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Abstract In this paper we present a new adaptive finite element method for the solution
of linear and non-linear partial differential equations directly using the a posteriori error
representation as a local error indicator, with the primal and dual solutions approximated
in the same finite element space, here piecewise continuous linear functions on the same
mesh. Since this approach gives a global a posteriori error representation that is zero due to
Galerkin orthogonality, the error representation has traditionally been thought to contain no
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we show the opposite, that locally the orthogonal error representation behaves very similar to
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have previously proved an a priori estimate of the local error indicator for elliptic problems,
and in this paper we extend the proof to convection-reaction problems. We also present
a version of the method for non-elliptic and non-linear problems using a stabilized finite
element method where the a posteriori error representation is no longer orthogonal. We apply
this method to the stationary incompressible Navier-Stokes equation and perform detailed
numerical experiments which show that the a posteriori error estimate is within a factor 2
of the error based on a reference value on a fine mesh, except in a few data points on very
coarse meshes for a non-smooth test case where it is within a factor 3.
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1 Introduction

Partial differential equations (PDE) is one of the most fundamental models in mathematical
physics. The finite element method (FEM) offers a methodology for discretisation of PDE
for which a general theory for a posteriori error estimation using duality techniques has been
developed since the early 1990s [8,3]. Based on a posteriori estimates of the error in a chosen
output quantity, or goal functional, adaptive algorithms have been designed where the FEM
discretisation is optimised with respect to this goal functional. An adaptive algoritm is based
on error indicators over the finite element mesh that characterise the local contribution to the
global error. By iteratively refining the discretisation based on the error indicators, e.g. by
bisecting cells that contribute most to the global error, an efficient method can be obtained
using a minimal number of degrees of freedom. A stop criterion for the adaptive algorithm
can then be derived from the a posteriori estimation of the global error.

Although adaptive finite element methods (AFEM) today are used extensively in a num-
ber of different areas [14,6,1,16,13], challenges remain with respect to the generality, effi-
ciency and reliability of the methodology. An a posteriori error estimate takes the form of
an inner product involving the solution of a dual (adjoint) problem, and one key challenge
of AFEM is the numerical approximation of this dual solution. In particular, since FEM is
based on a Galerkin formulation of the PDE, using the same finite element spaces to approx-
imate the primal and dual solutions makes the inner product vanish so that the a posteriori
estimate of the global error is zero, which clearly is wrong. To avoid this problem one can
distinguish two standard approaches: (i) either an enhanced approximation of the dual so-
lution is computed, e.g. from using a higher order finite element space, or (ii) a projection
of the dual solution on the finite element space is subtracted using Galerkin orthogonality,
and then Cauchy-Schwarz inequality together with interpolation error estimates are used to
bound the local error indicators in terms of derivates of the dual solution. The downside of
(i) is an increased computational cost and thus a less efficient method, and (ii) leads to a lack
of sharpness which influence efficiency and reliability. Both (i) and (ii) represent a loss of
simplicity and thereby generality.

In [15] we presented a new adaptive finite element method that directly uses the a pos-
teriori error representation with the same approximation spaces for the primal and the dual,
here piecewise continuous linear functions on the same mesh, thus avoiding (i) and (ii).
Since this approach gives a global a posteriori error estimate that is zero (due to Galerkin
orthogonality), the error representation has traditionally been thought to contain no infor-
mation about the error. However, for an elliptic model problem we showed the opposite,
that locally, the orthogonal error representation behaves very similar to the non-orthogonal
error representation (i) using a higher order approximation of the dual. We presented evi-
dence both in the form of an a priori estimate for the local error indicator, and a detailed
computational investigation showing that the two methods exhibit very similar behavior and
performance, and thus confirming the theoretical prediction.

In this paper we extend these results to non-elliptic model problems and the non-linear
Navier-Stokes equation, where a stabilised finite element method is used. Here the global a
posteriori error estimate is no longer zero, since the stabilised method is not a pure Galerkin
method, and for a convection-reaction model problem we show that both the local error indi-
cator and the global error estimate behave similar to an error representation using the exact
dual. For the Navier-Stokes case we show numerical evidence that the global a posteriori
error estimate is of good quality, here within a factor 2 of the error based on a reference
value on a fine mesh, except in a few data points on very coarse meshes for a non-smooth
test case with where it is within a factor 3.
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We argue, based on the evidence we present in this paper, that the method has the fol-
lowing advantages with respect to generality, efficiency and reliability:

