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Abstract— Prediction of future courses of events is a necessary
ingredient in tomorrow’s Command and Control centers. This
is being identified in higher levels of, e.g., the JDL model
where awareness of the development of a situation is crucial for
providing a complete and comprehensible situation picture. To
cope with gaming situations, i.e., situations where commanders
make decisions based on other commanders’ reasoning about
one’s own reasoning, traditional AI methods for inference need
to be extended with algorithms stemming from game theory.

In this article we formalize the ideas of an information fusion
“game component”. Also, we review current state of the art when
it comes to computational game theory and discuss the time
constraints from an information fusion perspective along with a
discussion regarding the solution/equilibrium selection problem.
Furthermore, results from computer simulations and analysis of
computational bottlenecks are presented.

I. INTRODUCTION

The goal of any Command and Control (C2) system is to
maintain and use vast amounts of information, with varying
relevance and accuracy, in a proper and timely manner to
support planning and decision-making. Information fusion
spans the full information path from sensor reports to a
commander grasping the situation. However, research has until
now been focused on lower levels, focusing primarily on
fusing sensor data into tracks or vehicles. Some efforts have
also been put on the subsequent tasks of aggregation into larger
formations in order to create a refined situation picture that can
be presented to the commanders. However, merely presenting
a comprehensible description of the situation does not give
a complete understanding of the development of a situation.
Hence, the last step in the information fusion process is the
task of predicting other actors’ plans and to suggest future
courses of actions (COAs).

We believe that the challenges and difficulties when it
comes to prediction are fundamentally different depending on
available time, resources and level of abstraction. In a short-
term tactical decision task the commanders are probably best
off with a comprehensible prediction of forthcoming troop
movements. Lately, a few interesting research papers focusing
on this objective have started to appear in the information fu-
sion community[1, 5, 11]. However, decision tasks depending
on speculations about opponents’ long term planning require
reasoning and modeling regarding opponent intentions. This
work focuses on this latter form of prediction, which ought to

be an integral part of higher level C2 decision support, with
few results seen within information fusion research although
proposed in for example [15, 24].

The main contribution of our work is that of the application
and combination of techniques for the information fusion
context. General game-theoretic methods for prediction are, in
most cases, intractable for the generic case. The best known
method, the Lemke-Howson algorithm, yields exponential
worst case running time and does not find all solutions. Con-
tinuation methods, following bifurcations of perturbed prob-
lems, are delicate at best[3]. By building a game component
especially suited for prediction in information fusion, we can
eliminate certain problems that give rise to computationally
infeasible problems. Moreover, by representing data using
extended influence diagrams used in the AI community we
maintain a reasonably good understanding of the decision
problem at hand.

In section II we give some background on building blocks
from the AI community that we build upon and in section III
we outline the game component that we are targeting. Sec-
tion IV gives a description of common computational methods
for Nash equilibria computation and discusses computational
complexity. Experiments and results from computer simula-
tions are found in section V. Finally, section VI concludes
and discusses further research issues.

II. LOWER VERSUS HIGHER LEVEL PREDICTION

One goal of artificial intelligence (AI)[20] has been to create
expert systems, i.e., systems that can match the performance
of human experts provided the appropriate domain knowledge.
Such systems do not yet exist, other than in highly specific do-
mains, but AI research has meant that researchers from widely
differing fields have come together to solve problems regard-
ing knowledge representation, decision-making, autonomous
planning, etc. These results provide a good ground for the
construction of C2 decision support systems. During the last
decade, the intelligent agent perspective has lead to a view of
AI as a system of agents embedded in real environments with
continuous sensory inputs. We believe that this is a viable way
to reason about C2 decision-making and we adopt the agent
perspective throughout this article.

Agents make decisions based on modeling principles for un-
certainty and usefulness in order to achieve the best expected



outcome. The assumption that an agent always tries to do its
best, is captured in the concept of rationality. The combination
of probability theory, utility theory and rationality constitutes
the basis for decision theory.

The basic elements that we use for reasoning about un-
certainty are random variables. General joint distributions of
more than a handful such variables are impossible to handle
efficiently, and the way to model distributions as Bayesian
networks (BNs) has become a key tool in many modeling
tasks.

A BN offers an alternative representation of a probabil-
ity distribution with a directed acyclic graph where nodes
correspond to the random variables and edges correspond to
the causal or statistical relationships between the variables.
Calculating the probability of a certain assignment in the full
joint probability distribution using a BN means calculating
products of probabilities of single variables and conditional
probabilities of variables conditioned only on their parents
in the graph. The BN representation is often exponentionally
smaller[20] than the full joint probability distribution table
and many inference systems use BNs to represent probabilistic
information. Another advantage with the BN representation is
that it facilitates the definition of relevant distributions from
causal links that are intuitively understandable and, in the case
of a dynamic BN, develop with time.

