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Abstract

Given a k-character query string and an array of n strings arranged in lexicographical order,
computing the rank of the query string among the n strings or deciding whether it occurs in
the array requires the inspection of
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characters in the worst case.

1 Introduction

Given n strings, each of k characters, arranged in lexicographical order (i.e., a string precedes a

string from which it di�ers if it has the smaller character in the �rst position in which the two

strings di�er), how many characters must we inspect to determine whether a k-character query

string is present? We assume that the n strings are given in a k � n array and that no extra

information is available. If k is a constant, we can solve the problem with �(log n) character

inspections by means of binary search, and this is optimal; but what happens for larger values

of k? In the presence of preprocessing and extra storage, there are e�cient methods, such

as using a trie, each node of which can be implemented as a weighted tree as suggested by

Mehlhorn [7, Sect. III.6.3], or the su�x array of Manber and Myers [6]; but what if we are given

just the sorted strings?

The question is a basic one; we are simply asking for the complexity of searching a dictionary

for a string, where the common assumption that entire strings can be compared in constant time

is replaced by the assumption that only single characters can be compared in constant time. For
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su�ciently long strings, the latter assumption seems more realistic. At �rst glance the problem

may appear easy|some kind of generalized binary search should do the trick. However, closer

acquaintance with the problem reveals an unexpected intricacy.

Given the relevance of this problem, surprisingly few results have been reported. Hirsch-

berg [4] indicated a lower bound of 
(k + log n) and upper bounds of O(k logn) and O(k +

n) and combined the upper bounds to derive a bound of O(k log(2 + n=k)), all of which

is straightforward. A later publication by the same author [3] mentions a �rst nontrivial

upper bound of O(k log n=log k). Kosaraju [5] gave an algorithm with a running time of

O(k
p
log n+ log n). The only nontrivial lower bound deals with constant factors: Kosaraju [5]

showed that at least roughly logn+ 1
2

p
k log n = O(k + log n) characters need to be inspected.

We determine the exact complexity of the problem, up to a constant factor.

Before formulating our result, we describe two relevant computational problems more for-

mally. For all integers k; n � 1 and all ordered sets �, an instance of the string-ranking problem

of size k � n over the alphabet � is given by a list s; s1; : : : ; sn of n+ 1 strings, each consisting

of k characters drawn from �, such that s1 � � � � � sn, where � denotes the lexicographical

order derived from the order on �. The task is to compute jfj : 1 � j � n and sj � sgj, i.e.,
the rank of s in the multiset fs1; : : : ; sng. An instance of the string-membership problem of size

k � n over � is given by a list of the same form, and the task is to output \yes" if s = sj for

some j 2 f1; : : : ; ng, and \no" otherwise.

The string-membership problem clearly is no harder than the string-ranking problem in the

sense that after solving the latter, we can solve the former after inspecting at most k additional

characters. An algorithm for the string-ranking problem also allows us to determine the indices

of the �rst and last occurrences, if any, of the query string. As implied by our result, stated

below, these problems in fact all have the same deterministic complexity, up to a constant factor.

The logarithm function to base 2 is denoted by \log".

Theorem 1.1 For all integers k � 1 and n � 4 and all ordered sets � of at least two elements,

the solution of instances of size k�n of the string-ranking problem and of the string-membership

problem over the alphabet � requires the inspection of
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characters in the worst case.

As a curiosity we note that for the special case k = �(log n), natural in view of the lower

bound of 
(k + log n), we get a tight bound of

�

�
logn log logn

log log log log n

�
;

which would have been hard to guess in advance.

This paper is based on the two conference presentations [1] and [2]. The proofs given here

are signi�cantly shorter and simpler due to the use of potential functions. All four authors

contributed equally to both upper-bound and lower-bound parts of the paper.

After introducing notation and terminology in Section 2, we provide intuition in Section 3

and prove the upper bound in Section 4 and the lower bound in Section 5. Sections 3, 4 and 5

can be read independently of each other.
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2 Preliminaries

2.1 The leftmost-all-1 problem

To simplify the presentation, we introduce a simpli�ed searching problem called the leftmost-

all-1 problem and demonstrate the upper bound �rst for this problem. For all integers k; n � 1,

the leftmost-all-1 problem of size k � n is the special case of the string-ranking problem of size

k � n obtained by �xing the alphabet to be f0; 1g and the query string to be 1k�10 (i.e., k � 1

1's followed by one 0). We assume an instance of the leftmost-all-1 problem of size k � n to be

given in a k � n matrix I in the following way: For i = 1; : : : ; k and j = 1; : : : ; n, I[i; j] is the

ith character of the jth string; i.e., each string is written vertically from top to bottom, and

the strings are ordered from left to right. The rows and columns of I are numbered from top

to bottom and from left to right, respectively, the number of a row or column also being called

its index. The task is to determine the number of columns in I that contain at least one 0. An

alternative formulation, which gives the problem its name, is that the task is to compute one

less than the index of the leftmost column in I containing the string 1k, or n if there is no such

column. An algorithm for the leftmost-all-1 problem is said to perform a probe when it examines

an entry in I, and we charge the algorithm according to how many probes it performs.

2.2 Surface and fence algorithms

In this subsection we introduce terminology convenient for discussing solutions to the leftmost-

all-1 problem. The terminology is illustrated in Figs. 1 and 2.

Consider an algorithm for the leftmost-all-1 problem that inspects entries in a k � n input

matrix I one by one. Once the algorithm has established that certain positions in I contain 1's,

it may be able to deduce from the sortedness of I and without actual probes that certain other

positions in I must also contain 1's. Speci�cally, let 1 � r � k and 1 � c � n and suppose that

the algorithm has already established that I[i; c] = 1 for i = 1; : : : ; r. Then, clearly, we also have

I[i; j] = 1 for i = 1; : : : ; r and j = c+ 1; : : : ; n. We say that these additional occurrences of 1 in

I are deduced by 1-extension.

If a column in I is known to contain at least one 0 because a 0 was found in the column

itself or in a column to its right, the column and all positions in the column are said to be

rejected ; such a column cannot be the leftmost column containing the string 1k. The rightmost

rejected column is called the 0-barrier ; initially, before any columns have been rejected, we take

the 0-barrier to be an imaginary column of index 0. The remaining positions are classi�ed as

follows: If a nonrejected position is known to contain a 1, either because it was explicitly probed

or by way of 1-extension, it belongs to the matching area|the entries in this area are known to

match those of the string 1k. A nonrejected position outside of the matching area is a surface

position if all positions above it belong to the matching area, and a buried position otherwise.

Of course, each column contains at most one surface position.

For r = 1; : : : ; k, row r is said to be excluded if none of the rows 1; : : : ; r contains a surface

position. The part of an excluded row outside of the rejected columns is known to contain only

1's. If and when when an algorithm for the leftmost-all-1 problem manages to exclude the last

row, it can therefore output the number of rejected columns as its result. As long as at least

one row is not excluded, we de�ne the top row to be the topmost nonexcluded row. Initially,
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Figure 1: Terminology related to surface algorithms.

no columns are rejected and no rows are excluded, row 1 is the top row, all positions in the top

row are surface positions, and all other positions are buried positions.

A surface probe is a probe that inspects the entry in a surface position, and a surface

algorithm is an algorithm all of whose probes are surface probes. We call a surface probe

successful if it returns a 1 (the string probed still matches the string 1k) and unsuccessful if it

returns a 0. The following observations are helpful.

Whenever a surface algorithm �nds a 1 in some position, that position and all positions

above it and to its right subsequently are part of the matching area. If the position containing

the 1 is in the column next to the 0-barrier, the row containing the 1 is excluded and the top

row moves down by one position.

Whenever a surface algorithm �nds a 0 in a particular column, the 0-barrier moves to that

column, and that column and all nonrejected columns to its left are rejected. Since the newly

rejected columns may have contained all surface positions of some rows, this may also cause the

top row to move downwards. The new top row will be either the row in which the 0 was found

or a row below it; the latter happens when the position immediately to the right of the 0 belongs

to the matching area.

