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Abstract. In this paper, we analyze the stochastic behavior of backo� protocols for multiple
access channels such as the Ethernet. In particular, we prove that binary exponential backo� is
unstable if the arrival rate of new messages at each station is �=N for any � > 1

2
and the number of

stations N, is su�ciently large. For small N we prove that � � �0 +
1

4N�2
implies instability where

�0 � :567. More importantly, we also prove that any superlinear polynomial backo� protocol (e.g.,
quadratic backo�) is stable for any set of arrival rates that sum to less than one, and any number
of stations. The results signi�cantly extend the previous work in the area, and provide the �rst
examples of acknowledgment based protocols known to be stable for a nonnegligible overall arrival
rate distributed over an arbitrarily large number of stations. The results also disprove a popular
assumption that exponential backo� is the best choice among acknowledgment based protocols for
systems with large overall arrival rates. Finally, we prove that any linear or sublinear backo� protocol

is unstable if the arrival rate at each station is �

N
for any �xed � and su�ciently large N .
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1. Introduction.

Multiple access channels provide a simple and e�cient means of communication
in distributed systems. A typical example is the Ethernet [7], a local area network
where the channel consists of a tree made out of coaxial cable. When a station
wants to send a message to one or more stations on the Ethernet, the sending station
simply broadcasts the message throughout the entire system. Everyone, including the
intended stations, then receives the message provided that there was no interference
from other stations trying to send messages at the same time.

In order to reduce the chance of interference, stations check to make sure that
the channel is clear before attempting to transmit a message. At �rst glance, it might
seem that this precaution eliminates the possibility of a collision since the probability
that two stations try to send at exactly the same instant in time is virtually zero.
Unfortunately, collisions can still occur, since there is a nonnegligible delay between the
time when a station begins to transmit and the other stations detect the transmission.
Hence, if two or more stations attempt to transmit within this window of time, a
collision will occur.
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In the case of a collision, none of the messages is sent. Instead, the collision is
detected and the messages are queued at their respective stations for retransmission
at some point in the future. Of course, it would not make sense to retransmit right
away since this would immediately result in another collision. Rather, packets are
retransmitted according to a protocol that is often probabilistic in nature. For exam-
ple, messages in an Ethernet are retransmitted again after T steps where T is selected
randomly from f1; 2; 3; :::; 2min(10;b)g and b is the number of times the station has tried
to send the packet but failed. This is one of a class of protocols generally referred to
as exponential backo�.

The success of a protocol can be measured in several ways. For example, we
might be interested in the average waiting time Wave incurred by a message before it
is successfully transmitted. Alternatively, we might consider the average number of
waiting messages over time Lave to be a better measure. Actually, these measurements
are closely related. In fact, Lave = �Wave with probability one where � is the overall
arrival rate of messages into the system over time [12].

For a protocol to be useful, it is crucial that Ex[Lave] and Ex[Wave] be small.
In particular, we will want Ex[Lave] and Ex[Wave] to be �nite. Note that this is a
stronger condition than insisting only that Lave and Wave be �nite with probability
one. For example, consider the situation when Wave = 2i with probability 2�i for
i = 1; 2; 3 : : :.

Another measure of system performance that is often of interest to statisticians
is the expected time Ex[Tret] for the system to return to the start state (i.e. the state
where all queues are empty). Of course, we will want this time to be as small as
possible, and, in particular, we will want it to be �nite.

Protocols for which Ex[Lave], Ex[Wave] and Ex[Tret] are �nite are said to be
stable. Protocols for which all the measures diverge are said to be it unstable. Note
that it is conceivable that there are protocols that are neither stable nor unstable as
we have de�ned the terms here, since it might be that case that Ex[Tret] is �nite but
Ex[Wave] diverges for some protocol. However, all of the protocols considered in this
paper are shown to be either entirely stable or entirely unstable in the sense de�ned
above. In fact, the only reason we use these somewhat nonstandard de�nitions is that
we want to encompass as many of the con
icting de�nitions of stability and instability
in the literature as possible with our methods.

The throughput rate (i.e., the average rate of successful transmissions) is not a
dominant concern. This is because the throughput rate is guaranteed to equal the
arrival rate with probability one if the protocol is stable, but not vice-versa. As
an example, consider a 1-station system in which the sole station transmits with
probability one if it has a message and in which the station receives a pair of new
messages at each step with probability 1/2. It is not di�cult to show that with
probability one, both the arrival and throughput rates for this system are 1 but that
Lave and Wave diverge over time.

The development and analysis of transmission protocols that minimize average
waiting time has been the subject of a great deal of work [1{ 7,9{17]. We summarize
some of this work in Section 2. Of greatest concern in this paper is the work on
acknowledgment based protocols. An acknowledgment based protocol is one for which
each station's transmission protocol is based only on its own history of successes and
failures. In particular, the station is not assumed to have any knowledge of other
stations' successes or failures or even of the number of stations in the system N .

Our present work is focused on a subset of acknowledgment based protocols known
as backo� protocols. A backo� protocol is one for which each station i containing a
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message transmits with probability f(bi) where f is a predetermined function and bi
(the backo� counter at station i) is the number of past consecutive failures by station
i. After each successful transmission, bi is reset to zero. After each failure, bi is
augmented by one. The value of bi is left unchanged if no transmission is attempted.

Previous work has mostly centered on binary exponential backo� (for which f(b) =
2�b), although other schemes such as linear backo� (for which f(b) = 1

b+1 ) and con-
stant backo� (for which f(b) is simply a constant) have also been considered. Unfor-
tunately, most of this work has been experimental and/or has depended on simplifying
assumptions (e.g., that N is in�nite) that render the consequences of any analysis less
meaningful. Exceptions include some work on constant backo� (which serves as the
basis for the Aloha protocol, but which is inherently unstable for �xed backo� and suf-
�ciently large N) [13, 17], and the work of Goodman, Greenberg, Madras and March
[2], who proved that for any N , there is a �0 for which exponential backo� has �nite
Ex[Tret] provided that the arrivals at station i are Bernoulli distributed with mean �i

for 1 � i � N where � =
NX
i=1

�i � �0. Unfortunately, �0 tends to zero as N increases

and the question concerning stability for nonvanishing � and large N remained open.
In the case when N = 2, Goodman et.al. also proved that exponential backo� has
�nite Ex[Tret] if �1 and �2 are at most 0.15, and in�nite Ex[Tret] if �1 > 1=2 and
�2 > 0.

In this paper, we redirect the focus from exponential backo� to other protocols.
Among other things we show that exponential backo� is unstable whenever �i � �

N
for 1 � i � N and � > 0:567+ 1

4N�2 , or when � > 1
2 and N is su�ciently large. The

result is not very surprising given the existing experimental data, but it does establish
formal limits on the usefulness of exponential backo�. We also prove a much stronger
and more important result concerning the stability of polynomial backo� protocols.
In particular, we prove that if the arrivals at station i are Bernoulli distributed with
rate �i then f(b) = (b+1)�� backo� is stable for any constant � > 1, any N and any

f�i j � =

NX
i=1

�i < 1g. In terms of stability, the result is the strongest possible since

any protocol is unstable if the overall arrival rate � is one or larger. The result also
provides the �rst example of an acknowledgment based protocol known to be stable
for nonvanishing � and large N , and proves that polynomial backo� protocols are
superior to exponential backo� when � is large.

The constraint that � be greater than one is crucial to the stability of polynomial
backo�. In fact, we also prove that for any � � 1, f(b) = (b+1)�� backo� is unstable
for any evenly distributed arrival rate � and su�ciently large N .

Once a protocol has been found to be stable, the next step is to determine the
precise values of Ex[Lave] and Ex[Wave]. In particular, it is interesting to analyze the
dependence of Ex[Lave] and Ex[Wave] on � and N . Unfortunately, our current best
estimates for these values are fairly weak. Whereas we do prove that Ex[Lave] and
Ex[Wave] must grow polynomially as a function of N for almost any backo� protocol,
we only upper bound this growth by an exponential function of N .

Quantifying the nature of an instability can also be of interest, particularly if the
protocol is to be implemented in practice. In the cases of exponential backo� with
high arrival rates and linear or sublinear backo� with large numbers of stations, we
show that Ex[Lave] grows linearly over time, the worst possible scenario.

As a crucial aid in guiding our research, we performed computer simulations of
several backo� protocols for various arrival rates and numbers of stations. Some of
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the data obtained can be found in Section 7. This data does suggest that quadratic
backo� is a very competitive algorithm in practice. Linear backo� seems better if the
number of stations is small or the load is minimal. Exponential backo� seems better
only when the queues are massive.

The remainder of the paper is divided as follows. In Section 2, we describe the
models for communication protocols more formally, introduce some further notation,
and comment on the relevance of past research to our current work. In Section 3, we
prove that polynomial backo� is stable for any arrival rate less than 1. In Section 4, we
examine the dependence of Lave andWave on � and N . The instability of exponential
backo� protocols is established in Section 5. In Section 6, we show that linear and
sublinear backo� protocols are unstable for any �xed arrival rate and su�ciently large
N . Section 7 contains some experimental data, and we conclude with some remarks
and topics for research in Section 8.

2. Preliminaries.

2.1. Our model.

In this paper, we follow the model of backo� protocols adopted in [2]. In this
model, time is partitioned into equal length intervals called steps. At the beginning of
each step, a new message arrives at station i with probability �i for 1 � i � N where
N is the number of stations in the system. The arrival of new messages is assumed to
be independent over time and among stations. The overall arrival rate is de�ned to

be � =

NX
i=1

�i. Arriving messages are added to the end of the queues located at each

station. No limit is placed on the size of the queues, and if the system is unstable,
they could become arbitrarily long over time.

The backo� protocol is governed by a function f(x) de�ned in advance. At each
step, the ith station attempts a transmission if it has a nonempty queue (allowing for
the arrival of a new packet at the beginning of the step) with probability f(bi) where
bi is the value of the backo� counter at station i. For any set of bi's, these probabilities
are assumed to be independent over time and among stations. The backo� counters
are initially zero. The ith counter is augmented by one whenever the ith station
attempts to transmit but fails due to a collision. The ith counter is reset to zero
whenever the ith station transmits successfully. If the ith station does not attempt
to transmit, then the backo� counter is not changed. Con�rmation of a collision or
a successful transmission takes place during the same step in which the transmission
was attempted. In addition, the message lengths are assumed to be smaller than the
duration of a step.

The two important measures of e�ciency are the average number of messages
queued in the system at the end of each step Lave and the average number of steps that
each message must wait before it is sent Wave. Since Lave = �Wave with probability
1, we will henceforth express our results in terms of Lave.

2.2. Relevance of the model to reality.

Our mathematical model di�ers from reality (e.g., the Ethernet) in several re-
spects. We summarize these di�erences and their signi�cance in the following para-
graphs.

Upper bound on backo� counter. In the Ethernet, the backo� counter is
never allowed to exceed a speci�ed value bmax, whereas in the mathematical model
it is allowed to become arbitrarily large. One mathematical problem with placing an
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upper bound on the backo� counter is that any such protocol becomes unstable for
any �xed � and large enough N . The reason is that for very large N , the system will
eventually reach a state where almost every station has many messages queued. Once
this happens, then with nonzero probability, the channel will become dominated by
collisions and the throughput will be forever reduced to a trickle. The situation is
less clear if the bound bmax is allowed to depend on N , but then individual stations
would need to be informed about the number of other stations in the system. Of
course, it might well be that reasonable upper bounds on N could be assumed in the
computation of a bound bmax in practice. Research into such protocols for bounded
N might prove to be interesting mathematically as well as useful in practice. For
example, see [13, 17] and the references they contain for a discussion of constant
backo� protocols.

