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Abstract. In this paper we present a new adaptive finite element method directly using the
a posteriori error representation as a local error indicator, and representing the primal and dual
solutions in the same finite element space (here piecewise continuous linear functions on the same
mesh). Since this approach gives a global a posteriori error estimate that is zero (due to Galerkin
orthogonality), the error representation has traditionally been thought to contain no information
about the error. However, we show the opposite, that locally, the orthogonal error representation
behaves very similar to the non-orthogonal error representation using a higher order approximation
of the dual, which is a standard approach to overcome the problem of a zero error estimate. We
present evidence of this both in the form of an a priori estimate for the local error indicator for an
elliptic model problem and a detailed computational investigation showing that the two methods
exhibit very similar behavior and performance, and thus confirming the theoretical prediction. We
also present computational results using a stabilized version of the method for non-elliptic partial
differential equations where the error representation is no longer orthogonal, and where both the
local error indicator and global error estimate behave similar to the error representation using a
higher order approximation of the dual. The benefits of this adaptive method are generality and
simplicity in formulation, sharpness, and efficiency since high order approximation of the dual and
computation of additional constructs such as jump terms over interior facets or local problems are
avoided.

1. Introduction. The setting of this paper is adaptive error control in the fi-
nite element method (FEM), which is a methodology for satisfying a tolerance on the
global discretization error measured in a quantity of interest (drag/lift on an object
immersed in fluid flow, displacement of a point in an elastic body, etc.) by determin-
ing how the cells in the mesh contribute to the global error and iteratively refining the
approximation in those cells which have the largest contribution (or generating a new
mesh to satisfy the tolerance). The a posteriori error control gives crucial reliability
of the method since a bound on the discretization error is given, and efficiency since
a mesh that in some sense is optimal for a given tolerance can be constructed. An
a posteriori error estimate typically bounds the error in terms of a residual, mesh
size, and other computable quantities. The estimate can then be split into a sum of
contributions from each cell in the mesh, so-called error indicators where the cells
with the largest contributions are marked for refinement. FEM is based on Galerkin’s
method, where a solution is sought for which the residual is orthogonal to all test
functions in a test space. By duality the error in a functional of the FEM solution can
be represented as a duality pairing of the residual and the solution of a dual problem.
Typically, the dual solution needs to be approximated by computation, and if the
same Galerkin FEM method is used for the dual problem, the resulting a posteriori
error representation is zero due to Galerkin orthogonality. The standard approach to
overcome this problem to construct adaptive methods is to use mathematical tools
from functional analysis and approximation theory to derive specific a posteriori error
estimates for each partial differential equation (PDE) by using integration by parts,
Cauchy-Schwartz inequality and interpolation estimates, or alternatively to represent
the dual and primal in different finite element spaces and use the error representation
directly since it is then non-orthogonal. In this paper we present a new adaptive finite
element method which is based on direct application of the a posteriori error repre-
sentation as a local error indicator, and representing the primal and dual solutions in
the same finite element space (here piecewise continuous linear functions on the same
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mesh). Since this approach gives a global a posteriori error estimate that is zero, the
error representation has traditionally been thought to contain no information about
the error. However, we show the opposite, that locally, the orthogonal error represen-
tation behaves very similar to the non-orthogonal error representation using a higher
order (quadratic) approximation of the dual. We present evidence of this both in the
form of an a priori estimate for the local error indicator for an elliptic model problem,
and a detailed computational investigation showing that the two methods exhibit very
similar behavior and performance, and thus confirming the theoretical prediction. We
also present a stabilized version of the method for non-elliptic PDE where the error
representation is no longer orthogonal, and where both the local error indicator and
global error estimate behave similar to the error representation using a higher order
(quadratic) approximation of the dual. We argue, based on the evidence we present
in this paper, that the method has the following advantages:

Generality and simplicity

There is no need for manual analytical derivation and computer implemen-
tation of error estimates specific to each equation or equation class, since
error indicators take a generic form. The error analysis is thus much simpler,
minimal in a sense, which can make it more easily accessible, widespread and
suitable for automation. For a linear stationary boundary value problem for-
mulated in a weak form with a bilinear form af(.,.) and a linear form L(.), a
solution u € V satisfies

r(u,v) = a(u,v) — L(v) =0, (1.1)

for all test functions v in the Hilbert space V', with r(u,v) the weak residual,
and we seek a FEM approximation U € V}, such that

r(U,v) =0, YveV,. (1.2)

In the ¢G(1) FEM method we let the finite element space Vj, C V consist
of continuous piecewise linear functions defined on a mesh 7. The error
indicator is then simply:

gIC(G(l) = T(Ua (I))Ka (].3)

where the index K indicates restriction to the cell K € 7;, and ® € V}, is the
¢G(1) approximation of the exact dual solution ¢, defined by

a(w, ®) = (w,¢), Yw € Wy, (1.4)

with (.,.) a suitable duality pairing and 4 is the Riesz representer of the goal
functional M (-) = (-, ).