It can be seen that at all times during the execution of a surface algorithm, a position above

or to the right of a position in the matching area also belongs to the matching area|we express
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this by saying that the matching area ismonotonic|so that the boundary between the matching

area and the remaining positions forms a \staircase" going down and to the right. The part of

a column contained in the matching area but outside of the excluded rows is called a fence if at

least one position immediately to its left is not part of the matching area (i.e., a fence resides in

a column where the matching area becomes \deeper"). A fence algorithm is a surface algorithm

each of whose probes is a top-row probe, i.e., a probe in the (current) top row, or an extending

probe, i.e., a probe of an entry immediately below an existing fence.

The height of a fence F , denoted jF j, is de�ned as the number of positions contained in F . It

is obvious that every fence is strictly higher than every fence to its left. When a fence algorithm

executes a probe below a fence F , we will say that it attempts to extend F . If the extension

is successful, the height of F usually increases by 1, i.e., the position probed and the positions

belonging to F before the probe form a fence that we identify with F ; two exceptions are noted

below. If the extension is unsuccessful, F and all fences to the left of F (equivalently, shorter

than F ) are excluded, since they are now completely contained in the excluded rows (and in

the rejected columns), while the height of every other fence decreases by the number of rows

excluded.

An exceptional case of a successful extension of a fence F or of a successful top-row probe

that creates F occurs if before the probe, some fence F 0 to the right of F had the same height

as F after the probe; i.e., a \stair" of the \staircase" vanishes. In this case we will say that F

and F 0 merge to create a new fence. We shall frequently need to distinguish between new fences

that result from merges and new fences that result from successful top-row probes (without a

merge or before a merge triggered by the probe); we shall say that the latter fences are created

from scratch.

Another exceptional situation happens when a fence algorithm �nds a 1 in the column next

to the 0-barrier or a 0 in the column immediately to the left of some fence. In either case, no

new fence is created, no merge takes place, one or more rows are excluded, and one or more

fences may be excluded. We call a probe excluding if it causes one or more rows to be excluded.

The gap of a fence F is de�ned as its distance from the 0-barrier, i.e., as cF � cZ, where cF
and cZ are the indices of the column containing F and of the 0-barrier, respectively. Observe

that the gap of every fence is at least 2. The index of a fence is one more than the number of

fences strictly to its right; in other words, the fences are numbered from right to left. The proofs

of both the upper bound and the lower bound associate with each fence F an integer weight ,

denoted kFk. We de�ne the cumulative weight of a fence as the sum of its own weight and the

weights of all fences of strictly smaller index; i.e., if the weights are summed from right to left,

the partial sum obtained for each fence is its cumulative weight.

We will denote by F the (current) list of fences, ordered from left to right. E.g., if F =

(FN ; : : : ; F1), then FN and F1 are the leftmost and rightmost fences, respectively, and 1 �
jFN j < � � � < jF1j. For i = 2; : : : ; N , we call Fi the left neighbor of Fi�1 and Fi�1 the right

neighbor of Fi.

Figure 2 illustrates the various possibilities for a surface probe. Rejected columns and ex-

cluded rows are separated from the remaining positions by double vertical and horizontal lines,

respectively, the matching area is �lled with 1's, and unknown entries that are still of interest

are represented by dark squares. Consider the situation in (a), in which we have two fences:

F1 of height 3 in column 10 and F2 of height 2 in column 7. The six situations in (b){(g)
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show possible results of performing one probe, starting from (a). The contents of the probed

position are circled. (b) shows a successful top-row probe, creating a new fence of height 1

from scratch in column 5. (c) shows an unsuccessful top-row probe in column 5. (d) shows a

successful extension of F2, leading to a merge of F1 and F2. (e) shows an unsuccessful attempt

to extend F2. (f) shows a successful top-row probe in the column next to the 0-barrier; no new

fence is created, but one row is excluded. (g) shows an unsuccessful top-row probe in the column

next to the leftmost fence F2; F2 and the rows that it spans are excluded. Finally, starting from

the situation in (b), (h) shows a successful top-row probe performed when the leftmost fence is

of height 1; the new fence immediately merges with its right neighbor to form a new leftmost

fence.

(a)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1

(b)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

1 1

(c)

1 1 1 1 1 1

1 1 1 1 1 1

0 1 1 1 1 1

1 1 1 1 1

1 1

(d)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

(e)

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 1 1

(f)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1

(g)

1 1 1 1 1

1 1 1 1 1

0 1 1 1 1 1

1 1 1 1 1

1 1

(h)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1

Figure 2: Possible outcomes of a surface probe.
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3 Intuitive sketch

Before delving into the formal arguments, let us try to provide intuition behind some important

parameters used in the proofs of the upper and lower bounds. The reader should keep in mind

that we do not claim to prove anything in this section, but merely to show how one may arrive at

the parameter values of the proofs through plausible reasoning. Exact values of the parameters

and rigorous proofs are given in the remainder of the paper. This section can be skipped without

loss of continuity.

First, fence algorithms do come naturally|and one conclusion of our work is that they are

optimal, up to a constant factor|so let us concentrate on fence algorithms. Since the goal of a

fence algorithm can be viewed as that of excluding all k rows, a natural measure of its progress

is the number of rows that it has managed to exclude so far. Excluding a row comes at a certain

price, however, since, in some sense, all probes of positions in a row become worthless when the

row is excluded. Our main concern therefore will be not to perform too many probes per row, at

least in an amortized sense. A symmetric argument could be made concerning rejected columns

instead of excluded rows, but this appears to o�er less useful insights.

Important properties of a fence algorithm are the number of fences, their spatial distribution,

and their heights. Suppose that we aim for a bound of the form kt, for some value of t. That

is, we wish to spend an average of t probes per row. We must analyze what happens when we

fail to extend a fence. One the one hand, we gain one or more rows, i.e., they are excluded, but

on the other hand we lose probes. We identify two kinds of losses:

1. All fences contained in the excluded rows disappear and thus all probes spent to create

these short fences are now useless.

2. If N fences remain after the row exclusions, N probes per row used in building these fences

are now useless. This suggests that we should keep the number of fences bounded by t.

Let us de�ne some quantities needed to analyze losses of the �rst kind. When creating a new

fence from scratch, it is natural to probe the middle entry of the unknown part of the top row,

that is, to make one step of a binary search for locating the rightmost 0 in that row. Suppose

that we perform more such probes, which all �nd 1's. In e�ect, the new fence moves leftwards

and away from its neighboring fence, while still being of height 1. It is intuitively clear that as

the new fence F moves to the left, it becomes more and more valuable to the fence algorithm.

In order to quantify this, we count the number of binary-search steps used to move F to its

current position and call this number the weight of F , denoted kFk. When two fences merge,

we de�ne the weight of the resulting fence to be the sum of the weights of the two fences from

which it is formed. It can be seen that with this rule, the total weight of all fences can grow to

around log n, but not beyond that.

A second important quantity associated with a fence F is the total number of probes spent

to construct F . We call this the investment in F and denote it by Invest(F ). Investments also

add up when fences merge. Investments di�er from weights in that vertical extensions of fences

are counted in the former, but not in the latter. As a consequence, Invest(F ) � kFk for every

fence F .

As observed above, we want at most t fences, and a natural way to spread the fences is

to make sure that, going from left to right, they are of exponentially increasing weights. If
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weights increase by a factor of a from each fence to the next, then we should have at = logn or,

equivalently,

log a =
log log n

t
; (1)

since the maximum weight of any fence is around log n.

Consider a loss of the �rst kind. As stated above, we choose the weights of the existing fences

to be exponentially increasing from left to right, and it turns out that the same will be true for

the investments in the fences. Hence a constant fraction of the loss is due to the disappearance

of the tallest excluded fence; for simplicity we assume that this is the only loss.

We want the height of a fence to be a function simply of its weight and denote the relevant

function by T . Now consider the situation when we fail to extend a fence F . We gain T (kFk)
rows and lose the investment Invest(F ). To keep the cost of t probes per row, this means that

we need

T (kFk) � Invest(F )=t � kFk=t: (2)

It is natural to assume that it is optimal for the �rst inequality to hold with equality. Under

this assumption, let us analyze the key operation of merging two fences.

