
Computability and Adaptivity in CFD

Abstract

We give a brief introduction to research on adaptive computational
methods for laminar compressible and incompressible flow, and then focus
on computability and adaptivity for turbulent incompressible flow, where
we present a framework for adaptive finite element methods with duality-
based a posteriori error control for chosen output quantities of interest.
We show in concrete examples that outputs such as mean values in time
of drag and lift of a bluff body in a turbulent flow are computable to
a tolerance of a few percent, for a simple geometry using some hundred
thousand mesh points, and for complex geometries some million mesh
points.
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1 Introduction

The Navier Stokes (NS) equations form the basic mathematical model of
fluid mechanics, used extensively e.g. in hydro- and aerodynamics, pro-
cessing industry, biology, oceanography, meteorology, geophysics and as-
trophysics, capable to model incompressible and compressible flow, Newto-
nian and non-Newtonian fluids, viscous laminar flow, and turbulent flow
dominated by inertial effects with chaotic particle trajectories and vor-
tices on a range of scales in space and time. Computational fluid dynam-
ics (CFD) concerns the digital/computational simulation of fluid flow by
solving the NS equations numerically. In this chapter we consider the fol-
lowing aspects of CFD: (i) computability of solutions to the NS equations,
intimately connected to the mathematical problem of error estimation,
and (ii) adaptive algorithms for efficient computation of such solutions, a
very active research area with many important contributions. This chap-
ter is not an exhaustive review of the research area, instead we focus on
(i)-(ii) for high Reynolds number turbulent flow, a topic that is not cov-
ered in other chapters of the Encyclopedia, and that we believe will be of
key interest in the coming years in a multitude of areas, e.g. in vehicle
aerodynamics, ocean and atmosphere sciences, and for renewable energy
technologies.

The Reynolds number Re = UL/ν is used to characterise different
flow regimes, where U is a characteristic flow velocity, L a characteristic
length scale, and ν the kinematic viscosity of the fluid. For low Reynolds
number (less than Re ≈ 1) we have creeping flow where viscous effects
are completely dominating the non-linear inertial effects. If the Reynolds
number is increased the creeping flow develops into laminar flow with non-
linear features such as recirculation zones, and under further increase of
the Reynolds number the flow becomes unsteady (Re ≈ 100), and then
undergoes transition to turbulence in wakes (Re ≈ 1000), shear layers
(Re ≈ 104) and boundary layers (Re ≈ 105). Turbulent flow shows fea-
tures on a range of length scales down to a smallest scale (the Kolmogorov
microscale) of size Re−3/4, assuming L = 1, where kinetic energy is dissi-
pated to heat. At high Reynolds number turbulent flow the larger scales
are purely governed by inertial effects, and consequently shear stresses
can effectively be neglected at the macroscopic scales, which simplifies
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constitutive models. On the other hand, in many applications of scientific
and industrial interest Re is very large, of the order 106 or larger, and
the flow shows a combination of laminar and turbulent features. To accu-
rately resolve all the features of a turbulent flow at Re = 106 in a direct
numerical simulation (DNS) would require of the order Re3 = 1018 mesh
points in space-time, which today is impossible on any foreseeable com-
puter. To overcome the impossibility of DNS at high Reynolds numbers,
various techniques of turbulence modeling have been proposed to take into
account the unresolved turbulent scales, such as RANS models based on
statistical ensemble averaging and LES (subgrid) models based on spatial
filtering. A common drawback of turbulence models is the unknown model
parameters that need to be calibrated to the particular CFD problem at
hand.

Thus, to simulate the macroscopic properties of turbulent flow is sim-
ple in the sense that constitutive models involving the effect of shear
stresses can be neglected, but on the other hand it is hard due to the
inability to resolve all scales in a DNS which introduces new model pa-
rameters in turbulence (subgrid) models. A rigorous error analysis of tur-
bulence models is challenging, since averaging (filtering) of the nonlinear
NS equations introduces a model error in terms of unresolved scales, the
so called Reynolds (subgrid) stresses, which must be expressed in terms
of the resolved scales (the closure problem). Alternatively, the model er-
ror estimation problem can be posed as an Uncertainty Quantification
(UQ) problem, where the effect of the uncertain model is estimated us-
ing statistical methods, see e.g. [1, 2, 3]. Turbulence models are not the
focus of this chapter, but are discussed in detail in other chapters of the
Encyclopedia.

1.1 Adaptive methods in CFD

In an adaptive algorithm, the computational method is optimized during
the computation based on local error indicators until a certain global stop-
ping criterion is satisfied. Error indicators and stopping criterions may
be constructed ad hoc based on solution features, or based on estimates of
local truncation errors; see e.g. [4]. In this chapter we focus on adaptive
methods based on a posteriori error estimation of the global error, which
is directly related to computability of solutions to the underlying partial
differential equations. A posteriori error estimation is traditionally done
with respect to an energy-norm, naturally induced by the underlying dif-
ferential operator, resulting in estimates in terms of computable residuals
measuring the local error; see e.g. [5, 6, 7]. For surveys and references on
this approach we refer to [8, 9].

Unfortunately, in most applications the energy-norm does not provide
useful bounds on the error in quantities of physical interest. Therefore, a
framework for a posteriori error estimation of arbitrary functional output
was developed using duality arguments, an idea previously used in the
context of postprocessing quantities of physical interest in elliptic model
problems; see [10]. A framework for more general problems was then
systematically developed, see e.g. [11, 12, 13, 14, 15]. The methodology
is often referred to as a dual weighted residual method (DWR) or goal-
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oriented error estimation. For a detailed account of the development and
application of this framework we refer in particular to the review papers
[16, 17, 18]. In CFD, applications of adaptive finite element methods based
on this framework have been increasingly advanced, for laminar incom-
pressible flow, see e.g. [19, 20, 21, 22, 23], and for laminar compressible
flow, see e.g. [24, 25, 26, 27, 28, 29, 30, 31].

Classical adaptive finite element methods concern adaptive refinement
or coarsening of the computational mesh, referred to as h-adaptive meth-
ods, but adaptive choice of the approximation order of the method is also
possible, so called p-adaptive methods, see e.g. [32], with also the combi-
nation of the two; hp-adaptive methods, see e.g. [33, 34, 35]. Smoothing
or optimisation of the mesh without changing the mesh topology is re-
ferred to as r-adaptivity, and anisotropic mesh adaptation aligned to local
flow features is another recent focus in the area, see e.g. [36, 37, 38, 39,
40, 41, 42, 43].

1.2 Computability of turbulent flow

The challenge of computing turbulent flow is twofold: first the range of
turbulent scales make full resolution impractical, and second, turbulent
flow is chaotic which limits predictability due to high sensitivity to dis-
cretisation errors from the numerical method, uncertainties in data, and
model errors in the case of turbulence models. The basic question of com-
putability/predictability for a given flow may be formulated as follows:
what quantity can be computed/predicted to what tolerance to what cost?
Here the quantitative aspects are emphasised, both concerning the choice
of quantity of interest, or output, the error tolerance, and the cost. The
cost reflects the computational work and the required precision in data.
We expect a turbulent flow to be more expensive to compute than a lam-
inar flow, and a pointwise quantity (e.g. the viscous stresses at specific
points) to be more expensive than an average quantity (e.g. the drag or
lift of an airplane), and of course we expect the cost to increase with a
decreasing tolerance.