Reliability
For a model problem we show that the error indicator generated by the
method EE(G(I) = r(U,®)g converges with order 1+ d to the exact error
indicator Ex = r(U, ¢)k:

E(x —(‘:CG(I) L) Lo(Q SChl—i_d 1.5
2()
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where ||| z,(q) is the Ly-norm over the domain €2, and &£(z) and £°¢()(z) are
piecewise constant functions over the mesh 7y, equal to the error indicators
Ex and Sf(G(l) on the cell K.

This bound indicates that the method is reliable, in the sense that we can
control the error, which is also verified by a detailed computational study in
this paper.

For a variant of the error indicator with a jump facet residual formulation of
the terms with second derivatives: £;(x), we prove the optimal order:

I€2(2) = E2CV (@) 1, () < CHFH (1.6)

Efficiency
The adaptive algorithm does not require the computation of additional con-
structs such as jump terms over interior faces/edges in the mesh or the so-
lution of local problems, typically generated as part of standard a posteriori
error estimates, which can be costly and complex to compute, especially in a
parallel programming model over distributed data.

In Section 2 we present standard approaches used to estimate the global error. We
then describe our framework and present an analysis of the adaptive method in Section
3 and with a detailed computational study in Section 4. We conclude the paper with
a summary and discussion.

2. State of the art. Following the standard framework developed in the 1990’s
by Eriksson & Johnson [7, 5, 6] and Becker & Rannacher [3, 1], with co-workers, for
a linear PDE approximated by a Galerkin finite element method we can express the
error in an output of interest or goal functional in terms of the weak residual acting
on the solution of a dual (adjoint) problem ¢:

M(u) = MU) =rU,¢), (2.1)

where ¢ in general is not available and thus needs to be approximated. If the same
finite element space is used to compute the approximation of ¢ and U, the error rep-
resentation is zero which follows from (1.2) We now describe the two main approaches
used to bypass this problem.

2.1. Local analytical error bounds. Galerkin orthogonality can be used to
subtract a projection of the dual solution on the finite element space, mp¢ € Vj.
Asumming sufficient regularity, one can then apply integration by parts to reformu-
late the error representation in terms of the strong residual and use Cauchy-Schwarz
inequality and interpolation error estimates to bound the error in terms of the local
mesh size h = h(z), the strong residual R(U) and derivatives of the dual solution.
That is, we can write:

|M (u) = M(U)| = |(R(U), ¢ = m1d) Loy = | D (RU), ¢ — 1) oxc)|  (2:2)
Kery,

where u is the exact solution, U is the computed solution, M is the functional
that defines the quantity of interest, R(U) is the strong residual with possible interior
facet contributions and ¢ is the solution of the dual problem. By Cauchy-Schwarz
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inequality we can bound the error in the quantity of interest as:

(M(u) = MU)| =1 > (RU), ¢ = m1é) Loio)] < D 1RO o) 16 = T La26)
KeTn KeTy,
(2.3)

At this point one may use interpolation error estimates to derive estimates including
D" ¢, the derivatives of ¢. Using the computed dual solution in the same FE space
as the primal solution for approximating ||D"@||1,x) now makes sense since the
mechanism generating the orthogonality has been removed.

2.2. Enhanced dual approximation. Another approach is to compute the
dual solution using a FE space that is different from the space used for approximating
the primal problem. This way the Galerkin orthogonality does not render the resulting
global error representation to vanish. Many choices for choosing the FE space of the
dual problem are possible as listed in [9], including using a FE space with higher degree
of polynomials, a FE space that is using a supermesh obtained by global refinement,
or refined adaptively by an a posteriori estimate of the dual problem for the same
degree of polynomials or even a higher degree of polynomials if hp—adaptivity can be
applied. These methods clearly increase the computational cost which can be avoided
by computing the dual problem using the same FE space as the primal problem, but
using patch-wise higher order interpolation inside (2.2) as mentioned in [2] and [12],
which on the other hand increases the complexity of the algorithm.

3. Method description: representation adaptivity.

3.1. Model problem. To analyze the framework we choose a convection-diffusion-
reaction model problem with a and e scalar coefficients representing reaction and
diffusion respectively, and 8 a vector coefficient representing the convective velocity.
The model problem in weak form reads:

r(u,v) = (au,v) + (eVu, Vo) + (8 - Vu,v) — (f,v) =0, YveV (3.1

with the standard space V = H;(Q), Q) € R? and g Dirichlet data on the boundary
. () = ()L, is the Lo inner product, with Ly = L2(2) the space of square-
integrable functions in 2. Choosing 8 = 0 we obtain an elliptic model problem which
we occasionally use below to simplify the analysis.

3.2. Stabilized finite element method. We solve the model problem with a
Galerkin/least-squares (GLS) stabilized finite element method with continuous piece-
wise linear basis functions (¢G(1)). That is we seek the FE solution U € V}, C V', with
Vi, defined using a simplicial tessellation 7Tj, of Q with A the maximum edge length in
cell K. The method reads: for all v € V},, find U € V}, such that

rs(U,v) = (aU,v) + (eVU,Vv) + (8- VU,v) — (f,v)
+6(@U+5-VU - f,av+ - Vv)
= 0,

where
_h
:{Ih%l’hZG
W,h<€

For the elliptic model problem with g = 0 no stabilization is needed, so we put
0 =0.