Consider two fences F and F 0 that merge, with F 0 to the left of F . The merge is caused by

a number of probes that extend F 0. Assume that before these probes are made, F and F 0 are of
heights T (kFk) and T (kF 0k), respectively, and that tT (kFk) and tT (kF 0k) probes, respectively,
have been invested in them. Furthermore, since the weight of the new fence is the sum of the

weights of the old fences, assume that after its creation it is extended to height T (kFk+ kF 0k).
The extension needs T (kFk+ kF 0k)� T (kFk) probes, so that afterwards the investment in the

new fence will be

t(T (kFk) + T (kF 0k)) + T (kFk + kF 0k)� T (kF 0k):
If we disregard the last term (which turns out to be insigni�cant) and observe that T grows at

least linearly, by Equation (2), we see that this expression is at least (t+1)(T (kFk)+T (kF 0k)).
As the investment in the new fence should be at most tT (kFk+ kF 0k), we obtain the relation

(t+ 1)(T (kFk) + T (kF 0k)) � tT (kFk+ kF 0k):

Combining this with the relation

kFk + kF 0k = (1 + 1=a)kFk;

which expresses the intended meaning of the parameter a, yields

(t+ 1)T (kFk) � tT ((1 + 1=a)kFk)

or

(1 + 1=t)T (kFk) � T ((1 + 1=a)kFk):
Setting T (x) = dxp for arbitrary constants d > 0 and p � 1 + a=t is su�cient to satisfy this

requirement, and choosing

T (x) =
x1+a=t

t

also takes care of the condition of Equation (2).
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Finally, the biggest possible weight of a fence (namely logn) should correspond to the biggest

possible height of a fence (namely k), i.e.,

T (log n) =
(log n)1+a=t

t
= k:

Together with Equation (1), this implies a log a = log(kt=log n). After some simpli�cation, this

and Equation (1) yield suitable values for a and t.

Essentially, the algorithm can be derived from this discussion by de�ning everything precisely

and adjusting a few constants. This is done in the next section.

The lower bound is proved by means of an adversary that keeps track of the investments

made by an algorithm. Whenever the algorithm has not protected its investment by erecting

tall enough fences, the adversary reveals information that makes the algorithm lose part of its

investment at a too high cost. The adversary's actions basically force the algorithm to behave

as the algorithm in the proof of the upper bound, or it will do worse.

4 The upper bound

In this section we �rst describe a fence algorithm that solves the leftmost-all-1 problem using

a number of probes that is within the upper bound of Theorem 1.1. Later, in Section 4.4, we

extend the methods to solve the original string-ranking problem using at most twice as many

probes, where a probe, in the case of the string-ranking and string-membership problems, is the

inspection of a character in the sorted sequence of input strings.

Consider an input I of size k�n, where k � 1 and n � 4 (the condition n � 4 simply ensures

that log log n is well-de�ned and at least 1). We begin by de�ning a number of parameters in

terms of k and n. First,

a =

s
max

�
log

�
k log logn

logn

�
; 4

�
and t =

�
log log n

log a

�
+ 2:

Second, for all real x � 0, take

T (x) =
x1+ea=t

t
;

where e = 2:718 : : : is the base of the natural logarithm function. T maps the set of nonnegative

real numbers to itself, and its derivative T 0 satis�es T 0(x) � 1=t for all x � 1. The only other

properties of T of relevance to us are expressed in the two lemmas below.

Lemma 4.1 T (2 log n) = O(k + logn=log logn).

Proof.

T (2 log n) =
(2 log n)1+ea=t

t
� (2 log n)1+ea log a=log logn � log a

log logn

� 21+2ea log a � log a � log n

log logn
= O

�
2a

2 � log n

log logn

�
:

Since 2a
2 � logn=log logn = k if a > 2, the lemma follows. 2
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Lemma 4.2 Let x, y and � be nonnegative real numbers with 0 � � � 1 and y � x � �y. Then

T (x+ y) � (1 + �a=t)(T (x) + T (y)):

Proof. By the mean-value theorem, e�=e � 1 + �, and therefore

x+ y � (1 + �)y � e�=e � y

and

tT (x+ y) = (x+ y)1+ea=t

� (e�=e � y)ea=t(x+ y)

= e�a=t � yea=t(x+ y)

� (1 + �a=t)yea=t(x+ y)

� (1 + �a=t)
�
x1+ea=t + y1+ea=t

�
= (1 + �a=t)t(T (x) + T (y)):

2

Using the lemma with x = y and � = 0, we obtain the following.

Corollary 4.3 For all x � 0, T (2x) � 2T (x).

4.1 The algorithm

Whenever the fence algorithm to be described performs a top-row probe, it probes in the middle

of the surface part of the top row. More precisely, if the leftmost and rightmost surface positions

in the top row are in columns cL and cR, respectively, the top-row probe is performed in column

b(cL + cR)=2c or in column d(cL + cR)=2e (if cL + cR is odd, either choice is acceptable). It will

be convenient to allow probes below the actual input, i.e., in \row r" for r > k. By convention,

such probes always return 1.

As mentioned earlier, the algorithm associates with each fence F a positive integer, called

the weight of F and denoted by kFk. The target height of F is de�ned as H(F ) = dT (kFk)e.
We say that F is of target height if jF j = H(F ) and below target height if jF j < H(F ).

The algorithm repeatedly performs one probe using the procedure Probe speci�ed below until

all k rows have been excluded and then outputs the number of rejected columns, which is easily

seen to be the correct answer even if �ctitious probes below row k were performed. Upon entry

to the procedure, the notation is assumed to be �xed so that F = (FN ; : : : ; F1) (recall that F is

the list of all fences in the order from left to right).

10



Probe:

if some fence is below target height

then perform an extending probe below the rightmost such fence

else

if N � 2 and kFNk > kFN�1k=a
then perform an extending probe below FN
else perform a top-row probe.

In the interest of succinctness, the description given above does not specify the manipulation

of fence weights. When a new fence is created from scratch, it is given weight 1. When two

fences F and F 0 merge, the resulting fence acquires kFk + kF 0k as its weight. Finally, when

a nonexcluding top-row probe encounters a 0 and N � 1, the weight of the leftmost fence is

increased by 1. No other weight changes take place. In particular, only the leftmost fence ever

changes its weight.

It may be helpful to visualize how a second fence is created by the algorithm. As long as

there is only one fence and this fence is of height 1, the new fence created by a top-row probe

that encounters a 1 immediately merges with the old fence. Informally, the net e�ect can be

viewed as the old fence moving to the left and increasing its weight by 1. When the weight

of the single fence has increased su�ciently for its target height to reach 2, the fence may be

extended beyond height 1, after which a second fence can be created.

4.2 Properties of the algorithm

Lemma 4.4 Suppose that F = (FN ; : : : ; F1) before a probe that extends a fence Fi such that

2 � i � N and kFik � kFi�1k=a before the probe. Then the probe will not cause Fi and Fi�1 to

merge.

Proof. Consider the situation before the probe. Fi is below target height, whereas Fi�1 is

not, since otherwise Fi would not be extended. In particular, T (kFik) � 1. Since a � 2 and

T (x) � 2T (x=2) for all x � 0 (Corollary 4.3), T (kFi�1k) � 2T (kFik) � T (kFik)+1 and therefore

H(Fi�1) > H(Fi). The lemma follows. 2

The following two lemmas are proved together by induction on the number of probes exe-

cuted.

Lemma 4.5 At all times, with F = (FN ; : : : ; F1), kFik � kFi�1k=a � kFi�1k=2 for 2 � i < N .

Lemma 4.6 Every merge combines the two leftmost fences.