Adaptive methods for turbulent flow have great potential; turbulent
flow structures are typically concentrated to certain parts of the computa-
tional domain, which thus require high resolution, whereas in other parts
of the domain the flow is laminar and can be left with low resolution.
Without prior knowledge of the flow the optimal mesh resolution must be
adaptively constructed based on approximate computational solutions,
e.g. through a posteriori error estimation.

A posteriori error estimation for DNS connects to a stability analysis of
the transient NS equations, with potentially extreme perturbation growth
due to the chaotic nature of turbulent flow indicated by worst case ana-
lytical estimates. Exponential growth of the adjoint solution is reported
in [44] for computing drag of a cylinder at Re = 500, which conforms with
such worst case estimates. This is contrary to observations made for bluff
body flow at higher Reynolds numbers, reported e.g. in [45] for circular
cylinder flow at Re = 3900, where the adjoint solution is stable in time
and under mesh refinement. The reason for these conflicting findings is
still an open problem; is it related to differences in the computational
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methods used to compute approximate adjoint solutions, or is it related
to a fundamental difference between to two flows? The cases Re = 500
and Re = 3900 show important differences; flow at Re = 500 shows a
more pronounced von Karman street, whereas the turbulent wake is more
stable at Re = 3900. Also, blow up in the adjoint solution is observed
in the case of 2D compressible flow at increasing Reynolds numbers [46],
where strong vorticity production in the primal problem is the result of
the sharpening of boundary layers, without any non-viscous mechanism
for dissipation of vorticity available in 2D. In 3D, turbulence develop that
dissipate vorticity through vortex stretching, which can be observed in
the corresponding 3D simulations [45]. In [47] we argue that the stability
of the adjoint problem is possible due to cancellation, where exponential
growth is alternating with exponential decay. In particular, a turbulent
wake is dominated by vortices on a range of scales where each individual
vortex tube is a stable flow structure in the sense that a linearised stability
analysis show no exponential perturbation growth.

The extension of the framework for a posteriori error estimation to
turbulence models is not obvious. For example, even though the frame-
work can be applied to RANS models to control the discretisation error,
see e.g. [48], to estimate the model error introduced by the turbulence
model the closure problem must be confronted. In [49, 50], the closure
problem of LES was made explicit in a posteriori error analysis of the fil-
tered NS solution, taking into consideration both the discretization error
of the filtered NS equations and the model error from unresolved subgrid
scales, with separate discretization and model residuals. Typically, the
model residual, connected to the Reynolds subgrid stress term, is hard or
impossible to estimate without any prior knowledge. In [49] the model
residual was estimated through scale extrapolation in a Haar basis by
an assumption of scale similarity; an approach developed for convection-
diffusion-reaction equations in [51, 52, 53]. Although the method showed
promising results, for general meshes this approach may become overly
complex. In [54] the authors used scale extrapolation to seek to balance
the relative size of discretisation and model errors by varying discretisa-
tion and model parameters. For an overview of different approaches to
error assessment in turbulence, see e.g. [55, 56].

1.3 Direct Finite Element Simulation of Turbu-
lence

The separation into numerical errors and model errors can also be ques-
tioned. Since the beginning of CFD, numerical stabilization and turbu-
lence modelling have been intertwined, e.g. through the von Neumann-
Richtmyer artificial viscosity [57] and the classical Smagorinsky subgrid
model [58], or more recently through the Variational Multiscale Method
(VMM) for turbulence modeling [59], which connects a family of residual-
based subgrid models to finite element stabilization techniques. Implicit
LES (ILES) [60] is based on the idea that the dissipation from the numer-
ical method can be used to model the effect of unresolved turbulent scales
without any additional explicit subgrid model, an idea which we also find
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in [50], there referred to as underresolved DNS. Whether or not a physics
based explicit turbulence (subgrid) model is needed to simulate turbulent
flow has occasionally formed a sharp division in the CFD community.

Residual-based numerical stabilization holds the attractive feature of
being consistent, so that an exact solution of the Navier-Stokes equations
satisfies also the stabilized finite element formulation of the equations.
Similarly, with a residual-based subgrid model it is possible to directly
connect the finite element approximation to weak solutions of the Navier-
Stokes equations, which provides a mathematical framework for computa-
tional approximation of mean values in turbulent flow, in the form of func-
tionals of weak solutions, without introducing LES filtering or RANS sta-
tistical averaging, and thus circumventing the closure problem. Combined
with duality based a posteriori estimation of the error in such functionals
of weak solutions, adaptive methods for turbulent flow have been de-
veloped under the notions of Adaptive DNS/LES, General Galerkin (G2),
and Direct Finite Element Simulation (DFS) [61, 47, 62, 45, 63, 64, 65, 66].
In particular, it is shown that the adjoint solution may be computed at
an affordable cost for complex turbulent flows in 3D. The method may be
viewed as producing an approximate weak solution of the NS equations,
with a residual that in a weak sense is small (reflecting the Galerkin or-
thogonality) and which is also controlled in a strong sense (reflecting the
residual-based stabilization) [67, 68, 69].

In this chapter we will review this framework for direct finite element
simulation of turbulence, with in particular a computational study of a
model problem, and we will give examples of applications of the framework
to complex engineering problems.

2 The Navier-Stokes equations

The NS equations were formulated in 1821-1845 and appear to give an ac-
curate description of a great variety of fluid flows, including both laminar
flow with ordered flow features and turbulent flow with vortices on a range
of scales in a complex interaction. Even though the NS equations have
been known for almost 200 years a basic mathematical understanding of
the equations is missing, in particular the basic questions of existence and
uniqueness of solutions stand without a clear answer.

The incompressible NS equations for a unit density Newtonian fluid
with constant kinematic viscosity ν > 0 enclosed in a volume Ω in R3

(where we assume that Ω is a polygonal domain), together with suitable
boundary conditions, take the form:

R(û) = 0, in Ω× I (1)

for û = (u, p), with u(x, t) the velocity vector and p(x, t) the pressure
at (x, t), I = (0, T ) is a time interval, and R(û) ≡ R̄(û) − (f, 0) =
(R̄1(û), R̄2(u))− (f, 0), with
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R̄1(û) = u̇+ u · ∇u+∇p− ν∆u

R̄2(u) = ∇ · u (2)

The main existence result available is due to Jean Leray, who in 1934
proved the existence of a so-called weak solution (or turbulent solution
in the terminology of Leray) [70], which is a solution satisfying (1) in an
average sense; û is a weak solution if

((R(û), v̂)) = 0 (3)

for all test functions v̂ in a test space V̂ with norm ‖ · ‖V̂ , consisting
of suitable differentiable functions, R(û) is assumed to belong to a space
dual to V̂ , and ((·, ·)) denotes a duality pairing.

