N using that kn ≤ γ1kn−1 and (15.35) proves
(15.36) with the summation starting at n = 2. Finally, we note that

N∑

n=2

‖[Un−1]‖ =

N∑

n=2

‖∆nUn‖kn ≤
( N∑

n=2

tn‖∆nUn‖2kn
)1/2 (

N∑

n=2

kn
tn

)1/2

≤ C
(
log(

tN
k1

)
)1/2 ‖U0‖.

The term corresponding to n = 1 in (15.36) and (15.37) is estimated
using the equation (15.38) with n = 1 and the fact that ‖U1‖ ≤ ‖U0‖.
This concludes the proof.

We can now complete the proof of the a priori error estimate. We first

estimate ‖Un − Ũn‖ where Ũn ∈ W
(0)
kn is the average elliptic projection

of u defined for n = 1, . . . , N , by

∫

In

(∇(u− Ũn),∇v) dt = 0 for all v ∈W
(0)
kn ,
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Using the estimate ‖ũn − Ũn‖ ≤ Ci‖h2
nD

2u‖In (see Chapter 14), where
ũn = πku|In is the average of u on In, together with the obvious estimate
‖u(tn) − ũn‖ ≤ kn‖u̇‖In , we obtain the desired estimate for ‖un − Un‖.

We let Φ ∈W
(0)
k be the solution of the discrete dual problem

−(Φn+1 − Φn) − kn∆nΦn = 0 for n = N, ..., 1,

where ΦN+1 = UN − ŨN . Multiplying by ẽn = Un − Ũn and summing
over n gives the error representation

‖ẽN‖2 = (ẽN ,ΦN+1) −
N∑

n=1

(ẽn,Φn+1 − Φn) +
N∑

n=1

(∇ẽn,∇Φn)kn

=

N∑

n=1

(ẽn − ẽn−1,Φn) +

N∑

n=1

∫

In

(∇ẽn,∇Φn) dt,

where we used a summation by parts formula and the assumption that
ẽ0 = 0.

Problem 15.34. Show that the last formula holds.

Using the fact that for all v ∈W
(0)
kn

(un − Un − (un−1 − Un−1), v) +

∫

In

(∇(u− U),∇v) dt = 0,

the error representation takes the form

‖ẽN‖2 =
N∑

n=1

(ρn − ρn−1,Φn) +
N∑

n=1

∫

In

(∇ρn,∇Φn) dt

=

N∑

n=1

(ρn − ρn−1,Φn)

where ρ = u − Ũ and in the last step we used the definition of Ũ .
Summing by parts again, we get

‖ẽN‖2 = −
N∑

n=2

(ρn−1,Φn − Φn−1) + (ρN ,ΦN ),

using the assumption that ρ0 = 0. Applying Lemma 15.5 to Φ (after
reversing time) proves the desired result. Note that the assumption
Vn ⊂ Vn−1 of the a priori error estimate corresponds to the assumption
Vn−1 ⊂ Vn in the stability lemma, because time is reversed.
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Problem 15.35. Consider the cG(1)dG(1) method for the homogeneous
heat equation, i.e. (15.22) with f ≡ 0, under the assumption that kn ≤
Ckn−1 for some constant C. (a) Show that ‖U−

n ‖ ≤ ‖U−
0 ‖ for all 1 ≤ n ≤

N . (b) Show that ‖U‖In
≤ 5‖U−

0 ‖ for all 1 ≤ n ≤ N .

Problem 15.36. (Hard.) Referring to Problem 15.33, prove the corre-
sponding a priori error estimate.

Think for yourself, ’cause I won’t be with you. (George Harrison)

I see no essential difference between a materialism, which includes
a soul as a complicated type of material particle, and a spiritualism
that includes particles as a primitive type of soul. (Wiener)

Proposal for a wind-driven pump by Leibniz
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The Wave Equation

Go ahead and faith will come to you. (d’Alembert)

Souls act according to the laws of final causes, through apparitions,
ends and means. Bodies act according to the laws of efficient causes
or of motions. And these two kingdoms, that of efficient causes
and that of final causes, are in harmony with each other. (Leibniz)

Those beautiful laws of physics are a marvellous proof of an in-
telligent and free being against the system of absolute and brute
necessity. (Leibniz)

The wave equation is a basic prototype of a hyperbolic partial differen-
tial equation, and models propagation of different types of waves such as
elastic waves in an elastic string, membrane, or solid, sound waves in a
gas or fluid, or electromagnetic waves. The simplest model of wave prop-
agation is an equation for transport in one direction, which we derive in
the next section. After that, we derive the wave equation by examin-
ing the familiar model of the motion of a discrete system of masses and
springs in the limit as the number of masses increases. We then recall
some of the properties of solutions of the wave equation; contrasting
their behavior to that of solutions of the heat equation, which is the
other basic example of a time dependent partial differential equation.
We continue with a discussion of the wave equation in higher dimen-
sions, emphasizing the important fact that the behavior of solutions of
the wave equation depends on the dimension. Finally, we discuss the ap-
proximate solution of the wave equation using a Galerkin finite element
method.

394
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16.1. Transport in one dimension

The simplest model for wave propagation is in fact the simplest of all
partial differential equations. We model the convective transport of a
pollutant suspended in water that is flowing at constant speed c through
a pipe of uniform cross section assuming that there is no diffusion of the
pollutant. We illustrate this in Fig. 16.1. Letting u(x, t) denote the

u(x,0) u(x,t)

x

ct

Figure 16.1: The transport of a pollutant suspended in a fluid flowing
in a pipe.

concentration of the pollutant at the point x in the pipe at time t, the
conservation of mass can be formulated in terms of integrals as

∫ x̄

0
u(x, t) dx =

∫ x̄+c(t̄−t)

c(t̄−t)
u(x, t̄) dx for x̄ > 0, t̄ ≥ t.

This equation states that the amount of pollutant in the portion of the
fluid occupying [0, x̄] at time t and [c(t̄ − t), x̄ + c(t̄ − t)] at time t̄ is
the same. To obtain a differential equation expressing the conservation
of mass, we first differentiate with respect to x̄ to get u(x̄, t) = u(x̄ +
c(t̄ − t), t̄) and then differentiate with respect to t̄ (or t) to get 0 =
cu′(x, t) + u̇(x, t), after letting t̄→ t and x̄→ x.

Assuming that the pipe is infinitely long in order to avoid having to
deal with what happens at the ends, we obtain the initial value problem:
Find u(x, t) such that

{
u̇(x, t) + cu′(x, t) = 0 for x ∈ R, t > 0,

u(x, 0) = u0(x) for x ∈ R,
(16.1)

where c is a constant. The solution is u(x, t) = u0(x− ct), which simply
says that the solution at time t is the initial data u0 translated a distance
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ct. The line x− ct = ξ is called a characteristic line and c is called the
speed. Since the value of the solution is constant, namely u0(ξ), at all
points along the characteristic, we say that information travels along
characteristics.

Problem 16.1. (a) Verify this formula. (b) Plot the solution correspond-
ing to u0(x) = sin(x) at times t = 0, π/4, π/3, π/2, and 23π/2.

The transport problem (16.1) is the basic model of wave propagation.
Below, we will see that the wave equation, which describes the propa-
gation of vibrations in an elastic string, can be written as a system of
transport equations. We will also meet the scalar transport model in
the context of convection-diffusion problems in Chapter 18, where we
consider the additional effect of diffusion.

We point out an interesting fact: the solution formula u(x, t) =
u0(x − ct) is defined even if u0 is discontinuous, though in this case, u
obviously doesn’t satisfy the differential equation at every point. Such
initial data corresponds to a sharp signal, for example turning a light
switch on and off. We can use the variational formulation of (16.1) to
make sense of the solution formula when the data is nonsmooth, and we
pick this up again later.

Problem 16.2. Plot the solution corresponding to u0(x) = sin(x) for
0 ≤ x ≤ π and 0 otherwise at times t = 0, π/4, π/3, π/2, and 23π/2.

One important difference between parabolic equations like the heat
equation and hyperbolic equations like the transport and wave equations
lies in the treatment of boundaries. It is natural to consider the transport
equation with a boundary condition posed on the inflow boundary. If
c > 0, then the inflow boundary is on the left. Choosing the boundary
to be at x = 0 arbitrarily, we obtain






u̇(x, t) + cu′(x, t) = 0 for x > 0, t > 0,

u(0, t) = g(t) for t > 0,

u(x, 0) = u0(x) for x > 0,

(16.2)

where c is constant and g(t) gives the inflow of material. By direct
computation, we can verify that the solution satisfies

u(x, t) =

{
g(t− x/c), x− ct ≤ 0,

u0(x− ct), x− ct > 0



16. The Wave Equation 397

x-ct<0

x-ct>0
u=u0(x-ct)

u=g(t-x/c)

x=ct

Figure 16.2: Solving the transport equation with a boundary condition
on the inflow boundary when c > 0.

and we illustrate this in Fig. 16.2.

Problem 16.3. (a) Plot the solution of (16.2) for u0(x) = sin(x) for
0 < x < π and 0 otherwise and g(t) = t at t = 0, π/6, π/4, π/3, and π/2.
(b) What does such boundary conditions mean interpreted in terms of the
transport of a pollutant down a pipe?

Problem 16.4. Show that the solution of (16.2) for g given for t ≥ 0 and
u0 given for x > 0 agrees with the solution of (16.1) corresponding to initial
data ū0 defined so that ū0(x) = u0(x) for x > 0 and ū0(x) = g(−x/c) for
x ≤ 0 in the region x ≥ 0, t ≥ 0.

Problem 16.5. Find a formula for the solution of the homogeneous wave
equation posed with a boundary condition on the left at a point x0.

Note that once again the solution formula holds even though it may
imply that u is discontinuous across the line x = ct. We can resolve this
difficulty using the variational formulation as well.

The value of the solution at any outflow boundary, which is located
on the right when c > 0, is determined from the initial data and there-
fore we cannot impose arbitrary values for the solution on an outflow
boundary. In general, a hyperbolic problem posed on a finite domain
may have inflow, outflow, or both kinds of boundaries and this is an
important consideration in the design of numerical methods. This is a
sharp contrast to the situation with the heat equation.
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16.2. The wave equation in one dimension

We begin by describing a physical system consisting of N weights each of
mass m joined by N + 1 springs with equal length and spring constant.
We choose coordinates so that the system occupies the interval (0, 1)
and assume that the springs at the ends are fixed and the masses are
constrained to move horizontally along the x axis without friction. The
rest position of the n’th weight is nh with h = 1/(N + 1). We let
un(t) denote the displacement of the n’th weight from the rest position
with un > 0 representing a displacement to the right. We illustrate this
in Fig. 16.3. Below, we want to compare the motion of systems with

u3>0u3<0 u3=0

Figure 16.3: The coordinate system for a system of masses and springs.

different numbers of weights but totalling the same mass. Hence, we
assume that m = h, so that as N increases, the total mass of the system
tends to one.

Hamilton’s principle states that the Lagrangian of the system, which
is equal to the difference between the kinetic and potential energies
integrated over an arbitrary time interval (t1, t2),

∫ t2

t1

(
N∑

n=1

m

2
(u̇n)

2 −
N+1∑

n=1

1

2
h−1(un − un−1)

2

)
dt,

where we set u0 = 0 and uN+1 = 0, is stationary at the trajectory
followed by the system. We assume that the spring constant is 1/h,
since it should scale with the length of the springs.

To obtain the differential equation for u = (un(t)), we add an ar-
bitrary small perturbation to un in the direction of v = (vn), with
v0 = vN+1 = 0, to get un + ǫvn for ǫ ∈ R. Differentiating with re-
spect to ǫ and setting the derivative equal to zero for ǫ = 0, which
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corresponds to the Lagrangian being stationary at the solution u, and
then varying v gives the following system

ün − h−2(un−1 − 2un + un+1) = 0, t > 0, n = 1, ..., N, (16.3)

where u0 = 0 and uN+1 = 0. The differential equation (16.3) is supple-
mented by initial conditions specifying the initial position and velocity
of each weight.

We present an example with N = 5 in which the n’th weight is
displaced a distance .5h sin(nh) to the right of the rest position and the
initial speed is zero. We solve the system (16.3) using the Cards code
keeping the error below .06. We show the position of the weights for a
few times in Fig. 16.4.

t=0.00

t=0.25

t=0.50

t=0.75

t=1.00

t=1.25

Figure 16.4: The evolution of the discrete system of masses and
springs.

Problem 16.6. (a) Derive (16.3). (b) Change the system of equations
(16.3) into a first order system by introducing new unknowns vn = u̇n.
(c) Solve the system keeping the error below .05 for N = 5, 10, 15, ..., 55
and compare the solutions. (d) Compute the solution for N = 5 where the
masses start at the rest position with initial velocities {sin(nh)} and plot
the results for t = 0, .25, .5, .75, 1.0 and 1.25.
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Letting the number of weights N tend to infinity (with a correspond-
ing decrease in the mass of each weight since m = h) in the discrete
equation (16.3), we formally obtain the wave equation in one dimension:





ü(x, t) − u′′(x, t) = 0 for 0 < x < 1 and t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for 0 < x < 1,

(16.4)

where now with abuse of notation u0 and u̇0 are given initial data. This
is the initial value problem describing the longitudinal vibrations in an
elastic string. It turns out that the same equation describes also the
transversal vibration of an elastic string, like a string on a guitar.

16.2.1. Sound waves in a tube

The wave equation (16.4) is also used to model the propagation of sound
waves. We consider a long thin tube, represented by R, filled with gas of
density ρ, pressure p, and velocity u. The behavior of the gas is described
by a set of nonlinear equations that result from the conservation of
mass and Newton’s law relating the rate of change of momentum to the
pressure: {

ρ̇+ (uρ)′ = 0 in R × (0,∞),

ṁ+ (um)′ + p′ = 0 in R × (0,∞),
(16.5)

where m = ρu is the momentum. To derive a linear equation, we con-
sider small fluctuations ρ̄, ū and p̄ around a constant state of density
ρ0, pressure p0 and zero velocity, so that ρ = ρ0 + ρ̄, p = p0 + p̄ and
u = 0 + ū. We assume that p̄ = c2ρ̄, where c is a constant representing
the speed of sound, substitute the new variables into (16.5), and drop
quadratic terms in the resulting equation, since these are very small if
the fluctuations are small, to obtain

{
˙̄ρ+ ρ0ū

′ = 0 in R × (0,∞),

ρ0 ˙̄u+ c2ρ̄′ = 0 in R × (0,∞).
(16.6)

Eliminating either ρ̄ or p̄ leads to the wave equations ¨̄ρ− c2ρ̄′′ = 0 and
¨̄p− c2p̄′′ = 0.

Problem 16.7. (a) Verify the derivation of (16.6). (b) Show that (16.6)
implies that ρ̄ and p̄ satisfy the wave equation under the assumptions of
the derivation.
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16.2.2. The structure of solutions: d’Alembert’s formula

The general initial value problem for the wave equation,

{
ü− u′′ = f in R × (0,∞),

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ R,
(16.7)

can be written as a system of transport equations by introducing the
variable w = u̇− u′ to get






ẇ + w′ = f in R × (0,∞),

u̇− u′ = w in R × (0,∞),

w(x, 0) = u̇0(x) − u′0(x), u(x, 0) = u0(x) for x ∈ R,

where the two transport equations in the new formulation correspond
to transport of signals in opposite directions with speed one.

Problem 16.8. Verify that the two problems have the same solution u.

It is therefore natural, following d’Alembert and Euler, to look for a
solution u(x, t) of (16.7) with f ≡ 0 of the form u(x, t) = ϕ(x − t) +
ψ(x+t), where ϕ(x−t) corresponds to a wave propagating in the positive
direction with speed one and ψ(x+t) corresponds to a wave propagating
with speed one in the negative direction. It is easy to see that a function
of this form satisfies the wave equation ü− u′′ = 0.

Problem 16.9. Verify this claim.

Determining the functions ϕ and ψ from the initial conditions, we find
d’Alembert’s formula:

u(x, t) =
1

2
(u0(x− t) + u0(x+ t)) +

1

2

∫ x+t

x−t
u̇0(y) dy. (16.8)

Problem 16.10. Prove (16.8).

Problem 16.11. If the speed of the propagation of the waves is c >
0, then the corresponding wave equation takes the form ü − c2u′′ = 0.
Derive d’Alembert’s formula for this case. Hint: seek a solution of the
form u(x, t) = ϕ(x − ct) + ψ(x + ct).
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Using d’Alembert’s formula, we can study the dependence of the
solution on the initial data. For example, if u0(x) is an approximate
“point” source supported in a small interval around x = 0 and u̇0 ≡ 0,
then the solution u(x, t) consists of two pulses propagating from x = 0 in
the positive and negative directions with speed ±1, see Fig. 16.5. This
data corresponds to an elastic string being released at time zero with a
displacement concentrated at 0 and with zero velocity. The d’Alembert
formula shows that the solution u(x, t) at a given time t is influenced
only by the value of the initial data u0(x) at the points x± t, i.e. as for
the transport equation, there is sharp propagation of the initial data u0.
The effect of an initial impulse in the derivative data u̇0 is different, as

x

-2
-1

0
1

2

t

x

-2
-1

0
1

2

t

Figure 16.5: The evolution of solutions of the wave equation corre-
sponding to an approximate “point” source in u0 together
with u̇0 ≡ 0 on the left and an approximate “point” source
in u̇0 together with u0 ≡ 0 on the right.

illustrated in Fig. 16.5. If u̇0 has support in a small interval centered at
x = 0 and u0 ≡ 0 then u(x, t) is constant in most of the region [x−t, x+t]
and zero outside a slightly larger interval.

Problem 16.12. Define g(x) = 108(x − .1)4(x + .1)4 if |x| < .1 and 0
otherwise and show that g has continuous second derivatives. (a) Compute
an explicit formula for the solution if u0(x) = g(x) and u̇0 ≡ 0 and plot
the results for a few times. (b) Do the same if u0 ≡ 0 and u̇0(x) = g(x).
(c) Referring to (b), given t > 0, determine the intervals on which u is
constant.
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The extension of the d’Alembert’s formula to the nonhomogeneous
problem (16.7) with f 6= 0 is

u(x, t) =
1

2

(
u0(x+ t) + u0(x− t)

)

+
1

2

∫ x+t

x−t
u̇0(y) dy +

1

2

∫∫

∆(x,t)

f(y, s) dy ds, (16.9)

where ∆ = ∆(x, t) = {(y, s) : |x − y| ≤ t − s, s ≥ 0} denotes the
triangle of dependence indicating the portion of space-time where data
can influence the value of the solution at the point (x, t), see Fig. 16.6.
Turning the triangle of dependence upside-down gives the triangle of

(x,t)

(x-t,0) (x+t,0)

(x,t)

t t

x
x

Figure 16.6: On the left, we show the triangle of dependence ∆ of
the point (x, t). On the right, we show the triangle of
influence.

influence {(y, s) : |x− y| ≤ s− t} indicating the points (y, s) which can
be influenced by the values of the data at (x, t).

Problem 16.13. Prove (16.9).

We can handle problems with boundaries by modifying d’Alembert’s
formula. For example, to find a formula for the homogeneous wave
equation ü − u′′ = 0 for x > 0, t > 0 together with the boundary
condition u(0, t) = 0 for t > 0 and initial conditions u0(x) and u̇0(x) as
above, we use d’Alembert’s formula for the solution of the wave equation
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ẅ − w′′ = 0 on R × (0,∞) together with odd initial data w0 and ẇ0,
where w0 is defined by

w̄0(x) =






−u0(−x), x < 0,

0, x = 0,

u0(x), x > 0,

and ẇ0 is defined similarly. It is easy to verify that the solutions of
the two problems agree in the region x > 0, t > 0. Using d’Alembert’s
formula and tracing the characteristic lines to their intersections with
the x axis, see Fig. 16.7, we find that

(x,t)

x-t x+t

x=t (x,t)

t-x x+t

x=t

x-t

t

x

t

x

Figure 16.7: The two cases for applying d’Alembert’s formula to the
wave equation posed with a boundary at x = 0. We plot
the characteristic lines for (x, t) with x > t on the left and
x < t on the right. Note the reflection in the t axis of the
point x− t to t− x.

u(x, t)

=






1

2

(
u0(x+ t) + u0(x− t)

)
+

1

2

∫ x+t

x−t
u̇0(y) dy, x > t

1

2

(
u0(t+ x) − u0(t− x)

)
+

1

2

∫ t+x

t−x
u̇0(y) dy, x ≤ t.

(16.10)

Problem 16.14. (a) Verify (16.10). (b) Find a formula for the solution
of the homogeneous wave equation posed with the Neumann boundary
condition u′(0, t) = 0. Hint: extend the data to be even functions on R.
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Problem 16.15. Use d’Alembert’s formula to construct the solution of
the homogeneous wave equation posed on (0, 1) with periodic boundary
conditions.

Problem 16.16. Give a d‘Alembert solution formula for the vibrating
string problem (16.4). Hint: extend u0 and u̇0 to be functions on R.

The existence of the triangles of dependence and influence and the
sharp propagation of the data are the result of the finite speed of propa-
gation of solutions of the wave equation. This contrasts to the behavior
of solutions of the heat equation, where the value of the solution at
one point depends on the data at every point (although the exponential
decay of the fundamental solution implies that the dependence is very
small from point far away) and the diffusion of the data as time passes.
One consequence is that it is more difficult to send recognizable signals
by heating a conducting wire than sending sound waves down a pipe.

16.2.3. Separation of variables and Fourier’s method

The technique of separation of variables and Fourier’s method can be
used to write the solution of the wave equation as a Fourier series. To
simplify the notation, we pose (16.4) on (0, π) instead of (0, 1). In this
case, the solution is

u(x, t) =

∞∑

n=1

(an sin(nt) + bn cos(nt)) sin(nx), (16.11)

where the coefficients an and bn are determined from the Fourier series
of the initial conditions:

u0(x) =

∞∑

n=1

bn sin(nx), u̇0(x) =

∞∑

n=1

nan sin(nx).

Note that the time factor, an sin(nt) + bn cos(nt), in the Fourier series
of the solution of the wave equation does not decrease exponentially
as time increases like the corresponding factor in the Fourier series of
a solution of the heat equation. Therefore, the solution of the wave
equation generally does not become smoother as time passes.

Problem 16.17. Verify the solution formula (16.11) formally.

Problem 16.18. Compute the solution for (a) u0(x) = x(π−x), u̇0(x) ≡
0, (b) u̇0(x) = x(π − x), u0(x) ≡ 0.
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16.2.4. The conservation of energy

We saw that a solution of the heat equation tends to dissipate as time
passes, with a corresponding decrease in the energy. In contrast, the
total energy (the sum of kinetic and potential energies) of the solution
u of the homogeneous wave equation (16.4) remains constant in time:

‖u̇(·, t)‖2 + ‖u′(·, t)‖2 = ‖u̇0‖2 + ‖u′0‖2 for t ≥ 0,

where ‖·‖ denotes the L2(0, 1) norm as usual. To prove this, we multiply
(16.12) by 2u̇, integrate over (0, 1), and then integrate by parts to get

0 =
∂

∂t

(∫ 1

0

(
u̇(x, t)2 + u′(x, t)2

)
dx

)
.