Termination of undelivered messages. In the Ethernet, messages are discarded
if they are not delivered within a speci�ed amount of time. In our model, messages
are never discarded and might be held in queue for an arbitrary amount of time.
Discarding messages assures stability in the sense that Ex[Lave] is guaranteed to be
�nite, but only at the expense of discarding a nonzero fraction of the messages in
systems that become unstable if discarding is not allowed.

Distribution of arrivals. In real systems, the distribution of arrivals may not
be Bernoulli and may not be independent among stations. However, the Bernoulli
and independence assumptions seem as reasonable as any others that are capable of
being analyzed. Moreover, our analysis extends to several other natural distributions,
and can even be extended to systems where there is dependence among stations. For
example, both stability and instability results hold for systems where at most two
packets enter the entire system during a single step.

Selection of waiting time before attempted retransmission. In the Ether-
net, the ith station attempts to rebroadcast t steps after the last attempt where t is
selected uniformly from f1; 2; 3; : : : ; 2big. In our model, we retransmit at each step
with probability 2�bi . The two methods for computing retransmission times are quite
similar, but the former is easier to implement in practice (since it requires fewer ran-
dom bits) and the latter is easier to analyze (since it is memoryless). It would seem
unlikely that the stability results would di�er for the two methods, but we have not
proved this.

Message length. In reality, message lengths are much longer than the window
during which con
icts can arise and be detected. Moreover, message lengths may
vary from message to message. In the Ethernet, all messages are restricted to have
the same length, and this length is a reasonably large multiple of the window of time
used for con
ict resolution. This di�erence between the Ethernet and our model is
not as great as it might seem at �rst, however. The reason is that we can model a
system where transmissions are long (but with uniform length) with a system where
transmissions have zero length by simply compressing time to squeeze out transmission
times altogether. This does not a�ect the con
ict resolution process (which lies at the
heart of stability analysis). Rather, we need only adjust the message arrival rates
so that there are proportionately fewer arrivals in steps following nontransmissions.
Although we will not go through the details here, it is not di�cult to extend our
stability results to hold for such a modi�ed arrival process. Our instability results are
also meaningful in systems with large message lengths, but require some changes. The



6 johan h�astad and tom leighton and brian rogoff

reason is that we only know how to prove instability in a message-length-M model
for arrival rate � if the corresponding message-length-one model is unstable for arrival

rate �
�+(1��)M . Hence, since our instability results for exponential backo� hold only

for arrival rates exceeding 0.5, they only imply instability for arrival rates approaching
one as M increases. Our linear and sublinear backo� results apply to any constant
arrival rates and hence give the same results for any �xed M .

Synchronization. In real systems, time is not partitioned into discrete \windows"
because there is no synchronization. In the Ethernet, a station that wants to transmit
simply does so when and if the channel is clear locally. Nevertheless, it can be argued
that our synchronous model accurately represents an asynchronous system to within
a factor of two in window size [6]. Hence this assumption should not have a signi�cant
impact on stability analysis.

The bottom line. Whereas our model di�ers from reality in several notable re-
spects, the di�erences are not all as important as they �rst seem. Moreover, the model
is the most realistic among those that have been formally studied in the literature. In
summary, the real contribution of this work is the development of formal techniques for
analyzing communication protocols in multiple access channels, and the observation
that protocols such as quadratic backo� may be superior to currently used protocols
such as exponential backo� when the number of stations and/or the overall arrival
rate is large.

2.3. Other models and results.

Most of the work on protocols for communication in multiple access channels has
focused on models for which the number of stations N is in�nite [1, 3, 5, 9, 10, 14,
16]. The attraction for study of in�nite models is clear. On the one hand, the analysis
is simpler since with probability one, no two packets will ever arrive at the same
station, and thus the disposition of packets is e�ectively independent of the station
that transmits them (e.g., each message has its own backo� counter and is never
contained in a queue with something else). On the other hand, there is the argument
that the behavior of a protocol in an in�nite model is re
ective of its behavior in a
real system with a large number of stations.

It has been our experience, however, that in�nite model results often have fairly
limited relevance to �nite systems even when the number of stations is very large.
Indeed, the reason is precisely that queuing plays a major role in any �nite system
(even one with large N), but is nonexistent in the in�nite model. As a striking
example, we note that Kelly proved in [5] that any polynomial backo� scheme is
unstable in the in�nite model. More recently, Aldous [1] extended this result to show
that exponential backo� is also unstable in the in�nite model. Whereas the complete
disposition of exponential backo� in a �nite model still remains unclear, we show that
polynomial backo� is stable for any �nite number of stations. Hence, the behavior of
backo� protocols in in�nite models can be misleading.

The study of in�nite models has some implications for our paper, however. For
example, the techniques used to prove the instability of backo� protocols in the in�nite
model can be used to prove that Ex[Lave] grows at least as a polynomial function of
N in the �nite model. More generally, it appears that a protocol is unstable in an
in�nite model if and only if the value of Ex[Lave] grows as a function of N in the
corresponding �nite model. In fact, we follow this strategy in proving lower bounds
for Ex[Lave] in Section 4.

There has also been a great deal of work on models that require the use of more
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information when computing transmission probabilities. Some models use knowledge
of the number of stations, or try to approximate the number of stations that wish
to transmit by analyzing the past history of the channel activity. Still others try
to resolve con
icts among transmitting stations by using a playo�-type system to
eventually choose a winner. Such schemes tend to be very stable for input rates up to
a �xed threshold (e.g., 1=e) but unstable for larger input rates. For examples of such
models and their analysis see [4, 9, 16] and the references they contain.

As a �nal note, we point out that many protocols can be made stable for any
�xed N and � < 1 by simply allowing a transmitting station to empty its queue before
allowing anyone else to start. Whereas such an approach may be necessary as a last
ditch e�ort, it is not considered desirable since it allows a single station to dominate the
system for a very long time, and since there must be a nontransmission step following
the emptying of every queue. The latter constraint is particularly damaging in practice
since if the protocol is working well, most queues will be very short, and hence the
resulting frequency of nontransmissions is forced to be large (which means the protocol
isn't working well after all). In particular, for large �, we must have Ex[Lave] � 
(N)
for such schemes. Although we prove an even greater asymptotic lower bound on
Ex[Lave] for polynomial backo�, backo� protocols performmuch better experimentally
and are much simpler to implement. In fact, there is some reason to believe that
polynomial backo� schemes perform like queue-emptying protocols during the rare
times when they get into trouble (indeed, this possible behavior is the basis for our
proof of stability), and otherwise behave similarly, but without the need for forced
nontransmission steps.

2.4. Markov chains and their analysis.

The performance of most any protocol can be expressed in terms of the behavior
of an associated Markov chain. For backo� protocols with a �nite number of stations,
we associate every possible con�guration of backo� counters and queues (b;q) =
f(b1; : : : ; bN ; q1; : : : ; qN) j bi � 0; qi � 0 for 1 � i � Ng with a unique state of the
Markov chain. The initial state (or origin or zero) is identi�ed with (0; : : : ; 0). The
associated in�nite Markov chain is time invariant (the transition probabilities do not
change with time), irreducible (every state is reachable from every other state) and
aperiodic (the probability of being in any state at time t is positive if t is su�ciently
large). We will below discuss some properties of Markov chains. For a more detailed
discussion we refer to [8].

A Markov chain is said to be positive recurrent if the expected time to return
to zero Ex[Tret] is �nite. It is said to be transient if the probability of returning
to zero is less than one. Transience is a stronger condition than not being positively
recurrent since any transient chain is clearly not positive recurrent, but not vice-versa.
For example, an unbiased random walk is neither positive recurrent nor transient. We
will also be interested in a third property; namely whether the expected queue size
Ex[Lave] over time is �nite.

In the literature, a system is often said to be stable if it is positive recurrent.
In practical situations, stability more naturally corresponds to the situation when
Ex[Lave] is �nite. Hence, we adopt a hybrid de�nition of stability in this paper. In
particular, we say that a protocol is stable if it satis�es both conditions, and that it
is unstable if it satis�es neither. Although there are hypothetical examples of systems
that satisfy either condition but not the other, the protocols we study either satisfy
both or neither. Hence we will be able to classify protocols as stable in the strongest
possible sense or unstable in an equally strong sense. Of course, there is also the
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possibility of the initial state being transient within the domain of instability. In fact,
we conjecture that our instability results can be extended to prove the initial states is
transient although our techniques do not appear su�cient to prove such an extension.

The predominant method for analyzing the behavior of an in�nite Markov chain
is by means of a potential (or Lyapanov) function. In our case, a potential function
is a map from (ZZ+)2N to ZZ+ such that the origin is mapped to zero and the other
states are mapped to positive integers. Often, the potential function is directly tied to
the measure of concern (e.g., the number of messages held in queues). For example,
we will use potential functions of the form

c1

NX
i=1

qi �
NX
i=1

f(bi)�c2 + c3

for some constants c1 > 0, c2 � 1, and c3.
The key step in proving that a protocol is unstable is to �nd a potential function

for which the expected change in potential is at least � for any state, where � is a �xed
positive constant. This, of course, implies that the expected value of the potential
function after t steps is at least �t. By itself, this is not enough to imply instability.
For example, consider the simple chain where state i moves to state max(i�1; 0) with
probability 3/4 and to state i+1 with probability 1=4, and for which the potential of
state i is e2i� 1. This chain is positive recurrent but the expected change in potential
is always at least 1.

If the potential function is natural enough, however, then such an argument can
be used to prove instability. For example, we will use a potential function of the form

POT(q;b) = C

NX
i=1

qi +

NX
i=1

f(bi)�1 �N

for exponential backo�. If this potential function grows linearly with time, one can
prove that Ex[Lave] diverges and that the system is unstable. We will prove this
formally in Section 5.

The key step in proving that a protocol is stable is to �nd a potential function
for which the expected change in potential is at most �� for all but a �nite number
of states, where � is a positive constant. Once such a potential function is found
for c2 � 1, it can then be shown that the associated chain is positive recurrent. To
prove that Ex[Lave] is �nite one has to study the expected change in POT 2. We will
establish this connection in Section 3.

Unfortunately, it is not clear how to �nd such a potential function for polynomial
backo� protocols. In fact, we suspect that there is no such potential function which
increases monotonically with the qi's and the bi's. Hence, we must follow a somewhat
more complicated approach to prove that polynomial backo� is stable.

In particular, we �nd a potential function for which there is a constant-depth
tree of descendent states (not necessarily all of the same depth) emerging from each
state for which the expected change in potential computed over these states is at most
��. In other words, the potential might be expected to increase in the �rst few steps,
but must decrease overall after some larger (but constant) number of steps. Such an
argument is still su�cient to prove stability since the performance of such a chain is
equivalent (up to constant factors) to the performance of a chain where each tree of
descendent states is replaced by direct transitions from the root to the leaves with the
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appropriate probabilities. The latter chain is then shown to be positive recurrent and
stable by the usual approach.

3. Stability of Polynomial Backo�.

In this section, we show that polynomial backo� is stable under the most general
assumptions. In particular, we prove the following theorem.

Theorem 3.1: Let f(x) = (x+1)�� for any � > 1. Then, for any number of stations
N and any set of arrival probabilities �1; : : : ; �N that sum to � < 1, the backo�
protocol de�ned by f(x) is stable.