3.3. A posteriori error estimation. We decompose the weak residual r(U, v)
into a bilinear form a(U, v) and linear form L(v) so that

r(U,v) = a(U,v) — L(v) (3.2)
r5(Us,v) = as(Us,v) — Ls(v) (3.3)
and:
L(v) = —r(0,v)
a(U,v) = r(U,v) + L(v)
Ls(v) = —rg(0,v)
as(Ug,v) = rg(U,v) + Lg(v) (3.4)

with Ug denoting the computed solution from the stabilized formulation to emphasize
that it’s different from U, and with he errors e and eg defined as:

e=u—-U (3.5)
€s =U— US (36)
(3.7)

By linearity:

—r(U,v) = r(u,v) —r(U,v) = a(u,v) — L(v) — a(U,v) + L(v) = a(e,v), Yv eV,

using that V, C V.
We also see that we can formulate the same relation when inserting the stabilized
solution Ug into the non-stabilized weak residual r(Ug, v):

—r(Us,v) =r(u,v) — r(Us,v) = a(u,v) — L(v) — a(Us,v) + L(v) = ales,v), Yv eV
(3.9)

We are interested in bounding the error in a linear functional M(U) = (U, ),
which we refer to as the “output quantity”, by a tolerance TOL:

|M(u) = M(U)| = [M(e)| = [(e, )| < TOL (3.10)

3.3.1. Dual problem. We introduce the dual problem with solution ¢ and a
source term :

a(w,d) = (w, ), YweV (3.11)
noting that we have switched the order of the arguments in the bilinear form a(-,-).

A discrete approximation @ to the dual solution is computed with the same stabilized
method as for the primal problem:

ag(w,®) = (w,¢) YweV, eV, (3.12)
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3.3.2. A posteriori error estimate. We can express the error in the output
quantity exactly by the residual and the dual solution:

M(u) = MU) = (e,¢) = ale, ¢) = —r(U, ¢) (3.13)
and similarly for the stabilized solution Ug:
M(u) = M(Us) = (es,v) = ales, ¢) = —r(Us, ¢) (3.14)
Thus an error estimate can trivially be stated as:
|M(u) = M(U)| = [r(U, ¢)| (3.15)
and again for Ug:
|M(u) = MUs)| = [r(Us, 8)| (3.16)

for cases where we compute a stabilized solutution Ug, we will use the error estimate
(3.16) which is not orthogonal.

3.4. Standard a posteriori error estimate with projected facet terms.
When deriving a standard a posteriori error estimate of a PDE with second-order
differential operators, one typically uses integration by parts to generate interior facet
terms, representing the second derivative in weak form. To have a mix of interior and
facet integral terms in the estimate can make the analysis more difficult, requiring
trace estimates and more complex notation. This section shows how to use an exact
Lo-projection to represent the facet terms as volume terms, greatly simplifying the
analysis and notation. From (3.15) we perform integration by parts, moving deriva-
tives of ¢ back to U to reconstruct the strong residual R(U) and generate facet terms

rU,0)= Y r(Ud)x = Y (RU),¢)k + (Rr(U), d)ax (3.17)

KeTy, KeTh

To represent Rp(U) as a volume term R%G(O)(U ), we formulate a standard Lo-

projection onto Wp,, the space of discontinuous piecewise constant basis functions

(dG(0)):
3" (BrU),v)ox = (RFOU),v), YveW, (3.18)
OKET

The estimate can now be written in the compact form:

r(U, )] = |(R(U) + By (0),6)| = |(Rs(0), 9) (3.19)
with Ry (U) denoting the sum of all contributions to the residual expression.

3.4.1. Two different facet residual formulations. By choosing to associate
the facet integrals with the cells K;, i« = 1,2, sharing the facet in different ways,
we can write different formulations of the facet residual with different convergence
properties, but with the same functional value.
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Facet residual formulation 1. In the first variant we can choose a facet formulation
which associates only the facet integrals from the element itself, which we denote Rp 1,
and we let Ry ; denote for the whole residual:

(VU,V¢) = VU - nggods (3.20)
oK

Rp1(U,9) = VU - nggods (3.21)
OK

this formulation is equivalent to the original weak residual (VU, V¢) since we only
perform operations inside the cell K.

Facet residual formulation 2. In the second variant we associate half of the facet
integral from the element itself and half of the facet integral from the element sharing
the facet, generating a “jump”, we denote this formulation Rp2 with Ry o denoting
for the whole residual:

1
(VU, Vo) = - [VU] - nok dds (3.22)
K;h 2 /BK "
1
Rpo(U,¢) = = [VU] - ngx dds (3.23)
ra(00)= 3 5 | 1V01-nox

where [VU] = VU|g, — VU|k, denotes the “jump” in the gradient VU across the
facet shared by the cells K7 and K.