An idea in contemporary mathematics is now to try to extend the re-
sult of Leray, to prove existence and uniqueness of a strong solution û, that
would make the residual pointwise zero; R(û) = 0. The idea, expressed
in the Clay Institute $1 million Prize Problem would be to prove that in
fact Leray’s weak solution û is a strong solution, by proving regularity of
û. With a pointwise bound on first-order derivatives, uniqueness would
then follow from a standard Grönwall estimate, bounding the pointwise
difference between two strong solutions in terms of a small perturbation
in data, which one then would let go to zero, which would give uniqueness.

Although, the use of a Grönwall estimate would bring in an exponential
factor eKT, with K a pointwise bound of the gradient of the velocity,
which may be estimated to be of the order K ∼ Re1/2 in a turbulent
flow. For Re = 106 and T = 10, this would result in the enormous
factor e10000, which is much larger than 10100, a googol. Any uniqueness
proof involving such constants seems to lack any practical meaning, since
virtually anything could then result from almost nothing.

The problem of proving uniqueness should come as no surprise, since in
a turbulent flow we may expect an extreme pointwise perturbation growth,
and thus pointwise uniqueness is too much to ask for. On the other hand,
some aspects of turbulent flow are more well determined. Typically we
expect various types of mean value output in a turbulent flow to be well
determined to a higher degree than pointwise output. Uniqueness in out-
put of a solution is intimately connected to predictability/computability.
A basic question is then:

What outputs of a turbulent flow are computable to what toler-
ance to what cost?

In a turbulent flow we do not expect point values to be predictable/-
computable to any tolerance of interest, but we expect that certain mean
values can be predicted/computed to a tolerance of interest. We may com-
pare to weather prediction, which concerns solving equations of NS type
for the atmosphere: in January we may expect to be able to predict the
mean temperature in London for the month of June to a tolerance of say
± 2◦C, but we do not expect to be able to predict the daily temperature
in London June 20th to a tolerance of less than say ± 10◦C, which is not
very useful. For the problem of computing the mean drag of bluff bodies
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in a turbulent flow, a tolerance of a few percent seems reasonable, based
on computational and experimental experience, but we cannot expect to
be able to predict drag to an arbitrary small tolerance.

In [47] we presented a novel approach to assess the uniqueness and
computability of various mean value output in turbulent flow, where we
relax Leray’s weak solution concept, to the concept of an ε -weak solution,
where we say that û is an ε -weak solution if

|((R(û), v̂))| ≤ ε‖v̂‖V̂ , ∀v̂ ∈ V̂
with ε a (small) positive number. This means that for an ε -weak

solution û, we require the residual R(û) to be smaller than ε in a weak
norm dual to the strong norm of V̂ , and we denote the space of ε -weak
solutions W ε. We note that this approach is in direct contrast to the
approach taken in the formulation of the Clay Prize, seeking a proof that
Leray’s weak solution is a strong solution; here we relax the requirements
on the solution, and choosing ε = 0 would then bring us back to Leray’s
weak solution concept.

We show that for two ε -weak solutions û, ŵ ∈Wε, we have that

|M(û)−M(ŵ)| ≤ 2εSε(ψ̂) (4)

where Sε(ψ̂) is a stability factor characterizing the stability proper-
ties of the linear functional output M (·), defined by M(ŵ) ≡ ((ŵ, ψ̂)).
The estimate (4) expresses output uniqueness of ε -weak solutions in a
quantitative form, where the stability factor Sε(ψ̂) is determined by com-
putational approximation of a dual problem, linearized at û and ŵ, and
with data ψ̂ connecting to the output M (·). The crucial fact behind the
success of this approach for turbulent flow is that Sε(ψ̂) turns out to be
stable with respect to linearization at different elements in W ε for mean
value output M (·), which we show computationally.

We thus relax the solution concept twofold: (i) by using a weak solu-
tion concept, and (ii) by requiring R(u) to be zero in a weak sense only
approximatively. We shall see that (i) and (ii) naturally come together;
asking only (i) does not make much sense. With the standard Leray weak
solution, corresponding to ε = 0, the stability information in (4) would be
lost, since one may argue that anything times 0 is still 0.

Further, we find that we are able to construct ε -weak solutions for
almost any ε > 0, by stabilized Galerkin finite element methods, here
referred to as General Galerkin (G2) methods. For a G2 solution Û we
derive a posteriori error estimates, with respect to an ε -weak solution û,
of the form

|M(û)−M(Û)| ≤ εSε(ψ̂) +
∑
K∈T

eKD + eKM (5)

with error contributions from each element K in the computational
mesh T , where eKD is an error from the Galerkin discretization in G2, eKM
is an error contribution from the stabilization in G2, and εSε(ψ̂) char-
acterizes computability of the output M (·) in terms of a best possible
accuracy, where ε is given by the maximal computational resources.
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It seems reasonable to aim for an accuracy in computations similar to
the one in experiments. For example, experimental measurements of the
drag coefficient of a circular cylinder at Re = 3900 is presented as 0.98±
0.05, where the disturbance level in the experiments results in an output
error of about 5%. We construct an adaptive computational method based
on (5) for the approximation of the output M (·) to a given accuracy
TOL, using a minimal number of degrees of freedom, by formulating the
minimization problem:

Find a G2 solution Û , with a minimal number of degrees of
freedom, such that |M(û)−M(Û)| ≤ TOL,

which we solve by using the a posteriori error estimate (5), start-
ing from a coarse mesh and successively adding new degrees of freedom
based on (5) until the output error bound is less than the given tolerance
TOL. For turbulent flow we sometimes refer to this method as Adaptive
DNS/LES, with parts of the flow being resolved to its physical scales in
a DNS and parts of the flow being left unresolved in a LES, with the sta-
bilization in G2 acting as a subgrid model. We also refer to the method
as Direct Finite Element Simulation (DFS), emphasising that no explicit
turbulence/subgrid model is used.

3 ε -Weak Solutions

Viewing the study of the NS equations, in the general case of turbulent
flow, as the study of mean value output from the equations, we do not
need to worry about the possible existence of any strong solutions. In-
stead we focus on the existence of approximate weak solutions, and (weak)
uniqueness in output of such solutions.

To study weak uniqueness of the NS equations, we let an ε -weak
solution be an approximate weak solution with a residual less than ε in a
weak norm. That is, we define for v̂ = (v, q) ∈ V̂ ,

((R(û), v̂)) ≡ ((u̇, v)) + ((u · ∇u, v))− ((∇ · v, p))
+((∇ · u, q)) + ((ν∇u,∇v))− ((f, v)) (6)

where

V̂ = {v̂ = (v, q) ∈ [H1(Q)]4 : v ∈ L2(H1
0 (Ω))3}

and ((·, ·)) is the [L2(Q)]m inner product with m = 1, 3, or a suit-
able duality pairing, over the space-time domain Q = Ω × I. In or-
der for all the terms in (6) to be defined, we ask u ∈ L2(I;H1

0 (Ω)3),
(u · ∇)u ∈ L2(I;H−1(Ω)3), u̇ ∈ L2(I;H−1(Ω)3), p ∈ L2(I;L2(Ω)), and
f ∈ L2(I; H−1(Ω)3), where H1

0 (Ω) is the standard Sobolev space of vector
functions being zero on the boundary Γ and square integrable together
with their first derivatives over Ω , with dual H−1(Ω). As usual, L2(I ;X )
with X a Hilbert space denotes the set of functions v : I → X that are
square integrable.