The overall strategy of the proof is along the lines described in Section 2.4. In
particular, we de�ne the potential function

POT (q;b) =
NX
i=1

qi +
NX
i=1

(bi + 1)�+1=2 �N

where qi is the length of the ith queue and bi is the value of the ith backo� counter and
q and b are the corresponding vectors. We show that for every state with su�ciently
large potential POT , there is a constant-depth tree of descendent states over which
the expected decrease in POT 2 is at least �POT for some �xed constant � > 0. By a
tree of descendant states we mean the following. Starting at a state q0;b0 we follow
the system step by step. We observe the system and at each time we decide whether
to halt the system or to let it run for another timestep. We always halt the system
within a �nite number of steps. The total sets of halted states naturally form a tree
and the maximal number of steps we observe the system is the depth of the tree.
Standard theorems establishing convergence (see [8]) does not seem to apply to this
situation and hence to prove Theorem 3.1, we need the following lemma.

Lemma 3.2: Suppose that there are constants �, d and V such that for any state
(q;b) which have potential POT (q;b) � V , there is a tree with depth at most d of
descendent states over which the expected decrease in POT 2 is at least �POT (q;b).
Let TretV denote the time at which the system returns to potential V or less (If
POT (q;b) � V then TretV = 0). Then there is another constant c depending only on
�, d and V for which

Ex[

TretVX
t=0

L(t)j (q0;b0) = (q;b)] � cPOT 2(q;b)

where L(t) denotes the number of items in the system (i.e. total queue length) at time
t.

Proof: We will prove the lemma by induction on time, but we have to be careful since
TretV might be in�nite, a priori. To overcome the subtleties inherent in dealing with
large values of TretV , we de�ne a modi�ed system that is terminated after T steps.
In particular, at time T , the system automatically returns to the origin and remains
there forever. We then examine

E(q;b; T ) = Ex[

min(T;TretV )X
t=0

L(t)j (q0;b0) = (q;b)]
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and proceed by induction on time. For T < 0 we formally de�ne E(q;b; T ) = 0. Our
induction hypothesis is

E(q;b; T ) � cPOT 2(q;b)

for all values of q;b and T .
Provided that c � 1, the hypothesis is true for T = 1, since L(0) � POT (q;b)

and L(1) = 0. In addition, the hypothesis is also true if POT (q;b) � V by de�nition,
since then TretV = 0. We next assume that

E(q;b; T 0) � cPOT 2(q;b)

for all T 0 < T and any q and b, and consider the case when the system is terminated
at time T .

Let the ith leaf of the tree of descendent states appear with probability pi, have
potential POTi, and be at depth di. Also let Li denote the sum of L(t) over di steps
taken to reach the ith leaf. Since at most one item be broadcast at any step, and
L(t) � POT (qt;bt) we can deduce L(t� j) � POT (qt;bt) + j and hence

Li �
diX
j=0

(POTi + j) = (di + 1)POTi +
di(di + 1)

2
:

Thus we can conclude that

E(POT; T ) �
X
i

pi(Li +E(POTi; T � di))

�
X
i

pi((di + 1)POTi +
di(di + 1)

2
+ cPOT 2

i ) �

� (d+ 1)
X
i

piPOTi +
d(d + 1)

2
+ c

X
i

piPOT 2
i :

By the assumption of the lemma we know thatX
i

piPOT 2
i � POT 2(q;b) � �POT (q;b):

A standard convexity argument can be used to show that this implies thatX
i

piPOTi � POT:

Hence,

E(q;b; T ) � (d+ 1)POT (q;b) +
d(d + 1)

2
+ cPOT 2(q;b) � c�POT (q;b):

By choosing c � d+1
� + d(d+1)

2�V , we can then conclude that E(q;b; T ) � cPOT 2(q;b),
which concludes the induction.

We have now proved that

Ex[

min(T;TretV )X
t=0

L(t)j (q0;b0) = (q;b)]] � cPOT 2(q;b)
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for any T , where the constant c does not depend on T . Assume for the purposes of
contradiction that

Ex[

TretVX
t=0

L(t)j (q0;b0) = (q;b)]] > cPOT 2(q;b)

for some state (q;b). Then there would be a �nite T for which

Ex[

min(T;TretV )X
t=0

L(t)j (q0;b0) = (q;b)]] > cPOT 2(q;b)

which is a contradiction. Hence

Ex[

TretVX
t=0

L(t)j (q0;b0) = (q;b)]] � cPOT 2(q;b)

as claimed. �
Next we have.

Lemma 3.3: Any system that satis�es the hypothesis of Lemma 3.2, and for which
states with potential less than V can only move to states of potential at most O(V )
is stable.

Proof: We use Theorem 14.0.1 of [8]. Let us state this theorem in our vocabulary.

Theorem [14.0.1 from [8]] Given a Markov chain on a denumerable set which is
irreducible and aperiodic and let f � 1 be a function on its statespace. Then the
following conditions are equivalent:
(i) The chain is positive recurrent with invariant probability measure � and the

expected value for f with respect to � is �nite.
(ii) There exist a �nite set C of states such that

sup
(q;b)2C

Ex[

TretCX
t=1

f(qt;bt)j (q0;b0) = (q;b)] <1

where TretC > 0 is the time needed for the chain to return to C after step 0.

Lemma 3.3 follows from this theorem. We use f to be total queue length and
C to be the set of states with potential at most V . Then condition (ii) follows from
Lemma 3.2 and the conclusion of Lemma 3.3 is then given by (i). �

For polynomial backo� protocols with constant N and �, the potential of the
system can increase by at most a constant factor at each step. Hence the condition
of Lemma 3.3 that states with potential less than V be constrained to move to states
with potential O(V ) is easily satis�ed. Polynomial backo� protocols also satisfy the
conditions of Lemma 3.2, although this is much harder to verify. In fact, the bulk
of this section will be devoted to establishing the hypothesis of Lemma 3.2. The
analysis is divided into four cases, depending on the magnitude of the transmitting
probabilities associated with the state. To this end let us de�ne

pi =

8<
:
�i if bi = 0 and qi = 0
1 if bi = 0 and qi > 0
(bi + 1)�� if bi > 0
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to be the probability that the ith station attempts a transmission. The four cases are
then

I) 8i bi � B,

II) 9i bi � B and 8i pi < 1,

III) 9i bi � B, 9i pi = 1, and there exists another i with pi � 1
M , and

IV) 9i bi � B, 9i pi = 1, and for all other i, pi � 1
M .

The values of B and M are constants to be de�ned later. Throughout, we will assume
that POT (q;b) � V where V is another large constant to be determined later.

In what follows it will be convenient to let Q+
i (Q�i ) denote the expected increase

(decrease) in the potential due to changes in the length of the ith queue. We de�ne B+
i

and B�
i in an analogous way, and we let Q+ =

PN
i=1Q

+
i , and de�ne Q�, B+ and B�

analogously. We use Ex[X ] denote the expected value of random variableX and �(P )
to denote the amount change in the quantity P . For example, the expected change
in potential will be written as Ex[�(POT )]. Lastly, we refer to the ith station as Si.
All these quantities are dependent on the present state (q;b) but due to readability
considerations, we will not make this dependence explicit.

We analyze the cases in order of their di�culty. Case I is by far the most di�cult
and is saved for last. We start with Case II.

Case II:Without loss of generality we can assume that 8i pi < 1; b1 � B and bi � b1
for i > 1.

We consider a single step of the system and analyze �(POT 2). By de�nition,

Ex[�(POT 2)] = Ex[�(POT 2)jS1 succeeds]Pr[S1 succeeds]

+Ex[�(POT 2)jS1 does not succeed]Pr[S1 does not succeed]:
When S1 succeeds the potential decreases by at least

(b1 + 1)�+
1
2 �N � 1

2
(b1 + 1)�+

1
2

if B � 10N . This in turn, corresponds to a decrease in magnitude for POT 2 of at
least

(b1 + 1)�+
1
2POT � 1

4
(b1 + 1)2�+1 � 1

2
(b1 + 1)�+

1
2POT

since POT � 1
2 (b1 + 1)�+

1
2 by de�nition.

The probability of S1 succeeding is at least

(b1 + 1)��
NY
i=2

(1� pi) � (1� �)2�N (b1 + 1)��:

Thus the �rst term in the expression for Ex[�(POT 2)] is at most

�1

2
(1� �)2�N (b1 + 1)

1
2POT:

To estimate the second term, we use �Q+ � N , �Q� � 0 and �B� � 0 to
obtain

Ex[�(POT 2)jS1 does not succeed]Pr[S1 does not succeed]
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� Ex[�(POT 2)jS1 does not succeed]
� Ex[(POT +N +�B+)2]� POT 2

� N2 + 2N � POT + 2(POT +N)Ex[�B+] +Ex[(�B+)2]

where �B+ is conditioned on the fact that S1 does not succeed. Note that this does
not mean that S1 tried and failed, since S1 probably did not even try. In any event, if
is not di�cult to verify that Ex(�B+) � N and Ex((�B+)2) � N(b1 + 1)��1 +N2.
Plugging in and summing, we �nd that the second term is at most

4N2 + 4N � POT +N(b1 + 1)��1:

Combining the two terms with the inequality POT � (b1 + 1)��1 then gives

Ex[�(POT 2)] � 4N2+4N �POT+N(b1+1)��1�1

2
(1��)2�N(b1+1) 12POT � ��POT

provided that � < 1, POT � N , and

B � cBN222N

(1� �)2

for some constant cB independent of N and �.

Case III: We assume b1 � B; p2 = 1; pj � 1
M ; j 6= 2 and bi � b1 for i > 1.

We will proceed as in Case II, except that here we analyze the expected change
in POT 2 over two steps instead of one. The most desirable scenario is when station
j crashes with station 2 in the �rst step while no station with bi > N attempts, and
station 1 is the only station to transmit at the second step. Call this event E. Then

Ex[�(POT 2)] = Ex[�(POT 2)jE]Pr[E] +Ex[�(POT 2)j:E]Pr[:E]:

The decrease in potential when E happens is at least

(b1 + 1)�+1=2 �M �N�+ 3
2 � 1

2
(b1 + 1)�+1=2

provided B � max(M;N2). The probability of E is at least

1

2
pj

1

(b1 + 1)�

NY
i=2

(1� p0i)

where p0i is the value of pi after the �rst step as prescribed above. Reasoning as in Case
II, we can then conclude that the �rst term is at most � 1

4 (1��)(b1+1)
1
2

1
M 2�NPOT .

We have the same estimates for the second term as in Case II and this gives the
desired conclusion provided that

B � cBN2M222N

(1� �)2

for some constant cB independent of N and �.
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Case IV: We assume p1 = 1; 8i > 1 pi � 1
M .

In the last two cases, we can simplify the analysis for Ex[�(POT 2)] by �nding
bounds on Ex[�POT ] and Ex[(�POT )2] for some tree of descendent states. In
particular, a simple calculation reveals that

Ex[�(POT 2)] = 2POT �Ex[�POT ] +Ex[(�POT )2]

for any set of descendent states and hence, we can prove that Ex[�(POT 2)] � ��POT
by showing that Ex[�POT ] � �� and Ex[(�POT )2] � �POT . We start by bounding
Ex[�POT ]. In this case, we need only consider one step of the system. Proceeding
as in Cases II and III, we �nd that Q+

i = �i,

Q�1 � (1� 1

M
)N�1 � 1� N

M
;

B+
i �

�
O( NM ) if i = 1
O(M�1=(2�)) if i > 1

and B�
i = 0. Hence

Ex[�POT ] � �� 1 +
N

M
+O(NM�1=(2�)) � ��

provided that � < 1, � < 1��
2 and

M � cMN2�

(1� �)2�

for some constant cM independent of N and �.
To �nish the argument we estimate Ex[(�POT )2] as follows:

Ex[(�POT )2] � 4Ex[(�Q+)2] + 4Ex[(�Q�)2] + 4Ex[(�B+)2] + 4Ex[(�B�)2]

� 4N2 + 4 +O(
N

M
+NM1�1=�)

� �POT

for POT � V where V � cV
� N

2M and cV is a constant that is independent of N and
�.