3.5. Adaptive error control. We are now ready to use our a posteriori error
estimate to control the error in a finite element discretization by adaptive mesh re-
finement. To be able to compute the error estimate, we need to compute also the dual
solution by a finite element discretization. We introduce the discrete dual solution ®
and the discrete a posteriori error estimate |r(U, ®)|. Having the exact dual, our error
control would be based on satisfying:

|M(u) — M(U)| = |r(U,¢)| <TOL (3.24)
Using the computable error estimate, the error control is instead based on satisfying:
|r(U,®)| < TOL (3.25)

3.5.1. Error indicator. To be able to decide which cells in the mesh 7} to
refine, we write the error estimate as a sum over all cells:

r(U, @) =| Y r(U®)k[= D |r(U,®)x] (3.26)

KeTy KeTh

We denote this cell-based quantity as the error indicator S;G(l), with the ¢G(1) super-
script indicating that the dual solution is approximated using cG(1) finite elements:

EK = T(U, ¢)K (327)
£ = (U, @) (3.28)

The error indicators can also be represented as functions in space £(z) and £°¢()(z)
by expansion in piecewise discontinuous constant basis functions 0 € W), (0 = 1
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in cell K, and 0 in all other cells):

E(x)= Y Exbk(x)= > r(U ¢)kbk(x) (3.29)

Ket, Kery,
£ (@)= 3 &5 Vog(x) = Y r(U,®)kbk(2) (3.30)
Kery, Ker,

We denote £(x) and £FM () as error indicator functions.

3.5.2. Adaptive mesh refinement algorithm. Based on the error indicator
we can form adaptive algorithms for how to construct finite element meshes optimized
to control the error in the functional M (U).

Starting from an initial coarse mesh 7710, one such simple algorithm takes the
following form: let £ = 0 then do

ALGORITHM 1. Adaptive mesh refinement

1. For the mesh T,*: compute the primal problem and the dual problem.

2. If | 2%21 E;G(1)| <TOL or [IM(U*) — M(U*1)| < yxTOL then stop, else:

8. Mark some chosen percentage of the elements with highest \5E<G(1)| for refine-
ment.

4. Generate the refined mesh 77:““ (e.g. by Rivara bisection [11]), set k = k+1,
and goto 1.

Here the second stopping condition |M (U*) — M(U*~1)| < v * TOL is used for
the case of an orthogonal error representation.

3.6. A priori error estimate of the error indicator. Finally, we derive an
a priori estimate for the error indicator with ¢G(1) approximation of the dual for the
elliptic model problem (the model problem (3.1) with f = 0), and show that even
though the global error estimate is zero: |r(U,®)| = 0, the error indicator function
¢ (z) (and thus the error indicators it is composed of) is of good quality and
converges to the exact error indicator function &(x) with order 1 + d or 2 4 d, with d
the geometric dimension, for the plain weak residual or a variant of the error indicator
with a jump facet formulation for second order derivative terms. The key to this anal-
ysis is the realization that even if the error representation is zero: |r(U, ®)| = 0, the
Ly-norm of the error indicator function is typically not: |G (z)||, > 0, unless the
function itself is zero everywhere, which is not a relevant case. We divide the estimate
into two cases corresponding to the two different facet residual formulations Ry ; and
Rp o for terms with second order derivatives. The first facet residual formulation Rp
is equivalent to using the weak residual without facet integrals, whereas the second
facet residual formulation Rp 2 involves distributing the facet contributions between
the cells K; sharing the facet and therefore gives a different L, norm and different
convergence in the Ly norm.

3.6.1. Standard estimates. We recall some standard estimates which we will
use for our derivation of an a priori estimate, where C; denotes an interpolation
constant. A basic estimate of the Lso-projection Pf of a function f onto the space
Wh:

IPfllL. < I fllz, (3.31)
The standard interpolation estimates for piecewise linear (cG(1)):
If =D fll, < Cih* [ D2f ||, (3.32)
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and quadratic (¢G(2)) polynomials:
If = 7P |z, < Cih*| D fll1., (3.33)

where h denotes the maximum element size. For the case of the elliptic model problem
one can show the following a priori and a posteriori estimates for ® € c¢G(1) in the
Ly norm, see e.g. [6, 4]:

l¢ = @[lz, < Cih*|| D], (3.34)

[ — @llz, < Cih?||Rs:(®)|lL, (3.35)

Using these estimates and assuming that e, € H(f2) are positive and u € H?() ,
we see that the second facet residual formulation must be bounded by a constant C'g
independent of h, for a detailed proof see [8].