Proof. Lemma 4.4 states that if 2 � i < N and kFik � kFi�1k=a before an extension of Fi, then
the extension will not cause a merge. Conversely, if the condition of Lemma 4.5 holds before

a merge that involves the leftmost fence, it will clearly hold afterwards. Since the condition

of Lemma 4.5 is vacuously satis�ed initially, while no fence is ever created from scratch unless

N � 1 or the claim holds even for i = N , it can be seen that the condition must hold at all

times. 2
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Lemma 4.7 At all times, if F = (FN ; : : : ; F1) and 1 � i � j < N , then kFjk � ai�jkFik and

T (kFjk) � 2i�jT (kFik).

Proof. The �rst part of the lemma is obtained by j � i applications of Lemma 4.5. Since

x � y=2 implies T (x) � T (y)=2 for all x; y � 0 (Corollary 4.3), the second part can be proved

in a similar way. 2

Lemma 4.8 At all times, if F = (FN ; : : : ; F1) and N � 2, then kFNk � kFN�1k.

Proof. Initially, the claim is vacuously satis�ed. We show that if it holds immediately before

a probe, then it holds immediately after the probe. Let F = (FN ; : : : ; F1) before the probe.

When a fence is created from scratch, it is given weight 1, and the claim is clearly satis�ed.

An unsuccessful top-row probe may increase kFNk by 1, but is not performed unless N � 1

or kFN�1k � akFNk � kFNk + 1, so that the claim also holds after the probe. Lemma 4.6

states that every merge combines the two leftmost fences. By induction and Lemma 4.5, their

combined weight is bounded by the weight of the right neighbor, if any, of the resulting fence.

In symbols: kFNk + kFN�1k � 2kFN�1k � kFN�2k. Finally, and again using Lemma 4.5, the

claim is easily seen to hold after the exclusion of one or more fences. 2

Lemma 4.9 At all times, with F = (FN ; : : : ; F1),
PN

j=i T (kFjk) � 2T (kFik) for i = 1; : : : ; N .

Proof. Assume that i < N , since otherwise the claim is trivial. By Lemmas 4.7 and 4.8,

T (kFjk) � 2i�jT (kFik) for j = i; : : : ; N � 1 and T (kFNk) � T (kFN�1k). Thus
NX
j=i

T (kFjk) �
0
@N�1X

j=i

2i�j + 2i�N+1

1
A � T (kFik) = 2T (kFik):

2

Lemma 4.10 At all times, with F = (FN ; : : : ; F1), H(Fi)=2 � jFij � H(Fi) for i = 1; : : : ; N�1.

Proof. Initially, the claim is vacuously satis�ed. We show that if it holds immediately before

a probe, then it holds immediately after the probe. Let F = (FN ; : : : ; F1) before the probe.

Consider �rst the upper bound of the lemma, i.e., the claim that only the leftmost fence

can have a height exceeding its target height. By induction and since the weight of a fence

never decreases, when a fence becomes the leftmost fence, because of row exclusions or a merge

or because the fence was just created from scratch, its height will not exceed its target height.

Moreover, once the algorithm starts extending a fence beyond its target height, the fence must be

the leftmost fence, and the algorithm will continue to extend it until an extension is unsuccessful,

a merge takes place, or the algorithm terminates. In all cases, the o�ending fence disappears

before it can acquire a left neighbor.

The other inequality of the lemma states that only the leftmost fence can have a height below

half its target height. Since no other fence is below target height when a new fence is created
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from scratch, while only the leftmost fence can increase its weight, this could be invalidated only

by row exclusions, which decrease fence heights. Before a top-row probe is performed, no fence

is below target height, so that even if the probe excludes one row, the height of every surviving

fence after the probe will still be at least half its target height. Consider therefore a probe that

excludes fences FN ; : : : ; Fi and let j be arbitrary with 1 � j < i � 1. Before the probe, Fi�1
and Fj are both of target height, by the upper bound established above, so that at this time,

by Corollary 4.3 and Lemma 4.5,

jFj j = H(Fj) � T (kFjk) � T (2kFi�1k) � 2T (kFi�1k) � 2(H(Fi�1)� 1) = 2(jFi�1j � 1):

Hence, before the probe, jFij � jFi�1j � 1 � jFj j=2, so that after the probe we still have

jFj j � H(Fj)=2. This holds for all j with 1 � j < i � 1; i.e., the lower bound of the lemma is

satis�ed. 2

The following consequence of the previous lemma and its proof will be useful later.

Corollary 4.11 Immediately before the algorithm performs a probe, every fence strictly to the

right of the position probed is of target height.

Lemma 4.12 At all times, if F = (FN ; : : : ; F1), then for i = 1; : : : ; N , the gap of Fi is at most

2dlog ne+1�wi, where wi =
Pi

j=1 kFjk is the cumulative weight of Fi.

Proof. By induction on the number of probes performed. Since the gap of a fence never

increases, the proof amounts to a simple inspection of the cases in which a fence is created or

its cumulative weight increases.

Consider �rst the case in which a fence F is created from scratch. If F is created without a

right neighbor (i.e., it is the only fence), it has a cumulative weight of 1, and its gap is bounded

by n, so the claim is satis�ed. Immediately after the creation from scratch of a fence F with a

right neighbor F 0, the cumulative weight w of F is one more than the cumulative weight w0 of
F 0, and by the policy of placing new fences created from scratch in the middle of the surface

part of the top row, the gap of F is at most 1=2 plus half the gap of F 0. By induction, therefore,
the gap of F is at most b2dlog ne+1�w0

=2 + 1=2c = 2dlog ne+1�w (recall that the gap of F 0 is at
least 2), and the claim continues to hold.

When two fences merge, the cumulative weight of every fence after the merge is the same as

the cumulative weight of the fence residing in the same column before the merge. Finally, an

unsuccessful top-row probe that increases the weight of the leftmost fence by 1 also reduces its

gap to at most 1=2 plus half the old gap, and the claim continues to hold as above. 2

Corollary 4.13 No weight of a fence ever exceeds dlog ne+ 1 < 2 log n.

Lemma 4.14 The number of fences never exceeds t.

Proof. If at some point more than t fences exist, we can apply Lemma 4.7 with i = 1 and j = t

and derive the following contradiction from the previous corollary:

1 � kFtk � a1�t � kF1k < a�log log n=log a�1 � 2 log n = 2=a:

2
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4.3 Analysis of the number of probes

In this subsection we complete the analysis of the algorithm by showing the number of probes

performed to be O(kt + log n). The approach is simple: We de�ne a potential function � of

the state of the algorithm, initially zero, show that every probe increases � by at least one, and

bound the maximum value of �.

Consider a point in time during the execution of the algorithm at which F = (FN ; : : : ; F1)

and let XC and XR be the numbers of rejected columns and of excluded rows, respectively. The

potential function � has the form � = �1+�2+�3+�4, where �1 = log(n=(n�XC)) measures

the ratio of original columns to remaining columns, �2 = 13tXR is proportional to the number

of excluded rows, �3 =
PN

i=1 jFij is the total height of all fences, and

�4 = 2t �
 
minfT (kFNk); 3jFN jg+

N�1X
i=1

T (kFik)
!
;

taken to be zero if no fences exist. �3 and �4 decompose naturally into contributions by the

individual fences. The contribution of a fence Fi to �3 is its height jFij, and the contribution

of Fi to �4 is essentially 2t times T (kFik). An exception concerns the leftmost fence FN . If the

height of FN is less than one third of T (kFNk), the contribution of FN to �4 instead is 6t times

its height. If and when column n is rejected, �1 becomes unde�ned; since this also causes the

algorithm to terminate without additional probes, it is of no concern to the proof.

Lemma 4.15 Every nonexcluding successful top-row probe increases � by at least 1.

Proof. The probe leaves �1 and �2 unchanged. If it does not cause a merge, it increases �3

by 1 and does not decrease �4. If the probe causes a merge, it leaves �3 unchanged and increases

�4 by replacing the leftmost fence by a fence of the same height whose weight is greater by 1.

Since the leftmost fence was of target height before the probe (Corollary 4.11) and T 0(x) � 1=t

for all x � 1, the increase in �4 is at least 2. In either case, the net increase in � is at least 1. 2

Lemma 4.16 Every successful extending probe increases � by at least 1.