Case I: 8i bi � B.

We will proceed as in Case IV. In particular, the bulk of the proof is devoted to
showing that Ex[�POT ] � ��. Afterwards, we observe that Ex[(�POT )2] � �POT .

By making V to be large enough (the exact value will be determined later) and
noting that if POT � V , we can assume that qN � V

N � (B + 1)�+1=2 and bN � B
without loss of generality. In other words, the Nth queue is very large, and accounts
for a good proportion of the overall potential.

The key to the proof is to show that with some not-too-small probability, the Nth
station e�ectively dominates the channel for a very long time, thereby substantially
reducing its massive queue and dramatically lowering the overall potential function. In
particular, we show that there is a not-too-small probability that SN is always the sole
next station to broadcast after any collision. This is the hard part of the argument.
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Once this is done, we �nish up by showing that there aren't too many collisions over
time and that not too many packets arrive over time. Of course, we must be sure to
check that things can't get too bad if the Nth station ever does lose control.

To prove that we have a small probability of the Nth station staying in control we
will �rst study what happens to a system of N � 1 stations when we assume that all
transmissions fail. This is essentially the situation when the Nth station never loses
control.

Lemma 3.4: Consider an isolated system where a single station advances from level i
to i+1 with probability i�� and otherwise remains at level i. Suppose the initial level

of the station is between S and B. Then with probability exceeding 1� O
�
2�c

p
S
�
,

the station reaches level b (for any b � S) within time 6�b�+1, and the station moves

from level b to b+ 1 after time b�+1

4e�+1 for any b � 2B.

Proof: Without loss of generality, we assume that the station starts at level S for
the �rst part of the proof, and that it starts at level B for the second part. To avoid
duplication of e�ort in the proof, we will use R to denote either S or B.

We start by computing the probability Pr[b; t] that the transition from b to b+1
is made at step t. This probability is precisely

Pr[b; t] =
X

tR + � � �+ tb = t� r
tj � 0

0
@ bY
j=R

(1� j��)tj j��

1
A

where r = b+ 1�R and tj denotes the number of steps that started and ended with
the station in level j for R � j � b. Using the identity 1� x � e�x and simplifying,
we �nd that

Pr[b; t] �
bY

j=R

1

j�

X
tR + � � �+ tb = t� r

tj � 0

e
�
P

b

j=R
tj=j

�

Since

bX
j=R

tj = t � r and tj � 0 for R � j � b, it is clear that

bX
j=R

tj
j�

� t� r

b�
.

Hence

Pr[b; t] � (R� 1)!�

b!�
e�(

t�r
b� )

0
BBBBB@

X
tR + � � �+ tb = t� r

tj � 0

1

1
CCCCCA

� (R � 1)!�er=b
�

b!�et=b�

�
t
r

�
� R�R��e�ber=b�trer

b�be�R��et=b�rr
� e(�+1)rer=b

�
tr

b�ret=b�rr

=

�
e�+1te1=b

�

b�ret=rb�

�r
In order to bound the behavior of this function, it is most useful to let � = t

b�r .
Then

Pr[b; t] �
�
e�+1e1=b

�
�

e�

�r
:
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For large or small constant values of �, the preceding expression is very small. In
particular, for � � 1

2e�+1 ,

Pr[b; t] �
�

e1=b
�

2e1=2e�+1

�r
� 1

2r

assuming b� � 2e�+1 which will always be true since b � R. There are at most b�r
2e�+1

values of t � b�r
2e�+1 . Hence, the probability that we progress from b to b + 1 before

step b�r
2e�+1 � b�+1

2e�+1 is at most

b�r

2e�+12r
� b�+12R

2e�+12b
� O

�
b�+12R

2b

�

and thus with R = B; b � 2B we have established the second part of the lemma.
For � � 6�, the bound is at most�

6�e1=b
�
e�+1

e6�

�r
� 1

2r
:

This is small for r �
p
S. For smaller r we need to observe that � = t

b�r �
p
S for

t = 6�b�+1, b � S and r � p
S and in this case we use the bound

Pr[b; t] �
�
e�+1e1=b

�
�

e�

�r
� e�c

p
S

for some constant c. Moreover the bound forms a geometric series for � � 6�, and
thus the probability that the transition from b to b+ 1 is made after step 6�b�r is at
most O(2�c

p
S) for r � p

S and for r � p
S we have the bound

O

�
b�r�

2r

�
� O

�
b�+12R

2b

�
:

Summing over b again gives a geometric series, and for r � p
S we get the total

estimate
1�O

�
2�c

p
S
�
;

and the �rst part of the lemma is also established. �
Lemma 3.4 can be immediately extended to hold for N � 1 isolated stations

simultaneously by simply adding the failure probabilities. In other words, the result
holds for N � 1 stations simultaneously with probability exceeding 1�O(N2�c

p
S).

Having established how the rest of the system behaves if the Nth station remains
in control, we next look at the chances that the Nth station does maintain control.

Lemma 3.5: Suppose SN collides with another station at time T and backs o� to
bN = 1. Then the probability that SN will transmit successfully before any other
station attempts a transmission is at least 1� 2�

PN�1
i=1 pi.

Proof: Let W =

N�1Y
i=1

(1� pi) be the probability that none of the �rst N � 1 stations

try to send on a given step. Then the probability that the Nth station continues to
maintain control after the collision is at least

2��W + (1� 2��)2��W 2 + (1� 2��)22��W 3 + � � � =
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2��W
1� (1� 2��)W

=
W

2� � (2� � 1)W
:

Replacing W with 1� �, we observe that the probability of maintaining control is at
least

1� �

1 + �(2� � 1)
� 1� 2�� :

Hence the probability of not regaining control at the next transmission is at most

2�� = 2�(1�W ) � 2�
N�1X
i=1

pi

since

W =

N�1Y
i=1

(1� pi) � 1�
N�1X
i=1

pi;

and the lemma follows. �
We now use Lemmas 3.4 and 3.5 to prove that SN has a not-too-small proba-

bility of remaining in control for a very long time. The basic idea is that SN keeps
successfully transmitting until a collision occurs, whereupon it regains control before
anyone else attempts to transmit. We will consider two kinds of collisions. The �rst
involves collisions with stations that have backo� counters of size S or larger, and the
second involves a collision with stations that have backo� counters of size less than S.
There is also the possibility of both kinds of collisions happening simultaneously, but
we will rig things so that this does not happen. By this we mean that the good set of
events in which SN remains in control this will not happen.

Collisions of the �rst kind are nice because the behavior of stations with backo�
counters of size S or larger are governed by Lemma 3.4. Collisions of the second kind
are nice because there are not very many of them, provided that we never allow the
�rst N � 1 stations to transmit successfully. In what follows, we consider sequences
of events for which the Nth station always maintains control by directly blocking
transmissions for other stations. We will show that no matter what times are chosen
for the attempted transmissions of stations with small backo� counters, there is a
not-too-small probability that everything works as we hope.

To start things o�, we consider the probability that SN succeeds in the �rst or
second step. For this to happen we need SN to broadcast at the �rst step to block
anybody else from succeeding. We also keep anyone else from broadcasting at the
second step so that SN can succeed and establish control. This sequence of events
happens with probability at least


(B��(B + 1)��(1� �)2�N ):

Henceforth, we will consider only sequences that started in this fashion, and thus have
bN = 0 at step 3.

Next de�ne �
 to be the set of times (excluding steps 1 and 2) that one of the
N �1 �rst stations would have made an attempt to transmit with backo� counter less
than S if all its previous transmissions would have failed. Our argument will allow any
possible con�gurations of �
 , observe only that by de�nition that j�
 j � (N�1)S. We
partition �
 into k � (N � 1)S maximal intervals I1; I2 : : : Ik of con�guration steps,
and we de�ne Ti to be the step following Ii for 1 � i � k. By de�nition, Ti 62 �
 for
1 � i � k. Lastly set �0
 = �
 [ fTij1 � i � kg.
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At each step of �0
 we will require that SN attempts a transmission, and that each
station with backo� counter S or larger does not attempt a transmission. This will
insure that stations with small backo� counters never succeed, and that SN regains
control after a collision with any such station. Provided that the Nth station otherwise
retains control (i.e. that bN � 1 before each Ii), the probability that these forced moves
actually take place is at least

(2NS)!��(1� S��)2N2S � 1

2
(2NS)!��

provided that S � (4N2)
1

��1 . The (2NS)!�� factor is a gross underestimate on the
probability that SN transmits at all the desired times (which could all be bunched
together in one large interval), and the (1� S��)2N2S factor accounts for the proba-
bility that the stations with large backo� counters do not attempt to transmit at all
the desired times.

The preceding analysis accounts for collisions with stations that have small backo�
counters. To account for stations that have large backo� counters, we apply Lemmas
3.4 and 3.5. In particular, we let Et denote the event \At time t, SN collides with
another station, backs o� to bN = 1 and does not regain control by being the next
station to send". If SN loses control Et must happen for some t. We need only analyze
what happens outside �0
 , so SN will only compete with stations with large backo�
counters. We have by Lemma 3.5

Pr[Et] � 2�

0
@X
bi�S

(bi(t) + 1)��

1
A

2

� 2� (N � 1)
X
bi�S

(bi(t) + 1)�2�:

Where the second inequality follows by Cauchy-Schwartz inequality.
We next need to sum Pr[Et] over t 62 �0
 . To bound this probability, we will

assume that the conclusion of Lemma 3.4 holds at time t but not necessarily at any
future time, so as to avoid conditioning of the probabilities. We also have to be careful
to note that the value of bi(t) depends on then Si �rst had a backo� counter of size
S, but otherwise is governed by Lemma 3.4. Combining these observations gives

X
t62�0


Pr[Et] � 2�(N � 1)
X
t 62�0


X
bi�S

(bi(t) + 1)�2�

� 2�(N � 1)

N�1X
i=1

X
t62�0
 ;bi(t)�S

(bi(t) + 1)�2�

� 2�(N � 1)2
1X
t=1

 
max

 
S;

�
t

6�

� 1
�+1

!!�2�

� 2�(N � 1)2

 
6�S�+1

S2�
+

1X
t=6�S�+1

�
t

6�

��2�
1+�

!