An influence diagram is a natural extension to a BN
incorporating decision and utility nodes in addition to chance
nodes, and represents decision problems for a single agent[10].
Decision nodes represent points where the decision-maker
has to choose a particular action. Utility nodes represent
terminal nodes where the usefulness for the decision-maker
is calculated. These diagrams can be evaluated bottom up
by dynamic programming to obtain a sequence of maximum
utility decisions.

When designing decision-theoretic systems to be used for
C2 decision-making, complex situations arise where one wants
to represent knowledge, causality, and uncertainty at the same
time as one wants to reason about the situation simulating
different COAs in order to see the expected usefulness of
proposed moves. We believe the influence diagram is the right
choice for both representation and evaluation and propose a
simplified schematic generic diagram in Fig. 1 for the C2
process.

The diagram in Fig. 1 is a simplified representation, to be
connected to models – encoded as BNs – of terrain, doctrine,
etc., that can be implemented as sub diagrams with causal
relationships between different nodes of models. While these
sub diagrams are interesting in their own right, they are not
the topic for this article. Hence, we have chosen to think of
them as existing models that influence the decisions we are
modeling.

A problem with the diagram in Fig. 1 is that it does not
capture “gaming situations” where one wants to reason about
opposing agents that act according to beliefs about one’s
own actions. This is not possible to model in an influence
diagram or BN without additional machinery. At this point it

should also be noted that the diagram in Fig. 1 should not
be considered to be very useful in its own right. Rather, it
is a statement of the problem we are trying to solve. Among
other things, the diagram is not regular which is a requirement
for algorithms that evaluate influence diagrams[21]. Regularity
assumes a total ordering of all of the decisions, a reasonable
condition when there is a single decision maker. In this
work we use the influence diagram to develop a generalized
technique that solves problems for multiple decision makers.

In higher level C2 we can be certain that great efforts are
directed towards predicting the beliefs, desires, and intentions
of the adversary – and there will not be a common agreed upon
model of the situation and its utilities. This type of uncertainty
can be modeled only by representations of Bayesian games or
at least imperfect information games.

III. THE GAME COMPONENT

In [4] a “game component” suitable for prediction in higher
level information fusion was introduced. The basic element of
the game component is an influence diagram, as seen in Fig. 1,
which gives the commander the opportunity to model the deci-
sion situation given that he knows what type of opponent he is
facing, i.e., he makes an assumption regarding the opponent’s
beliefs, desires and intentions. Since the commander knows
the properties of the opponent he is facing he will be able to
estimate the payoffs in the influence diagram using domain
knowledge.

U1 U2

G1 G2

C

D1 D2

Doctrine

Terrain

...

Fig. 1. The C2 process modeled in an influence diagram. Terrain data bases
and doctrine are examples of sub diagrams that characterize a certain type
profile.

In our application, which is reasoning in a C2 center, we
believe there are a few, say less than ten, different possible
interesting opponent models one ought to consider with a final
“no information model”[8] representing irrational behavior and
lack of information.

The architecture consists of a probability distribution over
the possible models, depicted in Fig. 2, forming a game with
incomplete information. Hence, the decision maker is also
supposed to estimate the prior probability regarding which
model is accurate. The result from this is a one stage Bayesian
game that describes the whole decision problem and solutions



are obtained in the form of mixed strategy Nash equilibria.
An example of such a game can be seen in Fig. 3, which is
an example of the game we have experimented with, where
each of the two players reason about two possible opponents
and have the choice of performing four different actions/plans,
respectively.

pi(t−i|ti)

· · ·

Fig. 2. Architecture overview. Models are represented by influence diagrams
that yield payoff values for a Bayesian game.

IV. COMPUTATIONAL ASPECTS

The representation and formulation of the C2 game mecha-
nism is without doubt both interesting and important in its own
right. However, the calculation of an optimal solution, i.e., the
task of proposing a COA to the commander in question, is of
course the next task to undertake. Relative to the study of game
mechanisms and their properties, which has been pursued by
economists for decades, the study of computational methods
for calculation of Nash equilibria is still a fairly young research
area with innovative results seen during the last decade.