Problem 16.19. Provide the details of this derivation.

Problem 16.20. (a) Show that the only solution of (16.4) with u0 ≡
u̇0 ≡ 0 is u ≡ 0. (b) Suppose that w solves (16.4) with initial data w0 and
ẇ0. Estimate u− w, where u solves (16.4).

16.3. The wave equation in higher dimensions

Situations modelled by the wave equation in higher dimensions include
the vibrations of a drum head and the propagation of sound waves in
a volume of gas. Letting Ω denote a domain in Rd, d = 2 or 3, with
boundary Γ, the initial-boundary value problem for the wave equation
is 





ü− ∆u = f in Ω × (0,∞),

u = 0 on Γ × (0,∞),

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ Ω,

(16.12)

where f , u0, and u̇0 are given functions. The wave equation is also posed
on all of Rd in some models.

Before turning to the approximation of (16.12), we recall some of the
properties of the solutions. We emphasize the important fact that the
behavior of solutions of the wave equation depends on the dimension,
and in particular, the behavior in two dimensions is significantly different
that in three dimensions.
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16.3.1. Symmetric waves

We begin by considering solutions of the homogeneous wave equation in
Rd that are symmetric through the origin since this effectively reduces
the problem to one dimension in space. In R3, these are called spherically
symmetric waves. For simplicity, we assume that u̇0 ≡ 0. The wave
equation (16.12) in spherical coordinates, assuming the solution depends
only on r, i.e. the distance to the origin, reads

ü− urr −
2

r
ur = 0 for r > 0, t > 0, (16.13)

where ur = ∂u/∂r. Note the important factor two in the third term; by
introducing the new unknown v = ru, this equation transforms into the
one-dimensional wave equation,

v̈ − vrr = 0 for r > 0, t > 0. (16.14)

This equation is posed together with the boundary condition v(0, t) = 0
for t > 0 and initial conditions v(r, 0) = ru0(r) and v̇(r, 0) = 0 for r > 0.
Using (16.10) to write a formula for v and then changing back to u, we
find that

u(r, t)

=
1

2






(
u0(r + t) + u0(r − t)

)
+
t

r

(
u0(r + t) − u0(r − t)

)
, r ≥ t,

(
u0(t+ r) + u0(t− r)

)
+
t

r

(
u0(t+ r) − u0(t− r)

)
, r < t,

(16.15)

where we take u(0, ·) = limr→0+ u(r, ·). From this, we conclude that the
initial data propagates sharply outwards in the positive r direction as
time passes. In particular, if u0 has support in the ball {x : |x| ≤ ρ} for
some ρ > 0, then at any point x with x > ρ, u(x, t) is zero for t < x− ρ,
then the solution is non-zero with values determined by u0 for 2ρ time
units, and finally after that the solution is once again zero.

Problem 16.21. Compute explicit formulas for the spherically symmetric
solution corresponding to u0 ≡ 1 for |x| ≤ 1 and 0 otherwise and u̇0 ≡ 0.
Hint: there are six regions in the (r, t) plane that have to be considered.
Plot the solution as a function of the radius at several times.
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We can also look for symmetric solutions of the wave equation in R2.
Unfortunately in this case, the wave equation reduces to

ü− urr −
1

r
ur = 0 for r > 0, t > 0, (16.16)

and there is no simple change of variables that reduces this problem to
the wave equation in one dimension.

Problem 16.22. Verify (16.13), (16.16), and (16.14).

Problem 16.23. (a) Verify (16.15). (b) Treat the problem where u̇0 is
not assumed to be zero.

16.3.2. The finite speed of propagation

As suggested by the spherically symmetric case, there is a finite speed of
propagation of information in solutions of the wave equation in higher
dimensions. By this, we mean that the value of u(x, t) depends only on
the values of the data given in the cone of dependence

∆(x, t) := {(y, s) ∈ Rd × R : |y − x| ≤ t− s, s ≥ 0}.

The cone of dependence is the multi-dimensional counterpart to the
triangle of dependence. Specifically, for any proper subdomain ω of Ω,
we may define the enlarged region ω(t) = {x ∈ Rd : dist(x, ω) < t}
assuming for simplicity that t ≥ 0 is not too large so that ω(t) is also
contained in Ω, see Fig. 16.8. Then we prove the following estimate on
the value of u in ω at time t in terms of the values of the data in ω(t):

Theorem 16.1. For any proper subdomain ω of Ω and t > 0 such that
ω(t) ⊂ Ω, the solution u of the homogeneous wave equation satisfies

‖u̇(·, t)‖2
L2(ω) + ‖∇u(·, t)‖2

L2(ω) ≤ ‖u̇0‖2
L2(ω(t)) + ‖∇u0‖2

L2(ω(t)).

Proof. We define the generalized cone of dependence ∆ = ∆(ω, t) =
{∪x∈ω∆(x, t)}, which is the union of all the cones of dependence ∆(x, t)
with x ∈ ω. Under the assumption on t, ∆ is contained in the cylinder
Ω̄×[0, t]. We denote the exterior unit space-time normal to the boundary
S of ∆ by n = (nx, nt), where nx denotes the space components of n. To
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(t)

x

t

Figure 16.8: The generalized cone of dependence ∆(ω, t) and enlarged
region ω(t) associated to a subdomain ω of Ω.

obtain the desired estimate, we multiply (16.12) by 2u̇, integrate over
∆, and then integrate by parts to obtain

0 =

∫

∆
(ü− ∆u)2u̇ dx dt

=

∫

∆
(2üu̇+ 2∇u · ∇u̇) dx dt −

∫

S
nx · ∇u2u̇ ds

=

∫

∆

d

dt
((u̇)2 + |∇u|2) dx dt −

∫

S
nx · ∇u2u̇ ds

=

∫

S
nt((u̇)2 + |∇u|2) ds −

∫

S
nx · ∇u2u̇ ds.

On the “sloping” sides of S, we have nt = |nx| = 1/
√

2 and thus by
Cauchy’s inequality, nt((u̇)

2 + |∇u|2)−nx ·∇u2u̇ ≥ 0. We can therefore
estimate the integral over the top part of S (with nt = 1 and nx = 0)
corresponding to ω, in terms of the integral over the base of S corre-
sponding to ω(t), and thus obtain the desired result.

Problem 16.24. Write out the details of the last estimate.

Problem 16.25. Derive a version of Theorem 16.1 for the solution of
(16.12) with f ≡ 0 without the restriction on t that keeps ∆ inside the
cylinder Ω̄× [0, t]. Hint: define a generalized cone that includes part of the
boundary of Ω̄ × [0, t] when t is large.

Problem 16.26. Generalize the result of Lemma 16.1 to the case f 6= 0.
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16.3.3. The conservation of energy

Along with a finite speed of propagation, a solution u of (16.12) with
f = 0 satisfies

‖u̇(·, t)‖2 + ‖∇u(·, t)‖2 = ‖u̇0‖2 + ‖∇u0‖2, t > 0,

where ‖ · ‖ denotes the L2(Ω) norm.

Problem 16.27. Prove this by modifying the proof in one dimension.

16.3.4. Kirchhoff’s formula and Huygens’ principle

The generalization of d’Alembert’s solution formula to the homogeneous
wave equation (16.12) with f = 0 and Ω = R3 is called Kirchhoff’s
formula, and was first derived by Poisson,

u(x, t) =
1

4πt

∫

S(x,t)

u̇0 ds+
∂

∂t

(
1

4πt

∫

S(x,t)

u0 ds

)
, (16.17)

where S(x, t) = {y ∈ R3 : |y−x| = t} is the sphere with radius t centered
at x. This formula shows sharp propagation at speed one of both the
initial data u0 and u̇0, since the integrals involve only the surface S(x, t)
of the ball B3(x, t) = {y ∈ R3 : |y − x| ≤ t}, which is the set of points
in R3 from which a signal of speed one may reach x within the time t.
In other words, only the values of the data on the surface of the cone
of dependence actually have an influence on the value at a point. The
sharp wave propagation in three dimensions is referred to as Huygens’
principle.

Problem 16.28. Use (16.17) to write a formula for the solution of the
wave equation with the data used in Problem 16.21.

A formula for the solution of the wave equation in two dimensions
can be derived from (16.17) by considering the function to be a solution
of the wave equation in three dimensions that happens to be independent
of x3. For x ∈ R2, we let B2(x, t) = {y ∈ R2 : |y − x| ≤ t}, which may
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be thought of as the projection of B3(x, t) onto the plane {x : x3 = 0}.
The solution is given by

u(x, t) =
1

2π

∫

B2(x,t)

u̇0(y)
(
t2 − |y − x|2

)1/2 dy

+
∂

∂t

(
1

2π

∫

B2(x,t)

u0(y)
(
t2 − |y − x|2

)1/2 dy
)
.

Note that this formula involves integration over the entire ball B2(x, t)
and not just the surface as in three dimensions. As a result, wave prop-
agation in two dimensions is not as sharp as in three dimensions. If we
strike a circular drumhead at the center, the vibrations propagate out-
wards in a circular pattern. The vibrations first hit a point a distance
d from the center at time t = d and that point continues to vibrate
for all time afterwards. The amplitude of the vibrations decays roughly
like 1/t. We illustrate this in Fig. 16.10 where we show a finite element
approximation to a related problem. See Strauss ([18]) for more details
on wave propagation.

Problem 16.29. Write down a formula for the solution of the homoge-
neous wave equation in two dimensions corresponding to u0 = 1 for |x| ≤ 1
and 0 otherwise, and u̇0 ≡ 0.

16.4. A finite element method

To discretize (16.12), we first rewrite this scalar second order equation
as a system of first order equations in time using the notation of Chapter
10 setting u1 = u̇ and u2 = u: find the vector (u1, u2) such that






u̇1 − ∆u2 = f in Ω × (0,∞),

−∆u̇2 + ∆u1 = 0 in Ω × (0,∞),

u1 = u2 = 0 on Γ × (0,∞),

u1(·, 0) = u̇0, u2(·, 0) = u0 in Ω.

(16.18)

We choose this formulation, and in particular write ∆u1 = ∆u̇2 instead
of u1 = u̇2, because this brings (16.18) into a form that is analogous to
the hyperbolic model problem of Chapter 10 with the positive coefficient
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a corresponding to −∆. Thus, we can use the same trick of cancellation
that we used for the analysis of the hyperbolic model problem. In partic-
ular when f ≡ 0, if we multiply the first equation by u1 and the second
by u2 and add, the terms −(∆u2, u1) and (∆u1, u2) cancel, leading to
the conclusion that ‖u1‖2 + ‖∇u2‖2 is constant in time. In other words,
we get energy conservation very easily.

The finite element functions we use to approximate the solution of
(16.18) are piecewise linear polynomials in space and time that are con-
tinuous in space and “nearly” continuous in time. By nearly, we mean
that the approximation is continuous unless the mesh changes from one
time level to the next. We call this the cG(1) method. We discretize
Ω × (0,∞) in the usual way, letting 0 = t0 < · · · < tn < · · · denote a
partition of (0,∞) and to each time interval In = (tn−1, tn] of length
kn = tn − tn−1, associate a triangulation Tn of Ω with mesh function
hn and a corresponding finite element space Vn of continuous piecewise
linear vector functions in Ω that vanish on Γ. For q = 0 and 1, we define
the space

W
(q)
kn =

{
(w1, w2) : wj(x, t) =

q∑

r=0

trv
(r)
j (x), v

(r)
j ∈ Vn, j = 1, 2

}

on the space-time slab Sn = Ω × (tn−1, tn) and then the space W
(q)
k of

piecewise polynomial functions (v1, v2) such that (v1, v2)|Sn ∈ W
(q)
kn for

n = 1, 2, ..., N . The functions in W
(q)
k are forced to be continuous in

space, but may be discontinuous in time.
The cG(1) method for (16.12) is based on the variational formulation

of (16.18) as usual and reads: Find U = (U1, U2) ∈ W
(1)
k such that for

n = 1, 2, . . . ,





∫ tn

tn−1

(
(U̇1, w1) + (∇U2,∇w1)

)
dt =

∫ tn

tn−1

(f,w1) dt,
∫ tn

tn−1

(
(∇U̇2,∇w2) − (∇U1,∇w2)

)
dt = 0,

U+
1,n−1 = PnU

−
1,n−1, U+

2,n−1 = πnU
−
2,n−1,

(16.19)

for all w = (w1, w2) ∈W
(0)
kn , where U−

1,0 = u̇0, U
−
2,0 = u0, and

Uj(x, t)|Sn = U−
j,n(x)

t− tn−1

kn
+ U+

j,n−1(x)
t− tn
−kn

, j = 1, 2.
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Further, πn is the elliptic projection into Vn defined by (∇πnw,∇v)
= (∇w, ∇v) for all v ∈ Vn. Note that πnw ∈ Vh is the Galerkin approx-
imation of the solution w of Poisson’s equation on Ω with homogeneous
Dirichlet boundary conditions.

Note that if the mesh is unchanged across tn−1, i.e. Tn = Tn−1,
then both Pn and πn reduce to the identity and the approximation U is
continuous across tn−1. If Vn−1 ⊂ Vn, which occurs for example when
the mesh is refined using the customary strategies, then the coefficients
of U+

j,n−1, j = 1, 2, can be found by straightforward interpolation of

U−
j,n−1, i.e., for j=1,2,

U+
j,n−1(Nn,i) = U−

j,n−1(Nn,i),

where {Nn,i} is the set of nodes in Tn.
Problem 16.30. Prove this last claim.

In this case, the components Uj are continuous across tn−1 in the sense
that

lim
t→t−n−1

Uj(x, t) = lim
t→t+n−1

Uj(x, t) for all x ∈ Ω.

However, when the mesh is changed so Vn−1 6⊂ Vn, which typically
happens when the mesh is coarsened, then Uj will in general be discon-
tinuous across tn−1. We illustrate this in Fig. 16.9.

Problem 16.31. Compute U+
n−1 = πnU

−
n−1 for the example on the right in

Fig. 16.9 assuming that U−
n−1(.25) = 1/2, U−

n−1(.5) = 1/3, and U−
n−1(.75) =

1.

We use Bn and An to denote theMn×Mn mass and stiffness matrices
associated to the nodal basis {ϕi,n} for Vn with dimension Mn, and
further An−1,n to denote the Mn ×Mn−1 matrix with coefficients

(
An−1,n

)
i,j

= (∇ϕi,n,∇ϕj,n−1), 1 ≤ i ≤Mn, 1 ≤ j ≤Mn−1,

and let Bn−1,n be defined by (15.25). Finally ξ−j,n and ξ+j,n−1 denote

the vectors of coefficients with respect to {ϕi,n} of U−
j,n and U+

j,n−1 for
j = 1, 2. With this notation, (16.19) is equivalent to the set of matrix
equations





Bn
(
ξ−1,n − ξ+1,n−1

)
+ knAn

(
ξ−2,n + ξ+2,n−1

)
/2 = Fn,

An
(
ξ−2,n − ξ+2,n−1

)
− knAn

(
ξ−1,n + ξ+1,n−1

)
/2 = 0,

Bnξ
+
1,n−1 = Bn−1,nξ

−
1,n−1, Anξ

+
2,n−1 = An−1,nξ

−
2,n−1,

(16.20)
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Figure 16.9: The effect of πn in two cases of mesh changes. On the
left, the mesh is refined so Vn−1 ⊂ Vn and πn and Pn
correspond to nodal interpolation. On the right, the mesh
is coarsened and Uj is discontinuous across tn−1.

where Fn is the data vector with coefficients

(
Fn
)
i
=

∫ tn

tn−1

(f, ϕi,n
)
dt, 1 ≤ i ≤Mn.

Problem 16.32. Prove (16.20) is correct.

Problem 16.33. In the case the space mesh Tn does not change, show
that (16.20) reduces to

{
B(ξ1,n − ξ1,n−1) + knA(ξ2,n + ξ2,n−1)/2 = Fn,

A(ξ2,n − ξ2,n−1) − knA(ξ1,n + ξ1,n−1)/2 = 0,

where we have dropped the superscripts + and − on the coefficient vectors
ξi,n and the subscript n on A and B since U is continuous.

Problem 16.34. Formulate the cG(1) finite element method that uses
the lumped mass quadrature rule in space and the midpoint rule in time
to evaluate the integrals giving the approximation. Write out the discrete
matrix equations for the approximation.

16.4.1. Energy conservation

One reason that we use the cG(1) method (16.19) is that the approxi-
mation conserves the total energy when f ≡ 0 provided Vn−1 ⊂ Vn for
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all n. To prove this, we choose wj = (U+
j,n−1 + U−

j,n)/2 in (16.19) and
add the two equations to get

∫ tn

tn−1

(U̇1, U1) dt+

∫ tn

tn−1

(∇U̇2,∇U2) dt = 0,

because of the terms that cancel. This gives

‖U−
1,n‖2 + ‖∇U−

2,n‖2 = ‖U−
1,n−1‖2 + ‖∇U−

2,n−1‖2. (16.21)

In other words, the total energy of the cG(1) approximation is conserved
from one time step to the next, just as holds for the solution of the
continuous problem. When the mesh is changed so Vn−1 6⊂ Vn, then the
energy is only approximately conserved because each projection onto the
new mesh changes the total energy.

Problem 16.35. Provide the details of the proof of (16.21).

Problem 16.36. Compute the change in energy in U in Problem 16.31.

16.5. Error estimates and adaptive error control

In this section, we present a posteriori and a priori error analyses un-
der some simplifying assumptions. The analysis of the cG(1) method
for (16.18) is analogous to the analysis of the cG(1) method for the
hyperbolic model problem in Chapter 10, but there are new technical
difficulties in the case of the partial differential equation.

16.5.1. An a posteriori error estimate

The adaptive error control is based on an a posteriori error estimate
as usual. We prove the estimate under the assumptions that Ω is con-
vex and the space mesh is kept constant, which simplifies the notation
considerably. We use Th to denote the fixed triangulation of mesh size
h(x) and we denote the corresponding finite element space by Vh. We
use Ph to denote the L2 projection into Vh and ∆h to denote the dis-
crete Laplacian on Vh. We use Pk to denote the L2 projection into the
set of piecewise constant functions on the partition {tn}, and R2, to
denote the space residual associated to the discretization of the Lapla-
cian as defined in Chapter 14. Finally, since U is continuous, we set
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Uj,n−1 = U+
j,n−1 = U−

j,n−1. We shall prove the following a posteriori
error estimate assuming that Ω is convex so that Theorem 14.6 applies.

Theorem 16.2. There is a constant Ci such that for N = 1, 2, ...,

‖u2(tN ) − U2,N‖

≤ Ci

(
‖h2R2(U2,N )‖ + ‖h2R2(U2,0)‖

+

∫ tN

0

(
‖h(f − Phf)‖ + ‖h2R2(U1)‖

)
dt

+

∫ tN

0

(
‖k(f − Pkf)‖ + ‖k∆h(U2 − PkU2)‖

+ ‖k∇(U1 − PkU1)‖
)
dt

)
.

Note that the first four quantities on the right arise from the space dis-
cretization and the last three quantities arise from the time discretiza-
tion. The integrals in time implies that errors accumulate at most lin-
early with time, as expected from the analysis of the model hyperbolic
problem.

Proof. The proof is based on using the continuous dual problem to get
an error representation formula. The dual problem is: For N ≥ 1, find
ϕ = (ϕ1, ϕ2) such that






−ϕ̇1 + ∆ϕ2 = 0 in Ω × (0, tN ),

∆ϕ̇2 − ∆ϕ1 = 0 in Ω × (0, tN ),

ϕ1 = ϕ2 = 0 on Γ × (0, tN ),

−∆ϕ2(·, tN ) = e2,N in Ω,

ϕ1(·, tN ) = 0 in Ω,

(16.22)

where e2 = u2 − U2. We multiply the first equation in (16.22) by e1 =
u1−U1, the second by e2, add the two together, integrate over Ω×(0, tN ),
integrate by parts, and finally use the Galerkin orthogonality of the
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approximation, to obtain

‖e2,N‖2 =

N∑

n=1

((
f − U̇1, ϕ1 − PkPhϕ1

)
n

−
(
∇U2,∇(ϕ1 − PkPhϕ1)

)
n
−
(
∇(U̇2 − U1),∇(ϕ2 − PkPhϕ2)

)
n

)
,

where (·, ·)n denotes the L2(Sn) inner product. The goal is to distinguish
the effects of the space and time discretizations by using the splitting
v − PkPhv = (v − Phv) + (Phv − PkPhv) and the orthogonalities of the
L2 projections Ph and Pk to obtain

‖e2,N‖2

=
N∑

n=1

((
f − Pkf, Phϕ1 − PkPhϕ1

)
n

+
(
f − Phf, ϕ1 − Phϕ1

)
n

−
(
∇U2,∇(ϕ1 − Phϕ1)

)
n

−
(
∇(U2 − PkU2),∇(Phϕ1 − PkPhϕ1)

)
n

−
(
∇(U̇2 − U1),∇(ϕ2 − Phϕ2)

)
n

−
(
∇(U̇2 − U1),∇(Phϕ2 − PkPhϕ2)

)
n

)
.

Finally, using the fact that ϕ1 = ϕ̇2 and integrating by parts in t, we
obtain

‖e2,N‖2 =

N∑

n=1

((
f − Pkf, Phϕ1 − PkPhϕ1

)
n

+
(
f − Phf, ϕ1 − Phϕ1

)
n

−
(
∇(U2 − PkU2),∇(Phϕ1 − PkPhϕ1)

)
n

+
(
∇U1,∇(ϕ2 − Phϕ2)

)
n

+
(
∇(U1 − PkU1),∇(Phϕ2 − PkPhϕ2)

)
n

)

−
(
∇U2,N ,∇(ϕ2,N − Phϕ2,N )

)
+
(
∇U2,0,∇(ϕ2,0 − Phϕ2,0)

)
.

To complete the proof, we use (15.4) and a standard estimate for
v−Pkv together with the following stability result for the dual problem
(16.22).
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Lemma 16.3. If Ω is convex, then the solution ϕ of (16.22) satisfies

‖ϕ̈2‖[0,tN ] + ‖Dϕ̇2‖[0,tN ] + ‖D2ϕ2‖[0,tN ] ≤ C‖e2,N‖. (16.23)

Proof. Multiplying the first equation in (16.22) by ∆ϕ1 and the second
by ∆ϕ2 and adding, after using Greens formula, we obtain

d

dt
(‖∇ϕ1‖2 + ‖∆ϕ2‖2) = 0.