Generality and simplicity
There is no need for manual analytical derivation and computer implementation of error
estimates specific to each equation or equation class, since error indicators take a generic
form. The error analysis is thus much simpler, minimal in a sense, which can make it
more easily accessible, widespread and suitable for automation. For a linear stationary
boundary value problem a weak solution u ∈ V satisfies

r(u, v) ≡ a(u, v)− L(v) = 0, (1)

for all test functions v in the Hilbert space V with r(u, v) the weak residual, and we seek
a FEM approximation U ∈ Vh such that

r(U, v) = 0, ∀v ∈ Vh. (2)

In the cG(1) FEM method we let the finite element space Vh ⊂ V consist of continuous
piecewise linear functions defined on a mesh Th. The error indicator is then simply:

EcG(1)
K = r(U,Φ)K (3)

where the index K indicates restriction to the cell K ∈ Th, and ΦcG(1) ∈ Vh is the
cG(1) approximation of the dual problem, defined by

a(w,Φ) = (w,ψ), ∀w ∈ Vh, (4)

where ψ is the Riesz representer of the goal functional M(·) = (·, ψ).

Reliability
For a model problem we show that the error indicator generated by the method EcG(1)

K =
r(U,Φ)K (with a cG(1) approximation of the dual Φ) converges with order 2+ d to the
exact error indicator EK = r(U, φ)K (using the exact dual φ):

‖E(x)− EcG(1)(x)‖L2
≤ Ch2+d (5)

where E(x) and EcG(1)(x) are piecewise constant functions over the mesh Th.
This indicates that the method is reliable, in the sense that we can control the error,
which is also verified by a detailed computational study presented in figures 3-10.

Efficiency
The adaptive algorithm does not require the computation of additional constructs such
as jump terms or the solution of local problems, typically generated as part of standard
a posteriori error estimates, which can be costly and complex to compute, especially in
a parallel programming model over distributed data.
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2 A posteriori error estimation

Following the standard framework developed by Eriksson & Johnson [10,8,9] and Becker
& Rannacher [4,2], with co-workers, for a linear PDE approximated by a Galerkin finite
element method we can express the error in an output of interest, or goal functional, in
terms of the weak residual acting on the solution of a dual (adjoint) problem φ:

M(u)−M(U) = r(U, φ), (6)

where φ in general is not available and thus needs to be approximated. If the same finite
element space is used to compute approximation φ and U , the error representation is zero
which follows from (2). We now describe the two main approaches used to bypass this
problem.

2.1 Local analytical error bounds

The Galerkin orthogonality can be used to subtract a projection of the dual solution on the
finite element space πhφ ∈ Vh, then asumming sufficient regularity one can use integra-
tion by parts to reformulate the error representation in terms of the strong residual and use
Cauchy-Schwarz inequality and interpolation error estimates to bound the error in terms of
the local mesh size h = h(x), the strong residual R(U) and derivatives of the dual solution.

That is, we can write:

|M(u)−M(U)| = |(R(U), φ− πhφ)L2(Ω)| = |
∑
K∈τh

(R(U), φ− πhφ)L2(K)| (7)

Where u is the exact solution, U is the computed solution, M is the functional for the
quantity of interest, R(U) is the strong residual with possible interior facet jump contri-
butions and φ is the solution of the dual problem. Here Ω is the domain for the partial
differential equation and Th is its triangulation that is also used for constructing the finite
elements space. One can observe that using an approximation of φ from the same FE space
as the primal problem at first glance does not appear to make sense since the resulting error
representation will be zero due to the Galerkin orthogonality (however, as we will see later
in this paper, we show that the opposite is true and that this has very good approximation
properties).

But using the Galerkin orthogonality, one can proceed with the Cauchy-Schwarz esti-
mate to bound the error in the quantity of interest as:

|M(u− U)| = |
∑
K∈τh

(R(U), φ− πhφ)L2(K)| ≤
∑
K∈τh

‖R(U)‖L2(K)‖φ− πhφ‖L2(K)

(8)

At this point one may also use interpolation estimates to derive estimates includingDnφ
derivatives of φ of some order [5,9]. One may compute an approximation of ‖φ−πhφ‖L2(Ω)

or derivatives of φ if interpolation estimates are used.
Using the computed dual solution in the same FE space as the primal solution for ap-

proximating ‖φ− πhφ‖L2(K) or ‖Dnφ‖L2(K) now appears to make sense since the mech-
anism generating the orthogonality has been removed.
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2.2 Enhanced dual approximation