In game theory the concept of Nash equilibria defines game
solutions in the form of strategy profiles in which no agent
has an incentive to deviate from the specified strategy. The
appropriate algorithm to use depends on several factors, e.g.,
the structure of the game, the number of players in the game
and the number of equilibria one wants to find. The game we
are looking at gives rise to a bimatrix game, i.e., a two-person,
non-zero-sum game with a finite number of pure strategies.

The problem of finding Nash equilibria in bimatrix games
can be formulated as a linear complementarity problem
(LCP)[6] with the best known solution method being the
Lemke-Howson algorithm[14]. The Lemke-Howson algorithm
starts with a dummy equilibrium point and finds subsequent
equilibria by following paths of “almost” equilibria relaxing
one constraint at a time. One can find the set of all accessible
equilibria by tracing out the entire network of such “almost”
equilibria. It should, however, be kept in mind that the set
of accessible equilibria does not necessarily include all Nash
equilibria.

Finding all equilibria of a bimatrix game will remain a hard
problem[7]. Several methods exist with the algorithm proposed
by Mangasarian[17] being the most widely adopted method.
This method enumerates all of the extreme points of the

components of the set of Nash equilibria, using the algorithm
proposed by Balinski[2], and therefore finds all equilibria.

For a game on extensive form, the traditional solution
method has been to transform the game into strategic (matrix)
form and apply standard solution methods as described above.
However, the creation of the matrix for the strategic form
may cause a combinatorial explosion due to the fact that each
value in the matrix representation of a strategic form game
represents the payoff for a complete strategy. Hence, even
though a game tree typically contains widely different decision
alternatives in different sub trees the decisions in the other sub
trees still need to be considered and therefore the strategic
form matrix dimension grows for each node that is traversed.
As an alternative to the transformation into strategic form
the sequence method can be used. This method re-formulates
the game by replacing the game’s (pure) strategies with new
strategies being represented by sequences of moves, i.e., paths
from the root node down to the leaves. As the creation of
the matrix for the sequence form relies on payoffs that are
already in the tree the problem complexity is reduced from
a PSPACE-complete problem into a problem that is linear
in the size of the tree. However, it should be kept in mind
that general game trees often share decision alternatives and,
hence, do not exhibit a full scale combinatorial explosion.
The resulting reduced game matrix can then be solved using
Lemke’s algorithm as described in [12, 13, 22].

Solution methods for general-sum game-theoretic problems
are, at least in theory, intractable for the generic case. The
Lemke-Howson algorithm exhibits exponential worst case run-
ning time for some, even zero-sum, games although this does
not seem to be the typical case[23]. Interior point methods
are not known for linear complementarity problems arising
from games. Methods amounting to examining all equilibria,
such as finding an equilibrium with maximum payoff, have
unfortunately been proven NP-hard[7], so for these kinds of
problems no efficient algorithm is likely to exist.

V. COMPUTER EXPERIMENTS

To get an understanding of the games and their properties
that the C2 game component gives rise to we have performed
computer experiments with algorithms found in Gambit[18].
Gambit is an equilibrium computation package incorporating
both GUI and program libraries. Although version 1.0 has
still not been finished, the Gambit project probably contains
the most well-developed code available today for equilibria
computation. Development started already in the mid 1980s
with a total rewrite of the code into C++ in 1994.

The games considered are two-person one-stage Bayesian
games[9] with two possible types for each player and four
possible actions or plans that need to be considered. Payoffs
consist of uniformly chosen integer values ranging from −10
to 10. The prior probabilities pi(t−i|ti) are chosen uniformly
in the interval ranging from 1/10 to 9/10 with rational
precision and only using even tenths. 100 such games were
created randomly. An example extensive form game is shown
in Fig. 3. The corresponding normal form game will be a



16× 16-matrix since there exist 4× 4 pure strategies for each
player.

Sampling probabilities from a uniform distribution instead
of some other distribution indicate our belief that these prob-
abilities are in reality estimated by a commander and should
reflect a commander’s subjective belief regarding what kind of
opponent he is actually facing. If, for example, the commander
is fairly certain regarding the situation he might give the model
reflecting his belief the probability 9/10 while he still wants
to model an unlikely, but possibly dangerous, opponent with
probability 1/10. If the commander on the other hand is totally
uncertain regarding the situation he might assume that two
models are equally likely, i.e., he chooses [1/2, 1/2] for the
probabilities. The objective of this study has primarily been
to study the amount and properties of the games’ resulting
equilibria in order to investigate if a tool based on game theory
can actually be used to give advice in a C2 situation. Although
not part of the main goal for this study, we have also compared
the 100 games versus each other with respect to running time
in order to get an understanding of how computation time
varies depending on game type and number of equilibria.