It follows using the initial conditions that

‖∇ϕ1‖2 + ‖∆ϕ2‖2 = ‖e2,N‖2.

The desired conclusion results from using the elliptic regularity estimate
(14.6) and the fact that ϕ̈2 = ∆ϕ2.

Problem 16.37. (a) Fill in the details of the above proof. (b) (Hard!)
Extend the a posteriori error estimate to the case Tn varies with n.

16.5.2. Adaptive error control

Following the ideas in the previous chapters, we can formulate an algo-
rithm for adaptive error control by using the a posteriori error bound
in Theorem 16.2 to give an estimate of the error on a given space-time
mesh. We illustrate the use of the a posteriori error bound in two ex-
amples.1

In the first example, we compute the effects of a sharp strike at the
center of a large square drumhead. We can model the problem for small
amplitude vibrations by posing the wave equation on a finite domain
Ω = [0, 1]× [0, 1] with homogeneous Neumann boundary conditions. We
assume the drumhead is initially at rest, i.e. u(·, 0) = u̇(·, 0) = 0 and
we model the strike by a source f located at the center of the square
defined by

f(x, t) =

{
sin2(πt/T ), for t ≤ .1, |x− (.5, .5)| ≤ .1,

0, otherwise.

We plot the finite element approximation at time t ≈ .7 in Fig. 16.10.
We compute with a fixed time step kn ≡ .01 for a relatively short time

1These computations are provided courtesy of M. G. Larson and A. J. Niklas-
son. See Adaptive finite element methods for elasto-dynamics, preprint, Department
of Mathematics, Chalmers University of Technology, S41296 Göteborg, Sweden, for
further details.
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Figure 16.10: Plot of the finite element approximation and the cor-
responding space mesh for the model of the drumhead
struck sharply at the center. In the plot of the displace-
ment, a 15 level grey scale is used with black represent-
ing the largest and white the smallest displacement. The
mesh on the right was adapted from an initial uniform
mesh based on an a posteriori error bound.

so that the error due to time discretization is remains small. The space
mesh is adapted according to the error control algorithm based on us-
ing an a posteriori error bound to equidistribute the error across the
elements. The a posteriori analysis presented above can be changed to
cover Neumann boundary conditions in a straightforward way.

The second example is a computation on a model of wave propaga-
tion in an inhomogeneous, linear elastic, viscously damped solid. We as-
sume that the displacements are small and perpendicular to the (x1, x2)
plane and that the solid is relatively long in the x3 direction, which
reduces the model to a scalar, two-dimensional wave equation for the
shear waves propagating in the (x1, x2) plane.

In the specific example we present, the domain Ω = (0, 1) × (0, 1)
is composed of two isotropic materials joined along the line x2 = .59.
The material in the upper portion has a shear modulus that is five times
larger than the material in the lower portion, so that the wave speed
is five times greater in the upper portion of Ω. This gives the equation
ü− a∆u = f , where

a(x) =

{
1, x2 ≤ .59,

5, x2 > .59.
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We assume homogeneous Neumann (stress-free) boundary conditions
and an approximate point source that is active for small time, so we
define

f(x, t) =

{
sin2(πt/.07), |x− (.4, .4)| ≤ .1 and t ≤ .14,

0, otherwise.

This is the kind of forcing that might be found in nondestructive ul-
trasonic testing and seismology. The a posteriori error bound used to
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Figure 16.11: Density plot of the finite element approximation and the
corresponding space mesh for the wave equation on an
inhomogeneous material at time t = .05. The forcing
has not reached maximum strength yet.

control the adaptivity is derived using techniques similar to those used
to prove Theorem 16.2. We show contour plots of the approximation
and the associated space meshes at times t = .05, .15, .25, and .4 in
Fig. 16.11–Fig. 16.14. The material interface is marked with a horizon-
tal line, and the difference in wave speed in the two materials is clear.

16.5.3. An a priori error estimate

We state an a priori error estimate for the cG(1) method in the case Tn
is constant and assuming that Ω is convex.

Theorem 16.4. There is a constant Ci such that if U satisfies (16.19),
then for N = 1, 2, ...,

‖u2(·, tN ) − U2,N‖ ≤ Ci

∫ tN

0

(
‖k2∇ü2‖ + ‖k2ü1‖ + ‖h2D2u̇2‖

)
dt.
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Figure 16.12: t = .15
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Figure 16.13: t = .25

We note that the a priori error estimate is of order O(h2 + k2) and like
the a posteriori estimate, the integral in time corresponds to a linear
rate of accumulation of errors.

Proof. To simplify the analysis, we only analyze the time discretization.
This corresponds to setting Vn equal to the space of functions with
square-integrable gradients on Ω and that vanish on Γ. We use û to
denote the piecewise linear time interpolant of u. Since we already know
how to estimate ρ = u− û, we only have to estimate e = û− U .

To this end, we use the discrete dual problem: Find (Φ1,Φ2) ∈W
(1)
k

that satisfies for n = N,n− 1, ..., 1,

{
−(v1, Φ̇1)n − (∇v1,∇Φ2)n = 0,

−(∇v2,∇Φ̇2)n + (∇v2,∇Φ1)n = 0,
(16.24)
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Figure 16.14: t = .40

for all (v1, v2) ∈ W
(0)
kn , where Φ1,N ≡ 0 and −∆Φ2,N = e2,N with

e2 = û2 − U2. Because the test functions v1 and v2 are piecewise con-
stant, we may replace Φ1 and Φ2 in the second terms in each equation
by their mean values Φ̄i,n := (Φi,n−1 + Φi,n)/2 on In. After this, we
can replace the test functions v1 and v2 by arbitrary piecewise linear
functions, because both Φ̇i and Φ̄i are piecewise constant. In particular,
replacing v1 by e1 = û1−U1 and v2 by e2, adding the resulting equations
and summing over n, and then integrating by parts in time, we obtain
the error representation

‖e2,N‖2

=

N∑

n=1

((
∇ė2,∇Φ2

)
n

+
(
∇e2,∇Φ̄1

)
n

+
(
ė1,Φ1

)
n
−
(
∇e1,∇Φ̄2

)
n

)

=

N∑

n=1

((
ė1, Φ̄1

)
n

+
(
∇e2,∇Φ̄1

)
n

+
(
∇ė2,∇Φ̄2

)
n
−
(
∇e1,∇Φ̄2

)
n

)

= −
N∑

n=1

((
ρ̇1, Φ̄1

)
n

+
(
∇ρ2,∇Φ̄1

)
n

+
(
∇ρ̇2,∇Φ̄2

)
n
−
(
∇ρ1,∇Φ̄0

)
n

)
.

We also replaced Φj by their mean values Φ̄j and then used Galerkin
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orthogonality to replace U by u. Since the terms involving ρ̇i, i = 1, 2
vanish, we arrive at the following error representation

‖e2,N‖2 = −
N∑

n=1

((
∇ρ2,∇Φ̄1

)
n
−
(
ρ1,∆Φ̄2

)
n

)
.

Choosing v1 = −∆Φ̄1 and v2 = −∆Φ̄2 in (16.24), we obtain the stability
estimate:

‖∇Φ1,n‖2 + ‖∆Φ2,n‖2 = ‖e2,N‖2 for all n ≤ N.

Combining this with the error representation and then using standard
estimates for the interpolation error ρ, we obtain the a priori error esti-
mate.

Problem 16.38. Supply the details of the proof.

Problem 16.39. Show that assuming the solution u(x, t) of the wave
equation ü−∆u = f has the form u(x, t) = exp(iωt)w(x), where f(x, t) =
exp(iωt)g(x) and ω > 0 is a given frequency, leads to the stationary
Helmholtz’s equation −∆w − ω2w = g for the amplitude w(x). Show that

a fundamental solution of Helmholtz’s equation in R3 is given by exp(iω|x|)
4π|x| .

Solve Helmholtz’s equation using Femlab on a bounded two-dimensional
domain with suitable boundary conditions in a configuration of physical
interest.

Problem 16.40. Derive the wave equation from Maxwell’s equations under
suitable assumptions.

Let us pause in life’s pleasures
and count its many tears.
For we all share sorrow with the poor.
There’s a song that will linger forever in our ears,
”Hard times will come again no more”.
There’s a song in the sigh of the weary,
”Hard times, hard times come again no more.
Many days you have lingered around our cabin door.
Hard times come again no more.” (S. Foster)
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Stationary Convection-Diffusion

Problems

I have always found it difficult to read books that cannot be un-
derstood without too much meditation. For, when following one’s
own meditation, one follows a certain natural inclination and gains
profit along with pleasure; but one is enormously cramped when
having to follow the meditaton of others. (Leibniz)

In this chapter and the next, we consider a linear model for a prob-
lem that includes the effects of convection, diffusion, and absorption,
which is an example of a multi-physics problem coupling several phys-
ical phenomena. We begin by deriving the model and discussing the
basic properties of solutions. In this chapter, we continue by consider-
ing the discretization of the stationary case, starting with a discussion
that explains why a straightforward application of Galerkin’s method
yields disappointing results for a convection dominated problem. We
then present a modified Galerkin method that resolves the difficulties,
that we call the streamline diffusion finite element method or Sd method.
We continue with the time dependent case in the next chapter. The ma-
terial of these two chapters lay the foundation for the application of
the finite element method to incompressible and compressible fluid flow
including reactive flow, multi-phase flow and free-boundary flow, devel-
oped in the advanced companion volume.

424
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17.1. A basic model

We consider the transport of heat in a current flowing between two re-
gions of a relatively large body of water, for example from a warm region
to a cold region, taking into account the dissipation of the heat, the ad-
vection of the heat by the current, and the absorption of heat into the
air. An example of such a physical situation is the North American
Drift flowing from Newfoundland, where it continues the Gulf Stream,
to the British Isles, where it splits into two branches. The North Amer-
ican Drift is responsible for the warm climate of Western Europe. Our
interest is focused on the water temperature in the Drift at different
locations at different times. The full problem takes place in three space
dimensions, but we simplify the model to two dimensions assuming all
functions are independent of the depth.

The model is a time-dependent scalar convection-diffusion-absorption
problem posed on a space-time domain Q = Ω×I, where Ω is a polygonal
domain in R2 with boundary Γ and I = (0, T ), of the form






u̇+ ∇ · (βu) + αu−∇ · (ǫ∇u) = f in Q,

u = g− on (Γ × I)−,

u = g+ or ǫ∂nu = g+ on (Γ × I)+,

u(·, 0) = u0 in Ω,

(17.1)

where u represents the temperature, β = (β1, β2), α and ǫ > 0 are func-
tions of (x, t) representing the convection velocity, absorption coefficient,
and diffusion coefficient, respectively. Further, f(x, t), u0, g, and u0 are
given data, and

(Γ × I)− = {(x, t) ∈ Γ × I : β(x, t) · n(x) < 0},
(Γ × I)+ = {(x, t) ∈ Γ × I : β(x, t) · n(x) ≥ 0},

where n(x) is the outward normal to Γ at point x, are the inflow and out-
flow parts of the space-time boundary Γ× I, respectively. We illustrate
this in Fig. 17.1.

Problem 17.1. Let Ω = (0, 1) × (0, 1), I = (0, 1), and β =
(
cos
(
π
2 t +

π
4

)
, sin

(
π
2 t+ π

4

))
. Identify the inflow and outflow boundaries of Q.

The model is the result of expressing conservation of heat as

∂

∂t
(λu) + ∇ · q + αu = f,
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t=t1

Figure 17.1: The space time domain Q indicating the inflow and out-
flow boundaries. The inflow boundary is shaded in the
figure on the right.

where q is the heat flow and λ the heat capacity, and assuming that the
constitutive law is the following generalization of Fourier’s law (??)

q = βλu− ǫ∇u.

Setting the heat capacity λ = 1, gives (17.1). This model is a natural
extension of the model for heat flow considered in Chapter ?? with the
addition of terms corresponding to convection of heat with the current
β and absorption of heat at the rate α.

Using the identity

∇ · (βu) = β · ∇u+ (∇ · β)u,

we may replace the convection term ∇· (βu) by β ·∇u by modifying the
term αu to (α + ∇ · β)u.

The model (17.1) models a variety of phenomena with the variable u
representing a quantity subject to convection, diffusion and absorption.
Another example is the evolution of a contaminant dropped into fluid
running in a pipe, see Fig. 17.2, where u represents the concentration of
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Figure 17.2: The convection and diffusion of a dye inside a water pipe.
u(x, t) represents the concentration of the dye at (x, t).

the contaminant in the fluid. A system of the form (17.1) may also serve
as a simple model for fluid flow described by the Navier-Stokes equations,
in which case u represents mass, momentum and energy. Thus, (17.1)
is a fundamental model.

Problem 17.2. The motion of the rotor of an electrical motor gives rise
to an additional contribution to the electric field E of the form β×B where
β is the velocity and B the magnetic flux. Show that introducing this term
into the derivation of (15.2) leads to the convection-diffusion equation

σ
∂u

∂t
+ σβ · ∇u−∇ ·

( 1

µ
∇u
)

= f.

17.2. The stationary convection-diffusion problem

We begin by considering the stationary convection-diffusion-absorption
problem associated to (17.1),






β · ∇u+ αu−∇ · (ǫ∇u) = f in Ω,

u = g− on Γ−,

u = g+ or ǫ∂nu = g+ on Γ+,

(17.2)

with all functions independent of time, and α modified to include ∇ · β
as indicated above. In this case, the definitions of the inflow and outflow
boundaries Γ− and Γ+ are given by

Γ− = {x ∈ Γ : β(x) · n(x) < 0} and Γ+ = {x ∈ Γ : β(x) · n(x) ≥ 0},

see Fig. 17.3. We first discuss basic features of solutions of the problem
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Figure 17.3: The notation for a stationary convection-diffusion prob-
lem.

(17.2) and then consider the computation of approximate solutions using
finite element methods. Special care has to be taken in the design of the
finite element method, because direct application of Galerkin’s method
to (17.2) when the convection is the dominant feature leads to numerical
solutions with spurious oscillations, which is illustrated in Problem 17.6
below.

17.2.1. Convection versus diffusion

Generally, the relative size of ǫ and β govern the qualitative nature
of (17.2). If ǫ/|β| is small, then (17.2) is convection dominated and
has hyperbolic character. If ǫ/|β| is not small, then (17.2) is diffusion
dominated and has elliptic character. Thus, the problem (17.2) changes
character from hyperbolic to elliptic as ǫ/|β| increases. In the diffusion
dominated case the material on elliptic problems in Chapter 14 is appli-
cable since the convection terms are dominated by the diffusion terms.

We now focus on the convection-dominated hyperbolic case and then
first consider the extreme case with ǫ = 0.

17.2.2. The reduced problem

The reduced problem with ǫ = 0 takes the form
{
β · ∇u+ αu = f in Ω,

u = g− on Γ−,
(17.3)
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where u is specified only on the inflow boundary Γ−. The reduced prob-
lem couples convection and absorption.

The streamlines associated to the stationary convection velocity field
β(x) are curves x(s), parametrized by s ≥ 0, satisfying






dx

ds
= β(x(s)) for s > 0,

x(0) = x̄,
(17.4)

for the streamline starting at x̄, see Fig. 17.4. This is the path followed
by a particle starting at x̄ that is convected with velocity β(x). In this
interpretation, s is time and dx/ds represents the particle velocity. A

x(s)

x

-

Figure 17.4: A streamline has tangent vector β(x(s)) at every point
x(s).

streamline is closed if the particle returns to the point of departure, i.e.
x(s) = x̄ for some s > 0. A problem with closed streamlines requires
special care, so we assume for now that there aren’t any. The reduced
equation becomes an ordinary differential equation along a streamline
since by the chain rule,

d

ds
u(x(s)) + α(x(s))u(x(s)) = (β · ∇u+ αu)(x(s)) = f(x(s)), s > 0,

where the inflow data g−(x̄) at x̄ ∈ Γ− gives the “initial data” u(x(0)).
The solution of the reduced problem (17.3) therefore can be found by
solving for each streamline x(s) an ordinary differential equation of the
form (9.1):

v̇(s) + a(s)v(s) = f̄(s), s > 0, v(0) = g−(x(0)),

where v(s) = u(x(s)), a(s) = α(x(s)) and f̄(s) = f(x(s)), corresponding
to “solving along streamline starting at inflow”. We note that the case
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of non-negative absorption with α(x) ≥ 0 corresponds to the parabolic
case with a(s) ≥ 0.

We conclude that in the reduced problem without diffusion informa-
tion is propagated sharply along streamlines from the inflow boundary
to the outflow boundary. We see in particular that if there is a disconti-
nuity in the inflow data at some point x̄ on the inflow boundary Γ−, then
the solution of (17.3) will in general be discontinuous across the entire
streamline staring at x̄. As an example, the solution of the problem






∂u

∂x1
= 0 in x ∈ Ω,

u(0, x2) =

{
0, 0 < x2 < 1/2,

1, 1/2 ≤ x2 < 1,

corresponding to (17.2) with β = (1, 0), α = 0 and Ω = [0, 1] × [0, 1], is
given by

u(x1, x2) =

{
0, 0 < x2 < 1/2, 0 < x1 < 1,

1, 1/2 ≤ x2 < 1, 0 < x1 < 1,

with a discontinuity across the streamline x(s) = (s, 1/2).

Problem 17.3. Suppose β = (1, 1−x1) and Ω = [0, 1]× [0, 1]. (a) Plot Ω
and identify the inflow and outflow boundaries. (b) Compute the stream-
lines corresponding to each point on the inflow boundary (Hint: there are
two cases). Plot enough of the streamlines so that you can describe the
“flow” over Ω.

Problem 17.4. Solve the problem x1
∂u
∂x1

+ x2
∂u
∂x2

= 0 on Ω = {x : 1 <
x1, x2 < 2}, with some choice of inflow data.

17.2.3. Layers of difficulty

The features of the reduced problem with ǫ = 0 are present also in
the hyperbolic case with ǫ/|β| small positive but now the presence of
positive diffusion makes the solution continuous and “spreads out” a
discontinuity over a layer in the solution, which is a narrow region where
the solution changes significantly. For example, a discontinuity across a
streamline becomes a characteristic layer of width O(

√
ǫ), see Fig. 17.5.

Further, if Dirichlet boundary conditions are specified on the outflow
boundary Γ+ in the case ǫ > 0, then in general the solution u of (17.2)
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Figure 17.5: Illustrations of an outflow (on the left) and a characteris-
tic layer caused by a discontinuity in g− (on the right).

has an outflow boundary layer of width O(ǫ) close to Γ+ where u changes
rapidly to meet the boundary condition; see Fig. 17.5.

To give a concrete example of an outflow layer we consider the one-
dimensional analog of (17.2), which takes the form

{
−(ǫu′)′ + βu′ + αu = f for 0 < x < 1,

u(0) = 0, u(1) = 0,
(17.5)

in the case of homogeneous Dirichlet boundary conditions. We present
computational results in Fig. 17.6 for the case ǫ = 0.02, β = 1, α = 0
and f = 1 using L2 norm error control on the tolerance level .02. The
flow is from left to right with inflow at x = 0 and outflow at x = 1. Note
the outflow layer in u in the boundary layer near x = 1 resulting from
the convection in the positive x direction and how the mesh is refined
in that region.

Problem 17.5. Show that the width of an outflow layer is approximately
of order ǫ by explicitly solving the one-dimensional convection-diffusion
problem −ǫu′′ + u′ = 0 for 0 < x < 1 with u(0) = 1, u(1) = 0.

We now present a problem showing that Galerkin’s method may go
berserk under certain conditions. We urge the reader to do this problem
before continuing.

Problem 17.6. Consider the continuous Galerkin cG(1) method for the
one-dimensional problem −ǫu′′ + u′ = 0 in (0, 1) with u(0) = 1, u(1) =
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Figure 17.6: Solution, error, and meshsize for (17.5) with ǫ = .02, β =
1, α = 0, f = 1, and TOL=.02.

0. (a) Write down the discrete equations for the cG(1) approximation
computed on a uniform mesh with M interior nodes. (b) With ǫ = 0.01,
compute the approximation for M = 10 and M = 11 and compare to the
true solution. (c) Compute the approximation with M ≈ 100 and compare
with the exact solution. (d) Write out the discrete equations when ǫ =
h/2. Explain why this scheme is called the upwind method for the reduced
problem. How is the convection term approximated by Galerkin’s method?
Compare with the upwind method. Compare the nature of propagation of
effects (in particular the outflow boundary condition) in Galerkin’s method
with ǫ > 0 much smaller that h and the upwind method.

17.3. The streamline diffusion method

Convection dominated problems present difficulties for computation that
are not present in diffusion dominated problems, mainly because the sta-
bility properties of convection dominated problems cause the standard
Galerkin finite element method to be non-optimal compared to interpo-
lation. Recall that Galerkin methods are typically optimal for elliptic
and parabolic problems, and in general for diffusion dominated prob-
lems. However, the standard Galerkin method for convection dominated
problems may be far from optimal if the exact solution is nonsmooth, in
which case the Galerkin approximations contain “spurious” oscillations
not present in the true solution. This is illustrated in Problem 17.6.
The oscillations occur whenever the finite element mesh is too coarse to
resolve layers, which typically is the case in the early stages of an adap-
tive refinement process. The oscillations result from a lack of stability
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of the standard Galerkin finite element method for convection domi-
nated problems, and may have disastrous influence on the performance
of an adaptive method leading to refinements in large regions where no
refinement is needed.

We conclude that it is important to improve the stability properties
of the Galerkin finite element method. However, this has to be done
cleverly, because additional stability is often obtained at the price of
decreased accuracy. For example, increasing artificially the diffusion
term (e.g. by simply setting ǫ = h) will increase the stability of the
Galerkin method, but may also decrease accuracy and prevent sharp
resolution of layers. Thus, the objective is to improve stability without
sacrificing accuracy.

We consider two ways of enhancing the stability of the standard
Galerkin finite element method:

(a) introduction of weighted least squares terms

(b) introduction of artificial viscosity based on the residual.

We refer to the Galerkin finite element method with these modifications
as the streamline diffusion, or Sd-method, and motivate this terminol-
ogy below. The modification (a) adds stability through least squares
control of the residual and the modification (b) adds stability by the
introduction of an elliptic term with the size of the diffusion coefficient,
or viscosity, depending on the residual with the effect that viscosity is
added where the residual is large, i.e., typically where the solution is
nonsmooth. Both modifications enhance stability without a strong ef-
fect on the accuracy because both modifications use the residual.