Another approach is to compute the dual solution using a FE space that is different than
the space used for approximating the primal problem. This way the Galerkin orthogonal-
ity doesn’t render the approximation of φ with a computed dual invalid. Many choices for
choosing the FE space of the dual problem are possible as listed in [12], including using a
FE space with higher degree of polynomials, a FE space that is using a supermesh obtained
by global refinement, or refined adaptively by an a posterori estimate of the dual problem
for the same degree of polynomials or even a higher degree of polynomials if hp−adaptivity
can be applied. These methods clearly increase the computational cost which can be avoided
by computing the dual problem using the same FE space as the primal problem, but using
patch-wise higher order interpolation inside (8) as mentioned in [3] and [18], which on the
other hand increases the complexity of the algorithm.

3 Method description: representation adaptivity

We begin by describing the representation adaptivity method for a linear stationary model
problem which allows us to perform a priori error estimation. In section 3.6 we show an ex-
tension to non-linear stationary problems in general and in section 4.2 we apply the frame-
work to the stationary incompressible Navier-Stokes equations and evaluate the performance
of the method.

3.1 Convection-diffusion-reaction model problem

We choose a convection-diffusion-reaction model problem with α and ε scalar coefficients
representing reaction and diffusion respectively, and β a vector coefficient representing the
convective velocity. The model problem in weak form reads: find u ∈ V such that

r(u, v) = (αu, v) + (ε∇u,∇v) + (β · ∇u, v)− (f, v) = 0, ∀v ∈ V (9)

with the standard space V = H1
g (Ω), Ω ⊂ R2 and g data on the boundary Γ . (·, ·) = (·, ·)L2

is the L2 inner product, with L2 = L2(Ω) the space of square-integrable functions in Ω.
Choosing β = 0 we obtain an elliptic model problem which we occasionally use below

to simplify the analysis, where we clearly specify when we do so.

3.2 Stabilized finite element method

We solve the model problem with a Galerkin/least-squares (GLS) stabilized finite element
method with continuous piecewise linear basis functions (cG(1)), that is we seek the FE
solution U ∈ Vh ⊂ V with Vh defined using a simplicial tesselation Th of Ω with h the
maximum edge length in cell Kj . But instead of requiring r(U, v) = 0, ∀v ∈ Vh, we require
rS(U, v) = r(U, v) + (δR(U), R(v) + f) = 0, ∀v ∈ Vh with R(U) the strong residual and
δ a stabilization parameter defined as below. For the convection-diffusion-reaction model



6 Johan Jansson et al.

problem the method reads: find U ∈ Vh such that

rS(U, v) = (αU, v) + (ε∇U,∇v) + (β · ∇U, v)− (f, v)+

(δ(αU + β · ∇U − f), αv + β · ∇v) = 0, ∀v ∈ Vh,

δ =

{
h
|β| , h ≥ ε
h2

|β| , h < ε
(10)

For the elliptic model problem with β = 0 no stabilization is needed, so we put δ = 0.

3.3 A posteriori error estimation

We decompose the residual r(U, v) into bilinear and linear forms where:

r(U, v) = a(U, v)− L(v) (11)

rS(U, v) = aS(U, v)− LS(v) (12)

and:

L(v) = −r(0, v)
a(U, v) = r(U, v) + L(v)

LS(v) = −rS(0, v)
aS(U, v) = rS(U, v) + LS(v) (13)

and we define the error e as:

e = u− U (14)

By linearity:

−r(U, v) = r(u, v)− r(U, v) = a(u, v)− L(v)− a(U, v) + L(v) = a(e, v), ∀v ∈ V
(15)

using that Vh ⊂ V .
We are interested in bounding the error in a linear functional M(e) = (e, ψ) which we

refer to as the “output quantity” by a tolerance TOL:

|M(u)−M(U)| = |M(e)| = |(e, ψ)| < TOL (16)

3.3.1 Dual problem

We introduce the dual problem with solution φ and ψ as source term:

a(w, φ) = (w,ψ), ∀w ∈ V (17)

noting that we have switched the order of the arguments in the bilinear form a(·, ·).
A discrete approximation Φ to the dual solution is computed with the same stabilized

method as for the primal problem:

aS(w,Φ)− (w,ψ) = 0, ∀w ∈ Vh, Φ ∈ Vh (18)



Automated error control in finite element methods with applications in fluid flow 7

3.3.2 A posteriori error representation

By (15) and (17) we can express the error in the output quantity exactly by the residual and
the dual solution:

(e, ψ) = a(e, φ) = −r(U, φ) (19)

An error estimate can trivially be stated which reads:

|(e, ψ)| = |r(U, φ)| (20)

3.4 Adaptive error control

We are now ready to use our a posteriori error estimate to control the error in our finite
element approximation by adaptive mesh refinement.

