
VK

Efficient computational proofs

and inapproximability

Johan Håstad

Royal Institute of Technology

Stockholm, SWEDEN

1

My area: Complexity Theory

The goal: To design and analyze

efficient algorithms for

computational problems.

or

To prove that none exist.

2

Outline

• Quick review of classical concepts

• Some results on approximability

3

What is a computer?

Formally: Turing machine.

Informally: “Ordinary” computer

with fixed word length.

Time = # of elementary

operations.

4

Efficient algorithms

In practice: Anything you can

execute.

In theory: Running in time O(nc) on

inputs of size n for constant c.

Polynomial time, P.

Size: Number of bits to specify

input.

5

Computational Problem

Formally: Any mapping from finite

binary strings to finite binary strings.

Informally: What you expect. Avoid

real numbers with arbitrary precision

and make it mathematically well

defined.

6

The complexity class NP

Decision problems where positive

instances have proofs that can be

verified efficiently.

7

Example NP; 3SAT

Given a Boolean formula

ϕ = (x1∨x2∨x3)∧(x̄1∨x̄2∨x̄3)∧(x̄1∨x2∨x4)

is it satisfiable?

Proof: A satisfying assignment

x1 = 0, x2 = 1, x3 = 0, x4 = 1

8

NP �= P??

Unknown but strongly believed. A

million dollar Clay-problem and very

few people are working on it. No

real progress the last 10 years.

9

Basic problem for proving lower

bounds

It is very difficult to prove that any

(crazy) algorithm that runs fast does

not solve the problem we are

studying.

10

Complexity theory, grade school

Is multiplication harder than

addition?

Addition of n-bit integers doable in

time O(n) = cn for constant c.

Multiplication of n-bit integers

doable in time O(n logn log logn),

can it be done in time O(n)?

11

Grade school answer

We do not know!

Cannot rule out a general linear time

algorithm for multiplication.

12

Best multiplication algorithm

Works by doing a Fourier transform

of each input in a finite ring.

If we did not know about Fourier

transforms we would rate this a

crazy algorithm and doubt it was

solving the problem.

13

What can complexity theory do?

• Design and analyze efficient

algorithms.

• Prove unconditional lower bounds

for really hard problems.

• Compare difficulty of problems.

14

Comparing difficulties?!

If we can solve satisfiability in

polynomial time then we can solve

any problem in NP in polynomial

time.

Satisfiability is NP-complete and

cannot be solved in polynomial time

unless P = NP .

15

Comparing difficulties II

If satisfiability on instances of size m

requires time T (m).

then

Finding largest independent set in

graphs with m nodes requires time

T (m) − m2.

Theory gives conclusions even if

satisfiability is solvable in time

O(n64).

16

A way to think

Assume NP �= P and even that all

NP-complete problems require

exponential time.

Can make sense of some statements

even in other cases.

17

NP-theory for decision problems

Almost all problems in NP are

classified as either NP-complete or

in P.

Exceptions: Integer factorization,

discrete logarithms in finite fields,

graph isomorphism.

Classification almost complete.

18

NP-complete problems

We have thousands of NP-complete

problems, some of the most famous

are:

• Satisfiability.

• Independent set problem in

graphs.

• Graph-coloring.

• Traveling salesman problem.

• Integer linear programming.

19

Finding suboptimal solutions

efficiently

If there is an independent set of size

S, maybe we efficiently can find an

independent set of size S/2?

20

Approximation algorithms

C-approximation

Maximization problems:

Found value ≥ (Optimal value)/ C.

Minimization problems:

Found value ≤ C(Optimal value).

This is required for all inputs!

21

Over-determined linear equations




x1 + x2 + x3 = 1
x1 + x2 = 1
x1 + x2 + x4 = 1

x2 + x4 = 0
x1 + x3 + x4 = 0

x2 + x3 + x4 = 1
x1 + x3 = 0

mod 2

Satisfy as many equations as

possible or (≥ K).

Max-Lin-2, m equations n variables.

22

Obvious algorithms

Try to satisfy all using Gaussian

elimination.

Time ≈ mn2.

Try all possible assignments and

take the best.

Time ≈ mn2n.

23

Easy heuristic

Pick values for variables randomly.

Satisfies m/2 equations on average.

24

Simple fact

Theorem: Max-Lin-2 in its decision

form is NP-complete.

Consequence: We cannot hope to

have a polynomial time algorithms

that always finds the best solution.

25

Simple theorem

Theorem: Max-Lin-2 admits an

efficient 2-approximation algorithm.

Proof: We can satisfy m/2

equations and the optimum satisfies

at most all m equations.

26

First real theorem

Theorem: [Hå97] ∀δ > 0, unless

NP=P, Max-Lin-2 does not admit

an efficient (2-δ)-approximation

algorithm.

Even when we allow only 3 variables

in each equation.

27

Proof outline

Use a supposed good approximation
algorithm to solve an NP-hard problem like
SAT in polynomial time.

ϕ satisfiable?

α assignment
for ϕ

L mod 2 system

x good solution
for L

❄

✲

✛

28

Probabilistically Checkable Proofs

(PCP)

Statement to be verified: Formula ϕ

is satisfiable.

A written proof π, Verifier: V .