17.3.1. Abstract formulation

We begin by describing the Sd-method for an abstract linear problem of
the form

Au = f, (17.6)

for which the standard Galerkin finite element method reads: compute
U ∈ Vh such that

(AU, v) = (f, v) for all v ∈ Vh, (17.7)

where A is a linear operator on a vector space V with inner product
(·, ·) and corresponding norm ‖ · ‖, and Vh ⊂ V is a finite element space.
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Typically, A is a convection-diffusion differential operator, (·, ·) is the
L2 inner product over some domain Ω. We assume that A is positive
semi-definite, i.e. (Av, v) ≥ 0 for all v ∈ V.

The least squares method for (17.6) is to find U ∈ Vh that minimizes
the residual over Vh, that is

‖AU − f‖2 = min
v∈Vh

‖Av − f‖2.

This is a convex minimization problem and the solution U is character-
ized by

(AU,Av) = (f,Av) for all v ∈ Vh. (17.8)

We now formulate a Galerkin/least squares finite element method for
(17.6) by taking a weighted combination of (17.7) and (17.8): compute
U ∈ Vh such that

(AU, v) + (δAU,Av) = (f, v) + (δf,Av) for all v ∈ Vh, (17.9)

where δ > 0 is a parameter to be chosen. Rewriting the relation (17.9)
as

(AU, v + δAv) = (f, v + δAv) for all v ∈ Vh, (17.10)

we can alternatively formulate the Galerkin/least squares method as a
Petrov-Galerkin method, which is a Galerkin method with the space of
test functions being different from the space of trial functions Vh. In our
case, the test functions have the form v + δAv with v ∈ Vh.

Adding the artificial viscosity modification (b) yields (with a typical
choice of diffusion operator) the Sd-method in abstract form: find U ∈
Vh such that

(AU, v + δAv) + (ǫ̂∇U,∇v) = (f, v + δAv) for all v ∈ Vh, (17.11)

where ǫ̂ is the artificial viscosity defined in terms of the residual R(U) =
AU − f through

ǫ̂ = γ1h
2|R(U)|, (17.12)

with γ1 a positive constant to be chosen, and h(x) the local mesh size
of Vh.

Choosing v = U in (17.11) we see that the modifications improve the
stability of the approximation as compared to (17.7).

Problem 17.7. Assume (Av, v) ≥ c‖v‖2 for some positive constant c. (a)
Choose v = U in (17.11) and derive a stability result for U . (b) Compare
the result from (a) to the stability result obtained by choosing v = U in
(17.7). How does the stability result from (a) depend on δ and γ1?
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17.3.2. The streamline diffusion method for a convection-dif-
fusion problem

We now formulate the streamline diffusion method for (17.2) with
constant ǫ and homogeneous Dirichlet boundary conditions using the
standard space of piecewise linear functions Vh ⊂ V = H1

0 (Ω) based on
a triangulation Th of Ω: compute U ∈ Vh such that

(AU, v + δAv) + (ǫ̂∇U,∇v) = (f, v + δAv) for all v ∈ Vh, (17.13)

where (·, ·) is the L2(Ω) inner product,

Aw = β · ∇w + αw, δ =
1

2

h

|β| ,

ǫ̂(U, h) = max
{
ǫ, γ1h

2|f − (β · ∇U + αU)|, γ2h
3/2
}
,

where the γj are positive constants to be specified. We obtain (17.13)
by multiplying the terms in (17.2) that appear in the reduced equation
by the modified test function v + δ(β · ∇v + αv), which corresponds to
a least squares modification of the convection/absorption terms, while
multiplying the diffusion term in (17.2) by v after replacing ǫ by ǫ̂. If ǫ
is variable or higher order polynomials are used, then the diffusion term
should be included in the least squares modification.

In general, ǫ̂ depends on U and the discrete problem (17.13) is non-
linear, even though the continuous problems (17.2) and (17.3) are linear.
When iterative methods are used to solve the discrete equations, the ad-
ditional complication in solving the discrete equations due to the non-
linearity introduced by ǫ̂ has little effect on the computational overhead.
The artificial viscosity ǫ̂ is proportional to |f − (β · ∇U + αU)|, which
plays the role of the residual. For simplicity, the jump terms related to
the diffusion term has been left out; see the statement of Theorem 17.5.

The size of the artificial viscosity ǫ̂ relative to the mesh size h (as-
suming ǫ ≤ h) gives a measure of the smoothness of the exact so-
lution u. In regions where u is smooth, ǫ̂ ≈ h3/2, while in outflow
layers in general ǫ̂ = γ1h

2|f − (β · ∇U + αU)| ∝ h, because there
|f − (β · ∇U + αU)| ∝ h−1 on a general mesh. In characteristic lay-
ers, typically |f − (β · ∇U +αU)| ≈ h−1/2 so that again ǫ̂ ∝ h3/2. Thus,
we distinguish two basic cases:

(a) u is “smooth” with ǫ̂ ∝ h3/2, including characteristic layers,
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(b) u is non-smooth with ǫ̂ ∝ h, typically resulting in outflow layers.

We assume for the sake of simplicity that ǫ̂ = ǫ, which can be guar-
anteed during a computation by adding this requirement to the stopping
criterion in the adaptive algorithm. The case ǫ̂ > ǫ typically occurs in
initial stages of adaptive refinements when the mesh is coarse. We focus
on the case with h2 ≤ ǫ ≤ h. If ǫ is larger than h then all layers are
resolved by the mesh, and if ǫ is smaller than h2 then the mesh is much
too coarse.

In Fig. 17.7, we present the results of a computation using the adap-
tive streamline diffusion method on the convection-diffusion problem
with Ω = (0, 1) × (0, 1), β = (2, 1), α = 0, ǫ = 0.01, and discontinuous
inflow data u(0, y) ≡ 1, 0 ≤ y ≤ 1 and u(x, 0) ≡ 0, 0 < x < 1. Note
the form and thickness of the layers and the corresponding shape of the
adapted mesh.

Figure 17.7: A surface plot with the mesh indicated and associated
level curves of the approximate solution obtained using
the streamline diffusion method for a convection-diffusion
problem with both outflow and characteristic layers.

Problem 17.8. Plot Ω for this computation and identify the streamlines
and the inflow and outflow boundaries.

17.4. A framework for an error analysis

We describe the basic ingredients of the analysis of the streamline dif-
fusion method. The goal is an a posteriori error estimate that can be
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used to guide the mesh adaptivity in order to control the error. After
presenting the general points, we analyze a specific case in the following
section.

17.4.1. Basic stability estimates

We assume that

α− 1

2
∇ · β ≥ c > 0, (17.14)

for some constant c. In the case of non-closed streamlines this condition
may be satisfied by a change of variable; cf. Problem 17.10. The weak
stability estimate for the solution u of (17.2) has the form:

‖√ǫ∇u‖ + ‖u‖ ≤ C‖f‖, (17.15)

with C = (
√
c + 2)/(2c), and ‖ · ‖ denotes the L2(Ω) norm. In what

follows, the exact value of C changes, but it is always a constant that
depends on the constant c in (17.14). The estimate (17.15) follows after
multiplying the differential equation in (17.2) by u, integrating over Ω,
and using the fact that (β · ∇u, u) = −1

2(∇ · β u, u).
A corresponding stability estimate for the discrete problem (17.13)

is obtained by choosing v = U , which gives

‖
√
ǫ̂∇U‖ + ‖

√
δ(β · ∇U + αU)‖ + ‖U‖ ≤ C‖f‖. (17.16)

We note that the control of the ‖
√
δ(β · ∇U + αU)‖ term results from

the least squares modification of the streamline diffusion method, and
that the artificial viscosity ǫ̂ is present in the gradient term. The ‖U‖
term allows the ‖

√
δ(β ·∇U +αU)‖ term to be replaced by ‖

√
δβ ·∇U‖,

yielding a weighted control of the streamline derivative β · ∇U . This
control corresponds to adding diffusion in the streamline direction with
coefficient δ, and this is the motivation for the name “streamline diffusion
method”.

Below, we also use an analog of the stability estimate (17.16) with
ǫ̂ = ǫ = 0 that has the following form: for piecewise continuous functions
w with w = 0 on Γ−,

‖
√
δAw‖2 + c‖w‖2 ≤ (Aw,w + δAw), (17.17)

where as above A = β · ∇w + αw. This estimate follows from the
following version of Green’s formula after noting that the boundary term
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is guaranteed to be non-negative if w = 0 on Γ−, because β · n ≥ 0 on
Γ+.

Lemma 17.1.

(β · ∇w,w) = −1

2
(∇ · β w,w) +

1

2

∫

Γ
w2β · n ds. (17.18)

We note that the stability estimate (17.17) requires w to be specified (to
be zero) on the inflow boundary Γ−. The estimate gives a motivation
why it is natural to specify data on Γ−, rather than on Γ+, in the case
ǫ = 0.

Problem 17.9. Provide the details in the derivations of (17.15), (17.16),
(17.17) and (17.18).

Problem 17.10. Show that the equation u′(s) = f(s), where s ∈ R, takes
the form v′(s)+v(s) = exp(−s)f(s) using the change of dependent variable
v(s) = exp(−s)u(s).

17.4.2. A strong stability estimate

In addition to the weak stability estimate (17.15), we also use the fol-
lowing estimate for a dual continuous problem which can be written in
the form (17.2) with Neumann outflow boundary conditions:

‖β · ∇u+ αu‖ + ‖ǫD2u‖ ≤ C‖f‖, (17.19)

where C is a moderately sized constant that does not depend in a sig-
nificant way on ǫ if Ω is convex. We refer to this estimate as a strong
stability estimate because second derivatives are bounded, in addition to
the control of the term β ·∇u+αu. The “price” of the second derivative
control is a factor ǫ−1, which is natural from the form of the equation.
Since ǫ is small, the “price” is high, but nevertheless there is a net gain
from using this estimate, because the presence of the second derivatives
brings two powers of h to compensate the ǫ−1 factor.

We are not able to prove the analog of the strong stability estimate
(17.19) for the discrete problem, which would be useful in deriving a
priori error estimates. Instead, we use (17.16) as a substitute, yielding
a weighted control of β · ∇U + αU with the weight

√
δ.

We summarize the effects of the two modifications used to create the
streamline diffusion method: the least squares modification gives added
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control of the derivative in the streamline direction with a weight
√
δ,

while the artificial viscosity modification gives control of the gradient
∇U with the weight

√
ǫ̂.

17.4.3. Basic forms of the error estimates

Assuming that ǫ̂ = ǫ, the a posteriori error estimate for the streamline
diffusion method (17.13) has the form:

‖u− U‖ ≤ CiSc

∥∥∥∥
h2

ǫ
R(U)

∥∥∥∥, (17.20)

where Sc ≈ 1 and R(U) is the residual of the finite element solution U
defined in terms of the differential equation in a natural way. We note the
presence of the factor h2/ǫ that results from combining strong stability
with Galerkin orthogonality. In many cases, we have h2/ǫ << 1. For
example if ǫ ≈ h3/2, which corresponds to a “smooth” exact solution
such as a solution with a characteristic layer, then (17.20) reduces to

‖u− U‖ ≤ C‖h1/2 R(U)‖.

If ǫ ≈ h, which corresponds to a “non-smooth” exact solution such as a
solution with an outflow layer, then (17.20) reduces to

‖u− U‖ ≤ C‖hR(U)‖.

To understand the gain in (17.20), compare it to the “trivial” a posteriori
error estimate

‖u− U‖ ≤ C‖R(U)‖ (17.21)

that follows directly from the weak stability estimate and even holds for
non-Galerkin methods. This estimate is almost useless for error control
in the case the exact solution is non-smooth, because the right-hand
side in general increases with decreasing mesh size until all layers are
resolved.

The a priori error estimate takes the form

‖h1/2R(U)‖ + ‖u− U‖ ≤ CiSc,h‖h3/2D2u‖,

where Sc,h ≈ 1. In the case of a smooth solution, the a posteriori and
a priori error estimates match and both are non-optimal with a loss of
h1/2, while in the non-smooth case with ǫ̂ = h, the a posteriori estimate
appears in optimal form.
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Problem 17.11. Prove (17.21). Assuming that R(U) ≈ h−1 in an outflow
layer of width of order h, estimate ‖R(U)‖ and discuss what would happen
if an adaptive method tried to control ‖u − U‖ by using (17.21). Do the
same in the case of a characteristic layer assuming R(U) ≈ h−1/2 in a layer
of width h1/2.

17.5. A posteriori error analysis in one dimension

We consider the one-dimensional convection-diffusion-absorption prob-
lem (17.5) with β = 1, α = 1 and ǫ a small positive constant:

{
−ǫu′′ + u′ + u = f in (0, 1),

u(0) = u(1) = 0.
(17.22)

This problem in general has an outflow layer of width O(ǫ) at x = 1
where the solution rapidly changes to adjust to the imposed outflow
boundary value u(1) = 0.

For simplicity, we consider the streamline diffusion method for (17.22)
without the artificial viscosity modification, which takes the form : Com-
pute U ∈ Vh such that

(U ′ + U, v + δ(v′ + v)) + (ǫU ′, v′) = (f, v + δ(v′ + v)) for all v ∈ Vh,
(17.23)

where δ = h/2 when ǫ < h and δ = 0 otherwise, Vh is the usual space
of continuous piecewise linear functions that vanish at x = 0, 1, and
(·, ·) the L2(Ω) inner product. We note that the streamline diffusion
method is essentially obtained by multiplication by the modified test
function v + δ(v′ + v). The modification has a stabilizing effect, which
is manifested by the presence of the positive term (U ′ + U, δ(U ′ + U)),
obtained by choosing v = U in (17.23). If δ is increased, the stability is
improved but at the cost of accuracy. If δ is decreased, then the reverse
is true. Choosing δ ≈ h/2 gives the best compromise and results in a
satisfactory combination of stability and accuracy.

We now prove an L2 a posteriori error estimate for the streamline
diffusion method (17.23). For simplicity, we consider a case with h ≤ ǫ
and δ = 0.
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Theorem 17.2. There is a constant C independent of ǫ and h such that
the solution U of (17.23) satisfies the following estimate for all ǫ ≥ 0

‖u− U‖ ≤ Ci
∥∥h

2

ǫ∗
(f − Ux)

∥∥+ |ǫu′(0)| + |ǫU ′(0)|,

where ǫ∗(x) = h1/2ǫ on the interval of the subdivison underlying Vh with
left-hand endpoint x = 0, ǫ∗ = ǫ elsewhere, and ‖ · ‖ denotes the L2(Ω)
norm

Proof. Let ϕ be the solution of the dual problem

{
−ǫϕ′′ − ϕ′ + ϕ = g for 0 < x < 1,

ϕ′(0) = 0, ϕ(1) = 0,
(17.24)

with the direction of the convection from right to left, which is opposite
to that of (17.22). We pose the dual problem with Dirichlet inflow
boundary condition at the inflow at x = 1 and it is convenient to choose a
Neumann outflow condition at the outflow at x = 0. Choosing g = u−U
in (17.24), multiplying by u − U and integrating by parts, we get and
using the Galerkin orthogonality,

‖u− U‖2 =

∫ 1

0
(f − U ′ − U)(ϕ − πhϕ) dx

−
∫ 1

0
ǫU ′(ϕ− πhϕ)′ dx+ ǫu′(0)ϕ(0),

where πhϕ ∈ Vh interpolates ϕ at the interior mesh points. Using the
following stability result this proves the desired result, up to the small
modification of ǫ required because in general ϕ(0) 6= 0, while πhϕ(0) = 0.

Lemma 17.3. There is a constant C such that if ϕ solves (17.24), then

|ϕ(0)| ≤ ‖g‖ and ‖ǫϕ′′‖ ≤ ‖g‖. (17.25)

Proof. Multiplication with ϕ and integration gives

∫ 1

0
(ǫϕ′)2 dx+

∫ 1

0
ϕ2 dx+

1

2
ϕ(0)2 ≤ 1

2

∫ 1

0
g2 dx+

1

2

∫ 1

0
ϕ2 dx,
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which proves the estimate for |ϕ(0)|. Next, multiplication with −ǫϕ′′

gives

∫ 1

0
(ǫϕ′′)2 dx+

∫ 1

0
ϕ′ǫϕ′′ dx+

∫ 1

0
ǫ(ϕ′)2 dx = −

∫ 1

0
gǫϕ′′.

Since

2

∫ 1

0
ϕ′ϕ′′ dx = ϕ′(1)2 ≥ 0,

this proves the desired estimate for ǫϕ′′ by Cauchy’s inequality.

Problem 17.12. Determine the Green’s function gz(x) for the boundary
value problem {

−ǫu′′ + bu′ = f, 0 < x < 1,

u(0) = u(1) = 0,
(17.26)

where b is constant. This is the function gz(x) defined for 0 < z < 1 that
satisfies {

−ǫg′′z − bg′z = δz, 0 < x < 1,

gz(0) = gz(1) = 0,

where δz denotes the delta function at z. Prove the representation formula

u(z) =

∫ 1

0

gz(x)f(x) dx, 0 < z < 1, (17.27)

where u(x) is the solution of (17.26). Consider first the case ǫ = 1 and
b = 0, and then the case ǫ > 0 and b = 1, paying particular attention to
the limit ǫ→ 0.

17.6. Error analysis in two dimensions

We prove error estimates for a model problem of the form (17.2) with
β = (1, 0), α = 1, ǫ constant and Ω = (0, 1) × (0, 1). For convenience,
we denote the coordinates in R2 by (x, y), and we write

ux = ∂u/∂x = β · ∇u = (1, 0) · ∇u,

and formulate the model problem (see Fig. 17.8) as follows:
{
ux + u− ǫ∆u = f in Ω,

u = 0 on Γ.
(17.28)
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-

+

y = y0

Figure 17.8: The model problem.

This problem is a direct extension of the one-dimensional model
problem (17.5) to two dimensions. Solutions of (17.28) can have an
outflow layer of width O(ǫ) along Γ+ and also characteristic layers of
width O(

√
ǫ) along characteristics {(x, y) : y = y0} that do not occur in

the corresponding one-dimensional problem.

17.6.1. Strong stability analysis

We use the following strong stability estimate for the associated dual
problem with homogeneous Neumann outflow boundary data.

Lemma 17.4. The solution ϕ of the dual problem






−ϕx + ϕ− ǫ∆ϕ = g, in Ω,

ϕ = 0, on Γ+,

ϕx = 0, on Γ−,

(17.29)

satisfies the stability estimates

(
‖ϕ‖2 + 2‖ǫ1/2∇ϕ‖2 +

∫

Γ−

ϕ2 ds

)1/2

≤ ‖g‖, (17.30)

‖ǫD2ϕ‖ ≤ ‖g‖. (17.31)

Proof. Multiplying (17.29) by 2ϕ and integrating, we obtain (17.30) af-
ter using the fact that −2(ϕx, ϕ) =

∫
Γ−

ϕ2ds. Next, multiplying (17.29)
by −ǫ∆ϕ and integrating, we obtain

‖ǫ∆ϕ‖2 + (ǫ∇ϕ,∇ϕ) + (ǫϕxx, ϕx) + (ǫϕyy , ϕx) = (f,−ǫ∆ϕ).
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Since ϕx = 0 on Γ−, we have

2(ϕxx, ϕx) =

∫

Γ+

ϕ2
x ds.

On the two sides of Ω with y = 0 and 1, ϕx = 0, while ϕy = 0 on Γ+.
This gives

2(ϕyy , ϕx) = −2(ϕy , ϕxy) =

∫

Γ−

ϕ2
y ds.

We conclude that

‖ǫ∆ϕ‖2 ≤ (f,−ǫ∆ϕ) ≤ ‖f‖‖ǫ∆u‖.

The desired estimate follows using the elliptic regularity result ‖D2ϕ‖ ≤
‖∆ϕ‖, see (14.54).

17.6.2. The a posteriori error estimate

We prove an a posteriori error estimate in the case δ = 0 and ǫ̂ = ǫ
constant. The proof when δ ≈ h is obtained by a simple modification.

Theorem 17.5. There is a constant C such that

‖u− U‖ ≤ C

(∥∥∥∥
h2

ǫ∗
R(U)

∥∥∥∥ + ‖ǫ∂nu‖Γ−
+ ‖ǫ∂nU‖Γ−

)
, (17.32)

where R(U) = R1(U) +R2(U) with

R1(U) = |f − Ux − U |

and
R2(U) =

ǫ

2
max
S⊂∂K

h−1
K |[∂SU ]| on K ∈ Th, (17.33)

where [∂Sv] denotes the jump across the side S ⊂ ∂K in the normal
derivative of the function v in Vh, and ǫ∗ = ǫh1/2 on K if K ∩ Γ− 6= 0
and ǫ∗ = ǫ otherwise.

Proof. Letting ϕ denote the solution of the dual problem (17.29) with
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g = e = u − U , we obtain the following error representation by using
Galerkin orthogonality and the equations defining u and U ,

‖e‖2 = (e,−ϕx + ϕ− ǫ∆ϕ)

= (ex + e, ϕ) + (ǫ∇e,∇ϕ)

= (ux + u, ϕ) + (ǫ∇u,∇ϕ) − (Ux + U,ϕ) − (ǫ∇U,∇ϕ)

= (f, ϕ) +

∫

Γ−

ǫ ∂nuϕds − (Ux + U,ϕ) − (ǫ∇U,∇ϕ)

= (f − Ux − U,ϕ− πhϕ) − (ǫ∇U,∇(ϕ− πhϕ)) +

∫

Γ−

ǫ ∂nuϕds,

from which the desired estimate follows by standard interpolation error
estimates and Lemma 17.4.

Problem 17.13. Supply the details to finish the proof.

Problem 17.14. Prove a similar result when δ ≈ h.

We note that the ∗ modification of ǫ is required to deal with the
incompatibility of boundary conditions for ϕ and functions in Vh on Γ−.

17.6.3. The a priori error estimate

We prove the a priori error estimate (17.6) in the simplified case that
ǫ = ǫ̂ = 0. The Dirichlet boundary condition is specified only on the
inflow boundary. Using Galerkin orthogonality in the analog of (17.17)
for the error e = u− U with A = ∂

∂x + I, we get

‖
√
δAe‖2 + c‖e‖2 ≤ (Ae, e + δAe) = (Ae, u− πhu+ δA(u− πhu))

≤ 1

2
‖
√
δAe‖2 + ‖δ−1/2(u− πhu)‖2 + ‖

√
δA(u− πhu)‖2,

where as usual πhu denotes the nodal interpolant of u. Choosing δ = h
and using standard interpolation results, yields

1

2
‖
√
hAe‖2 + c‖e‖2 ≤ C2

i ‖h3/2D2u‖2.

We state the final result, which extends directly to the case with ǫ small,
as a theorem.

Theorem 17.6. If α− 1
2∇ · β ≥ c > 0 and ǫ ≤ h, then

‖u− U‖ ≤ CCi‖h3/2 D2u‖.