To be able to compute the error estimate, we need to approximate also the dual solution
by a finite element discretization with the discrete dual solutionΦ from (17), the approximate
a posteriori error estimate becomes:

|r(U,Φ)| (21)

Having the exact dual, our adaptive method would be based on satisfying:

|(e, ψ)| = |r(U, φ)| ≤ TOL (22)

Using the computable error estimate (21) the error control is instead based on satisfying:

|r(U,Φ)| ≤ TOL (23)

3.4.1 Error indicator

To be able to decide which cells in the mesh T to refine, we write the error estimate as a
sum over all cells:

|r(U,Φ)| = |
M∑
j=1

r(U,Φ)Kj | (24)

with M the number of cells in the mesh.
We denote this cell-based quantity as the error indicator EK , with the cG(1) superscript

indicating that the dual solution is approximated using cG(1) finite elements:

EK = r(U, φ)K (25)

EcG(1)
K = r(U,Φ)K (26)

The error indicator can also be represented as a function in space EcG(1)(x) by expan-
sion in piecewise discontinuous constant basis functions θ ∈Wh (θi = 1 in cell Ki, and 0 in
all other cells):

EcG(1)(x) =
M∑
j=1

EcG(1)
Kj

θj(x) =
M∑
j=1

r(U,Φ)Kjθj(x) (27)

We denote EcG(1)(x) as the error indicator function.
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3.4.2 Adaptive mesh refinement algorithm

Based on the error indicator we can now form adaptive algorithms for how to construct finite
element meshes optimized to control the error in the functional M(U).

Starting from an initial coarse mesh T 0, one simple such algorithm takes the form: let
k = 0 then do

Algorithm 1 Adaptive mesh refinement

1. For the mesh T k: compute the primal problem and the dual problem.
2. If |

∑M
j=1 E

cG(1)
Kj

| < TOL or |M(Uk)−M(Uk−1)| < γ ∗ TOL then stop, else:

3. Mark some chosen percentage of the elements with highest EcG(1)
Kj

for refinement.

4. Generate the refined mesh T k+1 (by e.g. Rivara bisection [17]), set k = k+1, and goto
1.

with the second stopping condition |M(Uk) −M(Uk−1)| < γ ∗ TOL being used for
the case of an orthogonal error representation.

3.5 A priori error estimate of the error indicator

We now derive an a priori estimate for the error indicator with cG(1) approximation of the
dual solution for both the elliptic (|β| = 0) and the convection-reaction (ε = 0) model
problem. We show that even though the global error estimate is zero: |r(U,Φ)| = 0, the
error indicator function EcG(1)(x) (and thus the error indicators it’s composed of) is of
good quality and converges to the exact error indicator function E(U, φ)(x) with order 2 +
d, with d the geometric dimension for the elliptic case and for the convection-reaction case if
the solution is smooth. For the convection-reaction case with non-smooth solution we show
convergence of order 2 + d1/2.

The key to this analysis is the realization that even if the error representation is globally
zero: |r(U,Φ)| = 0, the L2-norm of the error indicator function is not: ‖EcG(1)(x)‖L2

> 0,
unless the function itself is zero everywhere, which is not a relevant case, since it corre-
sponds to the exact solution.

3.5.1 Standard estimates

We recall some standard estimates which will be used in the derivation of an a priori error
estimate for the cG(1) error indicator EcG(1)(U,Φ)(x), see e.g. [9,7]:

A basic estimate of the L2-projection Pf of a function f onto the space Wh:

‖Pf‖L2
≤ ‖f‖L2

(28)

And the standard interpolation estimates for the piecewise linear interpolant πcG(1)
h f :

‖f − πcG(1)
h f‖L2

≤ Cih2‖D2f‖L2
(29)
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3.5.2 Standard estimates for the elliptic model problem

In the elliptic case the following a priori estimate in the L2 norm can be derived [9] with Φ
a cG(1) approximation of the dual solution φ:

‖φ− Φ‖L2
≤ Cih2‖D2φ‖L2

(30)

with h the maximum mesh size and with Ci an interpolation constant, and one can prove the
following a posteriori estimate in the L2 norm [9]:

‖φ− Φ‖L2
≤ Cih2‖RΣ(Φ)‖L2

(31)

with RΣ(Φ) denoting the sum of all contributions to the residual expression including jump
terms.