We believe that the described games are good examples
of games that might need to be considered in the C2 game
component as described briefly in section III and more thor-
oughly in [4]. We have two primary reasons for making this
assumption. First, the games are Bayesian, i.e., they give the
commanders the possibility to reason about several opponent
models according to their prior belief. Second, the plans and
opponent models that need to be considered in higher level
C2 are likely to be conceptual and, hence, fairly limited. It is
important to notice that it is sufficient to vary a game’s payoff
function and, in the Bayesian game case, its type probabilities
to create games that exhibit fundamentally different character-
istics. Therefore we feel confident that the 100 games included
in this study represent the characteristics of the games needed
to be considered in a C2 game component.

The methods described in section IV are found in Gambit
as EnumMixedSolve and LcpSolve. EnumMixedSolve
implements the algorithm for finding all Nash equilibria de-
scribed in [17] while LcpSolve formulates the problem of
finding equilibria as a linear complementarity problem and
solves the game using this approach. LcpSolve can also be
used directly on an extensive form game where it implements
the sequence method and solves the game using the approach
described in [12, 13, 22]. The 100 random games were solved
in four different ways:
• EnumMixedSolve was used to get hold of all equilibria

for comparison reasons,
• LcpSolve on the transformed normal form game,
• LcpSolve directly on the extensive form game using

the sequence method,
• LcpSolve using rational precision due to problems with

numerical stability.
The number of (actual) equilibria are shown in Table I

along with a comparison with the two versions of LcpSolve.
The column “EnumMixed” represents the actual amount
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Fig. 3. One of the 100 games that were used in the simulations. The
probabilities shown next to the arcs show the only pure strategy equilibrium
out of nine Nash equilibria.



of equilibria found using the EnumMixedSolve algorithm
while columns denoted “Lcp” indicates the percentage of the
actual solutions that are found correctly using the two different
versions of LcpSolve. “NFG” means the normal form game
transformation and “EFG” means LcpSolve implements the
sequence method on the extensive form game.

# of eq. EnumMixed Lcp [NFG] Lcp [EFG]
1 37 100% 100%
2 2 0% 0%
3 25 92% 96%
4 4 0% 0%
5 15 93% 73%
6 3 0% 0%
7 6 100% 83%
8 0 – –
9 6 50% 67%
10 0 – –
11 1 100% 100%
12 1 0% 0%

TABLE I
THE AMOUNT OF EQUILIBRIA THAT DIFFERENT EQUILIBRIA

COMPUTATION ALGORITHMS FINDS.

As indicated in Table I the Lemke-Howson algorithm al-
ways yields an odd number of equilibria. This is part of the
algorithm.

VI. CONCLUSIONS

Game-theoretic tools have a potential for situation predic-
tion that takes real uncertainties in enemy plans and deception
possibilities into consideration. Development of game algo-
rithms using influence diagram situation descriptions, make
realistic modeling and reasoning from sensor information
possible.

This work has focused on the computationally hard task of
calculating optimal solutions in a game similar to one that must
be solved in a C2 decision situation. The concept of a Bayesian
game makes it possible for a commander to incorporate any
prior beliefs regarding his opponents and, hence, seems to be
a good choice for representing reality. Computer simulations
show that computation of optimal solutions seems to be
tractable in reasonably sized C2 decision problems. Moreover,
despite the intractability of finding all optimal solutions there
exist fast algorithms that often finds all, or nearly all, solutions.

However, several problems remain to analyze. We have only
started looking at what can be done to choose among multiple
equilibria. This is a well-studied subject with several proposed
criteria for selecting a particular equilibrium, for example
using principles of maximum payoff or Pareto efficiency.
However, a generic method has not been found and each
proposed criteria seems to have a counterexample that results
in unexpected behavior. As an example, consider the game-
theoretic classic known as the Prisoners’ Dilemma (see, for
example, [16, 19] for the background story). In this game
the notion of Pareto efficiency, where an outcome of the
game is said to be Pareto efficient if and only if there is no

other outcome that would make all players better off, applies
to all outcomes of the game except for the game’s unique
Nash equilibrium. Our hope is that it will become possible to
establish guidelines regarding the small subset of games that
appear in a C2 setting.

Moreover, we have not primarily been interested in how
large games one can actually solve. We believe the size of the
game reflects one possible outcome of the influence diagram
utilities described in section III. The games we have studied
are only large enough to require one or two minutes to solve.
In a subsequent study, it would be interesting to look at how
large games can actually be solved using hardware and time
limits that are likely to be found in a state-of-the-art C2 center.
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