We now define û ∈ V̂ to be an ε -weak solution if
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|((R(û), v̂))| ≤ ε‖v̂‖V̂ , ∀v̂ ∈ V̂ (7)

where ‖ · ‖V̂ denotes the H1(Q)4-norm, and we define Ŵε to be the set
of ε -weak solutions for a given ε > 0. Note that for simplicity here we
require also the solution û to belong to the test space V̂ , which require
more regularity than necessary; for the formulation (7) to make sense, it
is sufficient that R(û) belongs the dual space of V̂ . Equivalently, we may
say that û ∈ V̂ is an ε -weak solution if

‖R(û)‖V̂ ′ ≤ ε (8)

where ‖ · ‖V̂ ′ is the dual norm of V̂ . This is a weak norm measuring
mean values of R(û) with decreasing weight as the size of the mean value
decreases. Point values are thus measured very lightly.

Formally we obtain the equation

((R(û), v̂)) = 0 (9)

by multiplying the NS equation by v̂, that is, the momentum equation
by v and the incompressibility equation by q, and integrating in space-
time. Thus, a pointwise solution û to the NS equations would be an ε
-weak solution for all ε ≥ 0, while an ε -weak solution for ε > 0 may be
viewed as an approximate weak solution.

Below, we show how to construct ε -weak solutions using stabilized
finite element methods, and thus existence of ε -weak solutions for any
ε > 0 is guaranteed (under a certain assumption). For a computed solution
û, we can determine the corresponding ε by evaluating the residual R(û).

4 Output Sensitivity and the Dual Prob-
lem

Suppose now the quantity of interest, or output, related to a given ε -weak
solution û is a scalar quantity of the form

M(û) = ((û, ψ̂)) (10)

which represents a mean value in space-time, where ψ̂ ∈ L2(Q) is a
given weight function. In typical applications the output could be a drag
or lift coefficient in a bluff body problem. In this case the weight ψ̂ is a
piecewise constant in space-time. More generally, ψ̂ may be a piecewise
smooth function corresponding to a mean value output.

We now seek to estimate the difference in output between two different
ε -weak solutions û = (u, p) and ŵ = (w, r). We thus seek to estimate
a certain form of output sensitivity of the space Ŵε of ε -weak solutions.
To this end, we introduce the following linearized dual problem of finding
ϕ̂ = (ϕ, θ) ∈ V̂ , such that

a(û, ŵ; v̂, ϕ̂) = ((v̂, ψ̂)), ∀v̂ ∈ V̂0 (11)

where V̂0 = {v̂ ∈ V̂ : v(·, 0) = 0}, and
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a(û, ŵ; v̂, ϕ̂) ≡ ((v̇, ϕ)) + ((u · ∇v, ϕ)) + ((v · ∇w,ϕ))

+((∇ · ϕ, q))− ((∇ · v, θ)) + ((ν∇v,∇ϕ))

with u and w acting as coefficients, and ψ̂ is given data.
This is a linear convection-diffusion-reaction problem in variational

form, u acting as the convection coefficient and ∇w as the reaction coef-
ficient, and the time variable runs ‘backward’ in time with initial value
(ϕ(·,T) = 0) given at final time T imposed by the variational formulation.
The reaction coefficient ∇w may be large and highly fluctuating, and the
convection velocity u may also be fluctuating.

Choosing now v̂ = û− ŵ in (11), we obtain

((û, ψ̂))− ((ŵ, ψ̂)) = a(û, ŵ; û− ŵ, ϕ̂)

= ((R(û), ϕ̂))− ((R(ŵ), ϕ̂))

and thus we may estimate the difference in output as follows:

|M(û)−M(ŵ)| ≤ 2ε‖ϕ̂‖V̂ (12)

By defining the stability factor S(û, ŵ; ψ̂) = ‖ϕ̂‖V̂ , we can write

|M(û)−M(ŵ)| ≤ 2εS(û, ŵ; ψ̂) (13)

and by defining

Sε(ψ̂) = sup
û,ŵ∈Ŵε

S(û, ŵ; ψ̂) (14)

we get

|M(û)−M(ŵ)| ≤ 2εSε(ψ̂) (15)

which expresses output uniqueness of Ŵε.
Clearly, Sε(ψ̂) is a decreasing function of ε and we may expect Sε(ψ̂)

to tend to a limit S0(ψ̂) as ε tends to zero. For small ε , we thus expect
to be able to approximate (15) by

|M(û)−M(ŵ)| ≤ 2εS0(ψ̂) (16)

Depending on ψ̂, the stability factor S0(ψ̂) may be small, medium,
or large, reflecting different levels of output sensitivity, where we expect
S0(ψ̂) to increase as the mean value becomes more local. Normalizing, we
may expect the output M(û) ∼ 1, and then one would need 2εS0(ψ̂) < 1
in order for two ε -weak solutions to have a similar output.

Estimating S0(ψ̂) using a standard Grönwall type estimate of the so-
lution ϕ̂ in terms of the data ψ̂ would give a bound of the form S0(ψ̂) ≤
CeKT , where C is a constant and K is a pointwise bound of |∇w|.
In a turbulent flow with Re = 106 we may have K ∼ 103, and with
T = 10 such a Grönwall upper bound of S0(ψ̂) would be of the form
S0(ψ̂) ≤ CeKT ∼ e10 000, which is an incredibly large number. It would
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Figure 1: Sum of the real parts of the eigenvalues of ∇U, the Jacobian of a G2
solution, for a few thousand elements in the turbulent wake of a circular (a) and
a square cylinder (b) [47].

be inconceivable to have ε < 10−100, and thus the output of an ε -weak
solution would not seem to be well defined.

However, computing the dual solution corresponding to drag and lift
coefficients in turbulent flow, we find values of S0(ψ̂) that are much
smaller, for which it is possible to choose ε so that 2εS0(ψ̂) < 1, with
the corresponding outputs thus being well defined (up to a certain tol-
erance). In practice, there is a lower limit for ε , typically given by the
maximal computational resources, and thus S0(ψ̂) effectively determines
the computability of different outputs.

We attribute the fact that ϕ̂ and derivatives thereof are not exponen-
tially large, to cancellation effects from the oscillating reaction coefficient
∇w, with the sum of the real parts of the eigenvalues of ∇w being small,
with the sign being about as often positive as negative; see Fig. 1. These
cancellation effects appear hard to account for in purely theoretical esti-
mates.