446 17. Stationary Convection-Diffusion Problems

17.6.4. The propagation of information

It is possible to prove a “local” form of an a priori error estimate for the
streamline diffusion method in which the L2 error over a domain Ω1 ⊂ Ω
that excludes layers is estimated in terms of the L2 norm of h3/2D2u over
a slightly larger domain Ω2 that also excludes layers. The upshot is that
the presence of e.g. an outflow layer where the error may be locally large
if ǫ is small, does not degrade the accuracy away from the layer. This is
because in the streamline diffusion method, effects are propagated more
or less along streamlines from inflow to outflow in the direction of the
“wind” β just as effects are propagated in the continuous problem. In
particular, the streamline diffusion method does not have the spurious
propagation in the opposite direction to the wind that occurs in the
standard Galerkin method.

Problem 17.15. (a) Consider the problem −ǫu′′ + u′ + u = f for
0 < x < 1, together with u(0) = 1, u(1) = 0. Let ψ(x) be a positive
weight function on I such that 0 ≤ −ψ′ ≤ Cψ/ǫ, with C a suitable con-
stant. Prove a stability estimate of the form ‖√ψu‖ ≤ C‖√ψf‖. Use this
estimate to draw a conclusion on the decay of information in the “upwind”
direction. Hint: multiply by ψu. (b) (Hard) Extend to the streamline dif-
fusion method. Hint: multiply by πh(ψU) and estimate the effect of the
perturbation ψU − πh(ψU).

17.7. 79 A.D.

The figure below, adapted with the permission of the National Geo-
graphic Society, shows the ash fall resulting from the eruption of Mount
Vesuvius in 79 A.D. This is an example of a full scale convection-diffusion
problem with the convection velocity corresponding to a wind from
north-west and an approximate delta function source. The level curves
of the ash downfall (levels at 0.1, 1 and 2 meters are faintly shaded)
give a measure of the concentration of ash in the atmosphere in various
directions from the crater. Note the pronounced propagation of ash in
the direction of the wind due to convection. The propagation against
the wind due to diffusion is much smaller.



18

Time Dependent

Convection-Diffusion Problems

The fact that in nature “all is woven into one whole”, that space,
matter, gravitation, the forces arising from the electromagnetic
field, the animate and inanimate are all indissolubly connected,
strongly supports the belief in the unity of nature and hence in
the unity of scientific method. (Weyl)

We return to the time-dependent problem (17.1), considering mainly the
convection dominated case with ǫ/|β| small since the case when ǫ/|β| is

447
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not small can be analyzed by extending the results for the heat equation
presented in Chapter 15.

The cG(1)dG(r) method for the heat equation, using cG(1) in space
and dG(r) in time on space-time slabs, can be applied to (17.1) with
modifications like those used to create the streamline diffusion method
for stationary convection diffusion problems (17.2). We discuss this ap-
proach briefly in Section 18.3. However, it turns out that using space-
time meshes that discretize space and time independently is not optimal
for convection dominated problems. It is better to use a mesh that is
oriented along characteristics or space-time particle paths. We illustrate
this in Fig. 18.1. We refer to a finite element method using oriented

tn-1

tn

tn-1

tn

non-oriented mesh oriented mesh

tn-1

tn

streamlines and velocity field evolution of a solution

Sn Sn

Sn

t

Figure 18.1: The upper figures show the space-time domain with the
flow field in space-time, the space-time streamlines, and
an illustration of the evolution of a solution. The two
lower figures show non-oriented and oriented space-time
meshes.

meshes as a characteristic Galerkin method, or a chG method.
In particular, we study the chG(0) method obtained applying the



18. Time Dependent Convection-Diffusion Problems 449

cG(1)dG(0) method on a mesh oriented along particle paths in space
and time inside each slab. In its most elementary form, the chG(0)
method reduces on each space-time slab to an L2 projection from the
previous mesh onto the current mesh followed by an exact transport in
the directions of the characteristics. The main computational work is
spent on the L2 projections. However for the purpose of analysis, it is
more useful to view the chG method as a Galerkin method on a space-
time mesh oriented in space-time along space-time particle paths. In
addition, this opens the way to generalizations in which the space-time
meshes are oriented in different ways.

We begin by describing the two fundamental ways to represent solu-
tions of a convection problem, called respectively Euler coordinates and
Lagrange coordinates.

18.1. Euler and Lagrange coordinates

We describe the coordinates systems in the context of measuring the
temperature in the North Atlantic stream. Dr. Euler and Dr. Lagrange
each lead a team of assistants provided with boats and thermometers.
Dr. Euler’s assistants anchor their boats at specific locations and mea-
sure the temperature of the water continuously as it flows past their
positions. Dr. Lagrange’s assistants, on the other hand, drift with the
current while measuring the temperature. An assistant to Dr. Euler
measures the temperature of the water as it is affected by the current in
contrast to an assistant to Dr. Lagrange who measures the temperature
of the same “piece” of water, albeit at different positions. In order to
correlate the measurements of the two groups, it is necessary to record
the stationary positions of Dr. Euler’s assistants and to keep track of
the changing positions of Dr. Lagrange’s assistants.

To simplify the mathematical description of the two sets of coordi-
nates, we consider the model problem,






u̇+ β · ∇u− ǫ∆u = f in Q = R2 × (0,∞),

u(x, t) → 0 for t > 0 as |x| → ∞,

u(·, 0) = u0 in R2,

(18.1)

where we assume that β is smooth, f and u0 have bounded support,
which means that they are zero outside some bounded set, and ǫ ≥ 0
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is constant. This means in particular that we avoid here discussing
complications rising from boundaries in space.

18.1.1. Space-time particle paths

The space-time particle paths, or characteristics, corresponding to the
convection part u̇ + β · ∇u of (18.1) are curves (x, t) = (x(x̄, t̄), t(t̄)) in
space and time parameterized by t̄, where x(x̄, t̄) and t(t̄) satisfy






dx

dt̄
= β(x, t̄) for t̄ > 0,

dt

dt̄
= 1 for t̄ > 0,

x(x̄, 0) = x̄, t(0) = 0.

(18.2)

This is analogous to the stationary case with the operator β ·∇ replaced
by 1 ·∂/∂t+β ·∇, where the coefficient of the time-derivative is one and
t acts as an extra coordinate. Here, the time coordinate has a special
role and in fact t = t̄. The projection of the space-time particle path
into space is given by the curve x(x̄, t̄) satisfying






dx

dt̄
= β(x, t̄) for t̄ > 0,

x(x̄, 0) = x̄
(18.3)

which is the time-dependent analog of the particle path in the stationary
case and gives the path in space of a particle moving with speed β(x, t).

Note that for time-dependent velocity fields, it is important to dis-
tinguish between particle paths and streamlines, unlike the case of sta-
tionary velocities when the two concepts are the same. Streamlines are
related to a time-independent velocity, for instance we may “freeze” the
velocity β(x, t) for t = t̂ and consider the streamlines of β(x, t̂ ) that
solve dx/dt̄ = β(x, t̂ ). The streamlines are therefore different from the
particle paths, which satisfy dx/dt̄ = β(x, t̄), if β(x, t̄) depends on t̄.

It is also important to distinguish between a space-time particle path
(x(x̄, t̄), t̄) and its projection into space x(x̄, t̄). Space-time particle paths
are essential for the construction of the oriented space-time mesh we
describe below.

Problem 18.1. Compute and plot the space-time particle paths if (a)
β = (x1, 1). (b) β = (−x2, x1). (c) β = (sin(t), cos(t)).
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18.1.2. Changing from Lagrange to Euler coordinates

The solution of (18.2) defines a map (x̄, t̄) → (x, t) by setting (x, t) =
(x(x̄, t̄), t̄) where x(x̄, t̄) is the position at time t̄ of a particle starting
at x̄ at time zero. Because particle paths fill up space-time and cannot
cross, the map is invertible. We illustrate this in Fig. 18.2. We refer to

(x,0)

(x, t )
( (x, t ),1)

t

Figure 18.2: The vector field (β, 1) and the corresponding streamlines
define a map between the Euler and Lagrange coordinate
systems.

(x, t) as the Euler coordinates and (x̄, t̄) as the Lagrange coordinates.
An observer using Euler coordinates is anchored at a fixed location x
in space and observes the change of some quantity, such as the tem-
perature at x, as time passes, where the change may be caused by the
convection bringing new “particles” to the point x. On the other hand,
the Lagrange coordinate system moves with the velocity field so that
there is no convection relative to the moving coordinate system. The
coordinate x̄ then acts as a “label” or “marker” attached to “particles”
moving along streamlines, where the x̄ denotes the position of a particle
at time zero, and x = x(x̄, t̄) is its position at time t̄. In the context
of the Dr. Euler and Dr. Lagrange’s assistants, the mapping describes
the positions of the Dr. Lagrange’s crew as they are transported by the
current.

Problem 18.2. Compute the coordinate map between Euler and La-
grange coordinates corresponding to β in Problem 18.1.

Given a function u(x, t) in Euler coordinates, we define a correspond-
ing function ū(x̄, t̄) in Lagrange coordinates by ū(x̄, t̄) = u(x(x̄, t̄), t̄). By
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the chain rule,
∂ū

∂t̄
=
∂u

∂t
+ β · ∇u,

since
dx

dt̄
= β(x, t̄) and t = t̄. Thus, the convection equation

∂u

∂t
+ β · ∇u = f (18.4)

in the Euler coordinates (x, t), which is (18.1) with ǫ = 0, takes the
simple form

∂ū

∂t̄
= f̄ (18.5)

in the global Lagrange coordinates (x̄, t̄), where f̄(x̄, t̄) = f(x(x̄, t̄), t̄).
We conclude that in global Lagrange coordinates, the convection term
disappears and the original partial differential equation (18.4) reduces
to a set of first order ordinary differential equations with respect to
t̄ indexed by the “marker” x̄. In particular, if f = 0 then ū(x̄, t̄) is
independent of time. This makes the job easy for a Lagrange assistant in
the sense that if f = 0 then it is sufficient to measure the temperature at
time equal to zero since the temperature following particles is constant.
The Euler assistants on the other hand have to measure the temperature
continuously at their fixed location since it may vary even though f = 0.
Of course, the Lagrange assistants have to keep track of their positions
as time passes.

Problem 18.3. Compute the solution of u̇+xu′ = f for x ∈ R and t > 0
with

f(t) =

{
t(1 − t), 0 ≤ t ≤ 1,

0, 1 < t
and u0(x) =

{
0, |x| > 1,

1, |x| ≤ 1.

by computing the characteristics and changing to Lagrange coordinates.

Problem 18.4. Compute the solution of u̇+(x1, t) ·∇u = 0 for (x1, x2) ∈
R2 and t > 0 with

u0(x) =

{
1, (x1, x2) ∈ [0, 1] × [0, 1],

0, otherwise.

by computing the characteristics and changing to Lagrange coordinates.
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Because of the simplicity of (18.5), it is tempting to use Lagrange
coordinates. But there is a hook: the Lagrange coordinates have to
be computed by solving (18.2) and this is as difficult to solve as the
original convection-diffusion problem formulated in Euler coordinates.
However, using a kind of “local” Lagrange coordinates, we can avoid
solving the equations (18.2) for the global characteristics, while keeping
the advantage of the simple form (18.5) in the Lagrange description.
The Lagrange coordinates associated to (18.1) underlie the construction
of the space-time mesh on each slab Sn used in the chG(0) method in
the sense that the space-time mesh in the chG(0) method is oriented
approximately along the characteristics of the flow locally on Sn, as
shown in Fig. 18.1.

18.2. The characteristic Galerkin method

The characteristic chG(0) method is based on piecewise constant ap-
proximation along space-time characteristics and piecewise linear ap-
proximation in space. As usual we let {tn} be an increasing sequence of
discrete time levels and associate to each time interval In = (tn−1, tn)
a finite element space Vn of piecewise linear continuous functions on a
triangulation Tn of R2 with mesh function hn. We use Sn to denote the
space-time slab R2 × In.

18.2.1. Approximate particle paths

We let βhn ∈ Vn denote the nodal interpolant of βn = β(·, tn−1) and
introduce the approximate space-time particle path (xn(x̄, t̄), t̄) in Sn,
where 





dxn
dt̄

= βhn(x̄) in In,

xn(x̄, tn−1) = x̄,

or
xn(x̄, t̄) = x̄+ (t̄− tn−1)β

h
n(x̄) for t̄ ∈ In. (18.6)

The approximate particle path (xn(x̄, t̄), t̄) is a straight line segment
with slope βhn(x̄) starting at x̄. We illustrate this in Fig. 18.3.

Problem 18.5. Suppose that β = (x1, 1). Plot some of the particle paths
and corresponding approximate particle paths for 0 ≤ t ≤ .1 associated to
mesh points on the standard uniform triangulation of the square.
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tn-1

tn

Sn

x

xn(x, t n)x(x, t n)

Figure 18.3: Exact and approximate particle paths in Sn.

18.2.2. The coordinate mapping

We introduce the coordinate map Fn : Sn → Sn defined by

(x, t) = Fn(x̄, t̄) = (xn(x̄, t̄), t̄) for (x̄, t̄) ∈ Sn,

where the coordinates (x̄, t̄) acts like local Lagrange coordinates on Sn.
We illustrate this in Fig. 18.4. We call βhn the tilting velocity for Fn.

t n-1

t n

tn-1

tn
Fn

x

t

x

t xn(x, t n)

Figure 18.4: The map Fn between local Lagrange and Euler coordi-
nates takes a non-oriented grid in (x̄, t̄) to an oriented
grid in (x, t).

Note that these coordinates are similar but not the same as the global
Lagrange coordinates unless β is constant.

Denoting the Jacobian with respect to x̄ by ∇, we have from (18.6)

∇xn(x̄, t̄) = I + (t̄− tn−1)∇βhn(x̄),
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where I denotes the identity, It follows from the inverse function theorem
that the mapping Fn : Sn → Sn is invertible if

kn‖∇βhn‖L∞(R2) ≤ c, (18.7)

with c a sufficiently small positive constant. This condition guarantees
that approximate particle paths don’t cross in Sn.

Problem 18.6. Give an argument showing that Fn is invertible under
the condition (18.7)

18.2.3. The finite element spaces for chG(0)

We introduce the space-time finite element space

W kn = {v̄ : v̄(x̄, t̄) = w̄(x̄), (x̄, t̄) ∈ Sn for some w̄ ∈ Vn}.

To each function v̄(x̄, t̄) defined on Sn, we associate a function v(x, t) on
Sn by

v(x, t) = v̄(x̄, t̄) for (x, t) = Fn(x̄, t̄).

The analog of W kn in (x, t) coordinates is

Wkn =
{
v : v(x, t) = v̄(x̄, t̄), (x, t) = Fn(x̄, t̄) ∈ Sn for some v̄ ∈W kn

}
.

(18.8)
A function v belongs to Wkn if the limit v+

n−1 is a continuous piecewise
linear function on Tn and v(x, t) is constant on the straight lines x =
x̄+ (t − tn−1)β

h
n(x̄) for t in In. The corresponding space-time mesh on

Sn consists of the elements

T β
n = {K : K = Fn(K̄ × In) for some K̄ ∈ Tn},

which are prisms in space-time “tilted” in the direction of βhn illustrated
in Fig. 18.5. We use Wk to denote the space of functions v on Q such
that v|Sn ∈Wkn for n = 1, 2, ....

Problem 18.7. Assume that β = (x1, 1) and that the standard triangu-
lation is used to discretize the square. Draw a few of the “tilted prisms”
for S1 = Ω × [0, k1].

There are two space meshes associated to each time level tn−1: the
mesh Tn associated to Sn, that is the “bottom mesh” on the slab Sn,
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( n
h,1)

Fn

Figure 18.5: The normal and the tilted prism elements.

and T −
n = {Fn−1(K̄ × {tn−1}); K̄ ∈ Tn−1}, that is the“top mesh” on

the previous slab Sn−1, which results from letting the previous “bottom
mesh” Tn−1 be transported by the flow. The two meshes Tn and T −

n may
or may not coincide. In case they do not match, the L2 projection is used
to interpolate a function on T −

n into Vn. Depending on the regularity
of the velocity field β, it is possible to maintain matching meshes over a
certain length of time simply by choosing Tn = T −

n , until the mesh T −
n

is so distorted that this becomes infeasible. At the other extreme, we
may use the same mesh Tn for all slabs Sn and perform the projection
from T −

n to Tn at every time step. We illustrate this in Fig. 18.6.

identityL2 projection

identityL2 projection
-

n

-
n+1

n= n-1= n-2 n-1= -
n-1,

t

tn

tn-1

n

-
n-1

n-1

n-2

-
n

-
n+1

n

-
n-1

n-1

n-2

n= -
n

Figure 18.6: Two possibilities for constructing grids on succeeding
slabs Sn.
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18.2.4. The characteristic Galerkin method

The characteristic Galerkin method chG(0) reads: Compute U ∈ Wk

such that for n = 1, 2, ...,

∫

In

(L(U), v) dt + ([Un−1], v
+
n−1) +

∫

In

(ǫ̂∇U,∇v) dt

=

∫

In

(f, v) dt for all v ∈Wkn, (18.9)

with

L(U) = U̇ + β · ∇U on Sn,

ǫ̂ = max
{
ǫ, γ1h

2R(U), γ2h
3/2
}

on Sn,

R(U) = |L(U) − f | + |[Un−1]|/kn on Sn,

where γ1 and γ2 are non-negative constants to be specified and [Un−1] is
extended to Sn as a constant along the characteristics xn(x̄, ·). We have
chosen the streamline diffusion parameter δ = 0 because, as we shall
see, the use of tilted elements effectively reduces the convection term, so
that no streamline diffusion is needed unless β is non-smooth.

Rewriting (18.9) in local Lagrange coordinates on Sn displays the
effect of the orientation. Extending βhn to Sn by setting βhn(x, t) = βhn(x̄)
if (x, t) = Fn(x̄, t̄), the chain rule implies

∂v

∂t
+ β · ∇v =

∂v

∂t
+ βhn · ∇v + (β − βhn) · ∇v

=
∂v̄

∂t̄
+ (β̄ − β̄hn) · J−1

n ∇v̄

=
∂v̄

∂t̄
+ ᾱ · ∇v̄,

where Jn(x̄, t̄) =
∂x

∂x̄
(x̄, t̄) and ᾱ = J−T

n (β̄ − β̄hn). Now, (18.7) implies

that there is a constant C such that

|ᾱ| ≤ C|β̄ − β̄hn| on Sn,

so that |ᾱ| ≤ C(kn+h
2
n) if β is smooth. Reformulated in (x̄, t̄)-coordinates,
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the characteristic Galerkin method takes the form: for n = 1, 2, ..., com-
pute Ū = Ū |Sn ∈ W̄kn such that,

∫

In

(∂Ū
∂t̄

+ ᾱ·∇Ū , v̄|Jn|
)
dt + ([Ūn−1], v̄

+
n−1|Jn|)+

∫

In

(ǫ̂∇̂Ū , ∇̂v̄|Jn|) dt

=

∫

In

(f̄ , v̄|Jn|) dt for all v̄ ∈ W̄kn, (18.10)

where ∇̂ = J−1
n ∇.

Comparing (18.9) and (18.10), we see that using the oriented space-
time elements transforms the original problem with velocity β on each
slab Sn to a problem with small velocity ᾱ to which the cG(1)dG(0)
method is applied on a tensor-product mesh in (x̄, t̄) coordinates with
no tilting. Thus, the tilting essentially eliminates the convection term,
which both improves the precision and facilitates the solution of the cor-
responding discrete system. The price that is payed is the L2 projection
at mesh changes.

Remark 18.2.1. The chG(0) method directly extends to the higher
order chG(r) method with r ≥ 1 by using an approximate velocity βhn
on Sn defined by

β̄hn(x̄, t̄) =
r∑

j=0

t̄jβhnj(x̄)

where βhnj(x̄) ∈ Vn. The corresponding approximate characteristics are

given by x(x̄, t̄) = x̄+
∑r+1

j=1
(t̄−tn−1)j

j βhnj(x̄).

Problem 18.8. Prove the last statement.

18.3. The streamline diffusion method on an Euler mesh

The cG(1)dG(r) method for the heat equation extends to (17.1) using
the streamline diffusion and artificial viscosity modifications of Section
17.2. This corresponds to using a non-oriented space-time mesh. The
coresponding cG(1)dG(r) streamline diffusion method is based on the
space W r

k of functions on Q which on each slab Sn belong to the space
W r
kn defined by

W r
kn = {v : v(x, t) =

r∑

j=0

tjvj(x), vj ∈ Vn, (x, t) ∈ Sn}.



18. Time Dependent Convection-Diffusion Problems 459

The method takes the form: compute U ∈W r
k such that for n = 1, 2, . . .,

and for v ∈W r
kn,

∫

In

(
L(U), v + δL(v)

)
dt +

∫

In

(ǫ̂∇U,∇v) dt + ([Un−1], v
+
n−1)

=

∫

In

(f, v + δL(v)) dt (18.11)

where

L(w) = wt + β · ∇w,

δ =
1

2
(k−2
n + h−2

n |β|2)−1/2,

ǫ̂ = max
{
ǫ, γ1h

2R(U), γ2h
3/2
}
,

R(U) = |L(U) − f | + |[Un−1]|/kn on Sn,

for positive constants γi. Note that the streamline diffusion modification
δL(v) only enters in the integrals over the slab Sn.

18.3.1. Two examples

We present two examples to illustrate the advantages gained in using the
chG method, that is the Sd method on an oriented space-time mesh, as
compared to the Sd method on a non-oriented space-time mesh. These
examples bring up the point that comparing numerical results purely by
comparing the errors in the L2 norm may not give a complete picture.
This is obvious after a moment of thought since a norm does not contain
as much information about a function as a picture of the function. In
the following examples, we compare results using the Sd method on non-
oriented and oriented space-time meshes in computations with roughly
the same accuracy in the L2 norm. We will see, that the quality in the
“picture norm” differs considerably.

The first example is a common quite difficult test problem with pure
convection. The initial data consisting of a cylinder with a slit shown
in Fig. 18.7, which is rotated counterclockwise by β = (sin(t), cos(t))
until time t = π, or a rotation of 180 degrees. We first plot in Fig. 18.8
the results obtained by using the cG(1)dG(1) method on a non-oriented
space-time grid reaching one half rotation after 251 constant time steps.
Next, in Fig. 18.9 we plot the solution obtained using the chG(0) method.
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Figure 18.7: The initial data for the first example.

Figure 18.8: The approximation and associated level curves from the
cG(1)dG(1) streamline diffusion method on a fixed space-
time grid applied to the data shown in Fig. 18.7.

The mesh was tilted in space-time according to the rotating velocity
field locally on each space-time slab and an L2 projection back to a
fixed uniform space mesh was performed at each time step, following
the principle illustrated to the left in Fig. 18.6. The solution after a
half revolution, is visibly much better than the previous computation,
and also computationally much less expensive, because only 21 constant
time steps were used and piecwise constants in time where used instead
of piecewise linears.