[Rs2(U)l|L, < Chr, (3.36)

For the first facet residual formulation we give experimental numerical evidence
in figure 4.3 that the convergence behaves like:

|Re 1 (U)l|z, < Cryh ™ (3.37)

3.6.2. Derivation of the a priori estimate. We begin by re-arranging our
error indicator expressions:

E(z) — £CW(x)

> r(U, )bk () = Y r(U,®) kb (x)

Ker, Kery,
=Y r(U,¢—®)kbk(x) (3.38)
Kery,

We then use the projected form of the facet terms in the residual (see eq. (3.19)) to
separate out the error in the dual solution ¢:

Y r(U.é—@)xbx(z) = Y (Ru(U), ¢ — ®)xbx(x) (3.39)

Kery, Kery,

We consider two different facet formulations Ry 1(U) and Ry 2(U), and since the
second formulation affects the Lo norm by distributing the facet integrals between
cells, we keep the error indicators apart by the corresponding subscript below. We
now continue to analyze the convergence in the Lo norm:

| Z (Rs(U),¢ — )k 0k ()L, (3.40)

Kery,

We note that the Ls-projection Pf of a function f onto the space of piecewise con-
stants W}, can be written as:

Pia) =Y ﬁ /K Fdwbi () (3.41)

Kery,
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Writing out the inner product as an integral, we thus see that we have the Lo-
projection of the integrand Ry (U)(¢ — ®) onto the space of piecewise constants W,
weighted by the cell volume |K|:

> /KRE(U)(¢—<I>)dw9K($)||L2 = [[[K|P(Re(U)(¢ = @))] L, (3.42)

Kery,
Using (3.31) and |K| < Cxh? with d the geometric dimension gives:
1K P(Rs(U)(é — ®))llL, < Cxh?||Rs(U)(é — ®)llL, (3.43)
Continuing with Cauchy-Schwartz and (3.34) we get:

Crh¥|Re(U)(¢ — @)1, < Cxh?|Rs(U)]|L,ll6 — |1,
< CxhCih?|D*¢| 1, | Rs(U)||L, (3.44)

Using (3.36) and defining the constant C' we can write:

CiCx || D?*|| L, | Rs(U)||, < C (3.45)

For the second facet formulation Ry > we have the sought-after a priori estimate for

the cG(1) error indicator £&°¢™ (z), where we indicate the choice of facet formulation
by a subscript:

I€2(2) — £2°C V()1 < OB (3.46)

For the first facet formulation Ry ;, which is also equivalent to the weak residual, we
have based on numerical experimental evidence for the convergence of the residual,
again indicating the choice of facet residual formulation by a subscript:

I€1(2) = &°CV (@) 2, < ORI (3.47)

We also state a variant of the estimates comparing against a piecewise quadratic dual
$°CG(2) instead of the exact dual ¢:

€09 (@) — £V (@)1, < R+ (8.48)
166 (@) — £V (@)1, < R (3.49)

3.7. Error indicator effectivity index. Traditionally, the performance of an
a posteriori error estimate and its corresponding error indicator are measured by the
effectivity index Icyy:

_ [r(U, )]
Less = oo oy (3.50)

where we expect the index to be 1 for an optimal error estimate.

However, in the case of an orthogonal error representation we see that the index
is 0, which would appear to indicate that the error indicator has zero effectivity and
performance. In the previous section we derived an a priori estimate showing that
the local error indicator of the orthogonal ¢G(1) error representation is very close
to the non-orthogonal c¢G(2) error representation (also shown in the computational
study below). This appears contradict the statement that the error indicator has zero
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effectivity and performance, and motivates an extension of the effectivity concept.
To be able to analyze adaptive methods in this setting we introduce an additional
effectivity index of the error indicator rather than of the error estimate. The error
indicator effectivity index Iy of the ECG(l)(x) error indicator is defined as:

;o 18N @) — ()|,
cielf I1€(2)]| L,

(3.51)

with £(z) the error indicator resulting from using the exact dual solution ¢. To achieve
a computable error indicator effectivity index, we define the ¢G(2) error indicator
effectivity indexr where we instead use £°(?)(z) as the reference error indicator, i.e.
using a quadratic approximation of the dual:

rea@) _ 1€ () — £ (@)1,

) = 3.52
cief s 6 (@)1 (3.52)

Icicrr measures the quality of the local error indicator against the local error
indicator generated from the exact error representation, which is an error estimate
that is equal to the error and has effectivity index 1. I:g;zf) similarly measures against
the local error indicator and error estimate with a ¢G(2) dual, which is considered as
an excellent error estimate [8], but too expensive for real applications, since it costs as
much as solving the primal problem with a higher order polynomial approximation, i.e.
a uniform p-refinement. We therefore use the cG(2) dual as a computable reference
in a test setting.

4. Computational results. We present a detailed computational study com-
paring the ¢G(1) representation adaptivity method (“rep”) against the ¢G(2) repre-
sentation adaptivity method (“quad”), a standard Cauchy-Schwartz based adaptive
method with projected jump terms and first order interpolation (“jump”), second
order interpolation (“jump2”) and uniform mesh refinement (“uniform”). For the
adaptive methods we refine 10% of the marked cells in each adaptive iteration.

We use the “jump2” solution on the finest mesh as the reference solution, since
the method is standard, robust and well-proven (see e.g. [6]).