5 Existence of ε -Weak Solutions

To generate approximate weak solutions, we use a stabilized finite element
method of the form: find Û ≡ Ûh ∈ V̂h, where V̂h ⊂ V̂ is a finite dimen-
sional subspace defined on a computational mesh in space-time of mesh
size h, such that

((R(Û), v̂)) + ((hR(Û), R̄(v̂))) = 0, ∀v̂ ∈ V̂h (17)

where R(Û) ≡ R̄(Û) − (f, 0) = (R̄1(Û), R̄2(U)) − (f, 0), and for ŵ =
(w, r)
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R̄1(ŵ) = ẇ + U · ∇w +∇r − ν∆w

R̄2(w) = ∇ · w

with elementwise definition of second-order terms. We here interpret
a convection term ((U · ∇w, v)) as

1

2
((U · ∇w, v))− 1

2
((U · ∇v, w))

which is literally true if ∇ · U = 0. With this interpretation we will
have ((U ·∇U,U)) = 0, even if the divergence of the finite element velocity
U does not vanish exactly, and we obtain choosing v̂ = Û in (17), and
assuming that f = 0:

1

2
‖U‖2Ω + ‖

√
ν∇U‖2 + ‖

√
hR(Û)‖2 ≤ 1

2
‖u0‖2Ω (18)

with ‖·‖Ω the spatial L2-norm over Ω, and ‖·‖ the space-time norm over
Ω × I. The finite element method (17) is a stabilized Galerkin method
with the term ((R(Û), v)) corresponding to Galerkin’s method and the
term ((hR(û), R̄(v̂))) corresponding to a weighted residual least squares
method with stabilizing effect expressed in (18). We also refer to this
method as G2 or General Galerkin, and we thus refer to Û as a G2 solution.
The existence of a discrete solution Û ≡ Ûh ∈ V̂h follows by Brouwer’s
fixed point theorem combined with the stability estimate in (18).

We now prove the existence of ε -weak solutions to the NS equations
for any ε > 0. For all v̂ ∈ V̂ , we have with πhv̂ ∈ V̂h a standard interpolant
of v̂ satisfying ‖h−1(v̂ − πhv̂)‖ ≤ Ci‖v̂‖V̂ , using also (17),

|((R(Û), v̂))| = |((R(Û), v̂ − πhv̂))− ((hR(Û), R̄(πhv̂))|
≤ Ci‖hR(Û)‖‖v̂‖V̂ +M(U)‖hR(Û)‖‖v̂‖V̂ (19)

where M (U ) is a pointwise bound of the velocity U (x, t), and C i ≈ 1
is an interpolation constant. It follows that the G2-solution Û is an ε
-weak solution with

ε = (Ci +M(U))‖hR(Û)‖ ≤
√
h(Ci +M(U))‖u0‖Ω

since from the energy stability estimate (18) we have that ‖
√
hR(Û)‖ ≤

‖u0‖Ω.
Assuming now that M (U ) = M (U h) is bounded with h > 0, and

letting (Ci + M(U))‖u0‖Ω ≤ C, it follows that Û is an ε -weak solution
with ε = C

√
h. More generally, we may say that a G2 solution Û is an ε

-weak solution with ε = CU‖hR(Û)‖, with CU = C i + M (U ).
We have now demonstrated the existence of an ε -weak solution to the

NS equations for any ε , assuming that the maximum of the computed
velocity is bounded (or grows slower than h−1/2). More generally, we have
shown that a G2 solution Û is an ε -weak solution with ε = CU‖hR(Û)‖.
Computing Û , we can compute ε = CU‖hR(Û)‖ and thus determine the
corresponding ε .
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6 Computability and a Posteriori Error
Estimation

We now let û be an ε -weak solution of the NS equations with ε small,
and we let Û be a G2 solution, which can be viewed to be an εG2-weak
solution, with εG2 = CU‖hR(Û)‖ >> ε. As in (15), we get the following
a posteriori error estimate for a mean value output given by a function ψ̂:

|M(û)−M(Û)| ≤ (CU‖hR(Û)‖+ ε)SεG2(ψ̂) (20)

where SεG2(ψ̂) is the corresponding stability factor defined by (14).
Obviously the size of the stability factor SεG2(ψ̂) is crucial for computabil-
ity: the stopping criterion is evidently (assuming ε small):

CU‖hR(Û)‖SεG2(ψ̂) ≤ TOL
where TOL > 0 is a tolerance. If SεG2(ψ̂) is too large, or TOL is

too small, then we may not be able to reach the stopping criterion with
available computing power, and the computability is out of reach. In
applications we estimate SεG2 by computational approximation of the
dual problem.

We note that for weak uniqueness the residual only needs to be small
in a weak norm, and correspondingly for computability the G2 residual
only needs to be small when weighted by h. This means that for accurate
approximation of a mean value output, the NS equations do not need to be
satisfied pointwise, corresponding to a pointwise small residual, but only
in an average sense, corresponding to the residual being small only in a
weak norm. In computations we find that in fact the G2 residual typically
is large pointwise for solutions corresponding to accurate approximation
of mean value output, such as the drag of a bluff body.

7 Direct Finite Element Simulation

The main elements of Direct Finite Element Simulation of turbulent flow
are now presented, in the form of a finite element method with resid-
ual based stabilization, quantitative a posteriori error estimation, and an
adaptive algorithm.

7.1 The Eulerian cG(1)cG(1) Method

The cG(1)cG(1) method is a variant of G2 using the continuous Galerkin
method cG(1) in space and time. With cG(1) in time the trial functions
are continuous piecewise linear and the test functions piecewise constant.
cG(1) in space corresponds to both test functions and trial functions being
continuous piecewise linear. Let 0 = t0 < t1 < . . . < tN = T be a sequence
of discrete time steps with associated time intervals In = (tn−1, tn) of
length kn = tn−tn−1 and space-time slabs Sn = Ω×In, and let Wn ⊂ H1(Ω)
be a finite element space consisting of continuous piecewise linear functions
on a mesh Tn = {K} of mesh size hn(x ) with Wn

w the functions v ∈ W n

satisfying the Dirichlet boundary condition v|∂Ω = w.
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We now seek functions Û = (U,P ), continuous piecewise linear in
space and time, and the cG(1)cG(1) method for the NS equations 01,
with homogeneous Dirichlet boundary conditions reads: For n = 1, . . . ,N,
find (Un, Pn) ≡ (U(tn), P(tn)) with Un ∈ V n0 ≡ [Wn

0 ]3 and Pn ∈Wn, such
that

((Un − Un−1)k−1
n + Ūn · ∇Ūn, v) + (2νε(Ūn), ε(v))− (Pn,∇ · v) + (∇ · Ūn, q)

+SDδ(Ū
n, Pn; v, q) = (f, v) ∀(v, q) ∈ V n0 ×Wn (21)

where Ūn = 1/2(Un + Un−1), with the stabilizing term

SDδ(Ū
n, Pn; v, q) ≡ (δ1(Ūn · ∇Ūn +∇Pn − f), Ūn · ∇v +∇q) + (δ2∇ · Ūn,∇ · v)

where δ1 = 1/2(k−2
n + |U |2h−2

n )−1/2 in the convection dominated case
ν < Ūnhn and δ1 = κ1h

2
n otherwise, δ2 = κ2hn if ν < Ūnhn and δ2 = κ2h

2
n

otherwise, with κ1 and κ2 positive constants of unit size (here we have
κ1 = κ2 = 1), and

(v, w) =
∑
K∈Tn

∫
K

v · w dx

(ε(v), ε(w)) =

3∑
i,j=1

(εij(v), εij(w))

We note that the time step kn is given by the mesh size hn, with
typically

kn ∼ min
x

hn(x)

Ūn(x)

7.2 A Posteriori Error Estimation

A mean value in time of the force on a body, over a time interval I, may
be expressed as

N(σ(û)) =
1

|I|

∫
I

(u̇+ u · ∇u− f,Φ)− (p,∇ · Φ)

+ (2νε(u), ε(Φ)) + (∇ · u,Θ) dt (22)

where û is an ε -weak solution to the NS equations, and Φ is a function
defined in the fluid volume Ω being equal to a unit vector in the direction of
the force we want to compute on Γ0, the surface of the body in contact with
the fluid, and zero on the remaining part of the boundary Γ1 = ∂Ω \ Γ0.
The representation (22) is independent of Θ , and the particular extension
of Φ away from the boundary, and we require that Φ̂ = (Φ,Θ) ∈ V̂ .