Proof. Even if the probe causes a merge, consider an imagined intermediate situation in which

the fence in question has been extended, but no merge has yet taken place. Until this point,

the probe leaves �1 and �2 unchanged, increases �3 by 1, and does not decrease �4. Overall,

� increases by at least 1, and we are done if no merge happens.

In the rest of the proof we assume that a merge happens and prove that it does not decrease

�. �1 and �2 are not a�ected by the merge. Let F = (FN ; : : : ; F1) immediately before the

merge. By Lemma 4.6, the fences that merge are the leftmost ones, i.e., FN and FN�1. By

Corollary 4.11 and Lemma 4.8, the fences that merge as well as the resulting fence are all of

height jFN j = H(FN�1) � T (kFN�1k) � T (kFNk).
The contribution to �3 +�4 of FN and FN�1 before the merge is at most

2jFN j+ 2t(T (kFNk) + T (kFN�1k)) � 6tjFN j;
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the contribution to �3 +�4 of the fence resulting from the merge is

jFN j+ 2t �minfT (kFNk+ kFN�1k); 3jFN jg;
and no other fence changes its contribution.

If 3jFN j < T (kFNk+ kFN�1k), the merge clearly increases �3 +�4. Otherwise the increase

in � caused by the merge is at least

2t[T (kFNk+ kFN�1k)� (T (kFNk) + T (kFN�1k))]� jFN j:
By Lemmas 4.4 and 4.8, we must have kFN�1k � kFNk > kFN�1k=a. We can therefore apply

Lemma 4.2 with � = 1=a, which shows that � increases by at least

2t

t
[T (kFNk) + T (kFN�1k)]� jFN j:

To see that this is nonnegative, observe that T (kFN�1k) > 1 (since jFN�1j � 2) and therefore

jFN j = dT (kFN�1k)e � 2T (kFN�1k). 2

Lemma 4.17 Every nonexcluding unsuccessful probe increases � by at least 1.

Proof. The probe is a top-row probe and leaves �2 + �3 unchanged. If no fences are present

when the probe is performed, at least half of the remaining columns are rejected, causing �1 to

increase by at least 1 while �4 remains zero. If one or more fences are present at the time of

the probe, the weight of the leftmost fence increases by 1. Since the fence was of target height

before the probe, by Corollary 4.11, an argument as in the proof of Lemma 4.15 shows that this

increases �4 by at least 2, while �1 does not decrease. 2

Lemma 4.18 Every excluding probe causes all nonrejected columns to be rejected or increases

� by at least 1.

Proof. Let F = (FN ; : : : ; F1) immediately before the probe under consideration. Suppose that

the probe leads to the exclusion of m rows, but not to the rejection of all nonrejected columns.

Then the probe does not decrease �1, increases �2 by 13tm and, since there are at most t fences

(Lemma 4.14), decreases �3 by at most tm.

If no fences are excluded and N � 1, jFN j decreases by m and kFik is unchanged for

i = 1; : : : ; N , so that �4 decreases by at most 6tm.

If at least one fence is excluded, let the excluded fences be FN ; : : : ; Fi. By Lemmas 4.9

and 4.10, the contribution to �4 of the excluded fences FN ; : : : ; Fi before the probe was at most

4tT (kFik) � 8tjFij if i < N and at most 6tjFij if i = N , so that their exclusion decreases �4

by at most 8tjFij � 8tm. If i > 1, the contribution of Fi�1 to �4 may also decrease because

Fi�1 becomes the new leftmost fence. Since Fi�1 was of target height before the probe under

consideration, however (Corollary 4.11), this happens only if Fi�1 loses more than two thirds of

its height, in which case its contribution to �4 before the probe was 2tT (kFi�1k) � 2tjFi�1j �
3tm. Altogether, therefore, �4 decreases by at most 8tm+ 3tm = 11tm.

In either case �4 decreases by at most 11tm, yielding a net increase in � of at least 13tm�
tm� 11tm = tm � 1. 2
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Lemma 4.19 As long as at least one column has not been rejected, � = O(kt+ logn).

Proof. As long as at least one column has not been rejected, �1 � logn, and �2 � 13kt. By

Corollary 4.13, the weight of every fence remains bounded by 2 log n. Coupled with the facts

that
PN

i=1 T (kFik) � 2T (kF1k) if N � 1 (Lemma 4.9), that T (2 log n) = O(k + log n=log logn)

(Lemma 4.1), and that t = O(log logn), this shows that �4 = O(kt + log n). In order to

complete the proof by demonstrating that �3 = O(kt+log n), it su�ces, since there are at most

t fences (Lemma 4.14), to show that no fence is ever of height more than dT (2 log n)e. Since

only the leftmost fence can have a height exceeding its target height (Lemma 4.10), this follows

immediately from Corollary 4.13 for all other fences. As for the leftmost fence F , its height is

bounded by 1 or by the height of a nonleftmost fence (that may disappear at the creation of F )

when F is created and whenever it is not the only fence. We �nally observe that the algorithm

never extends a fence whose height is no smaller than its target height if it is the only fence and

conclude that even the leftmost fence can never acquire a height of more than dT (2 log n)e. 2

Lemma 4.20 The total number of probes performed by the algorithm is O(kt+ logn).

Proof. Since � = 0 initially, the claim follows immediately from Lemmas 4.15{4.19. 2

We can conclude

Theorem 4.21 For all integers k � 1 and n � 4, leftmost-all-1 problems of size k � n can be

solved by a fence algorithm using

O

0
@ k log log n

log log (4 + k log log n
log n )

+ k + logn

1
A

probes in the worst case.

4.4 String ranking

In this subsection we extend the algorithm for the leftmost-all-1 problem to solve the original

string-ranking problem using at most twice as many probes. The upper bound of our main

result, Theorem 1.1, follows from Theorem 4.21 and Lemma 4.22 below.

Lemma 4.22 For all integers k; n;m � 1, if there is a surface algorithm that solves instances

of size k � n of the leftmost-all-1 problem using at most m probes, then there is an algorithm

that solves instances of size k � n of the string-ranking problem using at most 2m probes.

Proof. Let I and s be the input matrix and the query string, respectively, and denote by si the

ith character of s, for i = 1; : : : ; k. We derive a k�n matrix I 0 from I as follows: First, for each

column of I that coincides with s, the corresponding column of I 0 contains 1's in every position.

Now assume that 1 � c � n and that column c of I di�ers from s in at least one position and

let r be the smallest row index with I[r; c] 6= sr. Then we set I 0[r; c] = 0 if I[r; c] < sr and

I 0[r; c] = 2 if I[r; c] > sr, and all other entries in column c of I 0 are set to 1. It can be seen that
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I 0 is sorted, and that the task is to compute the number of columns in I 0 that do not contain

a 2.

With the understanding that each occurrence of 2 is to be considered equivalent to a 1, a

convention that again preserves sortedness, we can run a process AL that executes the given

surface algorithm for the leftmost-all-1 problem on the input I 0. This computes the number of

columns containing a 0, which is not what we want. On the other hand, we can instead run

a \mirrored" process AR that also executes the given surface algorithm, but interchanging the

roles of left and right, < and >, and 0 and 2 (in particular, AR considers 0 to be equivalent to 1).

This process will indeed compute the number of columns that do not contain a 2 or, rather, n

minus that number.

There is a catch, however, namely that it is not clear how to produce the input I 0 before
starting AR without using too many probes. Instead, AR must be able to convert the outcome

of each of its probes in I to the corresponding entry in I 0 without performing additional probes.

This takes a little care and requires us to execute both AL and AR in an interleaved fashion.

Let us consider the situation from the perspective of AL. Since AL is a surface algorithm,

initially it has no di�culty converting the entries read in I to the corresponding entries in I 0,
the reason being that in each column, it probes from the top towards the bottom. When about

to exclude one or more rows, however, AL runs into a problem. Outside of the rejected columns,

the rows of I 0 to be excluded are known to contain only characters that AL considers to be

equivalent to 1, namely 1's and 2's, and AL will assume that all such characters are in fact 1's.