The next problem, called the Smolarkiewicz example, is a very de-
manding test problem. The initial data is a cone of height 1 and base
radius 15 centered in the rectangular region Ω = (25, 75) × (12.5, 87.5).
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Figure 18.9: The approximation and associated level curves from the
characteristic Galerkin chG(0) method applied to the
data shown in Fig. 18.7.

The cone is convectively “folded” in the velocity field

β =
8π

25

(
sin
(πx
25

)
sin
(πx
25

)
,
(
cos
(πx
25

)
cos
(πx
25

))
,

which is periodic in x and y with six “vortex cells” inside Ω. We illustrate
this in Fig. 18.10. We compute the approximations using 1000 fixed time

Figure 18.10: The initial data for the Smolarkiewicz problem. We also
plot the convective vortex cells.

steps to reach the final time t = 30. In the first case, we use the chG(0)
method without mesh change according to the principle on the right of
Fig. 18.6 with T −

n = Tn, so that no L2 projections from changing the
space mesh at a discrete time level were required. We plot the result in
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Fig. 18.11. Note the extreme mesh distortion that develops as a result
of avoiding projections into new, less distorted space meshes. In the
second computation, shown in Fig. 18.12, the mesh was changed into a
new uniform mesh every one hundred time steps. This limits the mesh
distortion but introduces L2 projection errors at the mesh changes that
gradually destroy sharp features of the solution.

18.4. Error analysis

We analyze the chG(0) method applied to the model problem






ut + β · ∇u− ǫ∆u = f in R2 × (0,∞),

u(x, t) → 0 for t > 0 as |x| → ∞,

u(·, 0) = u0 on R2,

(18.12)

where β = (β1, β2) and ǫ ≥ 0 are constant, and f and u0 are given data
with bounded support.

Figure 18.11: The approximation, level curves, and mesh resulting
from the characteristic Galerkin chG(0) method applied
to the Smolarkiewicz problem at t = 30. In this compu-
tation, the mesh passively follows the flow for all times
and no L2 projections are used.

The transformation between the Euler (x, t) and Lagrange coordi-
nates (x̄, t̄) is simply (x, t) = (x̄ + t̄β, t̄) in this case. Reformulating
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Figure 18.12: The approximation, level curves, and mesh resulting
from the characteristic Galerkin chG(0) method applied
to the Smolarkiewicz problem at t = 30. In this com-
putation, an L2 projection into a uniform mesh is used
every one hundred time steps to limit the mesh distor-
tion.

(18.12) in Lagrange coordinates for ū(x̄, t̄) = u(x, t), after noting that

∂ū

∂t̄
=

∂

∂t̄
u(x̄+ t̄β, t̄) =

∂u

∂t
+ β · ∇u,

we obtain 




∂ū

∂t̄
− ǫ∆ū = f̄ in R2 × (0,∞),

ū(x̄, t̄) → 0 for t̄ > 0 as |x̄| → ∞,

ū(x̄, 0) = u0(x̄) x̄ ∈ R2.

(18.13)

We see that the Lagrange formulation (18.13) is the familiar heat equa-
tion with constant diffusion coefficient ǫ and the characteristic Galerkin
chG(0) method for (18.12) is simply the cG(1)dG(0) method for (18.13).

Before presenting the analysis, we write out the chG(0) method for
(18.12) explicitly. By construction, the functions v in Wkn are constant
in the direction β so that vt+β ·∇v = 0 for v ∈Wkn. Thus, the chG(0)
method for (18.12) reduces to: compute U ∈Wk such that

([Un−1], v
+
n−1) +

∫

In

(ǫ̂∇U,∇v) dt =

∫

In

(f, v) dt for all v ∈Wkn,

(18.14)
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where

ǫ̂ = max
{
ǫ, γ1h

2(|[Un−1]|/kn + |f |), γ2h
3/2
}

on Sn,

with h(x, t) = hn(x− (t− tn−1)β), where hn is the mesh function for Vn,
and [Un−1] is similarly extended. If f = 0 (and ǫ is small), then (18.14)
can be written: compute U+

n−1 ∈ Vn such that

∫

R2

U+
n−1v dx+

∫

R2

ǫ̃∇U+
n−1 · ∇v dx =

∫

R2

U−
n−1v dx for all v ∈ Vn,

(18.15)
with ǫ̃ = γ1h

2
n|[Un−1]| and U−

0 = u0.

18.4.1. Projection and transport

This leads to an alternate formulation of the chG(0) method. Introduc-
ing the translation operator τn : τnv(x) = v(x− knβ) and the nonlinear
projection P̃n into Vn defined by

(P̃nw, v) + (ǫ̃∇P̃nw,∇v) = (w, v) for all v ∈ Vn,

where ǫ̃ = γ1h
2
n|w− P̃nw|, we can write (18.15) using the notation Un =

U−
n as

Un = τnP̃nUn−1, (18.16)

and U0 = u0.

Problem 18.9. Assuming that γ1 = 0, show that (18.16) reduces to

Un = τnPnUn−1, (18.17)

where Pn is the L2-projection into Vn.

Thus, the chG(0) method in the simplest case may be viewed as an
algorithm of the form “projection then exact transport”. This view is
useful for understanding some properties of the chG(0) method, but the
chG(0) method is not derived from this concept because this complicates
the extension to more complex situations with β variable and ǫ positive.
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18.4.2. A direct a priori error analysis in a simple case

We first derive an a priori error estimate for the chG(0) method in the
simple case with f = ǫ = 0, where the solution of (18.13) is simply given
by ū(x̄, t) = u0(x̄) and that of (18.12) by

u(x, t) = u0(x− tβ).

Using the formulation (18.17), we write the error as

un−Un = τn(un−1 −PnUn−1) = τn(un−1 −Pnun−1 +Pn(un−1 −Un−1)).

Using the facts ‖τnv‖ = ‖v‖ and ‖Pnv‖ ≤ ‖v‖, we obtain by Pythagoras’
theorem

‖un − Un‖2 = ‖un−1 − Pnun−1‖2 + ‖Pn(un−1 − Un−1)‖2

≤ ‖un−1 − Pnun−1‖2 + ‖un−1 − Un−1‖2.

Iterating this inequality and using a standard error estimate for the L2

projection, we obtain

‖uN − UN‖ ≤
( N∑

n=1

‖un−1 − Pnun−1‖2

)1/2

≤ Ci

( N∑

n=1

‖h2
nD

2un−1‖2

)1/2

≤ Ci
√
Nh2,

provided u is smooth and we set h = maxn hn. This estimate is slightly
sub-optimal because of the factor

√
N . In the generic case with kn ≈ h,

we conclude that
‖uN − UN‖ ≤ Cih

3/2. (18.18)

An optimal result can be derived if the viscosity is positive, as we show
in the next section.

Problem 18.10. Assuming that the time steps are constant kn = k =
T/N , prove that

‖uN − UN‖ ≤ Ci
√
N/T ‖(I − P )u‖L2(Q), (18.19)

where P = Pn on Sn. This result is also sub-optimal in comparison with
the accuracy of the L2 projection.
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Remark 18.4.1. The orientation of the space-time mesh in the char-
acteristic Galerkin method is chosen according to the flow velocity. In
general, we could choose an arbitrary mesh translation velocity. We
refer to this variant as the oriented streamline diffusion method. For
example, if the solution is constant in time, this suggests an orientation
with zero velocity, which in general is different from orientation along
the flow velocity.

18.4.3. An error analysis based on error estimates for parabolic
problems

The a priori and a posteriori results for the cG(1)dG(0) method for the
heat equation apply to the chG(0) method for (18.12) written in the
Lagrange form (18.10). We write out the a priori and a posteriori error
estimates, which translate to corresponding optimal estimates for the
chG(0) method immediately.

Theorem 18.1. If µknǫ ≥ h2
n, µ sufficiently small, ᾱ = 0 and ǫ̂ = ǫ,

then

‖ū(·, tN ) − ŪN‖ ≤ LNCi max
1≤n≤N

(
kn

∥∥∥∥
∂ū

∂t̄

∥∥∥∥
In

+ ‖h2
nD

2ū‖In
)
, (18.20)

and

‖ū(·, tN ) − ŪN‖ ≤ LNCi max
1≤n≤N

(
‖kR0k(Ū )‖In + ‖ h

2
n

ǫkn
[Ūn−1]‖⋆

+‖h2
nR(Ū)‖In

)
, (18.21)

where LN = (max((log(tN/kN ))1/2, log(tN/kN )) + 2, R0k(Ū) = |f | +
|[Ū ]|/k, R(Ū) = 1

ǫ |f | + R2(Ū) with R2 defined by (17.33), and a star
indicates that the corresponding term is present only if Vn−1 * Vn.

The assumption that
knǫ ≥ h2

n

means that ǫ > 0 is needed to get optimal estimates. In the case kn = h
and ǫ ≈ h

3
2 , the estimates reduce to (18.18) if ∂ū/∂t̄ is small. In the

case of pure convection with f = 0, when ∂ū
∂t̄ = 0, (18.20) reduces to

‖uN − UN‖ ≤ Ci‖(I − P )u‖[0,tN ],



18. Time Dependent Convection-Diffusion Problems 467

where (I −P )u = (I −Pn)u on In. This shows that the chG(0) method
in the convection dominated case is optimal compared to projection if
the viscosity is not too small, cf. (18.19).

Problem 18.11. Prove Theorem 18.1.

Leibniz’s spirit of inquiry is apparent even in his report to the
Académie des Sciences in Paris about a talking dog. Leibniz de-
scribes the dog as a common middle-sized dog owned by a peasant.
According to Leibniz, a young girl who heard the dog make noises
resembling German words decided to teach it to speak. After
much time and effort, it learned to pronounce approximately thirty
words, including “thé”, “caffé”, “chocolat”, and “assemblée”- French
words which had passed into German unchanged. Leibniz also
adds the crucial observation that the dog speaks only “as an echo”,
that is. after the master has pronounced the word; “it seems that
the dog speaks only by force, though without ill-treatment”. (The
Cambridge Companion to Leibniz)

Figure 18.13: Leibniz’ calculator.
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The Eigenvalue Problem for an

Elliptic Operator

For since the fabric of the universe is most perfect and the work
of a most wise Creator, nothing at all takes place in the universe
in which some rule of maximum or minimum does not appear.
(Euler)

In this chapter, we briefly consider the eigenvalue problem of finding
non-zero functions ϕ and real numbers λ ∈ R such that

{
−∇ · (a∇ϕ) + cϕ = λϕ in Ω,

ϕ = 0 on Γ,
(19.1)

where Ω ⊂ Rd, Γ is the boundary of Ω, and a = a(x) > 0 and c = c(x)
are given coefficients. We refer to ϕ as an eigenfunction corresponding
to the eigenvalue λ. Recall that we discussed the eigenvalue problem in
reference to Fourier’s method in Chapter 6. It turns out that the eigen-
values of (19.1) may be arranged as a sequence λ1 ≤ λ2 ≤ · · · ≤ λn → ∞
with one eigenfunction ϕn corresponding to each eigenvalue λn. The
eigenfunctions corresponding to different eigenvalues are orthogonal with
respect to the L2(Ω) scalar product and the eigenfunctions correspond-
ing to the same eigenvalue form (together with the zero function) a fi-
nite dimensional vector space called the eigenspace. The eigenfunctions
{ϕn}∞n=1 may be chosen as an orthonormal basis in L2(Ω). In particu-
lar, any function v ∈ L2(Ω) can be represented as a series v =

∑
n vnϕn,

where vn =
∫
Ω v ϕn dx are called the generalized Fourier coefficients. See

Strauss ([18]) for more information on these results.

468
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With a = 1 and c = 0, we obtain the eigenvalue problem for the
Laplace operator with Dirichlet boundary conditions

{
−∆ϕ = λϕ in Ω,

ϕ = 0 on Γ.
(19.2)

We recall that in the corresponding problem in one dimension with
Ω = (0, π), the eigenfunctions are (modulo normalization) ϕn(x) =
sin(nx) corresponding to eigenvalues λn = n2, n = 1, 2, ... In the case
d = 2 and Ω = (0, π) × (0, π), the eigenfunctions are ϕnm(x1, x2) =
sin(nx1) sin(mx2), n,m = 1, 2, ..., with eigenvalues λnm = n2 +m2. In
the first case, all of the eigenspaces have dimension one, but in higher di-
mensions, all of the eigenspaces except for the eigenspace corresponding
to the smallest eigenvalue have dimension larger than one.

Problem 19.1. Prove that eigenvalues of (19.2) are positive and that
eigenfunctions corresponding to different eigenvalues are orthogonal in L2(Ω).

The drum and the guitar

The motion of an elastic membrane supported at the edge along a curve
Γ in the plane bounding the domain Ω, is described by the homogeneous
wave equation






ü− ∆u = 0 in Ω × (0, T ),

u = 0 on Γ × (0, T ),

u(0) = u0, u̇(0) = u̇0 in Ω,

(19.3)

where u(x, t) represents the transversal deflection of the membrane. If
ϕn is an eigenfunction with corresponding eigenvalue λn of the eigenvalue
problem (19.2), then the functions sin(

√
λnt)ϕn(x) and cos(

√
λnt)ϕn(x)

satisfy the homogeneous wave equation (19.3) with specific initial data.
These functions are called the normal modes of vibration of the mem-
brane. A general solution u of the homogeneous wave equation (19.3)
with initial values u(0) and u̇(0) can be expressed as a linear combi-
nation of the normal modes sin(

√
λnt)ϕn(x) and cos(

√
λnt)ϕn(x). This

is the Fourier’s solution of the wave equation on Ω × (0, T ), which is
analogous to the solution in one dimension given by (16.11).

If Ω is a circular disc, then (19.3) describes the vibrations of a drum
head. The smallest eigenvalue corresponds to the basic tone of the drum.
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This can be changed by changing the tension of the drum head, which
corresponds to changing the coefficient a in the generalization (19.1).

In Fig. 19.1, we show contour plots for the first four eigenfunctions,
corresponding to λ1 ≈ 38.6, λ2 ≈ 83.2, λ3 ≈ 111., and λ4 ≈ 122.,
computed using Femlab in a case where (19.2) describes the vibrations
of the lid of a guitar with Dirichlet boundary conditions on the outer
boundary, described as an ellipse, and Neumann boundary conditions
at the hole in the lid, described as a circle.1 The distribution of the
eigenvalues determine the sound produced by the guitar lid and the
computational results could be used to find good shapes of a guitar lid.

(a) (b)

(d) (c)

Figure 19.1: Contour plots of the first four eigenfunctions of the guitar
lid corresponding to (a) λ1 ≈ 38.6, (b) λ2 ≈ 83.2, (c)
λ3 ≈ 111., and (d) λ4 ≈ 122.. These were computed with
Femlab with a fixed mesh size of diameter .02.

1Computations provided courtesy of Marten Levenstam. The eigenvalues were
computed in Femlab using a filtered k-step Arnoldi method as described in D.C.
Sorensen, SIAM J. Matrix Anal. Appl. 13 (1992), pp. 357–385.
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Often the smaller eigenvalues are the most important in consider-
ations of design. This is the case for example in designing suspension
bridges, which must be built so that the lower eigenvalues of vibrations
in the bridge are not close to possible wind-induced frequencies. This
was not well understood in the early days of suspension bridges which
caused the famous collapse of the Tacoma bridge in 1940.

19.0.4. The Rayleigh quotient

The variational form of the eigenvalue problem (19.1) is to find λ ∈ R
and a non-zero ϕ ∈ V such that

(a∇ϕ,∇ψ) + (cϕ, ψ) = λ(ϕ,ψ) for all ψ ∈ V, (19.4)

where

V =

{
v :

∫

Ω
(a|∇v|2 + v2) dx <∞, v = 0 on Γ

}
,

and (·, ·) as usual denotes L2(Ω) inner product. Setting ψ = ϕ gives a
formula for the eigenvalue corresponding to ϕ,

λ =
(a∇ϕ,∇ϕ) + (cϕ, ϕ)

(ϕ,ϕ)
.

Introducing the Rayleigh quotient

RQ(ψ) =
(a∇ψ,∇ψ) + (cψ, ψ)

(ψ,ψ)
for ψ ∈ V,

the previous equality can be rewritten as λ = RQ(ϕ), or in words:
the Rayleigh quotient of an eigenfunction is equal to the corresponding
eigenvalue.

We can turn this argument around and consider how RQ(ψ) varies as
ψ varies in V . In particular, there is a function ϕ1 ∈ V that minimizes
the Rayleigh quotient over all functions in V and this function is the
eigenfunction corresponding to the smallest eigenvalue λ1:

λ1 = min
ψ∈V

RQ(ψ) = RQ(ϕ1). (19.5)

More generally, the eigenfunction ϕj minimizes the Rayleigh quotient
over all functions in V orthogonal to the eigenfunctions ϕi, i = 1, 2, ...j−
1, and λj = RQ(ϕj).
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Problem 19.2. State and prove the analog of the Rayleigh quotient
minimum principle for a diagonal matrix.

Problem 19.3. Suppose ϕ1 ∈ V minimizes the Rayleigh quotient. Prove
that ϕ1 is the eigenfunction corresponding to a smallest eigenvalue λ1 sat-
isfying (19.4) with λ = λ1. Hint: Define the function f(ǫ) = RQ(ϕ+ ǫψ),
where ψ ∈ V and ǫ ∈ R, and use that f ′(0) = 0.

Problem 19.4. Consider the problem of finding the smallest interpolation
constant Ci in an error estimate of the form ‖v−πv‖L2(0,1) ≤ Ci‖v′‖L2(0,1),
where πv ∈ P1(0, 1) interpolates v(x) at x = 0, 1. Hint: show first that it
suffices to consider the case v(0) = v(1) = 0 with πv = 0. Then rewrite
this problem as a problem of determining the smallest eigenvalue and show
that Ci = 1/π. Show similarly that the best constant Ci in the estimate
‖v − πv‖L2(0,1) ≤ Ci‖v′′‖L2(0,1) is equal to 1/π2.

19.1. Computation of the smallest eigenvalue

We consider the computation of the smallest eigenvalue in the eigenvalue
problem (19.2) for the Laplacian by minimizing the Rayleigh quotient
over the usual finite element subspace Vh ⊂ V consisting of continuous
piecewise linear functions vanishing on Γ,

λh1 = min
ψ∈Vh

RQ(ψ). (19.6)

The difference between λ1 given by (19.5) and λh1 given by (19.6) is
that the minimization in (19.6) is over the finite dimensional vector
space Vh instead of V . Since Vh ⊂ V , we must have λh1 ≥ λ1. The
question is thus how much larger λh1 is than λ1. To answer this question,
we prove an a priori error estimate showing the error in the smallest
eigenvalue is bounded by the square of the energy norm interpolation
error of the eigenfunction ϕ1. This result extends to approximation of
larger eigenvalues λj with j > 1, but the proof is more subtle in this
case. We comment on computation of larger eigenvalues in the next
section and in the companion volume.

Theorem 19.1. There is a constant Ci such that for h sufficiently
small,

0 ≤ λh1 − λ1 ≤ Ci‖hD2ϕ1‖2. (19.7)
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Proof. Assume ϕ satisfies (19.2) with ‖ϕ‖ = 1 with corresponding
eigenvalue λ = RQ(ϕ) = ‖∇ϕ‖2. We shall use the following identity
for all v ∈ V with ‖v‖ = 1, which follows from the definition of ϕ

‖∇v‖2 − λ = ‖∇(ϕ− v)‖2 − λ‖ϕ − v‖2.

Problem 19.5. Prove this identity.

Using this identity with v ∈ Vh, λ = λ1 and ϕ = ϕ1, and recalling the
characterization (19.6), we obtain

λh1 − λ1 ≤ ‖∇v‖2 − λ1 ≤ ‖∇(ϕ1 − v)‖2. (19.8)

We now take v ∈ Vh to be a suitable approximation of ϕ1 such that
‖∇(ϕ1 − v)‖ ≤ C‖hD2ϕ1‖, which may put a condition on the size of h
because of the restriction ‖v‖ = 1, and the desired result follows.

Problem 19.6. Verify that it is possible to find the approximation v to
ϕ1 required in the proof of (19.7).

Problem 19.7. Derive an a posteriori error error estimate for λh1 − λ1.
Hint: multiply the equation −∆ϕ1 − λ1ϕ1 = 0 satisfied by the continuous
eigenfunction ϕ1 corresponding to λ1, by the discrete eigenfunction Φ1 ∈ Vh
satisfying (∇Φ1,∇v) = λh1 (Φ1, v) for all v ∈ Vh, to get

(λ1 − λh1 )(ϕ1,Φ1) = (∇Φ1,∇(ϕ1 − πhϕ1) − λh1 (Φ1, ϕ1 − πhϕ1),

where ϕ1 and Φ1 are normalized to have L2 norm equal to one. Assuming
that (ϕ1,Φ1) ≥ c > 0, where c is a positive constant, derive an a poste-
riori error estimate in the usual way. (see M. Larsson, A posteriori error
estimates for eigenvalue problems, to appear).

19.2. On computing larger eigenvalues

We give an example illustrating the approximation of the larger eigenval-
ues. In principle, larger eigenvalues and their associated eigenfunctions
could be computed in the same fashion as the first eigenpair by find-
ing the stationary points of the Rayleigh quotient over the appropriate
finite element space. However, since the eigenfunctions corresponding
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to larger eigenvalues generally oscillate at larger frequencies, we expect
the accuracy of the approximations on a fixed mesh to deteriorate with
increasing eigenvalues. In fact, the eigenvalues of the continuous prob-
lem tend to infinity, while those of the finite element approximation are
finite, so some of the eigenvalues of the continuous problem cannot be
captured in the approximation no matter how small we choose the mesh
size.

As an example, we consider a finite element discretization of the
weak form of the eigenvalue problem (19.2) with Ω = (0, π), which reads:
compute Φ ∈ Vh and λh ∈ R such that

(Φ′, ψ′) = λh(Φ, ψ) for all ψ ∈ Vh, (19.9)

where Vh is the space of continuous piecewise linear functions, vanishing
at x = 0, π, on a uniform discretization of (0, π) into M + 1 elements
with meshsize h = π/(M + 1) and nodes xj = jh. We also use lumped
mass quadrature to evaluate the integral on the right-hand side of (19.9).
This gives the matrix eigenvalue problem

Aξ = λξ, (19.10)

where ξ denotes the vector of nodal values of Φ and the coefficient matrix
A is the product of the inverse of the diagonal lumped mass matrix
and the stiffness matrix; cf. Section 14.1.5. Let ξn, n = 1, 2, ...,M
be the eigenvectors of (19.10) and Φn the corresponding finite element
approximations.

Problem 19.8. Compute the finite element approximation of (19.9) using
lumped mass quadrature and derive (19.10).