Using (30) and (31) and elliptic regularity we see that the residual must be bounded by
a constant independent of h, or else (30) cannot be true:

‖RΣ(Φ)‖L2
≤ CR (32)

which is also true for the primal solution U since the problem is self-adjoint.

3.5.3 Standard estimates for the non-elliptic model problem

For the stabilized reaction-convection model problem one can show the following a priori
estimate in the L2-norm [9]:

‖φ− Φ‖L2
≤ Cih3/2‖D2φ‖L2

(33)

and an a posteriori estimate in the L2 norm [9]:

‖φ− Φ‖L2
≤ Cih3/2‖RΣ(Φ)‖L2

(34)

A basic “worst-case” estimate for the residual with a non-smooth solution based on the
stabilization, using that δ = h is [9]:

‖RΣ(Φ)‖L2
≤ CRh−1 (35)

3.5.4 Estimate of the residual for the non-elliptic model problem

We now derive an upper bound for ‖RΣ(Φ)‖L2
for the stabilized reaction-convection model

problem, for a smooth solution, which is equal to the strong residual ‖R(Φ)‖L2
since ε = 0.

The analysis is conducted for the primal problem but can be easily transfered to the dual
case. Since U , πcG(1)u ∈ Vh and R(U − πcG(1)u) = R(U)−R(πcG(1)u)− f due to R(·)
being an affine function, (10) can be rewritten as

0 = (R(U), v) + (δR(U), R(v) + f)

= (R(U), U − πcG(1)u) + (δR(U), R(U)−R(πcG(1)u)) (36)

with v ∈ Vh.
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Thus

||δ1/2R(U)||2L2
= ||(δR(U), R(πcG(1)u))− (R(U), U − πcG(1)u)||L2

⇒

||δ1/2R(U)||L2
≤ ||δ1/2R(πcG(1)u)||L2

+ ||U − πcG(1)u||L2
(37)

The respective contributions on the right hand side can be estimated as

||U − πcG(1)u||L2
= ||(U − u+ u− πcG(1)u)||L2

≤ ||U − u||L2
+ ||u− πcG(1)u)||L2

≤ C1h
3/2‖D2u‖L2

+ C2h
2‖D2u‖L2

(38)

||R(πcG(1)u)||L2
= ||απcG(1)u+ β · ∇πcG(1)u− f ||L2

= ||α(πcG(1)u− u) + β · ∇(πcG(1)u− u)||L2

≤ C3h
2‖D2u‖L2

+ C4h‖D2u‖L2
(39)

again with δ = h.
Thus, we can conclude that

‖RΣ(Φ)‖L2
≤ CRh1/2 (40)

3.5.5 Derivation of the a priori estimate

We begin by re-arranging our error indicator expressions:

‖E(x)− EcG(1)(x)‖L2
= ‖

M∑
j=1

r(U, φ)Kjθj(x)−
M∑
j=1

r(U,Φ)Kjθj(x)‖L2

= ‖
M∑
j=1

r(U, φ− Φ)Kjθj(x)‖L2
(41)

We then use a projected form of the residual (a projection of the jump terms coming from
the viscous term, see [15]) to separate out the error in the dual solution φ.

‖
M∑
j=1

r(U, φ− Φ)L2(Kj)θj(x)‖L2
= ‖

M∑
j=1

(RΣ(U), φ− Φ)L2(Kj)θj(x)‖L2
(42)

We note that the L2-projection Pf of a function f onto the space of piecewise constants
Wh can be written as:

Pf =
M∑
j=1

1

|Kj |

∫
Kj

fdxθj(x) (43)

Writing out the inner product as an integral, we thus see that we have the L2-projection
of the integrand RΣ(U)(φ− Φ) onto the space of piecewise constants Wh weighted by the
piecewise constant cell volume |K| = |K(x)|:

‖
M∑
j=1

∫
Kj

RΣ(U)(φ− Φ)dxθj(x)‖L2
= ‖|K|P (RΣ(U)(φ− Φ))‖L2

(44)
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Using (28) and |K| ≤ CKhd with d the geometric dimension gives:

‖|K|P (RΣ(U)(φ− Φ))‖L2
≤ CKhd‖RΣ(U)(φ− Φ)‖L2

(45)

Continuing with Cauchy-Schwartz we get:

CKh
d‖RΣ(U)(φ− Φ)‖L2

≤ CKhd‖RΣ(Φ)‖L2
‖φ− Φ‖L2

(46)

Now, for the elliptic model problem we use (30) and (32) and define the constant C as

CiCK‖D2φ‖L2
‖RΣ(Φ)‖L2

≤ C (47)

In the reaction-convection model problem we apply (33) and (40) and use the same C to
collect the constants.

In both cases, for a smooth solution, we then have the sought-after a priori estimate for
the cG(1) error indicator EcG(1)(U,Φ)(x):

‖E(x)− EcG(1)(x)‖L2
≤ Ch2+d (48)

For a non-smooth solution using (35) we have for the convection-reaction model prob-
lem:

‖E(x)− EcG(1)(x)‖L2
≤ Ch1/2+d (49)

3.6 Extension to non-linear stationary problems

The method generalizes to non-linear stationary problems. We define the weak residual for
a nonlinear problem

r(U ; v) = 0, ∀v ∈ V (50)

where r(·; ·) may be nonlinear in the arguments preceding the semi-colon, but linear in the
arguments following the semi-colon. We use the notation that f ′(u;w, v) is the derivative
Duf(u; v)[w] in the direction w.

We follow the standard technique in the field [11,18] by choosing a linearization of r in
a mean value sense of the exact solution u and finite element solution U :

r′(w, v) =

∫ 1

0

r′(su+ (1− s)U ;w, v)ds (51)

This allows us to obtain the error representation:

(e, ψ) = r′(e, φ) = r(U ;φ) (52)

As for the linear case, the dual problem for the dual solution φ with the functional ψ as
source is defined as:

r′(w, φ) = (w,ψ), ∀w ∈ V (53)

A discrete approximation Φ to the dual solution is computed with the same stabilized
method as for the primal problem:

r′S(w,Φ)− (w,ψ) = 0, ∀w ∈ Vh, Φ ∈ Vh (54)
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The adaptive method then has to satisfy the a posteriori error estimate:

|r(U ;Φ)| ≤ TOL (55)

and the error indicator is defined as:

EK = r(U ;φ)K (56)

EcG(1)
K = r(U ;Φ)K (57)

again with the cG(1) superscript indicating that the dual solution is approximated using
cG(1) finite elements.

Since we don’t have access to the exact solution u, the linearization r′ is approximately
evaluated at the finite element solution U in (51). We do not consider the linearization error
in this error estimate, but refer to [3] for a framework how to proceed in this direction.

4 Computational results

We present computational studies for two equations. First, for completeness, we include
previous results from [15] for the linear stationary convection-diffusion-reaction equation
from the model problem with small diffusion to illustrate the a priori estimate for the error
indicator for convection-reaction. Second we present a new study of the non-linear stationary
incompressible Navier-Stokes equation illustrating the extension to non-linear problems and
the generality of the methodology.

4.1 Specific problem statement for convection-diffusion-reaction

We repeat the model problem formulation (9) from above :

r(u, v) = (αu, v) + (ε∇u,∇v) + (β · ∇u, v)− (f, v) = 0, ∀v ∈ V

with the standard space V = H1
g (Ω), Ω ⊂ R2 and g data on the boundary Γ . The domain

is chosen to be a square with a hole in the center:

Ω = (0, 0)× (1, 1) \ (0.48, 0.48)× (0.52, 0.52) (58)

The data g is chosen to be g = 0 on the outer boundary and g = 10 on the inner hole
boundary.

The convective velocity β is constant and chosen so as not to be aligned with the cells
in a uniform mesh:

β = (−1,−0.61) (59)

The other coefficients in the equation are varied to generate a range of test problems,
and are stated in the test problem list below.