However, any occurrence of a 2 changes the interpretation of a 0 that may later be discovered

further down in the same column, and therefore AL may later convert entries of I incorrectly

to ones of I 0 if it excludes a row containing 2's. Whenever AL is about to exclude a row, it

therefore needs help. In complete symmetry, AR can run until it is about to exclude one or more

rows, at which point, since the rows of I 0 to be excluded might contain 0's, AR needs help.

Now consider a situation in which both AL and AR are blocked and waiting for help and let

rL and rR be the indices of the topmost rows about to be excluded by AL and AR, respectively.

Also let zL and zR be the indices of the 0-barriers of AL andAR, respectively. Assume inductively

that up to the present point, none of the two processes has ever excluded a row of I 0 with a

position containing an entry di�erent from 1 and rejected by neither AL nor AR. Also assume

that AL and AR are modi�ed so that whenever one of the processes wants to query a position

that has been rejected by the other process, it receives a 1 as the answer to its query without

consulting I. By the inductive hypothesis, the column of I 0 of index zL is known to contain a

string smaller than 1k and therefore must be to the left of the column of I 0 of index zR, which

is known to contain a string larger than 1k. In other words, zL < zR. Moreover, for all c with

zL < c < zR, every position of the form I[minfrL; rRg; c] is known to contain an entry that is

both � 1 and � 1 and thus equals 1. It follows that if rL � rR, then AL can proceed and exclude

row rL without falsifying the inductive property, while if rR � rL, AR can resume operation.

Thus AL and AR are never simultaneously blocked. Moreover, once one of the processes

terminates, the other process can �nish without being suspended again. Since the two processes

AL and AR are copies of the given surface algorithm, except that sometimes they wait and

that some answers are given to them for free, the total number of probes performed is bounded

by 2m. 2
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Although the upper bounds of Theorems 1.1 and 4.21 specify only the number of probes

performed, we note that the algorithms realizing the upper bounds can be executed in a total

time that is within the bound on the number of probes, each probe being followed by exactly

one (three-way) comparison between two characters. The only nontrivial observation needed is

that during an execution of the algorithm described in Section 4.1, whenever a fence that is not

the leftmost fence is of target height, it remains of target height until the next row exclusion, at

which point we can a�ord to step through a list of all fences.

5 The lower bound

The aim of this section is to prove the following theorem, which implies the lower-bound part

of Theorem 1.1.

Theorem 5.1 For all integers k � 1 and n � 4, every deterministic algorithm for the string-

membership problem or the leftmost-all-1 problem performs




0
@ k log log n

log log (4 + k log log n
log n )

+ k + logn

1
A

probes on some input of size k � n.

We prove Theorem 5.1 by exhibiting an adversary that forces every deterministic algorithm

A for either problem to spend as many probes as stated in the theorem before announcing its

answer. In the case of the string-membership problem, the lower bound is proved for a special

case: The alphabet � and the string s whose presence is to be tested are �xed to be f0; 1g and

1k�10, respectively.
The adversary �xes entries of a legal input I online in response to the queries made by A.

Whenever A poses a query (r; c), i.e., asks for the value of I[r; c], the adversary executes a call

Process(r; c), where Process is described in the next subsection, that �xes zero or more entries

of I. Subsequently I[r; c] will have been �xed to either 0 or 1, and the value to which it was

�xed is returned to A as the answer to its query.

We formally de�ne a position to be an element of f1; : : : ; kg � f1; : : : ; ng. The adversary

maintains information about the part of I already �xed in a k � n array J with entries drawn

from f0; 1; `tentative-1'; `?'g and a set P of pending positions. For r = 1; : : : ; k and c = 1; : : : ; n,

by de�nition, if (r; c) 2 P , then I[r; c] has been �xed to 1; if (r; c) 62 P , then I[r; c] has been

�xed to the value b 2 f0; 1g exactly if J [r; c] = b.

Although the adversary is not a fence algorithm probing the input I, it will be very convenient

for the proof to reuse the terminology introduced for fence algorithms in Section 2.2. In order

to make this possible, it su�ces to de�ne the rejected positions and the matching area, since all

other relevant concepts (fences, surface positions, the 0-barrier, etc.) were derived from these

basic notions. But this is easy: A position (r; c) is rejected exactly if J [i; j] = 0 for some

position (i; j) with j � c, and a nonrejected position (r; c) belongs to the matching area exactly

if J [r; c] 2 f1; `tentative-1'g. The adversary will carry out explicit 1-extension (or, rather,

\tentative-1-extension") to ensure that the matching area remains monotonic. Thus entries of 0

in J correspond to probes answered 0, and entries of 1 or `tentative-1' correspond to probes
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answered 1. The di�erence between 1 and `tentative-1' is that a 1 is permanent, as is a 0,

while a `tentative-1' may later be changed to 0 or 1. If J [r; c] = `?' for some position (r; c),

the adversary has not yet decided upon the value of I[r; c] (unless (r; c) 2 P , in which case

I[r; c] = 1).

To a �rst approximation, the adversary �xes only those entries of I that were queried by A
or whose values can be deduced from such entries by 1-extension. In order to simplify the book-

keeping, however, we let the adversary sometimes �x additional entries of I. Informally, this

allows us to assume that A operates largely as the algorithm analyzed in the previous section.

The lower bound holds even if the additional information about I volunteered by the adversary

in this manner is made known to A. It is therefore not necessary to distinguish between the

information available to A and that available to the adversary|this is obvious anyway, since

the adversary operates according to a �xed, deterministic strategy.

5.1 The adversary's strategy

The adversary's strategy is formulated in terms of a number of parameters that we introduce

next. It will be convenient to use the natural logarithm function \ln" to base e instead of the

logarithm function to base 2 employed in the previous section. First, let

a = ln

�
k ln lnn

lnn

�
and v = 3a+ 1:

For k = O(log n=log logn), the bound of Theorem 5.1 reduces to a trivial bound of 
(k+log n).

This allows us to assume a to be larger than any convenient constant. In particular, we will

assume that a � 4 and hence

v � a2: (3)

Next, we take

t =

�
ln lnn

8 ln a

�
:

Similarly as before, the bound of Theorem 5.1 reduces to the trivial bound of 
(k + logn) for

t = O(1) and hence for a = (log n)
(1), for which reason we will assume that t � 2 and that the

following relations hold:

e1=(3t) � 1 + 1=(2t) (4)

4at �
p
lnn (5)

kt+ 1 � n1=4: (6)

The parameters a and t have essentially the same meaning as in the proof of the upper bound.

In particular, the goal of the adversary is to force A to spend 
(t) probes per row. We associate

with each fence F (as implied by J) a weight, kFk, which is maintained, with one exception, as

in the proof of the upper bound. Every new fence created from scratch has weight 1, and when

two fences F and F 0 merge to form a new fence, the new fence is given weight kFk+ kF 0k. The
di�erence to the proof of the upper bound is that these two rules are the only ones that govern

the weights of fences. In particular, the rejection of a number of columns does not change the

weight of any surviving fence.
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For each integer i and all x � 0, take

�i(x) =
x

t

�
x

vt�i

�a=t
ln

�
x

vt�i
+ e

�
� 0

and note for later use that the derivative

�0i(x) =
1

t

�
x

vt�i

�a=t ��
1 +

a

t

�
ln

�
x

vt�i
+ e

�
+

1

1 + e � vt�i=x

�

of �i is a strictly increasing function. Recall that the index of a fence F is one more than the

number of fences to the right of F . We de�ne the value (to A) of a fence F of index i as

�(F ) = jF j+ kFk+ �i(kFk):

The fence will be called dense if �(F ) � tjF j. A fence is critical if it is dense or its index is t.

The following technical lemma is needed later.

Lemma 5.2 If a fence F of index i is not dense, then

jF j � kFk
at

� za=t;

where z = kFk=vt�i.