� cN2S1��;

assuming that the conclusion of Lemma 3.4 holds.
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Although we still have many details to check, we are essentially done with the
hard part of the analysis. In what follows we consider descendent states with depth
at most U +2NS where U +2NS � qN . In particular, we are interested in sequences
of descendent states for which the following conditions hold:
1) every backo� counter is at most O(U1=(�+1)),
2) SN successfully broadcasts for all but O(NU1=(�+1) logU +NS) steps,
3) the number of new messages arriving overall in the �rst T steps is at most �T +

2NS + U1=2 logU for all T � U , and
4) SN gains control in the �rst 2 steps and maintains control thereafter (i.e. that

the conditions described in the previous discussion are satis�ed).
We �rst note that if all of these conditions hold for U steps, then we will have

experienced a tremendous decrease in the potential function. This is because at
least U � O(NU1=(�+1) logU) messages are successfully transmitted, at most �U +

U1=2 logU + 2N2S arrive, and each backo� counter adds at most O(U
�+1=2
�+1 ) to the

potential. Hence, the decrease in potential is at least

(1� �)U �O(NU
�+1=2
�+1 + U1=2 logU +N2S) =

(1� �)U �O(NU
�+1=2
�+1 )

which is large for large U .
We next note that the probability that all of these conditions hold for U steps is

not-too-small. This follows naturally form the proceeding analysis and Lemmas 3.4
and 3.5. In particular, the probability of gaining control in the beginning is


(B�2�(1� �)2�N ):

Given that SN gains control by the method described at the beginning, and that
bN � 1 at steps before Ii (1 � i � k), the probability of having things go as planned
for steps in �0
 is 
((2NS)!��). Given that things have gone well at the beginning
and during the previous steps of �0
 , the probability of not violating Lemma 3.4 nor
having SN otherwise lose control is at least

1�O(N2�c
p
S +N2S1��):

The �rst term comes from Lemma 3.4 and the second comes from Lemma 3.5 and
the above calculation. Thus we have calculated the probability of 4) holding. The

probability of violating the �rst condition is O

�
2�cU

1
2(�+1)

�
by Lemma 3.4. If the

�rst condition is satis�ed and SN remains in control we know that there are at most
O(NU1=(�+1)+NS) collisions in the U steps. The time for the SN to try to send again
after each collision is at most a logU with probability 1�O �(NU1=(�+1)(1� 2��)a logU

�
.

This is very small for a = 2�+1. Since the next attempted transmission will always

be successful with probability 1 � O
�

N2

S��1

�
, we can conclude that the Nth station

successfully transmits on all but O((NU1=(�+1) + NS) logU) steps with probability

1�O
�

N2

S��1 +
N
U

�
. Hence with this probability condition 2 is satis�ed. The last con-

dition is easily veri�ed to hold with probability 1�O(1=U) by standard arguments.
Putting all the probabilities together, we �nd that all desired conditions hold with

probability exceeding


(B�2�(1� �)2�N (2NS)!��)(1�O(N2�c
p
S +N2S1�� +

N

U
))
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� 
(B�2�(1� �)2�N (2NS)!��)

for U � cUN and S � cSN
2

��1 .
Note that we have multiplied probabilities of success instead of adding probabil-

ities of failure at two crucial points of the analysis. The �rst place we do this is at
the beginning when we force SN to gain control right away. Since later probabilities
are conditioned upon this happening, multiplication of success probabilities for the
�rst two steps and later steps is appropriate. The second place we multiply success
probabilities is when we combine the probabilities that things work well during �0

with the probability that things work well outside �0
 . Although these probabilities
are not completely independent, the dependence is minimal and works in our favor.
This is formally argued as follows.

Let �i;t and ��i;t be random numbers drawn uniformly and independently from
[0; 1] for 1 � i � N and 3 � t � U + 2NS. The value of ��i;t will be compared with
�i to decide it the ith station gets a new packet at time t, and �i;t will be compared
with bi(t)�� to decide if the ith station tries to transmit at the tth step. Note that
the values of bi(t) depend on previous values of �i;t and ��i;t for various i's and t's, but
that the �- values are mutually independent.

For each Si, examine the values of �i;t and ��i;t for 3 � t � U +2NS to determine
the steps (if any) at which Si would try to transmit with backo� counter less than S
under the assumption (not the knowledge) that all attempts are blocked. Accumulat-
ing these values for 1 � i � N � 1 determine the time steps contained in �0
 . Note
that the selection of steps that are in �0
 is independent of values of �i;t and ��i;t for
i such that i = N or Si has a backo� counter of size S or larger at step t under the
assumption that all previous attempts have been blocked. Moreover, the remainder
of this argument will not depend in any way on what steps were selected for �0
 .

We now analyze the probability that �i;t and ��i;t are as we would hope for t 2 �0

and i such that i = N or Si has a large backo� counter. In particular, we want SN to
try to broadcast for all t 2 �0
 and we do not want stations with a large backo� counter
to try to transmit at any step t 2 �0
 . As argued before, the �-values satisfy these
demands with probability 
((2NS)!��) provided only that bN � 1 at the beginning
of each Ii, 1 � i � k. In addition, we can have at most N2S new arrivals during �0
 ,
and SN is thwarted from broadcasting for at most NS steps during these times.

We next consider the �i;t and ��i;t values for t 62 �0
 and i such that i = N or Si
has a large backo� counter. To simplify the argument, we �rst consider the behavior
of the system as in �0
 did not exist. In this scenario, we can apply Lemmas 3.4 and
3.5 and the analysis that followed to conclude that with probability 1�O(N2�c

p
S +

N2S1��+ N
U ), the values for �i;t and �

�
i;t make the system perform exactly as desired.

In other words, the values of the large backo� counters are regulated by Lemma 3.4,
SN never loses control, new packets do not arrive too fast, etc. Note that we add the
probabilities of failure in this context, since the various modes of failure in the isolated
system might be dependent. Also note that stations with small backo� counters are
guaranteed not to attempt a transmission during these steps by the de�nition of �0
 .

Since the values of �i;t and ��i;t for t 2 �0
 and t 62 �0
 are independent we can
conclude that all of the above constraints on the �- values are satis�ed with probability


((2NS)!��)(1�O(N2�c
p
S +N2S1�� +

N

U
)):

Of course, we still must show what values of �i;t and ��i;t that satisfy these constraints
actually produce the desired sequence of events when we interleave steps in �0
 with
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steps not in �0
 in the correct order. Once this is accomplished, we are done since we
will have shown that with probability exceeding


((2NS)!��)(1�O(N2�c
p
S +N2S1�� +

N

U
))

the system behaves as claimed.
The proof that the real system behaves well if the �i;t and ��i;t values satisfy

the proceeding constraints proceeds by induction over t. The base case t = 2 was
already established. We then consider what happens at some time t � 3, assuming
that previous moves in the real system were essentially identical to moves of the
corresponding steps of the isolated systems. If t 2 �0
 , then we can be assured that
bN � 1 before the interval Ii that contains t, and thus that SN broadcasts and that
stations with big backo� counters do not broadcast. Hence, stations with small backo�
counters are blocked and their behavior continues to agree with the assumptions that
were used to de�ne �0
 . Hence the de�nition of �0
 as describing when stations with
small backo� counters attempt to broadcast remains valid. This is precisely what
we want to have happen. For t 62 �0
 , then the system behaves exactly as it does
in the scenario when we ignored �0
 because the activity in �0
 has no e�ect on any
of the large backo� counters, and because stations with small backo� counters are
guaranteed not to try anything by the de�nition of �0
 . The only possible di�erence is
that bN could be lowered from 1 to 0 by including some steps of �0
 . The only e�ect
of making bN = 0, however, is to start SN broadcasting sooner. By the constraints,
we know that SN will be the next station to transmit anyway, so starting o� sooner
only increases the number of successful transmissions without otherwise changing that
state of the system. Hence the behavior of the combined system is virtually identical
to its behavior during �0
 and outside �0
 when considered in isolation, provided that
the constraints on the � values are satis�ed.

The formal justi�cation that events go well with the claimed probability is now
complete. All that remains is to bound the possible increase in the potential function
should any of these conditions fail. Note that no matter what the reason for failure, all
the conditions held in the previous step by assumption. Hence the most we could have

added to the potential function because of the counters is O(NU
�+1=2
�+1 ). Similarly, the

most we could add (net) because of the queues is O(U1=2 logU + NU1=(�+1) logU).

Hence, the worst increase we could su�er is O(NU
�+1=2
�+1 ).

Putting everything together, we �nd that there is a tree of descendent states with
depth at most U for which the expected decrease in potential is at least


(B�2�(1� �)2�N (2NS)!��)
�
(1� �)U �O(NU

�+1=2
�+1 )

�
�O

�
NU

�+1=2
�+1

�

� 
(B�2�(1� �)2U2�N(2NS)!��)�O
�
NU

�+1=2
�+1

�
:

By selecting

U =

�
cU2NNB2�(2NS)!�

(1� �)2

�2�+2

for some constant cU independent of N and �, we get Ex[�POT ] � ��.
To complete the proof of Theorem 3.1, we need only observe that Ex[(�POT )2]

does not cause any problems since all the �POT are of order U , and if we choose
V = 
(U3) we are done.
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Remark: Let us just point out that there is no problem in determining our constants.
The reason is that our conditions can be summarized as follows.

M � f1(�;N)
B � f2(�;N;M)
S � f3(�;N)
U � f4(�;N;B; S)
V � f5(U;B)
Here fi are the explicit functions given in the proof.

4. Lower Bounds on Ex[Lave].
The analysis presented in Section 3 reveals that Ex[Lave] is at most P ((1� �)�1) 2Q(N)

where P and Q are polynomial functions. We do not know whether or not the de-
pendence on N can be made polynomial. The main di�culty in proving a polynomial
upper bound in N by extending our methods lies in analyzing the probability that a
station will grab control of the channel and empty its queue.

We can prove nontrivial lower bounds on Ex[Lave], however. In particular, in
this section we show that for a wide range of backo� functions the expected number
of nonempty queues over time is linear in the number of stations. For many backo�
functions, this fact will imply that Ex[Lave] grows superlinearly in N .

We will assume that all stations have probability �
N of getting a message at

each timeslot. This is a reasonable assumption since if the arriving messages are very
unevenly distributed among the stations, the system would in reality be a system with
fewer than N stations. On the other hand, small deviations from this assumption can
be handled.

Let us start by giving an outline of the ideas of this section. The basic tool will
be to establish a connection between our �nite model and the in�nite model brie
y
discussed in Section 2.3. We will not prove that the models behave in the same way,
but rather that the proofs of instability in the in�nite model extend to give lower
bounds in our �nite model. Before we can make this precise, however, we need a more
formal de�nition of the in�nite model.

In the in�nite model, there is a countably in�nite number of stations and no
station ever gets two messages. The total number of messages that arrive to the
system at a given time t is assumed to be Poisson distributed with mean �. Each
station behaves exactly in the same way as in the �nite model. Since there are never
two messages in any station, it is convenient to talk of the system as if each message
had its own backo� counter. We next review some results for the in�nite model.

Assume for the moment that the system is continuously externally jammed (i.e.,
that no transmissions are successful), and that a message arrives at time 1. De�ne
h(x) to be the probability that an attempt is made to transmit this message at time

x. For example Ex[h(x)] = �(x�
�

(�+1) ) if f(b) = (b+ 1)��. Let

H(�) =

1X
t=1

 
1 + �

tX
x=1

h(x)

!
e��

P
t

x=1
h(x):

We will say that a backo� function has property H� if there exist �0 such that � > �0
and H(�0) is �nite. Using this notation we have the following theorem due to Kelly
[5].

Theorem:(Kelly [5]) Consider the in�nite model and any backo� function satisfying
property H�. Then expected number of successful transmissions up to time T is
bounded by a constant independent of T , when the arrival rate is �.
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It is not too di�cult to check that essentially any function which grows slower
than any exponential function has property H� for any � > 0. In particular, this is
true for any polynomial backo� function. The previous theorem does not apply to
f(b) = 2�b for � < ln 2, however. In this case we need to rely on the following almost
equally strong theorem.

Theorem: (Aldous [1]) consider the in�nite model and f(b) = 2�b, � � ln 2. Then
for any a > 1� �

ln 2 the expected number of successful transmissions up to time T is
o(T a).