We compute an approximation of the drag N(σ(û)) from a cG(1)cG(1)
solution Û , using the formula
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Nh(σ(Û)) =
1

|I|

∫
I

(U̇ + U · ∇U − f,Φ)

− (P,∇ · Φ) + (2νε(U), ε(Φ)) + (∇ · U,Θ) (23)

+ SDδ(U,P ; Φ,Θ) dt

where now Φ and Θ are finite element functions, and where U̇ =
(Un − Un−1)/kn on In. We note the presence of the stabilizing term
SDδ in (23) compared to (22), which is added in order to obtain the
independence of Nh(σ(Û)) from the choice of (Φ , Θ ), given by (21).

Approximating ϕ̂ = (ϕ, θ), the exact solution to the dual problem
(11), by a computed approximation ϕ̂h = (ϕh, θh), with the linearized
convection velocity u ≈ U, we are led to the following a posteriori error
estimate for the time average over I of the drag force on a body in a fluid,
with respect to û ∈Wε:

|N(σ(û))−Nh(σ(Û))| ≈ εSε(ψ̂) +
∑
K∈Tn

EK,h (24)

where ψ̂ = (Φ, 0) is the data to the dual problem defining the output
N(σ(·)), k and h are the time step and the local mesh size, respectively,
and EK,h = eKD,h + eKM,h, with

eKD,h =
1

|I|

∫
I

(
‖R1(Û)‖K × (Chh

2‖D2ϕh‖K + Ckk‖ϕ̇h‖K)

+‖R2(Û)‖K × (Chh
2‖D2θh‖K + Ckk‖θ̇h‖K)

)
dt

eKM,h =
1

|I|

∫
I

SDδ(Û ; ϕ̂h)K dt

where we may view eKD,h as the error contribution from the Galerkin
discretization in cG(1)cG(1), and eKM,h as the contribution from the stabi-
lization in cG(1)cG(1), on element K. The lower bound on the tolerance,
defining computability of the output N(σ(·)), is given by εSε(ψ̂). Here we
think of ε as being small, corresponding to a maximal computational cost,
so that εSε(ψ̂) <<

∑
K∈Tn EK,h.

7.3 The Do-nothing Error Estimate and Indica-
tor

To minimize loss of sharpness, we also investigate an approach where the
weak form is used directly in a posteriori error estimates, without integra-
tion by parts to the strong form, and using Cauchy-Schwarz inequality and
interpolation estimates. We here refer to this direct form of a posteriori
error representation as the “do-nothing” approach.

In terms of the the exact adjoint solution ϕ̂, the output error with
respect to a weak solution û can be represented as:

|M(û)−M(Û)| = |((R(Û), ϕ̂))| = |
∑
K∈Tn

((R(Û), ϕ̂))K | (25)
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This error representation involves no approximation or inequalities.
We thus refer to the following error indicator based on the representation
as the do-nothing error indicator:

eKN ≡ ((R(Û), ϕ̂))K (26)

A computable estimate and error indicator are again based on the
computed approximation ϕ̂h of the dual solution:

|M(û)−M(Û)| ≈ |((R(Û), ϕ̂h))| (27)

eKN,h ≡ ((R(Û), ϕ̂h))K (28)

where we may lose reliability of the global error estimate by the Galerkin
orthogonality property, which states that the ((R(Û), ϕ̂h)) vanishes for
a standard Galerkin finite element method if ϕ̂h is chosen in the same
space as the test functions. Although, in the setting of a stabilised finite
element method this is not the case, as we will see below.

7.4 Adaptive Algorithm

We now present an algorithm for adaptive mesh refinement based on the
a posteriori output error estimate (24). For simplicity, we here use the
same space mesh and the same time step length for all time steps.

Given an initial coarse computational space mesh T 0, start at k = 0,
then do:

1. Compute approximation of the primal problem using T k.

2. Compute approximation of the dual problem using T k.

3. If |
∑
K∈Tk

EkK,h| < TOL then STOP, else:

4. On the basis of the size of the local error indicator EkK,h, mark a fixed

fraction of the elements in T k for refinement. Obtain a new refined
mesh T k+1, using a standard algorithm for local mesh refinement.

5. Set k = k + 1, then goto (1).

8 Computability in a Model Problem

Computability of turbulent flow is now investigated in a model problem;
high Reynolds number flow past a cube in a channel. The high Reynolds
number flow is approximated by zero viscosity in the cG(1)cG(1) model,
and slip boundary conditions with zero skin friction. Thus there is no
viscous dissipation in the model, effectively corresponding to the Euler
equations, but the computed (ε -weak) solutions exhibit turbulent dissi-
pation in the wake through the residual based stabilization of the method.

8.1 Error Estimates at Three Levels

We study the performance of the a posteriori error estimates for the model
problem at three levels: (i) a global norm estimate which can be expected
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to overestimate the error due to the use of a global Cauchy-Schwarz in-
equality, (ii) a cell-local norm estimate based on local Cauchy-Schwarz in-
equalities that provide a robust estimate and indicator, and (iii) a ”bare”
do-nothing estimate and indicator expected to to reach maximum sharp-
ness but possibly lose reliability due to higher sensitivity to the local
approximation of the adjoint solution.

The error estimate (20) is based on global norms where the global
stability factor SεG2(ψ̂) give an indication of the stability of the problem.
However the estimate may grossly over-estimate the error, due to the use
of global estimates. In the model problem computations we assume that
the contribution from the ε-weak solution is small and omit it, so that the
global norm error estimate takes the following form:

|M(û)−M(Û)| ≤ (CU‖hR(Û)‖)SεG2(ψ̂) (29)

To increase sharpness we use the a posteriori error estimate based on
cell-local norms in (24), where the Cauchy-Schwarz inequality is applied to
the error representation for each cell in the mesh individually, which allows
for cancellations between the residual and the dual weight. For simplicity,
we omit the contribution from the ε-weak solution and the contribution
from the stabilization in the SDδ term, and for robustness we use first-
order interpolation estimates instead of second-order estimates.