4.1. Specific problem statement. We repeat the model problem formulation
(3.1) from above :
r(u,v) = (au,v) + (eVu, Vo) + (8- Vu,v) — (f,v) =0, YveV

with the standard space V = H; (), Q C R? and g data on the boundary I'. The
domain is chosen to be a square with a hole in the center:

Q= (0,0) x (1,1)\ (0.48,0.48) x (0.52,0.52) (4.1)

The data g is chosen to be g = 0 on the outer boundary and g = 10 on the inner hole
boundary.

The convective velocity [ is constant and chosen so as not to be aligned with the
cells in a uniform mesh:

B =(-1,-0.61) (4.2)

The other coefficients in the equation are varied to generate a range of test prob-
lems, and are stated in the test problem list below.
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The output functional is chosen as a Gaussian function concentrated in the lower-
left quadrant:

d) _ 6(720|m7(0.25,0.25)\2) (4'3)

We choose 1) smooth to avoid special treatment of possible discontinuities and set the
source term to zero, f = 0. The geometry and a sample solution is shown in figure
4.1.

EO

7.5

2.5

O ML

Fic. 4.1. The geometry and sample solution for the test problems.

4.2. Test problems. We use the model problem in (3.1) and consider three sets
of parameters:

Elliptic o = 1,e = 107!, 3 = 0, an elliptic test problem where the error represen-
tation is orthogonal for the “rep” method. The graphs of convergence and
performance indices are plotted in figure 6.1. The primal and dual solution
and mesh are plotted in figure 6.2, and the error indicator for adaptive iter-
ation 0 and 10 are plotted in figure 6.7

Diffusion-dominated o = 1,¢ = 1071, |3| = 1.171, a diffusion-dominated test prob-
lem where the error representation is non-orthogonal due to stabilization for
the “rep” method. The graphs of convergence and performance indices are
plotted in figure 6.3. The primal and dual solution and mesh are plotted in
figure 6.4, and the error indicator for adaptive iteration 0 and 10 are plotted
in figure 6.8
By choosing a more refined initial mesh, one could with reasonable cost avoid
having to stabilize the method. With the initial mesh we have here however,
stabilization is required, and this setting thus tests the situation where both
cases of the ¢ stabilization coefficient are used.

Convection-dominated o = 1,¢ = 107°,|3| = 1.171, a convection-dominated
test problem where the error representation is non-orthogonal for the “rep”
method due to stabilization. The graphs of convergence and performance
indices are plotted in figure 6.5. The solution, dual and mesh are plotted in
figure 6.6, and the error indicator for adaptive iteration 0 and 10 are plotted
in figure 6.9

4.3. Order verification for the a priori estimate. To verify the order pre-

dicted by the a priori estimate we uniformly refine the mesh for the test problem

bove and I €0 @)= CO @)1,y e g b 1
above and compute logs( chcw,kﬂ(w)_ch(l)’kH(x)Hh) with k and k + 1 two consecu-

tive adaptively refined meshes. Since the test problem is non-smooth (the corners of
the center hole give singularities in the solution), we also introduce a smooth variant
of the test problem and perform the above order verification for both problems in

12



table 4.2. We expect the order for the smooth problem to be 3 for Ry; (which we
strongly verify) and 4 for Rj;3. The order for the non-smooth problem is reduced and
our results seem to give an order of ca. 2.3.

The smooth variant of the elliptic test problem (a = 1,¢ = 107!, 8 = 0) without
the center hole reads:

Q=1(0,0)x (1,1) (4.4)
The output functional is chosen as a linear function for simplicity:
Y =u1x0+x1 (4.5)

And the source term is chosen as unity: f = 1 to drive the problem.

5. Discussion and conclusion. In this paper we have investigated an adaptive
finite element method where we directly use the error representation as error indicator,
and compute the dual solution in the same space as the primal (both ¢G(1)). We
denote the method “cG(1) representation adaptivity” since we directly use the ¢G(1)
error representation as error indicator. This approach has historically been discarded
a priori since the error representation is orthogonal and equal to zero, and thus has
been thought to contain no information. We have shown the opposite by an a priori
estimate of the error indicator and a detailed computational study, showing that the
error indicator defined by the orthogonal error representation is very close to the
error indicator defined by the non-orthogonal error representation using a quadratic
approximation of the dual.

Refinement] Order for non- | Order for non- | Order for | Order for
level smooth test | smooth test | smooth test | smooth test
problem R problem R problem R problem R
1 2.83 2.89 3.01 3.93
2 2.76 2.56 3.00 3.97
3 2.61 2.41 3.00 3.99
4 2.48 2.36 3.00 3.99
5 2.40 2.34 3.00 4.00

Fi1G. 4.2. Computational verification of convergence order of ¢G(1) error indicator with regard

£0C2)k () _geG()k ()| L

5 .

[€°G @) T (3)—geC R ()| ., ) with k and k + 1
indicating the refinement level, which gives the convergence order under uniform refinement (the
mesh size h is halved each refinement level).

to the cG(2) error indicator. We compute loga(

Refinementf Order for Rg1(U) | Order for Rp2(U)
level

1 -1.02 -0.05

2 -1.02 -0.03

3 -1.01 -0.01

4 -1.00 -0.01

5 -1.00 -0.00

Fic. 4.3. Computational verification of convergence order of the two facet residual variants.
IRE (W)L,
IR (W)L,
convergence order under uniform refinement (the mesh size h is halved each refinement level).