It will help to provide a brief outline for the proofs of these theorems. Let the
mass m(t) of the system at time t be de�ned by m(t) =

P
i f(bi). A fact which

underlies most of the analysis is that the probability of a successful transmission is
bounded above by (� +m(t))e1�m(t). An easy calculation shows that this is true in
both the �nite and in�nite models.

Using this fact we can now give the idea behind the proofs. Within constant
expected time, due to many messages arriving within a short time interval, the mass
will exceed K for some large given constant K. Once this happens, the probability
of success is small, and the messages that arrive to the system are not successfully
transmitted, which implies that the mass increases even more, and so on.

To get a connection between the in�nite and �nite models, we will forget any
message that is not an active message (i.e., �rst in its queue).

When we disregard messages which are not active, the �nite model behaves in a
similar way to the in�nite model as long as the number of stations with empty queues
remains at least cN . The only di�erences are
1) after a successful transmission, an additional new active message might appear

in the �nite model, due to the fact that the station in question has a queue of
length 2 or more, and

2) the distribution of the number of arriving active messages is not constant over
time in the �nite model (it depends on the number of stations with empty queues)
and is not Poisson (it is a sum of binomials instead).
Although these di�erences are substantial, for the most part they tend to just

make the behavior of the �nite system worse than its in�nite counterpart as long as
xe(t) = 
(N), where xe(t) is the number of empty queues in the �nite system at time
t. In particular we can establish the following key property.

Lemma 4.1. Suppose that xe(t) � cN in an N -station system with arrival rates
�i � �

N . Then there a constants K�;c and d�;c such that within expected time K�;c

there is a point in time t0 such that m(t0) � d�;c such that for every t

m(t0 + t) �
�
d�;c log t for f(b) = 2�b

d�;ct
1

�+1 for f(b) = b��

or xe(t0 + s) � cN for some s 2 [1; t]

Proof sketch. Let us �rst take care of the case f(b) = 2�b. Lemma 4.1 describes
the mechanism that Aldous [1] uses in his proof. We will not repeat the proof here
but just describe how to take care of the di�erences. Aldous uses two key lemma one
which states that there are not too many successful transmissions (lemma 3) and one
which states that there are many new arrivals (lemma 4). In our situation the proof of
his lemma 3 goes through virtually without change. To prove the equivalent of lemma
4 one needs to take care of the di�erences described above. Di�erence 1) only helps
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us since it provides extra arrivals. To take care of di�erence 2) observe that what is
needed is an estimate that much fewer messages arrives than expected. But since by
our assumption on the number of empty queues and the arrival rates the expected
value is high and the probability of getting only a fraction which is 7

9 of the expected
value is exponentially small also in our case.

The case f(b) = b�� is easier and can be taken care of in two ways, either by
imitating Aldous proof or by extending Kelly's proof to show that the expected number
of transmissions before xe(t) � cN is a constant. The di�erences in the two models
are taken care of in a similar way. �

De�ne

Xe(T ) =
1

T

TX
t=1

xe(t)

to be the average number of empty queues over time. We use Lemma 4.1 to bound
Ex[Xe(T )].

Theorem 4.2: Let f(b) = b�� or f(b) = 2�b. Then for any c > 0 E(Xe(T )) �
cN + o(N), for T � dc;�N .

Proof: Let c0 = c
2 . We know by lemma 4.1 that if xe(t) � c0N then within constant

expected time the system will reach a state withm(t) � �10 log c� and remain this way
until xe(t) � c0N . Once the mass is this large successes happen with probability � c�

2 .
Since a message arrives in an empty queue with probability at least c� the number
of empty queues will constitute a biased random walk. Furthermore the probability
of not going into a high mass situation within time i is bounded by 2�ki for some
k > 0. This implies that if xe(0) � c0N then for any t > 0 Pr[xe(t) � c0N + i] � 2�ki
again with k > 0. If on the other hand xe(0) > c0N the probability that xe(t) remains
greater than c0N for time dN for some large d is less than 2e�d0N . This follows since
with probability e�d0N the system will enter the state prescribed by lemma 4.1 before
time d

2N and the probability that the biased random walks stays above xe(t) � c0N
is e�d0N . From then on the previous case applies. In either case we know that for any
t � dN the probability that xe(t) � cN is � e�d0N and this proves the theorem. �

Having established that on the average we have a linear number of nonempty
queues, we now look at the length of these queues.

Lemma 4.3: If the system is stable and f(b) = 2�b or f(b) = b��, then, for su�ciently
large N , a fraction c� of the time xe(t) � 2N

3 and m(t) � R�.

Proof: To have a stable system with total arrival rate �, the probability of success
has to be � �

2 at least a fraction �
2 of the time. This implies that m(t) � R at least �

2

of the time where R is a constant depending on �. Furthermore, whenever xe(t) � 2N
3 ,

by lemma 4.1 within constant expected time m(t) will exceed R and stay that way for
time at least cN . Thus the fraction of the time for which m(t) < R and xe(t) � 2N

3
is bounded by c

N and the lemma follows. �
Lemma 4.4: If f(b) = (b + 1)��, � > 1, then a fraction c� of the time there are


(N
�+1
� ) messages in the queues.

Proof: We know by Theorem 3.1 that the system is stable and thus every state S
of the system has a probability Pr(S) associated which is the relative frequency with
which the system is in state S. We know thatX

S;m(S)�R;xe(S)� 2N
3

Pr(S) � c�:
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For any state in the above sum there are 
(N) queues whose backo� counters are at

least d�N
1
� . De�ne station i to be unusual if

�b�+1
i

4N(�+1) > qi and bi � d�N
1
� where d�

is a constant to be determined. Say that any point in time is unusual if at least
p
N

of the stations are unusual. Using Lemma 3.4 it follows that the fraction of unusual
points in time is exponentially small. Thus the states S which are not unusual and
have m(S) � R and xe(S) � 2N

3 have total probability � c0 for N � N�. But any

such state has 
(N) stations each with 
(N
1
� ) long queues and the lemma follows. �

Lemma 4.4 immediately implies the following lower bound on Ex[Lave].

Theorem 4.5: If f(b) = (b+ 1)��, then Ex[Lave] � 

�
N

�+1
�

�
.

For quadratic backo�, this means that Ex[Lave] � 
(N
3
2 ).

5. Instability of Exponential Backo�.

In this section, we prove instability results for binary exponential backo�. We
will prove two results; one which is exact and the other asymptotic. Let us start by
stating the exact result.

Theorem 5.1: Suppose binary exponential backo� is used and the arrival rate at
every station is �

N where � > �0 +
1

4N�2 and �0 � 0:567 is the solution to �0 = e��0 .
Then the system is unstable.

To prove the result, we use the potential function

POT = C

NX
i=1

qi +

NX
i=1

2bi �N:

The best choice for C will turn out to be 2N � 1.
For any state in the system, we will show that the potential function is expected

to increase by at least a �xed amount (independent of the state) during the subsequent
transition. This will enable us to prove Theorem 5.1.

The proof requires the use of the following simple lemma.

Lemma 5.2: If 0 � �i � 1 for 1 � i � m, then

mY
i=1

(1 + �i) � 1 +

mX
i=1

�i

and
mY
i=1

(1 + �i) � 2

mX
i=1

�i :

Proof: The �rst inequality is obvious from expansion of the product and the nonneg-
ativity of the �i's. The second inequality follows from the observation that

mY
i=1

(1 + �i)�
mX
i=1

2�i �
mY
i=1

(1� �i) � 0

since �i � 1 for 1 � i � m. �
In the proof, we let M denote the number of stations with a nonzero back-

o� counter. Without loss of generality, we can assume that b1; : : : ; bM 6= 0 and



26 johan h�astad and tom leighton and brian rogoff

bM+1; � � � ; bN = 0 where 0 � M � N . Note that if bi 6= 0, then qi 6= 0 since
there must be some message that failed in its most recent attempt to transmit. In
addition, the queues in all but one of the stations M +1; : : : ; N must be zero. This is
because any station with bi = 0 and qi 6= 0 must have successfully transmitted during
the last step. Hence we divide our analysis into two cases, depending on whether or
not qM+1 = 0.

Case I: b1; : : : ; bM 6= 0; bM+1; � � � ; bN = 0; qM+1; : : : ; qN = 0; 0 �M � N .

We start with some additional notation. As in Section 3 we let

pi =

�
2�bi for 1 � i �M
�i for M + 1 � i � N

be the probability that the ith station attempts to transmit where �i =
�
N is the

probability that a new message arrives at the ith station. Let

T =
NY
i=1

(1� pi)

be the probability that none of the N stations attempts to transmit a message. In
addition, the probability that none of f1; : : : ; i � 1; i + 1; : : : ; Ng try to transmit is

T
(1�pi) .

We also de�ne

�i =
pi

1� pi
; R =

NY
i=1

(1 + �i) and S =

NX
i=1

�i :

Note that 1 + �i is
1

1�pi , so RT = 1. Also note that 0 � �i � 1 for 1 � i � N since

bi � 1 for 1 � i �M and �i =
�
N � 1

2 for N � 2.

We let Q+
i ; Q

�
i ; B

+
i , and B

�
i denote the same quantities as in Section 3 and since

expectations sum, we have

Ex[�POT ] =

NX
i=1

Q+
i �

NX
i=1

Q�i +

NX
i=1

B+
i �

NX
i=1

B�
i :

It is easily seen that Q+
i = C�i for 1 � i � N . Since the ith station transmits

successfully with probability T�i, we can also easily conclude that Q�i = CT�i for

1 � i � N . Since the ith station crashes with probability
�
1� T

1�pi

�
pi, the value of

B+
i is �

1� T

1� 2�bi

�
2�bi � 2bi = 1� T (1 + �i)

for 1 � i �M , and �
1� T

1� �i

�
�i = �i � T�i

for M + 1 � i � N . Finally, we note that

B�
i =

T

1� 2�bi
2�bi(2bi � 1) = T
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for 1 � i �M , and that B�
i = 0 otherwise.

Summing these values over 1 � i � N ,we �nd that

Ex[�POT ] = C�� CTS +M �MT � TS +

NX
i=M+1

�i �MT

= C�+M +

NX
i=M+1

�i � T [(C + 1)S + 2M ] :

Hence Ex[�POT ] � � if and only if

R(C�� � +M +

NX
i=M+1

�i) > (C + 1)S + 2M :

Substituting C = 2N � 1 and � � 1
2 +

1
2C + �

C , we need only check that

R(N +M) � 2NS + 2M

in order to verify that Ex[�POT ] � � for any � > 0. This inequality easily follows
from Lemma 5.2 since if S � 1, we use the facts that R � 2S and R � 2, and if S � 1,
we use the facts that R � 1 + S and N �M .

Case II: b1; : : : ; bM 6= 0; bM+1; : : : ; bN = 0; qM+1 6= 0; qM+2; : : : ; qN = 0; 0 � M <
N .

In this case, we are guaranteed that station M + 1 will attempt a transmission.
The probability that it is successful is

W =

MY
i=1

(1� 2�bi)
NY

i=M+2

(1� �i) :

The analysis for the Qi's and Bi's is similar to Case I. In particular, Q+
i = C�i,

Q�i =
n
CW for i =M + 1
0 otherwise

B+
i =

(
1 for 1 � i �M
1�W for i =M + 1
�i for M + 2 � i � N

and B�
i = 0 for 1 � i � N . Summing these values, we �nd that

Ex[�POT ] = C�� CW +M + 1�W +

NX
i=M+2

�i :

Thus Ex[�POT ] � � if and only if

C�+M + 1 +

NX
i=M+2

�i � (C + 1)W + � :
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This is just a calculation and we defer it to the appendix.