We know that the eigenvalues of the continuous problem are n2, n =
1, 2, ..., with corresponding eigenfunctions ϕn(x) = sin(nx). It turns out
in this very special case that the nodal values of the discrete eigenfunc-
tions Φn agree with the nodal values of the exact eigenfunctions sin(nx)
for n = 1, ...,M , that is Φn(jh) = sin(njh), n, j = 1, 2, ...,M .

Problem 19.9. Prove by substitution that Φn is an eigenvector satisfying
(19.10) with eigenvalue λhn = 2(1 − cos(nh))/h2 for n = 1, 2, ..., N .

When n is small the discrete eigenvalue λhn is a good approximation of
the continuous eigenvalue λn since by Taylor’s theorem

2(1 − cos(nh))

h2
≈ n2 +O(n4h2), (19.11)
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However, despite the interpolation property of the discrete eigenfunc-
tions the L2 norm of the error ‖Φn − ϕn‖, or even worse the energy
norm of the error ‖Φ′

n−ϕ′
n‖, becomes large when n gets close to M , see

Fig. 19.2. In this case,

2(1 − cos(nh))

h2
≈ 4

h2
− (M − n)2

2
, (19.12)

which is not close to n2. In Fig. 19.3 we show the first 100 continuous
and discrete eigenvalues for M = 100. We conclude that eigenvalues
corresponding to eigenfunctions that oscillate with a wavelength on the
order of the meshsize and smaller are not well approximated.
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Figure 19.2: sin(10x) and Φ10(x) for M = 10.
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Figure 19.3: The continuous and discrete eigenvalues with M = 100.
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Problem 19.10. Verify estimates (19.11) and (19.12).

Problem 19.11. Define f(x) = 1002 sin(100x) (i.e. f(x) = λ100ϕ100).
Use Femlab to solve −u′′ = f on (0, π) together with u(0) = u(π) = 1. Plot
the approximation together with the true solution. How many elements did
Femlab use to get an accurate approximation? Explain the significance of
this for the discussion above.

This can have a strong consequences for the time behavior of a dis-
crete approximation to a time dependent problem such as the heat equa-
tion or the wave equation. The following problem is an interesting illus-
tration.

Problem 19.12. Consider the initial-boundary value problem for the
wave equation:






ü− u′′ = 0, x ∈ [0, π], t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = u0(x), u̇(x, 0) = 0, x ∈ [0, π].

(19.13)

Let U denote the continuous piecewise linear semi-discrete finite element
approximation computed on a uniform mesh on [0, π]. Compare the time
behavior of U to that of u when the initial data u0 is nonsmooth. Can you
say something about the time behavior of a finite element approximation
that is discrete in time and space? Hint: discretize (19.13) in space using
the finite element method on a uniform mesh as indicated. Now use sep-
aration of variables to get a scalar ordinary differential equation in time
and a matrix eigenvalue problem in space, then solve both problems. Nons-
mooth functions are characterized by large Fourier coefficients in the higher
modes, so choose the data to be the discrete eigenfunction ΦM . Compare
the solution of (19.13) to the solution of the system of ordinary differential
equations as time passes. Plot the two solutions.

Problem 19.13. Consider the finite element approximation of (19.2) with
Ω = (0, π) × (0, π) computed using the standard triangulation and contin-
uous piecewise linear functions. (a) Compute the discrete eigenvalues and
eigenfunctions. Hint: use separation of variables and Problem 19.9. (b)
Estimate the convergence rate of the Jacobi iterative method for solving
Aξ = b.

19.3. The Schrödinger equation for the hydrogen atom

It does not require much imagination to see an analogy between
the mirroring activity of the Leibniz monad, which appears to our
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confused vision like a casual activity, emanating from one monad
and impinging on the other, and the modern view in which the
chief activity of the electrons consists in radiating to one another.
(Wiener)

The quantum mechanical model of a hydrogen atom consisting of one
electron orbiting around one proton at the origin, takes the form of the
following eigenvalue problem in Ω = R3:






−∆ϕ− 2
rϕ = λϕ in Ω,∫

Ω
ϕ2 dx = 1.

(19.14)

The eigenfunction ϕ is a wave function for the electron describing the
position of the electron in the sense that the integral

∫
ω ϕ

2dx represents
the probability that the electron is in the domain ω ⊂ R3. In fact, (19.14)
is the eigenvalue problem associated with the Schrödinger equation

iϕ̇− ∆ϕ− 2

r
ϕ = 0

describing the motion of the electron.
The Rayleigh quotient for the eigenvalue problem (19.14) is given by

RQ(ψ) =

∫
Ω |∇ψ|2 dx− 2

∫
Ω ψ

2/r dx∫
Ω ψ

2 dx
, (19.15)

and is defined for ψ ∈ V = {ψ :
∫

R3(|∇ψ|2 + ψ2/r)dx < ∞}. The
quantity

∫
Ω |∇ψ|2 dx represents the kinetic energy of an electron with

wave function ψ and −2
∫
Ω ψ

2/r dx represents the potential energy cor-
responding to the attractive Coulomb force between the proton and
electron. The equation (19.14) is one of the few equations of quantum
mechanics that can be solved analytically and this is due to the spherical
symmetry. The eigenvalues are λn = −1/n2, for integers n ≥ 1, called
the principal quantum number and represent energy levels. There are
n2 eigenfunctions corresponding to each energy level λn, of which one
depends only on the radius, see Strauss ([18]). The eigenfunctions are
called the bound states and the unique eigenfunction corresponding to
the smallest eigenvalue is called the ground state since it is the bound
state “closest” to the proton with the smallest energy. As soon as more
than one electron or proton are involved, that is for all atoms except the
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hydrogen atom, analytical solution of Schrödinger’s equation is prac-
tically impossible and a variety of approximate solution methods have
been developed.

Among other things, the model (19.14) predicts that the electron
may jump from one state with eigenvalue λi to another with eigenvalue
λj by emitting or absorbing a corresponding “quantum” of energy λi−λj
as was observed in the famous experiments of Bohr. Note that the fact
that λi ≥ −1 implies that the hydrogen atom is stable in the sense that
the electron does not fall into the proton.

We note that the domain in (19.14) is the whole of R3. Looking for
solutions in a space V of functions that are square integrable functions
means that we exclude certain oscillating solutions of the Schrödinger
equation corresponding to free states of the electron. This is related to
the existence of solutions u(x, t) of the problem iu̇ − u′′ = 0 in R × R
of the form u(x, t) = exp(iλ2t) exp(iλx) for any λ ≥ 0. The value
λ belongs to the “continuous spectrum” for which the corresponding
“eigen-functions” are not square integrable. The eigenvalues with eigen-
functions in V belong to the “discrete spectrum”.

To discretize the Schrödinger eigenvalue problem (19.14) in R3, we
generally truncate the domain to be finite, say {x : |x| < R} for some
R > 0, and impose suitable boundary conditions, such as Dirichlet
boundary conditions, on the boundary {x : |x| = R}. The relevant
choice of R is related to the eigenvalue/eigenfunction being computed
and the tolerance level.

Problem 19.14. (For amateur quantum physicists) Prove that the hydro-
gen atom is stable in the sense that the Rayleigh quotient (19.15) satisfies

min
ψ∈V

RQ(ψ) ≥ −4,

showing that the electron does not fall into the proton. Hint: estimate∫
Ω ψ

ψ
r using Cauchy’s inequality and the following Poincaré inequality for

functions ψ ∈ V : ∫

Ω

ψ2

r2
dx ≤ 4

∫

Ω

|∇ψ|2 dx. (19.16)

This shows that the potential energy cannot outpower the kinetic energy in
the Rayleigh quotient. To prove the last inequality, use the representation

∫

Ω

ψ2

r2
dx = −

∫

Ω

2ψ∇ψ · ∇ ln(|x|) dx.

resulting from Green’s formula, together with Cauchy’s inequality.
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Problem 19.15. (a) Show that the eigenvalue problem (19.14) for the
hydrogen atom for eigenfunctions with radial dependence only, may be
formulated as the following one-dimensional problem

−ϕrr−
2

r
ϕr−

2

r
ϕ = λϕ, r > 0, ϕ(0) finite,

∫

R

ϕ2r2 dr <∞, (19.17)

where ϕr =
dϕ

dr
. (b) Show that ψ(r) = exp(−r) is an eigenfunction cor-

responding to the eigenvalue λ = −1. (b) Is this the smallest eigenvalue?
(c) Determine λ2 and the corresponding eigenfunction by using a change of
variables of the form ϕ(r) = v(r) exp(− r

2 ). (d) Solve (19.17) using Femlab.

Problem 19.16. Formulate a two-dimensional analog of (19.14) of phys-
ical significance and compute approximate solutions using Femlab.

19.4. The special functions of mathematical physics

The one-dimensional analog of (19.1) is called a Sturm-Liouville problem.
Such eigenvalue problems occur for example when separation of variables
is used in various coordinate systems, and the corresponding eigenfunc-
tions are the classical special functions of mathematical physics. We list
some of these functions below together with the corresponding Sturm-
Liouville problem.

Bessel’s equation

The eigenfunctions un(x) and eigenvalues λn of Bessel’s equation
{
−
(
xu′
)′

+ x−1m2u = λxu for 0 < x < 1,

|u(0)| <∞, u(0) = 1,
(19.18)

are given by un(x) = Jm(λ
1/2
n x) and λn = µ2, where µ is a zero of

the Bessel function Jm satisfying (19.18) with λ = 1 for x ∈ R and
|u(0)| <∞.

Legendre’s equation

The eigenfunctions un(x) and eigenvalues λn of Legendre’s equation
{
−((1 − x2)u′)′ + (1 − x2)−1m2u = λu for 0 < x < 1,

|u(−1)| <∞, |u(1)| <∞,
(19.19)
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are given by λn = n(n+ 1) and

un(x) =
1

2nn!
(1 − x2)m/2

dm+n((x2 − 1)n)

dxm+n
.

Tchebycheff’s equation

The eigenfunctions un(x) and eigenvalues λn of Tchebycheff’s equation

{
−
(
(1 − x2)1/2u′

)′
= (1 − x2)−1/2λu for 0 < x < 1,

|u(−1)| <∞, |u(1)| <∞,
(19.20)

are given by λn = n2 and un(x) = 2−(n−1) cos
(
n cos−1 x

)
.

Problem 19.17. Use the method of separation of variables to solve the
Poisson equation on the disc {x ∈ R2 : |x| < 1} with homogeneous Dirichlet
boundary conditions. Hint: use polar coordinates and the eigenfunctions
of Bessel’s equation with m = 0.

Plowhand has been my name
seems like a thousand years or more
I ain’t gonna pick no more cotton,
I declare I ain’t gonna plant no more corn.
If a mule wants to run away with the world
oooh Lord, I’ll let it go it on.
I wouldn’t tell a mule to get up,
Naah, if he sit down in my lap.
I’m through with plowin’
cause it killed my old grandpap. (R. Howard)
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The Power of Abstraction

Maybe in order to understand mankind, we have to look at the
word itself. Mankind. Basically, it’s made up of two separate
words - “mank” and “ind”. What do these word mean? It’s a
mystery, and that’s why, so is mankind. (Jack Handley)

The use of mathematical symbolism eliminates the waste of mental
energy on trivialities, and liberates this energy for deployment
where it is needed, to wit, on the chaotic frontiers of theory and
practice. It also facilitates reasoning where it is easy, and restrains
it where it is complicated. (Whitehead)

Up until now we have considered a set of specific examples spanning
the fundamental models in science. In this chapter, we consider an “ab-
stract” linear elliptic problem, concentrating on the basic questions of
existence, uniqueness, and stability of solutions together with the ba-
sic approximation properties of the Galerkin method. After that, we
apply the abstract theory to specific problems including Poisson’s equa-
tion with various boundary conditions, a model of linear elasticity, and
Stoke’s equations for creeping fluid flow. The abstract framework we
describe is the result of a long development of variational methods initi-
ated by Euler and Lagrange, continued by Dirichlet, Riemann, Hilbert,
Rayleigh, Ritz, Galerkin, and continuing at the present time partly be-
cause of the modern interest in the finite element method. The advan-
tage of considering a problem in abstract form is that we can emphasize
the essential ingredients and moreover we can apply results for the ab-
stract problem to specific applications as soon as the assumptions of the
abstract problem are satisfied without having go through the same type

481
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of argument over and over again. This is the real “power” of abstraction.
We focus on linear elliptic problems, since setting up an abstract frame-
work is easist in this case. The framework may be extended naturally
to a class of nonlinear elliptic problems related to convex minimization
problem and to the related parabolic problems. An abstract framework
for hyperbolic problems is less developed; see the advanced companion
book for details. We keep the presentation in this chapter short, and
give more details in the advanced companion volume. The idea is to
indicate a framework, not to develop it in detail.

We recall from Chapters 8 and 14 that we started by rewriting a
given boundary value problem in variational form. We then applied
Galerkin’s method to compute an approximate solution in a subspace of
piecewise polynomials and we proved energy norm error estimates using
the Galerkin orthogonality. The abstract elliptic problem we consider is
formulated in variational terms and has stability and continuity proper-
ties directly related to the energy norm. The basic theorem on the the
existence, uniqueness, and stability of the solution of the abstract elliptic
problem is the Lax-Milgram theorem. We also give a related result stat-
ing that Galerkin’s method is optimal in the energy norm. These results
guarantee that some of the basic models of science including Poisson’s
equation and the equations for linear elasticity and Stokes flow have a
satisfactory mathematical form and may be solved approximately using
Galerkin’s method. This is a cornerstone in science and engineering.

20.1. The abstract formulation

The ingredients of the abstract formulation are

(i) a Hilbert space V where we look for the solution, with norm ‖ · ‖V
and scalar product (·, ·)V ,

(ii) a bilinear form a : V ×V → R that is determined by the underlying
differential equation,

(iii) a linear form L : V → R that is determined by the data.

A Hilbert space is a vector space with a scalar product that is complete,
which means that any Cauchy sequence in the space converges to a limit
in the space. Recall that we discussed the importance of using a space
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with this property in Chapter 3, where we used the completeness of the
continuous functions on an interval to prove the Fundamental Theorem
of Calculus. A bilinear form a(·, ·) is a function that takes V ×V into the
real numbers, i.e. a(v,w) ∈ R for all v,w ∈ V , such that a(v,w) is linear
in each argument v and w, that is a(α1v1 + α2v2, w1) = α1a(v1, w1) +
α2a(v2, w1) and a(v1, α1w1 +α2w2) = α1a(v1, w1)+α2a(v1, w2) for αi ∈
R, vi, wi ∈ V . Finally, a linear form L(·) is a function on V such that
L(v) ∈ R for all v ∈ V and L(v) is linear in v.

The abstract problem reads: find u ∈ V such that

a(u, v) = L(v) for all v ∈ V. (20.1)

We make some assumptions on a(·, ·) and L(·), which gives an abstract
definition of a linear “elliptic” problem. We first assume that a(·, ·) is
V-elliptic or coercive, which means that there is a positive constant κ1

such that for all v ∈ V ,

a(v, v) ≥ κ1‖v‖2
V . (20.2)

We also require that a(·, ·) is continuous in the sense that there is a
constant κ2 such that for all v,w ∈ V

|a(v,w)| ≤ κ2‖v‖V ‖w‖V . (20.3)

We finally require that the linear form L(·) is continuous in the sense
that there is a constant κ3 such that for all v ∈ V ,

|L(v)| ≤ κ3‖v‖V . (20.4)

The reason that we say that L is continuous if (20.4) holds is because
by linearity |L(v)−L(w)| ≤ κ3‖v−w‖V , which shows that L(v) → L(w)
if ‖v − w‖V → 0, i.e., if v → w in V . Assumption (20.3) similarly
implies that a(·, ·) is continuous in each variable. Further, we define the
energy norm ‖ · ‖a by ‖v‖a =

√
a(v, v), noting that (20.2) in particular

guarantees that a(v, v) ≥ 0. By (20.2) and (20.3), we have κ1‖v‖2
V ≤

‖v‖2
a ≤ κ2‖v‖2

V . In other words, if a quantity is small in the energy norm
‖ · ‖a then it is small in the norm ‖ · ‖V and vica versa. We refer to this
situation by saying that ‖ · ‖a and ‖ · ‖V are equivalent norms. Thus,
without changing anything qualitatively, we could choose the norm in
the Hibert space V to be the energy norm ‖ · ‖a related to the bilinear
form a, in which case κ1 = κ2 = 1. In this sense, the energy norm is a
natural choice to use to analyze the bilinear form a. In applications, the
energy norm fits with the notion of energy in mechanics and physics.
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Problem 20.1. Determine a and L for (8.2), (8.1), and (14.18).

20.2. The Lax-Milgram theorem

We now state and prove the basic Lax-Milgram theorem.

Theorem 20.1. Suppose a(·, ·) is a continuous, V-elliptic bilinear form
on the Hilbert space V and L is a continuous linear functional on V .
Then there is a unique element u ∈ V satisfying (20.1). Moreover, the
following stability estimate holds

‖u‖V ≤ κ3

κ1
. (20.5)

Recall that the bilinear forms a associated to the two-point boundary
value problem (8.2) and to Poisson’s equation (14.18) are symmetric, i.e.

a(v,w) = a(w, v) for all v,w ∈ V.

Symmetric problems have additional structure that make the proof of
the Lax-Milgram theorem easier, and this is the case we consider now.
We treat the non-symmetric case in the companion volume, see also
Renardy and Rogers ([14]).

If a is symmetric, then the variational problem (20.1) is equivalent
to the minimization problem: find u ∈ V such that

F (u) ≤ F (v) for all v ∈ V, (20.6)

where F (v) = a(v, v)/2 − L(v). We state and prove this equivalence in
the following theorem.

Theorem 20.2. An element u ∈ V satisfies (20.1) if and only if u
satisfies (20.6).

Proof. Assume first that u ∈ V satisfies (20.6). Choose v ∈ V and
consider the function g(ǫ) = F (u + ǫv) for ǫ ∈ R. By (20.6) we know
that g(ǫ) ≥ g(0) for ǫ ∈ R, so that g′(0) = 0 if g′(0) exists. But,
differentiating the expression g(ǫ) = (a(u, u) + ǫ(a(u, v) + a(v, u)) +
ǫ2a(v, v))/2 − L(u) − ǫL(v) with respect to ǫ and setting ǫ = 0, gives
a(u, v)−L(v) = 0, and (20.1) follows. Note that the symmetry of a(·, ·)
is crucial to this argument.
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Conversely, if (20.1) is satisfied, then for all w ∈ V ,

F (u+ w) =
1

2
a(u, u) + a(u,w) +

1

2
a(w,w) − L(u) − L(w)

= F (u) +
1

2
a(w,w) ≥ F (u),

with equality only if w = 0, which proves (20.6).

We now prove the Lax-Milgram theorem for symmetric a(·, ·) by
using the equivalence of (20.1) and (20.6).

Proof. Since we have assumed that the energy norm and the norm of
V are equivalent in (20.2) and (20.3), without loss of generality, we can
take (·, ·)V to be a(·, ·), so that a(v, v) = ‖v‖2

V , and κ1 = κ2 = 1.
We consider the set of real numbers that can be obtained as the limit

of sequences {F (uj)} with uj ∈ V . We observe that this set is bounded
below by −1/2 since F (v) ≥ ‖v‖2

V /2 − ‖v‖V ≥ −1/2 for all v ∈ V . We
claim that the set of limits of {F (uj)} contains a smallest real number
and we denote this number by β. Clearly, β ≥ −1/2 if β exists. Now,
the existence of β follows from the basic property of the real numbers
that a set of real numbers that is bounded below has a greatest lower
bound. In other words, there is a largest real number that is smaller
or equal to all numbers in the set, which in our case is the number β.
This property is equivalent to the property of convergence of a Cauchy
sequence of real numbers. As another example, the set of positive real
numbers ξ such that ξ2 > 2 is clearly bounded below and its largest
lower bound is nothing but

√
2. See Rudin ([15]) for more details.

Accepting the existence of β, we also know that β ≤ F (0) = 0, and
thus −1/2 ≤ β ≤ 0. Now let {uj} be a minimizing sequence for the
minimization problem (20.6), i.e. a sequence such that

F (uj) → β as j → ∞. (20.7)

We prove that {uj} is a Cauchy sequence in the sense that for any given
ǫ > 0 there is a natural number Nǫ such that

‖ui − uj‖V < ǫ if i, j ≥ Nǫ. (20.8)

Since V is complete, there is a u ∈ V such that ‖u−uj‖ → 0 as j → ∞.
By the continuity properties of F , it follows that F (u) = β. and thus
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u ∈ V is a solution of (20.6) and therefore (20.1). The uniqueness follows
from the last inequality of the proof of Theorem 20.2 above.

To prove that the minimizing sequence is a Cauchy sequence, we
note that (20.7) implies that for any ǫ > 0 there is a Nǫ such that

F (uj) ≤ β +
ǫ2

8
if j ≥ Nǫ. (20.9)

We use the parallelogram law

‖ui − uj‖2
V = 2‖ui‖2

V + 2‖uj‖2
V − ‖ui + uj‖2

V ,

together with the definition of F (v), the definition of β, and (20.9), to
argue

1

4
‖ui − uj‖2

V = F (ui) + F (uj) − 2F

(
1

2
(ui + uj)

)

≤ F (ui) + F (uj) − 2β ≤ ǫ2

4
,

proving (20.8).
Finally, the stability estimate follows immediately after taking v = u

in (20.1) and using the V -ellipticity and the continuity of L.

20.3. The abstract Galerkin method

We consider Galerkin’s method in abstract form applied to the problem
(20.1): given a finite dimensional space Vh ⊂ V , find U ∈ Vh such that

a(U, v) = L(v) for all v ∈ Vh. (20.10)

This leads to a linear system of equations whose size is determined by
the dimension of Vh. We could for example choose Vh to be the space of
polynomials of a fixed degree or less, the space of trigonometric functions
with integer frequencies up to a fixed maximum, or in the case of the
finite element method, the space of piecewise polynomial functions. We
note that since Vh ⊂ V , we have the familiar Galerkin orthogonality:

a(u− U, v) = 0 for all v ∈ Vh. (20.11)

The basic a priori error estimate reads:
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Theorem 20.3. If u and U satisfy (20.1) and (20.10) then for all v ∈
Vh,

‖u− U‖V ≤ κ2

κ1
‖u− v‖V .

If the norm ‖ · ‖V is equal to the energy norm ‖ · ‖a, then

‖u− U‖a ≤ ‖u− v‖a, (20.12)

which expresses the optimality of Galerkin’s method in the energy norm.