We compute loga( ) with k and k + 1 indicating the refinement level, which gives the

13



For extension to non-linear and convection-dominated problems such as Navier-
Stokes equations, see [10].

Specific conclusions we can derive from the results are:

Convergence of the c¢G(1) error indicator The c¢G(1) orthogonal error indicator
converges to the exact error indicator (with exact dual) with order 1 + d for
the weak residual formulation and with order 2 4+ d for a jump facet residual
formulation for terms with second order derivatives. We prove this in the a
priori estimates (3.46) and (3.47), and computationally verify the prediction
in table 4.2.

Similar behavior between the cG(1) and cG(2) error indicators The detailed
computational study presented in figures 6.1-6.9 shows that the plots of the
adaptively generated meshes, error and error estimates are very similar, a
close visual inspection is needed to see differences in the meshes for example.

Good quality error estimate of the cG(1) error indicator with stabilization
Using the ¢G(1) error indicator for a stabilized method no longer gives an
orthogonal error representation and indicator. Since we have shown that the
error indicator is of very good quality (aside from the orthogonality making
the estimate 0) in the a priori estimate for elliptic problems, we expect the
error estimate in the stabilized case to also be of good quality. In figures 6.3
and 6.9 we can verify that this is the case, with the error estimate outper-
forming the Cauchy-Schwarz jump estimates by up to an order of magnitude,
except in one point where the quality of the reference solution may cause an
abberation.

Similar performance of the error indicators In figures 6.1, 6.3 and 6.9 we see
that the error for all the adaptive methods behave similarly, specifically the
c¢G(1)/cG(2) and “jump” /”jump2” error indicators, except for the convection-
dominated test case, where the Cauchy-Schwarz “jump”-type methods give
a significantly lower error than the representation-type methods. This is
something we would like to investigate in the future.

Good quality error indicator efficiency index for the cG(1) error indicator
We plot the ¢G(2) error indicator efficiency index Ifg%) for the c¢G(1) error
indicator for all test cases in figures 6.1, 6.3 and 6.9, which gives an indication
of the efficiency of the c¢G(1) error indicator compared to the ¢G(2) error
indicator. We see that the indicator is below 10% for the elliptic and diffusion-
dominated test problems, and decrease as we refine the mesh, and below 50%
for the convection-dominated test case for the coarse meshes, and decreasing
to below 10% for the finer meshes.

Adaptive methods outperforming uniform refinement Lastly, we see that for
all test problems (even the elliptic test problem), the adaptive methods out-
perform uniform refinement, by up to 3 orders of magnitude in the error.
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Fic. 6.1. Graphs of error control quantities for the test problem (annoted in the graphs).
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Representation adaptivity for convection-diffusion, ¢ = 107!
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Representation adaptivity for convection-diffusion, ¢ = 10~°

. i IError esltimate (Iest) . i i Erlror (e) i i i
g L : : —  jump -2 » — jump
E, —  jump2 5 -3 —  jump2
? -3 < — rep (P1 dual) 5 -4 — rep (P1 dual)
<] — quad (P2dual) || S _5 — quad (P2 dual)
5 e e S ) D

-0

S | S -6 AW - _uniform
o -7 Y

-6 5 6 7 B 9 -8 1 5 6 7 B 9

log10(number of vertices) log10(number of vertices)

4 EfIf. index I(est/e) (Ilog10(1)=0 is optimal) o i (rep) R2 error Iindicatolr eff. inqex i
= 3 . | — jump _2 : : : [ — el dift.
§ ) ) /k : : —  jump2 5 — abs. diff.
= : : — rep (P1 dual ° ; ;
= A/vafv LZ \\v /P\( H 4447 P ( ) £ 5
i H : : quad (P2dual) || &

S > -8
pant o
g _1W T
-2 1 B 9 -2 1 9

5 G 7
log10(number of vertices)

5 G 7 5
log10(number of vertices)

Fic. 6.5. Graphs of error control quantities for the test problem (annoted in the graphs).

u
0.73561

im

75

‘25

[»)
-
=]

rep

u
0.54497
10

75

25
:

Uloquad

u
0.55051
im
75

25
J

jump

u

‘0.63665
10

75

|

Ulojump2

0.16105
10

75

5

I2.5

0

unifori

ST

ulo

uniforr

Tloquad

Tlojump

Tlojump2

XA

aravav ANy
RIS
RO SER]

v
SAAA
OOPR
KEEX
BERE)
KIER
VaVaYAY,

S

X
2
K

o
N

&
Kl
k5
4

X

Ty
PaVaYAVAVAVAVAY U AVATAVAY

R
% "
st
KK

X

K

4ATATAYAY,
o

NAAATATY
%
5

=
K]

AV,
N
K
Vg

%
e
AATAY,
PaVaYAVAVAVAVA . PAVATAVAYAVA s>

5

KRE
AV, v vy A A AT
R POERRIRY]