Having established that we have an expected increase in potential each step let
us see how we can use that to establish Theorem 5.1. There are general conditions
under which increase in potential implies instability (see for instance [14]). However
to verify these conditions require a fair amount of additional work and we believe that
a direct proof is more illuminating.

Let us �rst prove that the expected waiting time is in�nite over time.

Lemma 5.3: At time T the expected waiting time for a newly arrived message is �T
for some positive constant �.

A message that arrives at Si has expected waiting time at least qi+2bi the reason
being that expected time before the �rst message in the queue is sent is 2bi and then
at most one message can be sent per time step. The probability of an arriving message
arriving at Si is at least

�
N if we assume that the expected number of arrivals per time

step is less than 1 (otherwise the theorem is trivial). Thus the expected waiting time
is at least

�

N

NX
i=1

(qi + 2bi) � 1

4N2
POT:

Since the expected value of the potential is 
(T ) we are done. �
Thus we have established that the expected waiting time and hence the expected

queue size gets arbitrarily large as time goes by. Let us proceed to prove that the
recurrence time is in�nite.

Suppose we start at state where all queues are empty. We want to prove that the
expected time to return to this state is in�nite. We know that in time T the expected
potential �T . As an extension of this we �rst establish that for some constants c and
d it is true that with probability at least c the potential is at least dT . The essential
lemma towards establishing this is:

Lemma 5.4: For any b � dlogT e the probability that i'th backo� counter has reached

b in time T is bounded by 2�(
b�dlog Te

2 ).

Proof: There must have been b � dlogT e increases in the backo� counter after it
reached dlogT e. There are

�
T

b� dlogT e
�
� T b�dlog Te

(b� dlogT e)!

possible ways to choose the time slots where these increases could happen. For any
�xed choice of these time slots the probability that the backo� counter would increase
at these time slots is at most

b�1Y
i=dlog Te

2�i � T�(b�dlogTe)2�(
b�dlog Te

2 ):

Multiplying out the lemma follows. �
Next we prove:

Lemma 5.5: With probability at least c the potential at time T is at least dT .

Proof: Let S denote a state of the system and consider the following claim:
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Claim: There is a constant D such that

X
S;POT (S)�DT

Pr[S]POT (S) � �

2
T:

Before establishing the claim let us see how the lemma follows. SinceE(POT (S)) �
�T the claim implies that

X
S;POT (S)�DT

Pr[S]POT (S) � �

2
T:

But this clearly implies that Pr[POT (S) � �T
4 ] � �

4D .
Thus we only have to establish the claim. Suppose D > 4N2. Since no queue

can be longer than T , the contribution from the queues to the potential is bounded
by 2N2T . Thus for the potential to exceed DT it is necessary that 2bi � DT

2N for some
i. Using that in this case the contribution to the potential from the queue lengths is
bounded by the contribution from the backo� counters we get the estimate

NX
i=1

X
S;bi(S)�bj(S);j 6=i;POT (S)�DT

Pr[S]POT (S) � N

1X
b=dlog DT

2N e
2N2bPr[b1 = b] �

2N2

1X
b=dlog DT

2N e
2b�(

b�dlog Te
2 ) � 4TN2

1X
i=dlog D

2N e
2i�(

i
2) � �

2
T

for D > D�. �
Now we are ready for the �nal part of the proof of Theorem 5.1. From Lemma 5.5

it follows that with probability at least c
T the potential reaches at least dT before it

returns to 0. Observe that the expected time to return from potential P to potential
0 is at least P

2N . This follows from looking at the largest backo� counter or the longest
queue. Using this we get

Ex(return time) � 1

2N
Ex(Maximum potential before return)

=
1

2N

1X
i=1

iP r[Max pot = i] =
1

2N

1X
i=1

Pr[Max pot � i] �
1X
i=1

cd

2Ni
:

However this last sum diverges and we have proved Theorem 5.1. �
Using the results for Section 4 we strengthen Theorem 5.1 slightly in an asymp-

totic sense.

Theorem 5.6: Suppose binary exponential backo� is used and the arrival rate at
every station is �

N where � � c where c > 1
2 . Then the expected recurrence time is

in�nite for N > Nc.

Proof: Since the proof of Theorem 5.6 is almost identical to that of Theorem 5.1 we
will only point out the modi�cations needed.

We will be working with the same potential function and will again show that
the potential is expected to increase. However in this case we are sometimes forced



30 johan h�astad and tom leighton and brian rogoff

to consider more than one step of the system to obtain the desired increase. We use
the same cases as in the proof of Theorem 5.1. Observe �rst that in Case I we only
needed � � 1

2 +
1
2C + �

C to obtain the expected increase. Since C > N this bound is
< c for N > Nc and � < 1.

To handle Case II will require some work. We get two subcases depending on the
number of stations with empty queues. Lemma 5.7 takes care of the �rst case.

Lemma 5.7: For c > 1
2 there is a constant dc, 0 < dc < 1 such that if � dcN queues

are nonempty the expected increase in potential is > �.

Proof: We know by the analysis in Case II of Theorem 5.1 that the expected decrease
if M stations have empty queues is given by

g(M) = 2N�+ (M + 1)

�
1� �

N

�
� 2N

�
1� �

N

�N�M�1
:

To prove that g(M) is positive in the claimed interval we proceed as before by es-

tablishing that g(N) > 0, g(dcN) > 0 and �2

�M2 g(M) < 0. Since the �rst and last
condition was taken care of in the proof of Theorem 5.1 we only need to establish the
second condition. It is easy to see that g(dcN) > 0 for su�ciently large N and � = c
i�

~g(dc; c) = 2c+ dc � 2e�c(1�dc) > 0

But, since ~g(dc; c) is a continuous function in c and dc and ~g(1; c) > 0 the lemma
follows. �

To take care of the case of many empty queues we have.

Lemma 5.8: Let � � c > 1
2 , then there is a constant Kc such that if xe(t) � dcN

then the expected change in potential over the next Kc steps is � �.

Proof: By the previous analysis the expected change in potential in a step is bounded
from below by �hN for some constant h > 0. Let K 0 = min(K2 ;

K
32h ) where K is a

constant such that if xe(t) � (1 � dc)N then the probability that m(t + t0) � 5 for

t0 2 [K 0;K] is � 1� K0

K . Such a constant exist for su�ciently large N by lemma 4.1

applied with c = 1�dc
2 . Consider the system over the next K steps. Observe that if

m(t+t0) > 5 then the expected increase in potential is at least (c� 1
4 )2N . This follows

since the probability of a successful transmission is � 1
4 and the the contribution from

the backo� counters is expected to increase. Let �i be the expected change in potential
in potential at time t+ i. Then

KX
i=1

�i =

K0X
i=1

�i +

KX
i=K0+1

�i �

�hNK 0 + (1� K 0

K
)(K �K 0)(c� 1

4
)2N � hN

K 0

K
(K �K 0) �

NK(
1

8
� 2

32
) � NK

16
:

This concludes the proof of lemma 5.8.

Using Lemmas 5.7 and 5.8 we know that the expected increase of potential over
T steps is � �T for some constant �. We go from large expected potential to in�nite
recurrence time as was done in Theorem 5.1 and this completes the proof of Theorem
5.6. �
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6. Instability of Linear and Sublinear backo�.

In this section we study linear and sublinear backo� and the goal of the current
section is to prove the following theorem.

Theorem 6.1: If f(b) = (1 + b)��; 0 < � � 1 is used as a backo� function then for
any � > 0 and N > N� the system is unstable.

As before we derive our result by using a potential function. In this case we use

POT = N
3
2

NX
i=1

qi �
NX
i=1

(bi + 1)�+1:

We will �rst analyze the expected change in one or two steps. We do this by
establishing a series of lemmas, and we start by giving some facts which are needed
in several places. Let s be the number of nonempty queues. Let Psuc denote the
probability of success. Then

Psuc =

�
1� �

N

�N�s sX
i=1

(1 + bi)��
Y

j�s;i6=j
(1� (bj + 1)��)

+

�
1� �

N

�N�s�1
(N � s)�

N

sY
j=1

(1� (bj + 1)��)

As in previous sections we need the expected change in the two components of
POT . Observe that B+ corresponds to the increase in POT and hence the decrease
of
PN

i=1 b
2
i . By straightforward analysis we have

Q+ = �N
3
2

Q� = PsucN
3
2

B+ =

�
1� �

N

�N�s sX
i=1

(1 + bi)��((bi + 1)�+1 � 1)
Y

j�s;i6=j
(1� (1 + bj)��)

B� =

sX
i=1

(1+bi)��
�
1� (1� �

N

�N�s Y
j�s;i6=j

(1� (1 + bj)��))((bi+2)�+1�(bi+1)�+1)+

(N � s)�

N

0
@1� (1� �

N
)N�s�1

Y
j�s

(1� (1 + bj)��)

1
A

B� will not play any signi�cant role in the analysis and the reason for this is the
following fact:

Fact 1: B� � 4N

This follows from
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B� =

sX
i=1

(1+bi)��
�
1� (1� �

N

�N�s Y
j�s;i6=j

(1� (1 + bj)��))((bi+2)�+1�(bi+1)�+1)+

(N � s)�

N

0
@1� (1� �

N
)N�s�1

Y
j�s

(1� (1 + bj)��)

1
A

�
sX
i=1

(1 + bi)��((bi + 2)�+1 � (bi + 1)�+1) +
(N � s)�

N
� 4s+N � s � 4N

using (x+1)�+1�x�+1

x� � (�+1)(x+1)�

x� � (�+ 1)2� � 4. The �rst inequality follows from
taking the maximal value of the derivative and the last follows from � � 1.

Let us next take care of the easy case of estimating the change in potential.

Lemma 6.2: If Psuc <
�
2 then �POT � �

3N
3
2 for N > N�.

Proof: We have

�POT � Q+ �Q� �B� � �N
3
2 � �

2
N

3
2 � 4N � �

3
N

3
2

for N > N�. �
In the future let c� be an arbitrary constant whose values depends on �. We

will assume that the value of c� may change from line to line and thus 2c� � c� is a
valid inequality. We are now considering Psuc � �

2 and observe that this implies thatPs
i=1(bi + 1)�� + (N � s) �N � K�, where K� is a constant close to � log�. Next we

have

Lemma 6.3: If bi > 0 for 1 � i � s and Psuc � �
2 then �POT � c�s2 �N

3
2 � 4N .

Proof: The main contribution to the increase of the potential this time will come
from B+.

B+ = (1� �

N
)N�s

sX
i=1

b1+�i

(1 + bi)�

Y
j�s;i6=j

(1� (1 + bj)��)

� c�

sX
i=1

b2�i
(1 + bi)�

� c�s2

.
The �rst inequality comes from

Ps
i=1(bi+1)��+(N �s) �N � K� and the second

inequality follows from H�olders inequality since

s

2
�

sX
i=1

b�i
(bi + 1)�

�
sX
i=1

b�i
(bi + 1)

�
2

1

(bi + 1)
�
2
�
 

sX
i=1

b2�i
(1 + bi)�

! 1
2
 

sX
i=1

1

(1 + bi)�

! 1
2

and again using that the last sum is bounded. The lemma now follows since Q� � N
3
2

and B� � 4N . �
Finally we must take care of the case when b1 = 0 and Psuc � �

2 .
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Lemma 6.4: If b1 = 0 and bi > 0 for 2 � i � s and Psuc � �
2 then �POTtwo steps �

c�s2 � 2N
3
2 � 8N .