The cell-local norm error estimate and indicator for the model problem
take the following form:

|M(û)−M(Û)| ≤
∑
K∈Tn

eKD,h

eKD,h =
1

|I|

∫
I

(
‖R1(Û)‖K × (Chh|∇ϕh|K + Ckk|ϕ̇h|K)

+ ‖R2(Û)‖K × (Chh‖∇θh‖K + Ckk‖θ̇h‖K)
)

dt (30)

In the do-nothing a posteriori error estimate (28) no inequalities or
approximations are used, aside from the discretization of the adjoint so-
lution. This represents the ”barest” estimate, which allows for additional
cancellations: between the residual and the dual weight, and also between
contributions of different signs, but where we may sacrifice reliability due
to a higher sensitivity with respect to the local approximation of the ad-
joint solution. Again omitting the contribution from the ε-weak solution
the do-nothing error estimate and indicator for the model problem take
the following form:

|M(ûe)−M(Û)| ≈ |((R(Û), ϕ̂h))| (31)

eKNh ≡ ((R(Û), ϕ̂h))K (32)

8.2 FEniCS Automated Implementation

Developing multiphysics finite element methods (FEM) and scalable HPC
implementations can be very challenging in terms of software complexity
and performance, even more so with the addition of goal-oriented adap-
tive mesh refinement. To manage the complexity we have implemented
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the methods in the FEniCS automated open source software framework
for solving PDE with FEM [71, 72, 73]. This allows taking the weak form
of a partial differential equation (PDE) as input in near-mathematical no-
tation and automatically generating the low-level implementation source
code and auxiliary equations and quantities necessary for the adaptivity,
with demonstrated optimal strong scaling up to ca. 20 000 cores on a
supercomputer.

To solve a PDE in weak form in the FEniCS framework, we first de-
fine the weak form in a UFL “form file”, closely mapping mathematical
notation. The form file is then compiled to low-level C++ source code
for assembling the local element matrix and vector with FFC. Finally we
use DOLFIN-HPC to write a high-level “solver”, here in C++, which we
denote Unicorn, composing the different abstractions, where a mesh is
defined, the global matrix and vector are assembled by interfacing to the
generated source code, the linear system is solved by an abstract parallel
linear algebra interface (using PETSc as back-end by default).

Here we write our weak forms in an “equation sheet” in UFL notation,
which in a concise format contains all our mathematical formulations.

We formulate the General Galerkin (G2) method for the incompress-
ible Euler equations in UFL by a direct input of the strong and weak
residuals. We can automatically derive the Jacobian in a quasi-Newton
fixed-point formulation and also automatically linearize and generate the
adjoint problem needed for the error estimates and adaptive error control.

The primal method in UFL notation is presented in Fig. 2, the adjoint
method in Fig. 3, computation of the H1 norm in Fig. 4 and the Cauchy-
Schwarz global norm error estimate in Fig. 5.

# Strong residual for GLS -stabilization
R = [grad(p) + grad(um)*um , div(um)]
R_v = [grad(v)*um , div(v)]
R_q = [grad(q), 0]

d = c1*h # GLS stabilization parameter

# GLS -stabilization
LS_u = d*(sum([ inner(R[ii], R_v[ii]) for ii in range(0, 2) ]))
LS_p = d*(sum([ inner(R[ii], R_q[ii]) for ii in range(0, 2) ]))

# Stationary weak residual
rs_m = (nu*inner(grad(u), grad(v)) + inner(grad(p) + grad(u)*u, v))*dx
rs_c = (inner(div(u), q))*dx

# Evaluate at midpoint for cG(1) method in time
rmp_m = replace(rs_m , { u: um })
rmp_c = replace(rs_c , { u: um })

# Weak residual of Direct FEM cG(1)cG(1) for the primal problem
# Schur -preconditioning of the fixed -point iteration
r_m = (inner(u - u0 , v)/k)*dx + rmp_m + LS_u*dx
r_c = (2*k*inner(grad(p - p0), grad(q)))*dx + rmp_c + LS_p*dx

Figure 2: cG(1)cG(1) method in FEniCS UFL notation for the primal problem,
where we have omitted the declaration of the functions for brevity.
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# Rename primal solution to up, pp
rsp_m = replace(rs_m , { u: up, p: pp })
rsp_c = replace(rs_c , { u: up, p: pp })

# Generate adjoint form component -wise
rds_m = adjoint(derivative(rsp_m , up, u_), (v, u_))
rds_m = action(rds_m , u)
rds_c = adjoint(derivative(rsp_c , pp, p_), (q, p_))
rds_c = action(rds_c , p)

# Generate adjoint cross -component terms
rdsx_m = derivative(action(rds_c , p), up , v)
rdsx_c = derivative(action(rds_m , u), pp , q)

# Source terms for the adjoint problem
Ld_m = inner(psi_m , v)*dx + inner(bpsi_m , v)*ds
Ld_c = inner(psi_c , q)*dx

# Write the adjoint problem in residual form
rlds_m = rds_m + rdsx_m - Ld_m
rlds_c = rds_c + rdsx_c - Ld_c

# Evaluate at midpoint for cG(1) method in time
rldmp_m = replace(rlds_m , { u: um })
rldmp_c = replace(rlds_c , { u: um })

d32 = c2*h**(3./2.) # shock -capturing stabilization parameter

# Basic shock -capturing stabilization
SC_u = d32*inner(grad(um), grad(v))
SC_p = d32*inner(grad(p), grad(q))

# Weak residual of Direct FEM cG(1)cG(1) for the adjoint problem ,
# with the primal GLS -stabilization with an additional small shock -capturing term
rd_m = (inner(u - u0 , v)/k)*dx + rldmp_m + LS_u*dx + SC_u*dx
rd_c = (2*k*inner(grad(p - p0), grad(q)))*dx + rldmp_c + LS_p*dx + SC_p*dx

Figure 3: cG(1)cG(1) method in FEniCS UFL notation for the adjoint problem.

Z = FiniteElement(‘‘DG’’, ‘‘tetrahedron ’’, 0)
z = TestFunction(Z)
cv = Coefficient(Z) # Cell volume
icv = 1./cv

dtu = (u - u0)/k
I = inner(grad(u), grad(u)) + inner(dtu , dtu)

L = inner(z, h*I)*dx # Output wm coefficient
M = h*I*dx # Output functional

Figure 4: Computation of the square of the global H1 seminorm of the adjoint
velocity for one time step.

Z = FiniteElement(‘‘DG’’, ‘‘tetrahedron ’’, 0)

Rm = Coefficient(Z) # Momentum residual
Rc = Coefficient(Z) # Continuity residual
wm = Coefficient(Z) # Adjoint momentum stability factor
wc = Coefficient(Z) # Adjoint continuity stability factor

cv = Coefficient(Z) # Cell volume
icv = 1./cv # Inverse of cell volume

M = icv*h*h*(Rm*wm + Rc*wc)*dx

Figure 5: Computation of the square of the global Cauchy-Schwarz error esti-
mate for one time step, with wm, wc, Rm and Rc computed as above.

20



8.3 Computability and Output Sensitivity

We now address the question of computability in turbulence in a concrete
case: more specifically computability of the drag coefficient in a DFS
model of the cube model problem. We study the stability of the adjoint
solution, performance of the different a posteriori error estimates, and the
convergence of the drag coefficient output quantity.