The output functional is chosen as a Gaussian function concentrated in the lower-left
quadrant:

ψ = exp(−20|x− (0.25, 0.25)|2) (60)

We choose ψ smooth to avoid special treatment of possible discontinuities.
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We choose the source term zero: f = 0, and we choose the parameters α = 1, ε =
10−5, |β| = 1.171, a convection-dominated test problem where the error representation
is non-orthogonal for the “rep” method due to stabilization. The geometry and a sample
solution is shown in figure 4.1. The graphs of convergence and performance indices are
plotted in figure 8. The solution, dual and mesh are plotted in figure 9, and the error indicator
for adaptive iteration 0 and 10 are plotted in figure 10

Fig. 1 The geometry and sample solution for the convection-diffusion-reaction test problem.

We present a detailed computational study comparing the cG(1) representation adap-
tivity method (“rep”) against the cG(2) representation adaptivity method (“quad”), a stan-
dard Cauchy-Schwartz based adaptive method with projected jump terms and first order
interpolation (“jump”), second order interpolation (“jump2”) and uniform mesh refinement
(“uniform”). For the adaptive methods we refine 10% of the marked cells in each adaptive
iteration.

We use the “jump2” solution on the finest mesh as the reference solution, since the
method is standard, robust and well-proven (see e.g. [9]).

4.2 Specific problem statement for incompressible Navier-Stokes

The second non-linear equation is the stationary incompressible Navier-Stokes equation in
2D with constant kinematic viscosity ν > 0, enclosed in Ω ⊂ R2, with boundary Γ , which
takes the weak form:

r(û, v̂) = ((u · ∇)u+∇p, v) + (ν∇u,∇v)− (f, v) + (∇ · u, q) = 0, (61)

∀v ∈ V̂ , x ∈ Ω,
û = (u, p)

v̂ = (v, q)

V̂ = {v̂ ∈ [H1(Ω)]3} (62)

and strong form:

R(û) =

{
(u · ∇)u+∇p− ν∆u− f = 0 , x ∈ Ω,
∇ · u = 0 , x ∈ Ω

û = (u, p) (63)
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with x = (x0, x1) the spatial coordinate vector, u(x) the velocity vector, p(x) the pressure
and f(x) a body force.

Again we solve the problem with a Galerkin/least-squares (GLS) stabilized finite ele-
ment method with continuous piecewise linear basis functions (cG(1)), that is we require
rS(U ; v) = r(U ; v) + (δR(U), R(v) + f) = 0,∀v ∈ V̂h.

The domain is a 2D channel:

Ω = (0, 0)× (2.2, 0.41) (64)

with a square or cylinder-shaped hole as obstacle of diameter 0.1 with center point at
(0.2, 0.2), denoted as “square” and “cyl” in the figures. The “cyl” geometry is displayed
in figure 2.

For boundary data, we specify an inflow condition u(x) = (4(x1−0.4)/0.412, 0.0), x0 ≤
0.0, a no-slip condition u(x) = (0.0, 0.0), 0.0 ≤ x0 ≤ 2.2 and an outflow condition
p(x) = 0.0, x0 ≥ 0.0.

Two goal functionals are chosen as input to the adaptive method: a “pressure drag” goal
functional:

Mpdrag =

∫
Γo

pn0ds (65)

with Γo the boundary of the obstacle, representing the pressure part of the drag force and a
“weighted mean velocity” goal functional:

Mumean =

∫
Ω

g · udx (66)

g(x) = (200exp(−200|x− (0.5, 0.3)|2), 0) (67)

representing the mean velocity weighted by a Gaussian function to localize the goal to a
region near the point (0.5, 0.3).

We present a detailed computational study for the representation adaptivity method ap-
plied to the “cyl” and “square” cases, for ν = 5× 10−3 and ν = 10−2. We run the method
for 20 adaptive iterations and plot the error estimate and “error” where we compare against
a reference value on a fine mesh which we get by running the method for 35 adaptive iter-
ations. The effectivity index |r(U,Φ)||M(e)| is also plotted. We also plot the velocity U , the dual

solution Φ, the error indicator function E(U,ΦcG(1))(x) and the mesh for adaptive iteration
0, 6 and 18.

These figures are presented for the “cyl” case with the Mpdrag goal functional and
ν = 10−2 in figure 3, for ν = 5 × 10−3 in figure 4. The “square” case with Mpdrag goal
functional and ν = 10−2 is presented in figure 6 and with ν = 5×10−3 in figure 7. We also
present a comparison between the Mpdrag and Mumean goal functionals with ν = 10−2 in
figure 5.