Proof: The increase will come from B+ in the case when a collision appears at step
1. The probability of collision at step 1 is

1�
�
1� �

N

�N�s sY
i=2

(1� (1 + bi)��)

� 1�
sY
i=2

(1� (1 + bi)��) � c�

sX
i=1

(1 + bi)��

since
Ps

i=2(1 + bi)�� � K�.
If we have a collision at step 1 then by the proof of Lemma 6.3 at step 2 B+ �Ps

i=1 c�
b2i
bi+1

. The value of bi might have increased but since
b2i
bi+1

is increasing in bi
this would only make the inequality stronger. Thus the total expected increase in B
over the two steps is at least

 
c�

sX
i=1

(1 + bi)��
! 

c�

sX
i=1

b2�i
(1 + bi)�

!
� c�s2

4
:

Here we used the calculation done in the proof of Lemma 6.3. By the same estimates
for Q� and B� as in the proof of Lemma 6.3 the lemma follows. �

Finally we will combine these results and with the aid of the results of section 5
obtain the instability of inverse backo�.

Lemma 6.5: Let the system be at any state at time t. ThenE
�
POT (t+ N

10 )� POT (t)
� �

c�N
5
2 . for su�ciently large N .

Proof: Observe that be the previous lemmas whenever s > cN
3
4 the expected increase

per timestep in the potential is 
(N
3
2 ). To prove the lemma we need only establish

that with high probability s � cN
3
4 during most of the interval. We have two cases.

Remember that s = N � xe(t).
Case 1 xe(t) � 4N

5 . Since at most one queue can become empty at each timeslot the
number of nonempty queues remains large during the entire interval.

Case 2 xe(t) � 4N
5 . By Lemma 4.1 it follows that for any r � N

4
5 , Pr[xe(t + r) �

N � �r
2 ] � O(N� 4

5 ). The reason being that to have many empty queues either there
has been many successful transmissions or not too many messages have arrived. The
probability of the �rst event is small by Lemma 4.1 and the second probability is easily
seen to be exponentially small. Using this be get:

E

�
POT (t+

N

10
)� POT (t)

�
�

N
10X
r=1

�POT (t+ r) �

N
4
5 � (�N 3

2 ) +

N
10X

r=N
4
5

�POT (t+ r) � �N 23
10 + c�N

5
2 � c�N� 4

5N
5
2 � c�N

5
2

and the lemma follows. �
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Having established that the potential is expected to increase we now prove the
theorem 6.1. Observe �rst that to prove that the expected queue size gets unbounded
over time is trivial since the total queue size is always at least POT

N
3
2
. We establish

in�nite expected recurrence time in the same way as in section 5. To make the same
argument go through we only have to establish the lemma below.

Lemma 6.6: Assume that N > N
 then there are constants c and d such that for
each T , the probability that the potential at time T is at least dT is bounded from
below by c.

Proof: The expected potential at time T is �T . On the other hand

POT � N
3
2

X
qi � N

5
2T:

Thus Pr[POT > �T
2 ] � �T

2N
5
2
. �

Now the same argument as in Section 5 completes the proof of theorem 6.1. �
Remark Observe that in the proof of instability in the case of f(i) = 2�i we added
a function depending on the backo� counters to the potential while in the case of
f(i) = (i + 1)�1 we subtracted a function. This re
ects a basic fact, namely that in
the exponential case we back o� too far while in the inverse case we back o� too little.

7. Experimental Results.

We have simulated several backo� protocols for several di�erent values ofN and �,
and with di�erent initial conditions. The experiments were done rather for exploratory
reasons rather than a scienti�c investigation (with careful design and analysis of the
experiments use of strong pseudorandom number generators etc.). We present here
some of the results when the system starts with all empty queues. The values presented
are for Lave as computed over 10 million steps of the system. Each station was assumed
to have arrival rate �=N where � varied between 0:1 and 0:8 and N varied between
2 and 300. We emphasize that we have only done one experiment for each set of
parameter values and we have not done any careful analysis of the data. Thus we
leave it to the reader to interpret the data in any way. We also encourage the reader
to design a careful experiment to evaluate the various protocols in practice. We think
this would be of great interest.

Table I

Observed values for Lave after 10 million iterations of linear backo�.

N; � 0:1 0:2 0:3 0:4 0:5 0.6 0.7 0.8

2 0.02 0.12 0.44 1.4 5.5 24 97 420
5 0.03 0.24 1.1 9.0 1:3 � 105 6:4 � 105 1:1 � 106 1:6 � 106
10 0.04 0.29 1.9 2:8 � 105 7:8 � 105 1:3 � 106 1:8 � 106 2:3 � 106
30 0.04 0.35 4:4 � 105 9:3 � 105 1:4 � 106 1:9 � 106 2:4 � 106 2:9 � 106
100 0.04 3:7 � 105 9:2 � 105 1:4 � 106 1:9 � 106 2:4 � 106 2:9 � 106 3:4 � 106
300 0.04 6:8 � 105 1:2 � 106 1:7 � 106 2:2 � 106 2:7 � 106 3:2 � 106 3:7 � 106

Table II
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Observed values for Lave after 10 million iterations of quadratic backo�.

N; � 0:1 0:2 0:3 0:4 0:5 0.6 0.7 0.8

2 0.04 0.31 1.4 6.5 26 79 230 810
5 0.06 0.51 3.1 26 160 610 1800 5800
10 0.07 0.55 3.6 51 840 19000 1:3 � 105 3:8 � 105
30 0.07 0.55 3.6 470 3:8 � 105 8:7 � 105 1:4 � 106 1:9 � 106
100 0.07 0.52 3.5 3:4 � 105 8:4 � 105 1:3 � 106 1:8 � 106 2:3 � 106
300 0.07 0.53 3.5 7:0 � 105 1:2 � 106 1:7 � 106 2:2 � 106 2:7 � 106
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Table III

Observed values for Lave after 10 million iterations of exponential backo�.

N; � 0:1 0:2 0:3 0:4 0:5 0.6 0.7 0.8

2 0.15 0.62 3.3 460 2:3 � 105 6:4 � 105 1:1 � 106 1:6 � 106
5 0.17 0.99 180 98000 5:1 � 105 7:1 � 105 1:2 � 106 1:7 � 106
10 0.17 0.99 96 1:4 � 105 3:5 � 105 7:6 � 105 1:2 � 106 1:7 � 106
30 0.17 1.0 1200 1:4 � 105 4:9 � 105 8:3 � 105 1:3 � 106 1:8 � 106
100 0.17 .95 610 1:8 � 105 5:1 � 105 9:3 � 105 1:4 � 106 1:9 � 106
300 0.17 0.80 120 1:9 � 105 5:6 � 105 1:0 � 106 1:5 � 106 1:9 � 106
8. Remarks.

A natural question is for what backo� functions can we prove Theorem 3.1. We
believe that it can be extended to any natural backo� function f(x) for which

Z 1

x=1

f(x)dx <1

and
d

dx
[f(x)�1] << f(x)�1 :

Not that by integrating the second condition implies

f(x)�1 <<
Z x

b=1

f(b)�1 :

The �rst condition is necessary for proving that some station can dominate the chan-
nel for a long interval without ever losing control. Note that this condition is not
satis�ed for linear backo�, but is satis�ed for more rapid backo� protocols. The sec-
ond condition is necessary to argue that the expected bene�t from decreasing a large
backo� counter outweighs the expected damage from backing o� the counter further.
It is also necessary to insure that the other counters aren't backing o� too far when
one station is dominating the channel. Note that this condition is not satis�ed for
exponential backo�, but is satis�ed for protocols that backo� less swiftly. A candidate
for a potential function to use in such a stability result would be to pick a function
g(x) which grows faster than f(x)�1 but slower than

xX
b=1

f(b)�1

and then use a potential which is roughly

nX
i=1

qi +
nX
i=1

g(bi) :

Based on our analysis, it would appear that the most popular and well studied
protocols are precisely the wrong protocols. The good protocols, it would seem are
the protocols in between.
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Although we have made substantial progress in analyzing the performance of
backo� protocols for communication in multiple access channels, we also leave several
open questions. Most importantly, it would be nice to determine the behavior of
Ex[Lave] as a function of N and 1�� for polynomial backo� protocols. In particular,
it would appear that the upper bounds are most in need of improvement. Once this
is done, it might then be possible to decide which polynomial backo� protocol is best
(i.e., which minimizes Ex[Lave] for a particular � and N).

It would also be nice to completely determine the range of stability for exponential
backo�.
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A. Appendix. We do the calculation omitted is Section 5.
We need to prove that

C�+M + 1 +

NX
i=M+2

�i � (C + 1)W + � :

Where quantities are as de�ned in the beginning of Section 5. Now we must make use
of the fact that �i � �

N for all i. Setting C = 2N � 1, it then su�ces to prove that

(2N � 1)�+M + 1 +
(N �M � 1)�

N

� 2N

�
1� �

N

�N�M�1
+ � :

For � > �0 +
1

4N�2 where �0 = e��0 � 0:567, the preceding inequality holds for any
su�ciently small constant � > 0. To prove this, it is su�cient to show that g(M) > 0
for 0 �M � N � 1 and � > �0 +

1
4N�2 where

g(M) = (2N � 1)�+M + 1 +
(N �M � 1)�

N

�2N
�
1� �

N

�N�M�1

= 2N�+ (M + 1)

�
1� �

N

�
� 2N

�
1� �

N

�N�M�1
:

We can then choose � to be the minimum of g(M) over 0 �M � N � 1.
We can show that g(M) is always positive by proving that g(0) > 0, g(N�1) > 0

and that
d2

dM2
g(M) < 0 for 0 � M � N � 1. The only di�cult part is showing that

g(0) > 0 so we save it for last.
We start by showing that g(N � 1) > 0. This is easy since

g(N � 1) = 2N�+N � �� 2N = �(2N � 1)�N

is positive provided that

� >
N

2N � 1
=

1

2
+

1

4N � 2
:
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We next show that
�2

�M2
g(M) < 0 for 0 �M � N � 1. This is also easy since

�

�M
g(M) =

�
1� �

N

�
+ 2N ln

�
1� �

N

��
1� �

N

�N�M�1
:

and
�2

�M2
g(M) = �2N

�
ln

�
1� �

N

��2�
1� �

N

�N�M�1
:

Lastly, we must prove that g(0) > 0. The argument here is a bit trickier because
we must be careful when bounding the (1� �

N )N�1 term in the expression for

g(0) = 2N�+ 1� �

N
� 2N

�
1� �

N

�N�1
:

We start by observing that

(1� �

N
) = e�

�
N� �2

2N2� �3

3N2����

and thus that

(1� �

N
)N�1 = e �+ �

N� �2

2N+ �2

2N2� �3

3N2+
�3

3N3����

= e��+
�(2��)
2N +

�2(3�2�)

6N2 +
�3(4�3�)

12N3 +���

� e��+
1
2N+ 1

6N2+
1

12N3+���

< e
��+ 1

2N
+ 1

6N2

�
1

1�1=N

�
� e��+

1
2N�1

= e�(��
1

4N�2 )+
1

4N�2

�
�
�� 1

4N � 2

�
e

1
4N�2

�
�
�� 1

4N � 2

�
1

1� 1
4N�2

� �

since � � 1

4N � 2
> �0 and e��0 � �0 for all �0 � �0, and ex � 1

1� x
for 0 � x < 1.

Hence

g(0) � 2N�+ 1� �

N
� 2N� > 0 :