Completeness c: If indeed ϕ is

satisfiable then exists π that

convinces V with probability c.

Soundness s: If ϕ is not satisfiable

then no π convinces V with

probability ≥ s.

Normally: c = 1 and s is a small

constant.
29

A comparison

Traditional proofs: Perfect

completeness and soundness (c = 1

and s = 0) and the verifier reads

the entire proof.

New situation: We want reasonable

values of c and s when the verifier

only reads very small portion of the

proof, like 3 bits.

30

PCP optimization problem

Given a formula ϕ find the proof π

that maximizes the probability that

the verifier accepts.

Easy observation: If we can solve

this optimization problem within a

factor c/s, then we can determine

whether ϕ is satisfiable!

Design the PCP to make this

optimization problem equal to

Max-Lin-2!

31

The PCP-theorem [ALMSS]

Is ϕ satisfiable?

There is a PCP which

• Reads a constant number of bits

• Always accepts a correct proof

for a correct statement

• Rejects any proof of a false

statement with probability ≥ 1
2

32

Combinatorial PCP-theorem

There is a polynomial time

transformation f taking 3CNF to

3CNF such that:

ϕ satisfiable f(ϕ) satisfiable

ϕ not satisfiable
no assignment

satisfies fraction

≥ 9/10 of clauses

of f(ϕ)

Amplification of unsatisfiability!

33

Efficient proofs

ϕ satisfiable?

Proof: an assignment that satisfies

f(ϕ).

Verification: pick 7 random clauses

and check that they are satisfied.

Perfect completeness, soundness

(9/10)7 ≤ 1/2, reads 21 bits.

34

Components of proof

Coding by polynomials, extending

range to complete field. Recursion

Analyze by discrete Fourier

transform.

For best inapproximability constants,

special inner code.

35

The long code [BGS]

To code x ∈ {0,1}v write down f(x)

for any f : {0,1}v
→ {0,1}.

We code v bits by 22v
bits.

Extremely useful for verifying since

any property of x can be read in one

bit. Useful for very small v.

36

Theorem again

Theorem: ∀δ > 0, it is NP-hard to

(2-δ)-approximate Max-Lin-2.

Even when we allow only 3 variables

in each equation.

Remains true in any group,

inapproximability is almost size of

group.

37

Approximation properties of other

NP-hard optimization problems

Problems do come in different

flavors.

Some hardness results follow from

old reductions. Sharp results often

require special purpose PCPs.

Algorithmic result are special

purpose. Key new technique:

Semidefinite programming [GW94].

38

Other problem 1: Max-3-SAT

Problem: Given a 3-CNF formula

satisfy the maximal number of

clauses.

ϕ = (x1∨x2∨x3)∧(x̄1∨x̄2∨x̄3)∧(x̄1∨x2∨x4)

Upper bound: 8/7 . Easy when all

clauses are of length exactly 3 [J74],

otherwise semi-definite programming

[KZ99].

Lower bound: 8/7 − ε. Reduction

from Max-Lin-2.
39

Other problem 2: Max-Cut

Problem: Given a graph G partition the
vertices into two sets to cut the maximal
number of vertices.

Trivial upper bound: 2 . A random
partition cuts half the edges.

Good upper bound:
maxθ

π(1−cos θ)
2θ ≈ 1.138. Semidefinite

programming [GW94].

Lower bound: 17/16 − ε . Reduction from
Max-Lin-2 found by computer, verified by
hand.

40

Other problem 3: Clique
(Independent set)

Problem: Given a graph G with n vertices,
find the largest number of pairwise
connected vertices.

Upper bound: O

(
n

(logn)2

)
. Combinatorial

algorithm removing subgraphs.[BH92]

Lower bound: n1−ε . Special purpose PCP
[Hå96].

41

Other problem 4: Graph-coloring

Problem: Given a graph G with n

vertices, color the vertices with the

minimal number of colors

Upper bound: O

(
n(log logn)2

(logn)3

)
.

Combinatorial algorithm. [Ha93]

Lower bound: n1−ε . An additional

idea on top of clique lower bound.

[FK96]
42

Other problem 5: Set-cover

Problem: Given a collection of

subset of [n], cover the union with

as few sets as possible.

(1,2,3), (4,5,6)(7,8,9), (1,4,7,8),

(2,5,9), (3,5,8), (2,6,7)

Upper bound: lnn + 1 . Greedy

algorithm [J74].

Lower bound: (1 − o(1)) lnn .

Special purpose PCP [F96].

43

Other problem 6: Traveling

Salesman Problem

Problem: Given n “cities” find the

shortest tour that visits all.

Upper bound: Euclidean plane

(1 + ε) Geometric dynamic

programming [A96]. Only

∆-inequality, 3/2. Based on

maximal spanning tree [C76].

Lower bound: Cannot be

approximated without the

∆-inequality. With ∆-inequality

≈ 1.005 [KP0?].

44

Open Problems

How many colors are needed to

efficiently color a 3-colorable graph?

Upper bound Õ(n3/14), lower bound

5.

How hard is it to approximate TSP

on asymmetric graphs?

Upper bound O(logn), lower bound

≈ 1.01.

45

Final words

Classification of approximation

problems getting more complete.

Uses very efficient proofs that are

checked probabilistically.

46