&
A

T1uniform

s
[
K7

FIG. 6.6. Comparison of solution U and dual ® for all methods for e = 1071, |3 = 1.171

18



ErorEstimate
002205

EnorEstimate
000208

0002 0002
0001 0.0001
! !
£ (I)( rep & }(9 rep
EnorEstimate EnorEstimate
002202 000219
0002 Fo.oooz
0001 00001
! . !
. ‘
S?{quad N A‘A E}Pquad

ErrorEstimate
,002101

EnorEstimate
000482

- 00004
o 00003
0.001 g 00002
| [oco0n
0 0
Eg’Kjump a 8‘11?Kjump
EnorEstimate EnorEstimate
002101 000338
fumz Fg 0003
0001 =t 00002
| Iu.unul
o 0
0 A 10« .
SJYK‘]ump SJ,KJump

A
K
B a

EnorEstimate
000568

0.0004
0.001
| In.nmz
0 0
£9 uniforn £1 uniforn
K K

Fic. 6.7. Comparison of adaptive error control quantitites
€= 10_15 |/8| =0

VAV N VAVAY ¢
KSR I
X e:éf ’%ﬁp

=

YAVAYA Y AVAVA
SN KAA
01»4?'!* :4 :‘4?’

T

s
?V

SSEL
ey

G

A YAV AVAV( A AVAVAVATAY
RO RRR0oEs
N g M v N X vy

SR

TAVATAT (VA ATt
RO
A N

R
i

RARS IR
ATAVAVAV S N VA AV
SRRRRRKIOGRIRI

ravyy
O
%
SR
PO

K
)
Rl

)

ey
R

KR
N
=

K
5

and meshes for all

Torep

Tloquad

Tlojump

Tlojump2

T1uniform

methods for



ErorEstimate
002142
0.002

EnorEstimate
002558
0.002
0.001

0

S?{quad

ErrorEstimate
.001981
0.0016
00012
0.0008
Jo000e
0

Eg’Kjump

EnorEstimate
001981

Lﬂula
00012

ErrorEstimate
.001981
0.0016
00012

0.0008
Jo00a
0

£9- uniforn

70

EnorEstimate
000353
00003
00002
Iu.uoul
0

S}grep

EnorEstimate
F 000367

0.0003
0.0002
I-n.om|

0

E}?quad

EnorEstimate
000628
00

0.0004
0.0002

0
10 &
J, dump
EnorEstimate
000197
000016
000012

8e-5
Ideé
0

S}?Kjump‘

EnorEstimate
001084

£l uniforn

OAVAY ) AYAVAY(¢
DR
PSSO

% =4V

R

ONAVAY )Y AVAVAY( Y

vsne%ﬁ'ewrﬁ

PN g
2

AV AVAVA%4
AN A
A

SPEK

RS
PR
N/

D
KRS
Ergémuﬁn’»‘
REEKRRREDET
s

VLS,

Va:

4

)

&

&
A

N
t

ST
SRS
e

: :

avaty

)
R

ravaty

s

vav,
av,"A"
ravav, %
A%
£

va

21
S

VAVAAT YY)

ROXEEER

KUK
YUK
R
KOORRRN

Y
N
SSRl

5
avas:

N

RPN

R LR KRR
KPR

A AVAVLTA s OAVATAVAV AL,

R
5
Al
s
=
5
RIKERK

J

o
K
(R

Fic. 6.8. Comparison of adaptive error control quantitites and meshes for all

e=10"118 =1.171

20

Torep

Tloquad

Tlojump

Tlojump2

T1uniform

methods for



70

EnorEstimate EnorEstimate
009949 000689
0008 0.0006
0006 00004
0004
oo Io 0002
0 0
£9 re £l0re TOre
K K
EnorEstimate EnorEstimate
011216 00044
001 00004
00075 00003
0005 00002
|ocezs Jocoor
0 0
8?{ quad E}Pquad Tloquad
EnorEstimate ErrorEstimate
008291 003695
0006 0.003
0004 0002
[oce2 Io.um
0 0
o 10 s 10,
‘EJ,KJ“mp g‘I’Kjump TYjump
EnorEstimate EnorEstimate
008291 000439
f0.006 00003
0004 00002
Jooe Joooor
o 0
Sgijump S}?Kjump‘ Tlojump2
I AT AVAVAVAY, SATAVAVAVAVATAY, rior
f::‘jﬂ»:;‘mmiﬁ E#};wﬁ':':"aﬂ
KRR HARab R
EnorEstimate EnorEstimate KKK & PERE]
008291 004931 e %
0.004 R
0006 ISKISRAE
= i
Jooe2 Jooo RREDE KRR
KIS o8]
0 0 REERD 5 PR
REPRRR PERRN]
Mraram NNt AT
0 1 KSR RIS ¢
€9 uniforn £} uniforn PRSI 71 uniform

Fic. 6.9. Comparison of adaptive error control quantitites and meshes for all methods for
e=1075|8 = 1.171

21