Proof. Since F is not dense,

jF j � �(F )

t
� kFk

t
+
kFk
t2

� za=t ln(z + e):

If z � at=a, then

jF j � kFk
t

� kFk
t

� z
a=t

a
;

as desired. If z > at=a � et=a, on the other hand, then

jF j � kFk
t2

� za=t(t=a) = kFk
at

� za=t:

2

The adversary exercises tight control over the horizontal placement of fences. As an aid in

describing this mechanism, we introduce a set L of \legal fence-column indices" and a corre-

sponding set of \legal fence columns". Suppose that F = (FN ; : : : ; F1), that Fi is in column ci,

for i = 1; : : : ; N , and that the 0-barrier is in column cZ. Then L = fc�; cN ; cN�1; : : : ; c1g, where
c� = cZ+maxfbe�a � (cN � cZ)c; 1g, with cN taken to be n+1 if N = 0. A legal fence column is

a column whose index belongs to L. Thus every column that already contains a fence is a legal

fence column, and there is one more legal fence column to the left of the leftmost fence, about

e�a of the way from the 0-barrier to that fence. The adversary rejects the column of every probe

to the left of the leftmost legal fence column and translates every other probe to the nearest

legal fence column to the left of or in the column of the position probed and in this way allows
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fences to grow only in legal fence columns. Note that since e�a � 1=2, this implies that no two

fences will ever reside in adjacent columns.

We now describe the strategy of the adversary precisely by giving the procedure Process and

two subroutines PutZero and OneProbe that it employs. Before the �rst call of Process, every

entry of J is initialized to `?', and the set P of pending positions is set to �. For the sake of a

succinct description of PutZero, we take min� to be 1, i.e., distinct from every integer.

PutZero(c):

for (i; j) 2 f1; : : : ; kg � f1; : : : ; cg do
J [i; j] :=

�
0; if i = minf` j 1 � ` � k and J [`; j] 6= 1g
1; otherwise.

OneProbe(r; c):

if c < minL then PutZero(c) else

c0 := maxfj 2 L j j � cg;
for j 2 fc0; : : : ; ng do if J [r; j] = `?' then J [r; j] := `tentative-1';

if column c0 contains a critical fence then PutZero(c0).

Process(r; c):

if (r; c) is buried then insert (r; c) in P and return 1 else

if J [r; c] = `?' then

OneProbe(r; c);

while P contains a surface position do

Let (r0; c0) be a surface position in P ;

OneProbe(r0; c0);
Remove from P all positions (i; j) 2 P with J [i; j] 6= `?';

for (i; j) 2 f1; : : : ; kg � f1; : : : ; ng do if J [i; j] = `tentative-1' then J [i; j] := 1;

Return J [r; c].

We illustrate the adversary's strategy through an extensive example worked in Fig. 3. The

symbols `0', `1' and `T' denote positions in J containing the values 0, 1 and `tentative-1', re-

spectively. Each `P' denotes a position (i; j) 2 P with J [i; j] = `?', while other occurrences of

`?' in J are not shown explicitly. The matching area is separated from the remaining positions

by a staircase line, and surface positions are shown shaded.

Assume that Process(6; 7) is called when the situation is as shown in (a). Since (6; 7) is a

surface position, a call OneProbe(6; 7) is executed. The argument (6; 7) of OneProbe is indicated

by a circle in (a), and the e�ect of the call OneProbe(6; 7) is shown in (b). The position (6; 7) is

\moved" left until it hits a legal fence column, the fence F in that column is extended by one

position containing the value `tentative-1', and \tentative-1-extension" is carried out from the

new fence position. The latter causes several formerly buried positions in P to become part of

the surface, and the call of Process proceeds to execute OneProbe(r0; c0) for one such position

(r0; c0). This second extension of F , the result of which is shown in (c), causes F to merge with

its right neighbor. The transition from (c) to (d) gives rise to yet another merge. We assume

that the fence in column 6 resulting from the merge is dense, so that PutZero(6) is executed.

The outcome is shown in (e): Four columns were rejected, and six rows were excluded. Each

excluded column contains a 0 in the position that belonged to the surface in situation (a) and 1's

in all other positions. In situation (e), the surface still contains elements of P , so another call of
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(a)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P 1 1 1 1 1 1 1 1

1 1 P P P P 1 1 1 1 1 1 1 1

1 1 P P P 1 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P P 1 1

1 1 P P P 1 1

1 1 P P P

(b)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P T T T T T 1 1 1 1 1 1 1 1

1 1 P P P P 1 1 1 1 1 1 1 1

1 1 P P P 1 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P P 1 1

1 1 P P P 1 1

1 1 P P P

(c)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P T T T T T 1 1 1 1 1 1 1 1

1 1 P T T T T T 1 1 1 1 1 1 1 1

1 1 P P P 1 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P P 1 1

1 1 P P P 1 1

1 1 P P P

(d)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P T T T T T 1 1 1 1 1 1 1 1

1 1 P T T T T T 1 1 1 1 1 1 1 1

1 1 P T T T T T T T T 1 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P P 1 1

1 1 P P P 1 1

1 1 P P P

(e)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 T T T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 T T T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 T T T T T T T 1 1 1 1 1

1 1 1 1 1 1 P P P 1 1 1 1

1 1 1 1 1 1 P 1 1 1 1

1 1 1 1 1 1 P P 1 1 1 1

1 1 1 1 1 1 P P P 1 1

1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 P P

(f)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 T T T T T 1 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1 1 1

1 1 1 1 1 1 1 1 P 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P

(g)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 T T T T T 1 1 1 1 1

1 1 1 1 1 1 1 1 T T T T T 1 1 1 1

1 1 1 1 1 1 1 1 T T T 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P

(h)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P

Figure 3: An example execution of Process.

OneProbe is executed. Let us assume that the argument of this call is the leftmost eligible surface

position, (9; 8), and that the condition c < minL is satis�ed. Then the call PutZero(8) leads to
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the situation in (f). The e�ect of three more calls of OneProbe, none of which is assumed to call

PutZero, is shown in (g). Since the surface in (g) contains no elements of P , no further calls of

OneProbe are initiated. The call Process(6; 7) �nally converts all occurrences of `tentative-1' to

1|we call this step, shown in the transition from (g) to (h), the consolidation|and returns the

value of J [6; 7], which is 0.

5.2 Properties of the strategy

We �rst show in a series of lemmas that the answers provided by the adversary are consistent

with a �xed input I, by which we mean that each query (r; c) is answered by I[r; c]. We also argue

(Lemma 5.8) that I can be chosen to be sorted, i.e., as a legal input to the string-membership

and leftmost-all-1 problems.

Lemma 5.3 For all (r; c) 2 f1; : : : ; kg�f1; : : : ; ng, the value of J [r; c] can change only according

to the transitions indicated in Fig. 4. Moreover, no occurrences of `tentative-1' are present in J

at the start or end of a call of Process, and no call of Process returns the value `tentative-1'.

`?' `tentative-1'

0

1

Figure 4: The possible transitions of an entry in J .

Proof. The claim concerning `tentative-1' is a consequence of the consolidation. It is clear from

a simple inspection of the code that following the initialization, no `?' is stored in J , and that no

occurrence of 1 is replaced by a di�erent value. Moreover, an occurrence of 0 could be changed

only in a call of PutZero. What remains, therefore, is to show that no 0 in a column rejected in

a call of PutZero is changed by a subsequent call of PutZero. But this is obvious. 2

Lemma 5.4 Every call Process(r; c) returns a value in f0; 1g.

Proof. By Lemma 5.3, the claim is obvious if (r; c) is buried or J [r; c] 6= `?' at the start of the

call. But otherwise a call OneProbe(r; c) is executed, which can easily be seen to store a value

di�erent from `?' in J [r; c]. The lemma now follows by a second appeal to Lemma 5.3. 2

Lemma 5.5 All positions whose entries are set to 0 during a call of Process were surface

positions at the start of the call of Process.

Proof. The only occasions on which a 1 is stored in a position in J are when the column

containing the position is rejected and during the �nal consolidation. By this observation and
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Lemma 5.3, immediately before a call of Process causes a column to be rejected, the topmost

position in the column that contains a value di�erent from 1 is the same as it was at the start

of the call of Process, at which time it was a surface position. 2

Lemma 5.6 The matching area at all times is monotonic.