5 Discussion and conclusion

In this paper we have investigated an adaptive finite element method where we directly use
the error representation as error indicator, and compute the dual solution in the same space as
the primal (both cG(1)). We denote the method “cG(1) representation adaptivity” since we
directly use the cG(1) error representation as error indicator. This approach has traditionally
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Fig. 2 The geometry and sample solution for the test problems.

been discarded a priori since the error representation is orthogonal and equal to zero, and
thus has been thought to contain no information. We have shown the opposite by an a priori
estimate of the error indicator and a detailed computational study, showing that the error
indicator defined by the orthogonal error representation is very close to the to the error indi-
cator defined by the non-orthogonal error representation using a quadratic approximation of
the dual. For extension to non-linear problems we can use the same approach described in
[18].

Specific conclusions we can derive from the results are:

Convergence of the cG(1) error indicator
The cG(1) orthogonal error indicator converges to the exact error indicator (with exact
dual) with order 2 + d with d the geometric dimension. We prove this in the a priori
estimate (48). The elliptic case (only diffusion) was done in [15] and here we extend the
proof to the convection-reaction case.

Similar behavior between the cG(1) and cG(2) error indicators
The detailed computational study for the convection-reaction-diffusion case presented
in figure 10 shows that the plots of the adaptively generated meshes, error and error
estimates are very similar, a close visual inspection is needed to see differences in the
meshes for example.

Good quality error estimate of the cG(1) error indicator with stabilization
Using the cG(1) error indicator for a stabilized method no longer gives an orthogonal
error representation and indicator. Since we have shown that the error indicator is of
very good quality (aside from the orthogonality making the estimate 0) in the a priori
estimates for elliptic and convection-reaction problems, we expect the error estimate
in the stabilized case to also be of good quality. In figures 3-7 corresponding to the
stabilized method for stationary incompressible Navier-Stokes we can verify that this is
the case, with the effectivity index for all cases in the interval [0.3, 2.0], and filtering
out the very coarse meshes of the first few adaptive iterations of the “square” cases, the
effectivity indices are all within the interval [0.5, 2.0]. This means that we at most over-
or underestimate the error by a factor 2.
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Fig. 3 Plots for representation adaptivity with pressure drag as target output applied to 2D incompressible
Navier-Stokes flow around a cylinder with viscosity ν = 1 × 10−2. Graph of error estimate vs. error and
effectivity index |r(U,Φ)|

|M(e)| (upper) and velocity, dual velocity, error indicator function and mesh for selected
adaptive iterations (lower).
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Fig. 4 Plots for representation adaptivity with pressure drag as target output applied to 2D incompressible
Navier-Stokes flow around a cylinder with viscosity ν = 5 × 10−3. Graph of error estimate vs. error and
effectivity index |r(U,Φ)|

|M(e)| (upper) and velocity, dual velocity, error indicator function and mesh for selected
adaptive iterations (lower).
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Fig. 5 Plots for representation adaptivity comparing pressure drag (“pdrag”) and mean velocity weighted
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adaptive iterations (lower).
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Fig. 6 Plots for representation adaptivity with pressure drag as target output applied to 2D incompressible
Navier-Stokes flow around a square with viscosity ν = 1 × 10−2. Graph of error estimate vs. error and
effectivity index |r(U,Φ)|

|M(e)| (upper) and velocity, dual velocity, error indicator function and mesh for selected
adaptive iterations (lower).
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Fig. 7 Plots for representation adaptivity with pressure drag as target output applied to 2D incompressible
Navier-Stokes flow around a square with viscosity ν = 5 × 10−3. Graph of error estimate vs. error and
effectivity index |r(U,Φ)|

|M(e)| (upper) and velocity, dual velocity, error indicator function and mesh for selected
adaptive iterations (lower).
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Fig. 8 Graphs of error control quantities for the convection-diffusion test problem (annotated in the graphs).

U10rep Φ10rep T 10rep

U10quad Φ10quad T 10quad

U10 jump Φ10jump T 10 jump

U10 jump2 Φ10jump2 T 10 jump2

U10uniform Φ10uniform T 1uniform

Fig. 9 Comparison of solution U and dual Φ for all methods for the convection-diffusion test problem with
ε = 10−1, |β| = 1.171
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Fig. 10 Comparison of adaptive error control quantitites and meshes for all methods for the convection-
diffusion test problem with ε = 10−5, |β| = 1.171