Proof. The V -ellipticity and continuity of a together with Galerkin
orthogonality implies that for all v ∈ Vh,

κ1‖u− U‖2
V ≤ a(u− U, u− U) = a(u− U, u− U) + a(u− U,U − v)

= a(u− U, u− v) ≤ κ2‖u− U‖V ‖u− v‖V ,

which proves the desired result.

Problem 20.2. Prove (20.12). Prove that the solution U of (20.10)
satisfies the following analog of (20.5): ‖U‖V ≤ κ3/κ1.

20.4. Applications

We now present some basic applications of the Lax-Milgram theorem.
In each case, we need to specify a, L and V and show that the assump-
tions of the Lax-Milgram theorem are satsified. Usually, the main issue
is to verify the V -ellipticity of the bilinear form a. We illustrate some
tools for this purpose in a series of examples.

20.4.1. A problem with Neumann boundary conditions

As a first example, we consider Poisson’s equation with an absorption
term together with Neumann boundary conditions as given in Prob-
lem 20.45, {

−∆u+ u = f in Ω,

∂nu = 0 on Γ,
(20.13)

where Ω is a bounded domain in Rd with boundary Γ. This problem
takes the variational form (20.1) with

a(v,w) =

∫

Ω

(
∇v · ∇w + vw

)
dx, L(v) =

∫

Ω
fv dx, (20.14)
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and

V =

{
v :

∫

Ω

(
|∇v|2 + v2

)
dx <∞

}
. (20.15)

The issue is to verify that the assumptions of the Lax-Milgram theorem
are satisfied with these choices.

Clearly, V has natural scalar product and norm

(v,w)V =

∫

Ω

(
∇v · ∇w + vw

)
dx, ‖v‖V =

(∫

Ω

(
|∇v|2 + v2

)
dx

)1/2

.

It turns out that V is complete, a fact ultimately based the completeness
of R, and therefore V is a Hilbert space. Further, we note that (20.2)
and (20.3) trivially hold with κ1 = κ2 = 1. Finally, to show (20.4), we
note that

|L(v)| ≤ ‖f‖L2(Ω)‖u‖L2(Ω) ≤ ‖f‖L2(Ω)‖u‖V ,
which means that we may take κ3 = ‖f‖L2(Ω) provided we assume that
f ∈ L2(Ω). We conclude that the Lax-Milgram theorem applies to
(20.13).

20.4.2. The spaces H1(Ω) and H1
0 (Ω)

The space V defined in (20.15) naturally occurs in variational formula-
tions of second order elliptic differential equations and it has a special
notation:

H1(Ω) =

{
v :

∫

Ω

(
|∇v|2 + v2

)
dx <∞

}
, (20.16)

while the scalar product and norm are denoted by

(v,w)H1(Ω) =

∫

Ω

(
∇v · ∇w + vw

)
dx,

and the associated norm

‖v‖H1(Ω) =
(∫

Ω

(
|∇v|2 + v2

)
dx
)1/2

.

The space H1(Ω) is the Sobolev space of functions on Ω that are square
integrable together with their gradients, named after the Russian math-
ematician Sobolev (1908-1994). The index one refers to the fact that we
require first derivatives to be square integrable.
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We also use the subspace H1
0 (Ω) of H1(Ω) consisting of the functions

in H1(Ω) that vanish on the boundary Γ of Ω:

H1
0 (Ω) =

{
v ∈ H1(Ω) : v = 0 on Γ

}
.

We motivate below why this is a Hilbert space with the same norm and
scalar product as H1(Ω).

Problem 20.3. (a) Find r such that xr ∈ H1(0, 1) but xs 6∈ H1(0, 1)
for any s < r. (b) With Ω = {x : |x| ≤ 1} denoting the unit disk, find
conditions on r such that |x|r ∈ H1(Ω) but |x|s 6∈ H1(Ω) for any s < r.

Problem 20.4. Define H2(Ω) and find a function that is in H1(Ω) but
not in H2(Ω) where Ω is the unit disk.

20.4.3. Poisson’s equation with Dirichlet boundary conditions

The first elliptic problem in several dimensions we studied was Poisson’s
equation with homogeneous Dirichlet boundary conditions posed on a
bounded domain Ω ⊂ R2 with boundary Γ:

{
−∆u = f in Ω,

u = 0 on Γ.

This problem has the variational formulation (20.1) with V = H1
0 (Ω)

and

a(v,w) =

∫

Ω
∇v · ∇w dx, L(v) =

∫

Ω
fv dx.

In this case the V -ellipticity of a does not follow automatically from the
definition of the norm in V = H1

0 (Ω) as above, because the bilinear form
a(v, v) in this case does not contain the term

∫
Ω v

2 dx contained in the
squared V norm. Further, we need to show that it makes sense to impose
the boundary condition v = 0 on Γ for functions v in V = H1(Ω), which
is the essential issue in proving that H1

0 (Ω) is a Hilbert space.
To verify the V -ellipticity we use the Poincaré-Friedrichs inequal-

ity, which states that the L2(Ω)-norm of a function v ∈ H1(Ω) can
be estimated in terms of the L2(Ω)-norm of the gradient ∇v plus the
L2(Γ)-norm of the restriction of v to the boundary Γ. The corresponding
theorem in one dimension for an interval (0, 1) states that

‖v‖2
L2(0,1) ≤ 2

(
v(0)2 + ‖v′‖2

L2(0,1)

)
. (20.17)
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This inequality is proved easily by integrating the inequality

v2(x) =
(
v(0) +

∫ x

0
v′(y) dy

)2 ≤ 2
(
v2(0) +

∫ 1

0
(v′(y))2 dy

)

for 0 ≤ x ≤ 1, which is obtained by using Cauchy’s inequality and the
fact that (a+ b)2 ≤ 2(a2 + b2). The result for higher dimensions is

Theorem 20.4. There is a constant C depending on Ω such that for
all v ∈ H1(Ω),

‖v‖2
L2(Ω) ≤ C

(
‖v‖2

L2(Γ) + ‖∇v‖2
L2(Ω)

)
. (20.18)

Problem 20.5. (a) Prove (20.18). Hint: Take ϕ = |x|2/(2d) where
Ω ⊂ Rd, so ∆ϕ = 1 and use the fact that

∫

Ω

v2∆ϕdx =

∫

Γ

v2∂nϕds−
∫

Ω

2v∇v · ∇ϕdx. (20.19)

(b) Give a different proof for square domains of the form {x ∈ R2 : |xi| ≤ 1}
analogous to the proof in one dimension by directly representing u in Ω
through line integrals starting at Γ.

For functions v ∈ H1(Ω) with v = 0 on Γ, i.e., ‖v‖L2(Γ) = 0,
Poincaré-Friedrichs’ inequality implies

‖v‖2
H1(Ω) = ‖∇v‖2

L2(Ω) + ‖v‖2
L2(Ω) ≤ (1 +C)‖∇v‖2

L2(Ω) = (1 +C)a(v, v),

which proves the V -ellipticity (20.2) with κ1 = (1 + C)−1 > 0.
Since (20.3) and (20.4) follow exactly as in the case of Neumann

boundary conditions considered above, it now remains to show that the
space H1

0 (Ω) is a well defined Hilbert space, that is, we need to show that
a function in H1

0 (Ω) has well defined values on the boundary Γ. We start
noting that it is in general impossible to uniquely define the boundary
values of a function v in L2(Ω). This is because by changing a function
v ∈ L2(Ω) only very close to the boundary, we can significantly change
the boundary values of v without much changing the L2(Ω) norm. This
is reflected by the fact that there is no constant C such that ‖v‖L2(Γ) ≤
C‖v‖L2(Ω) for all functions v ∈ L2(Ω). However, if we change L2(Ω)
to H1(Ω), such an equality holds, and therefore a function v in H1(Ω)
has well defined boundary values, i.e., the trace of v ∈ H1(Ω) on the
boundary Γ is well defined. This is expressed in the following trace
inequality:
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Theorem 20.5. If Ω is a bounded domain with boundary Γ, then there
is a constant C such that for all v ∈ H1(Ω),

‖v‖L2(Γ) ≤ C‖v‖H1(Ω). (20.20)

Problem 20.6. Prove this. Hint: choose ϕ such that ∂ϕ = 1 on Γ and
use (20.19).

Problem 20.7. Prove that there is no constant C such that ‖v‖L2(Γ) ≤
C‖v‖L2(Ω) for all v ∈ L2(Ω).

The trace inequality shows that a function v in H1(Ω) has well de-
fined boundary values and in particular the boundary condition v = 0
on Γ makes sense, and it follows that H1

0 (Ω) is a Hilbert space.
Note that (20.18) implies that we may use the energy norm ‖∇v‖L2(Ω) =√
a(v, v) as an equivalent norm on V = H1

0 (Ω). As we said, choosing
this norm, (20.2) and (20.3) hold with κ1 = κ2 = 1.

Problem 20.8. Verify that the assumptions of the Lax-Milgram theorem
are satisfied for the following problems with appropriate assumptions on α
and f :

(a)

{
−u′′ + αu = f in (0, 1),

u(0) = u′(1) = 0, α = 0 and 1.

(b)

{
−u′′ = f in (0, 1),

u(0) − u′(0) = u(1) + u′(1) = 0.

Problem 20.9. Verify that the assumptions of the Lax-Milgram theorem
are satisfied for the beam problem:

d4u

dx4
= f in (0, 1),

with the boundary conditions; (a) u(0) = u′(0) = u(1) = u′(1) = 0, (b)
u(0) = u′′(0) = u′(1) = u′′′(1) = 0, (c) u(0) = −u′′(0)+u′(0) = 0, u(1) =
u′′(1) + u′(1) = 0; under appropriate assumptions on f . Give mechanical
interpretations of the boundary conditions.

Remark 20.4.1. We saw earlier that if f ∈ L2(Ω) then (20.4) holds
with V = H1(Ω) and κ3 = ‖f‖L2(Ω). We may ask what is the weakest
assumption on the right-hand side f that allows (20.4) to hold with
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κ3 <∞. In true mathematical style, we answer this by defining a weak
H−1(Ω) norm of f ,

‖f‖H−1(Ω) = sup
v∈H1

0 (Ω)

(f, v)

‖v‖V
,

where V = H1
0 (Ω) using the equivalent norm ‖v‖H1

0 (Ω) = ‖∇v‖L2(Ω).

By definition, (20.4) holds with κ3 = ‖f‖H−1(Ω). By (20.18), the norm
‖ · ‖H−1(Ω) may be dominated by the L2(Ω) norm:

‖f‖H−1(Ω) ≤
‖f‖L2(Ω) ‖v‖L2(Ω)

‖∇v‖L2(Ω)
≤

√
C‖f‖L2(Ω);

In fact, the H−1(Ω) norm is weaker than the L2(Ω) norm, which allows
us to use right-hand sides f(x) in Poisson’s equation that do not be-
long to L2(Ω), such as the “near point load” used in the tent problem
considered in Chapter 14.

Problem 20.10. Show that Lax-Milgram applies to problem (20.13) with
Ω = {x ∈ R2 : |x| < 1} and f(x) = |x|−1, although in this case f /∈ L2(Ω).

20.4.4. Non-homogeneous boundary data

Generally, nonhomogeneous boundary data is incorporated into the lin-
ear form L along with the right-hand side f . For example, recalling the
discussion on Neumann/Robin boundary conditions in Chapter 14, we
see that the problem −∆u + u = f in Ω posed with nonhomogeneous
Neumann conditions ∂nu = g on Γ takes the variational form (20.1) with
V = H1(Ω), a(u, v) defined as in (20.14) and

L(v) =

∫

Ω
fv dx+

∫

Γ
gv ds.

The continuity of L(·) follows assuming f ∈ H−1(Ω) and g ∈ L2(Γ).

Problem 20.11. Prove the last claim.

Problem 20.12. Formulate the variational problem associated to Pois-
son’s equation with non-homogeneous Dirichlet boundary conditions given
by g on Γ.

Problem 20.13. Show that the Lax-Milgram theorem applies to the
problem −∆u+αu = f in Ω, ∂nu+ σu = g on Γ, for (a) α = 1 and σ = 0,
(b) α = 0 and σ = 1. What can be said in the case α = σ = 0.
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20.4.5. A diffusion dominated convection-diffusion problem

The convection-diffusion problem
{
−ǫ∆u+ β · ∇u+ αu = f in Ω,

u = 0 on Γ,
(20.21)

where Ω is domain in Rd with boundary Γ, ǫ > 0 is constant, and β(x)
and α(x) are given coefficients, takes the variational form (20.1) with
V = H1

0 (Ω) and

a(u, v) =

∫

Ω

(
ǫ∇u · ∇v + β · ∇u v + αu v

)
dx, L(v) =

∫

Ω
fv dx.

In this case, a(·, ·) is not symmetric because of the convection term. To
guarantee ellipticity we assume recalling (17.14) that −1

2∇ · β + α ≥ 0
in Ω, which by (17.18) guarantees that for all v ∈ H1

0 (Ω),
∫

Ω

(
β · ∇v v + αv2

)
dx ≥ 0.

It follows that a(v, v) ≥ 0 and the assumptions of the Lax-Milgram
theorem hold, but the stability estimate degrades with decreasing ǫ so
that the theorem is mostly relevant for diffusion-dominated problems.

Problem 20.14. Prove the preceding statement with specific focus on
the dependence of the constants on ǫ.

20.4.6. Linear elasticity in R3

No body is so small that it is without elasticity. (Leibniz)

As an example of a problem in R3, we let Ω be a bounded domain in
R3 with boundary Γ split into two parts Γ1 and Γ2 and consider the
basic problem of linear elasticity modeled by Cauchy-Navier’s elasticity
equations: find the displacement u = (ui)

3
i=1 and the stress tensor σ =

(σij)
3
i,j=1 satisfying






σ = λdiv @, u I + 2µǫ(u) in Ω,

−div @, σ = f in Ω

u = 0 on Γ1,

σ · n = g on Γ2,

(20.22)
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where λ and µ are positive constants called the Lamé coefficients, ǫ(u) =
(ǫij(u))

3
i,j=1 is the strain tensor with components

ǫij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

div @, σ =




3∑

j=1

∂σij
∂xj




3

i=1

and div @, u =

3∑

i=1

∂ui
∂xi

,

I = (δij)
3
i,j=1 with δij = 1 if i = j and δij = 0 if i 6= j, f ∈ [L2 (Ω)]3

and g ∈ [L2 (Γ1)]
3 are given loads, n = (nj) is the outward unit normal

to Γ1, and (σ · n)i =
∑3

j=1 σijnj. For simplicity, we assume that λ and
µ are constant. The equations (20.22) express Hooke’s law connecting
stresses and strains and the equilibrium equation stating equilibrium of
external and internal forces.

The problem has the variational form (20.1) with the choices:

V =
{
v ∈

[
H1(Ω)

]3
: v = 0 on Γ1

}
,

a(u, v) =

∫

Ω
(λdiv @, udiv @, v + 2µǫ(u) : ǫ(v)) dx,

L(v) =

∫

Ω
f · v dx+

∫

Γ1

g · v ds,

where ǫ(u) : ǫ(v) =
∑3

i,j=1 ǫij(u)ǫij(v). We note that the bilinear form
a has the form of “virtual work”,

a (u, v) =

∫

Ω
σ(u) : ǫ(v) dx,

where σ(u) = λdiv @, u I+2µǫ(u). To prove V -ellipticity, we use Korn’s
inequality. For simplicity, we assume that Γ1 = Γ.

Theorem 20.6. There is a constant c such that for all v ∈ [H1
0 (Ω)]3,

3∑

i,j=1

∫

Ω
ǫij(v)ǫij(v)dx ≥ c

3∑

i=1

‖vi‖2
H1(Ω).
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Proof. Using the notation vi,j = ∂vi/∂xj , vi,jl = ∂2vi/∂xj∂xl, etc.,

3∑

i,j=1

ǫij(v)ǫij(v) =

3∑

i,j=1

1

2
vi,jvi,j +

3∑

i,j=1

1

2
vi,jvj,i.

Integrating the second term on the right and then using integration by
parts, we get

3∑

i,j=1

∫

Ω
vi,jvj,i dx =

∫

Γ
vi,jvjni ds−

∫

Ω
vi,jivj dx

=

3∑

i,j=1

∫

Γ
vi,jvjni ds−

∫

Γ
vi,ivjnj ds+

∫

Ω
vi,ivj,j dx

=
3∑

i,j=1

∫

Ω
vi,ivj,j dx,

since v = 0 on Γ. We conclude that

3∑

i,j=1

∫

Ω
ǫij(v)ǫij(v) dx =

1

2

3∑

i,j=1

∫

Ω

(
vi,j
)2
dx+

1

2

∫

Ω

( 3∑

i=1

vi,i
)2
dx.

The desired inequality follows using Poincaré’s inequality to bound the
L2 norm of vi in terms of the L2 norm of ∇vi.

Problem 20.15. Provide the last details.

Problem 20.16. Solve the Cauchy-Navier elasticity equations for the
cantilever beam in two dimensions using Femlab. Compare with analytic
solutions of the beam equation.

20.4.7. The Stokes equations

The Stokes equations for stationary incompressible creeping fluid flow
with zero velocity boundary conditions read: find the velocity u =
(ui)

3
i=1, total stress σ = (σij)

3
i,j=1, and the pressure p such that






σ = −pI + 2µǫ(u) in Ω,

−div @, σ = f in Ω,

div @, u = 0 in Ω,

u = 0 on Γ,
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Eliminating the stress σ gives





−µ∆u+ ∇p = f in Ω,

div @, u = 0 in Ω,

u = 0 on Γ.

(20.23)

This can be formulated in variational form (20.1) with

V =
{
v ∈ [H1(Ω)]3 : div@, u = 0 in Ω

}
,

a(u, v) =

∫

Ω

3∑

i=1

∇ui · ∇vi dx, and L(v) =

∫

Ω
f · v dx.

The picture on the cover of the book shows streamlines of Stokes
flow around a sphere.

Problem 20.17. Prove that the assumptions of the Lax-Milgram theorem
hold in this case. this.

Problem 20.18. Extend the mechanical models of Section ?? to several
dimensions.

Note that the stationary Navier-Stokes equations are obtained by
adding the term (∇ · u)u to the first equation in (20.23).

20.5. A strong stability estimate for Poisson’s equation

We conclude this chapter by proving the strong stability estimate (14.6)
for solutions to Poisson’s equation that we used in the proofs of the L2

error estimates for elliptic and parabolic problems. The estimate shows
that the L2(Ω) norm of all second derivatives of a function v vanishing
on the boundary of a convex domain are bounded by the L2(Ω) norm of
the particular combination of second derivatives given by the Laplacian.
For simplicity, we consider the case of a convex domain in the plane with
smooth boundary.

Theorem 20.7. If Ω is a bounded domain in R2 with smooth boundary
Γ then for all smooth functions v with v = 0 on Γ,

3∑

i,j=1

∫

Ω

(
D2v

)2
dx+

∫

Γ

1

R

(∂v
∂n

)2
ds =

∫

Ω
(∆v)2 dx,
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where R(x) is the radius of curvature of Γ at x ∈ Γ with R(x) ≥ 0 if Ω
is convex, see Fig. 20.1.

x 1

x 2

x 2
=g

(x 1
)

x=
(0

,0
)R(x

)

Figure 20.1: The radius of curvature and the local coordinate system
near a point x on Γ.

Proof. We use the notation v(i) = ∂v/∂xi, v(ij) = ∂2v/∂xi∂xj , etc..
Assuming that v is smooth with v = 0 on Γ, integration by parts gives

∫

Ω
∆v∆v dx =

3∑

i,j=1

∫

Ω
v(ii)v(jj) dx

=
3∑

i,j=1

∫

Γ
v(i)v(jj)ni ds−

3∑

i,j=1

∫

Ω
v(i)v(ijj) dx

=

3∑

i,j=1

∫

Γ

(
v(i)v(jj)ni − v(i)v(ij)nj

)
ds+

3∑

i,j=1

∫

Ω
v(ij)v(ij) dx.

Recalling the definition of D2v from Chapter 13

∫

Ω

(
(∆v)2 − (D2v)2

)
dx =

3∑

i,j=1

∫

Γ

(
v(i)v(jj)ni − v(i)v(ij)nj

)
ds.

To evaluate the integrand on the right at a point x ∈ Γ, we use the fact
that the integrand is invariant under orthogonal coordinate transforma-
tions. We may assume that x = (0, 0) and that in a neighborhood of x,
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the graph of Γ is described by the equation x2 = g(x1) in a local coor-
dinate system, see Fig. 20.1. Since v = 0 on Γ, we have v(x1, g(x1)) = 0
for x1 in some neighborhood of 0 and thus by differentiation with respect
to x1, we find that

v(1) + v(2)g
′(x1) = 0,

v(11) + 2v(12)g
′(x1) + v(22)(g

′(x1))
2 + v(2)g

′′(x1) = 0.

Since g′(0) = 0 and, by the definition of the radius of curvature,
g′′(0) = 1/R(0), we conclude that

v(1)(0, 0) = 0

v(11)(0, 0) = −v(2)(0, 0)/R(0).

At x = (0, 0), since n = (0,−1)⊤ at that point,

3∑

i,j=1

(
v(i)v(jj)ni − v(i)v(ij)nj

)
= −v(2)(v(1)1 + v(22)) + v(2)v(22)

= −v(2)v(11) =
(
v(2)
)2
/R =

(
∂v/∂n

)2
/R.

and the statement of the theorem follows.

Problem 20.19. (A maximum principle). Prove that if u is continuous
in Ω ∪ Γ, where Ω is a domain with boundary Γ, and ∆u(x) ≥ 0 for
x ∈ Ω, then u attains its maximum on the boundary Γ. Hint: consider
first the case that ∆u(x) > 0 for x ∈ Ω and arrive at a contradiction by
assuming a maximum is attained in Ω that is not on Γ by using the fact
that at such a point, the second derivatives with respect to xi cannot be
positive. Extend this to the case ∆u(x) ≥ 0 by considering the function
uǫ(x) = u(x) + ǫ|x − x̄|2, which for ǫ > 0 sufficiently small also has an
interior maximum.

Problem 20.20. Consider the problem






−(u(11) − u(12) + 2u(22)) + u(1) + u = f in Ω,

u = 0 on Γ1,

u(1)n1 − 1
2u(1)n2 − 1

2u(2)n1 + u(2)n2 + u = g on Γ2.

Give a variational formulation of this problem and show that the conditions
in the Lax-Milgram lemma (except symmetry) are satisfied.
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Figure 20.2: Queen Sophie Charlotte von Brandenburg, gifted student
of Leibniz’s philosophy.

Ein jeder Geist steht vor den ganzen Bau der Dinge,
Als ob die Fernung sich in einen Spiegel bringe,
Nach jeden Augenpunct, verdunckelt oder klar,
Er ist ein Bild, wie er ein Zweck der Schöpfung war
(Leibniz, at the funeral of Queen Sophie Charlotte, 1705)
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