The model problem is defined by a unit velocity inflow boundary con-
dition in the x-direction past a unit cube located at origo in a pipe in the
interval x = [−10, 30] with radius 10, over the time interval I = [0, 400].
The outflow boundary is modelled by a zero pressure boundary condition,
and a free slip boundary condition is applied everywhere else. The cube
geometry is chosen to minimize the influence of the boundary condition;
the cube geometry is exactly represented by the mesh, and the sharp edges
trigger flow separation so that boundary layer effects are avoided.

The initial coarse mesh has 3500 vertices, and the do-nothing adaptive
method is applied to successively refine the mesh for 14 iterations. A
sequence of adaptive meshes is thus generated with ca. 200k vertices in
the finest mesh, see Fig. 6. For each mesh we compute the primal and the
adjoint solutions, see Fig. 7 and Fig. 8.

We study the stability of the adjoint solution with respect to time
and mesh refinement, i.e. the stability factor that appears in the global
norm a posteriori error estimate (29). We also compute the mesh conver-
gence of the error estimates with global and local norms, as well as the
do-nothing error estimate, and compare against a reference error based on
choosing the finest mesh as the truth mesh. The mesh size factor h is dis-
tributed to the two factors in the error estimate, that is we study the norm
‖
√
hR(Û)‖L2(Ω×I), and the seminorms |

√
hϕ|H1(Ω×I) and |

√
hθ|H1(Ω×I)

separately.
In Fig. 10 we verify that the stability factors show only weak sensitiv-

ity to the mesh, in Fig. 11 we find that they are bounded in time, and in
Fig. 12 we find that the norm of the residual decreases slowly with mesh
refinement. The product of the near constant stability factor and the de-
creasing residual norm thus gives a converging global norm error estimate,
which we verify in Fig. 13. In the same figure we also present the cell-local
norm error estimate, which is sharper but still grossly over-estimates the
error. Finally the do-nothing estimate in the same figure is quite sharp
for this problem. The potential cancellation effects are clear visible in
Fig. 9, where we plot the residual and the gradient of the adjoint solution.
Convergence with respect to the drag coefficient can be seen in Fig. 13,
where for the last four adaptive iterations the drag coefficient vary less
than 1%.

9 Application of DFS

The DFS methodology has been validated for a number of bluff body flow
problems over a range of Reynolds numbers, and we here recall some of
these studies.
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Figure 6: Adaptively refined meshes for iterations 0, 5 and 15.
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Figure 7: Snapshots of the magnitude of the primal velocity (top) and the
pressure (bottom) for adaptive iterations 5 and 15.

Figure 8: Snapshots of the magnitude of the adjoint velocity ϕh (top) and the
adjoint pressure θh (bottom) for adaptive iterations 5 and 15
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Figure 9: Snapshots of the magnitudes of the momentum residual (left) and the
gradient of the adjoint velocity (right) for adaptive iteration 15.
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hR1(Û)‖L2(Ω×I) (left)

and the continuity residual ‖
√
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9.1 Medium Reynolds Number Flow

At medium Reynolds numbers, less than Re = 105, boundary layers are
laminar and can be resolved by the computational mesh. For this case,
viscous effects are not negligible so that the viscosity is kept in the model,
and no slip boundary conditions are chosen where the velocity is set to the
same velocity as the solid boundary. DFS in the form of the cG(1)cG(1)
method has been validated for a number of model problems of simple ge-
ometry bluff bodies, including a surface mounted cube and a rectangular
cylinder [62, 61], a sphere [63] and a circular cylinder [45]. In each case,
convergence is observed for output quantities such as drag, lift and pres-
sure coefficients, and Strouhal numbers, and the adaptive algorithm leads
to an efficient method often using orders of magnitude fewer number of
degrees of freedom compared to LES methods based on ad hoc design of
the mesh.

9.2 High Reynolds Number Flow

In high Reynolds number flow, with Re > 106, boundary layers are tur-
bulent and are in most cases too expensive to resolve, and must instead
be modeled. To accurately predict e.g. aerodynamic forces it is critical
to capture the correct flow separation, which can be connected to the
boundary layer model, in case flow separation is not triggered by sharp
features in the geometry [69]. Drag crisis for a circular cylinder is an il-
lustrative example, where flow separation moves downstream the cylinder
surface as a consequence of transition to turbulence in the boundary layer
[74]. In [75] we model drag crisis by decreasing a skin friction parameter
β, where we find that the DFS simulations reproduce the observed drag
crisis scenario from experiments [76, 77, 78, 79].

In particular, we find that for small β the solution is insensitive to
the particular value of β, so that we reach an ultimate regime where the
turbulent boundary layer is modeled by a zero friction free slip boundary
condition. This free slip model has the benefit of being a parameter-free
model of turbulent boundary layers, which requires no boundary layer
mesh since no boundary layer is resolved. The basic assumptions under-
lying the model is that the turbulent boundary layers are fully developed,
since transition to turbulence in the boundary layers is not part of the
model.

To assess the capability of DFS for challenging high Reynolds number
flow problems in complex geometry, we have participated in a number
of benchmark workshops with detailed experimental data available for
validation, including the first and second Workshop on Benchmark prob-
lems for Airframe Noise Computations (BANC-I,-II) [82, 81], and the 2nd
AIAA CFD High Lift Prediction Workshop (HiLiftPW-2) [80], see Fig. 14.

Good agreement was found between DFS simulations and experimen-
tal measurements in all workshops, and two features distinguished DFS
from all other methodologies: (i) DFS was the only method using adaptive
mesh optimization, and (ii) DFS was the only method leaving boundary
layers unresolved (free slip boundary conditions were used for all prob-
lems). Both (i) and (ii) contributed to the fact that the number of degrees
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Figure 14: Vorticity visualised by a Q-criterion: snapshot of a DFS solution
of the flow around of a wing-body configuration (left) [80], and flow around a
Gulfstream G550 nose landing gear (right) [81].

Figure 15: From [80]: Snapshot of the magnitude of dual velocity (left), and an
adaptively refined computational mesh optimised for lift and drag approxima-
tion (right).
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Figure 16: Convergence under adaptive mesh refinement of drag and lift
coefficients towards experimental values (DFS/Unicorn) [80], compared to
state-of-the-art CFD methods (EXA, TAU, Fluent) (published as part of the
HighLiftPW-2 workshop).
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of freedom used in DFS was significantly lower than in other methods, of-
ten by several magnitudes, see Fig. 15.

In HiLiftPW-2 the task was to simulate flow at high Reynolds num-
ber around a full wing-body model of an airplane, where DFS was the
only method based on solving the unsteady Navier-Stokes equations [80];
aside from 2 contributions based on Lattice Boltzmann Methods all other
contributions used stationary RANS.

Good agreement of DFS simulations and experimental data was found
in aerodynamic forces and surface pressure distributions on the wings,
and the transient simulation data provided additional data on the flow
at high angles of attack modelling take-off and landing. In particular,
convergence of the adaptive algorithm to experimental reference data for
lift and drag was observed for angles of attack in the pre-stalled regime,
see Fig. 16.

We note that since viscosity and skin friction are assumed to be negligi-
ble, the only input data to the DFS model is the geometry of the airplane,
in the form of an initial coarse mesh.
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