Proof. The matching area initially is empty, hence monotonic. It is changed through only two

types of operations, the removal of a number of leftmost (rejected) columns and the inclusion

of a surface position and all positions to its right that do not already belong to the matching

area. Both operations preserve monotonicity. 2

Lemma 5.7 No column of J is ever rejected while it contains the string 1k.

Proof. Suppose that 1 � c � n and that column c of J is rejected while containing 1k. Then

column c must contain 1k already at the start of the call of Process that rejects it. At that

time, by Lemmas 5.3 and 5.6, all columns to the right of column c also contain 1k, in which case

column c cannot be rejected. 2

Lemma 5.8 The answers provided by the adversary are consistent with a sorted input.

Proof. Let I be the input obtained from the �nal value of J by changing to 1 all entries that

are not 0. We prove that each query (r; c) is answered by I[r; c] and that I is sorted.

A query (r; c) is answered by 0 only if J [r; c] = 0 at the time of the answer and thus, by

Lemma 5.3, only if I[r; c] = 0. The same argument applies to answers of 1, except that, because

of the probes of buried positions, we must additionally show that no entry in J of a position

that belongs to P at some time is ever set to 0. Assume, to the contrary, that such an entry is

set to 0 in some call of Process. By Lemma 5.3, the value of the entry must have been `?' at

the start of the call of Process; i.e., the corresponding position still belonged to P at that time.

But given that P contained no surface positions at that time, due to the termination condition

of the while loop in Process, this contradicts Lemma 5.5.

We now show that I is sorted and begin by observing that no column of I contains more than

one 0. Let 1 � c < c0 � n and 1 � r0 � k and suppose that I[r0; c0] = 0. By Lemmas 5.3 and 5.7,

we must have I[r; c] = 0 for some r 2 f1; : : : ; kg. In order to complete the demonstration that

I is sorted, it su�ces to show that r � r0.
By Lemma 5.5, (r; c) belongs to the surface at some time � , and (r0; c0) belongs to the

surface at the same or some later time (since column c0 is rejected simultaneously with or later

than column c). If (�r; c0) is the surface position in column c0 at time � , we have r � �r by the

monotonicity of the matching area at time � (Lemma 5.6) and �r � r0 because, as long as a

column contains a surface position, the row index of its surface position never decreases (this is

a consequence of Lemma 5.3). Thus indeed r � r0. 2

Lemma 5.9 When A terminates, either all rows except at most one have been excluded, or all

entries in the last row outside of the rejected columns have been �xed to 1.
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Proof. Assume that A terminates while the entry of some position (k; c) in the last row is still

un�xed. We complete the tableau J to two inputs I0 and I1: I1 is obtained simply by �xing all

remaining un�xed entries of I to 1. I0 is obtained as follows: If c > 1, �rst PutZero(c � 1) is

executed. Then the entry in position (k; c) is �xed to 0 and all remaining un�xed entries of I

are �xed to 1.

The inputs I0 and I1 are both consistent with all answers obtained by A. It was already

argued in the preceding proof that I1 is sorted, and using essentially the same argument, it can

be seen that I0 is sorted as well, so that I0 and I1 are both legal inputs. Moreover, column c of

I0 contains the string 1
k�10, column c of I1 contains 1

k, and if two or more rows had not been

excluded when A terminated, no column of I1 contains 1
k�10. But in that case, whether A is an

algorithm for the string-membership problem with query string 1k�10 or for the leftmost-all-1

problem, I0 and I1 are not associated with a common correct output. Thus A cannot produce

its answer, a contradiction. 2

Recall that the gap of a fence is its distance from the 0-barrier and that its cumulative weight

is the sum of its own weight and the weights of all fences to its right. We de�ne the bias of a

fence F of gap g and cumulative weight w as the quantity

Bias(F ) =
ln(n+ 1)� ln g � 2aw

� ln(1� e�a)
:

We apply this de�nition even to an imaginary fence F0 in column n+1 and of cumulative weight

0 and de�ne the maximum bias B as maxNi=0 Bias(Fi), where F = (FN ; : : : ; F1).

Lemma 5.10 B = 0 initially, B � 0 always, and a call of PutZero or OneProbe increases B

by at most 1.

Proof. The �rst two claims are obvious, the second one because Bias(F0) � 0. It is not di�cult

to see from the de�nition of the set of legal fence-column indices that after the rejection of one

or more columns, the gap of every surviving fence is at least 1 � e�a times what it was before

the rejection|every potential new 0-barrier is at most a fraction of e�a of the way from the

current 0-barrier to the fence. A call of PutZero or OneProbe that causes columns to be rejected

therefore increases B by at most 1.

If a new fence F is created from scratch at a time when the previous leftmost fence F 0 (F0 if
there are no fences) has gap g, we have e�ag � 2, so that the gap of F is at least e�ag�1 � e�2ag.
Since the cumulative weight of F is one more than that of F 0, we will have Bias(F ) � Bias(F 0).
Thus a call of OneProbe that does not cause columns to be rejected also does not increase B. 2

Note that since a critical fence is excluded immediately after its creation, the number of

fences never exceeds t.

5.3 Analysis of the number of probes

The number of probes needed is bounded from below using the potential function

� = �1 +�2 +�3 +�4;

25



where �1 =
P

F2F �(F ) is the total value of all fences, �2 = tXR is t times the number of

excluded rows, �3 = 4jP j is four times the number of pending positions, and �4 = B is the

maximum bias.

Lemma 5.11 If � � kt, then the gap of every fence, including the imaginary fence F0, is

greater than n1=4.

Proof. Assume that � � kt and that the gap g of some fence F (possibly F0) is at most n1=4

and let w be the cumulative weight of F . By the mean-value theorem, ln(1 � x) � �2x for

0 � x � 1=2. Using this with x = e�a = lnn=(k ln lnn) and assuming that Bias(F ) � 0, we

obtain

Bias(F ) =
ln(n+ 1)� ln g � 2aw

� ln(1� e�a)
� (ln(n+ 1)� ln g � 2aw) � k ln lnn

2 lnn
�
�
3

4
� 2aw

lnn

�
� 4kt:

Since Bias(F ) � kt, we must have 2aw=lnn � 1=2. This relation holds also if Bias(F ) < 0.

In either case, Equation (5) therefore implies that w � t
p
lnn. In particular, F 6= F0. Let

F = (FN ; : : : ; F1). Then 1 � N � t and therefore, by Equation (3),

w=N

vt�1
� w=N

a2t
� eln(w=t)�2t ln a � eln(

p
lnn)�(ln lnn)=4 = e(ln lnn)=4:

Now, by the convexity of �1,

� �
NX
i=1

�i(kFik) �
NX
i=1

�1(kFik) � N�1

 
1

N

NX
i=1

kFik
!

� N�1(w=N ) � w

t

�
w=N

vt�1

�a=t
ln

�
w=N

vt�1

�

� lnn

4at
� e(ln lnn)=4�a=t � ln lnn

4
� lnn

2a
� e2a lna � lna � ea lnn = k ln lnn > kt;

a contradiction. 2

Lemma 5.12 During the execution of A, � increases by at least (k � 1)t.

Proof. � = 0 initially, so let us consider the situation when A terminates and show that

� � (k � 1)t. This is obvious if all except at most one row have been excluded, so assume that

this is not the case and that � � kt. Let g be the gap of an arbitrary fence, or of F0 if no fence

exists. By Lemma 5.9, we have jP j � g � 1 and hence, by Equation (6), g � kt + 1 � n1=4.

Lemma 5.11 now shows that � > kt, a contradiction. 2

Lemma 5.13 Every call of PutZero increases � by at most 1.

Proof. The call increases neither �1 nor �3. By Lemma 5.10, �4 increases by at most 1. If the

call causes the exclusion of m > 0 rows, some fence of height m was critical|we here use the

fact that no two fences are ever in adjacent columns|so the corresponding increase in �2 of tm

is compensated by a decrease in �1 of at least tm caused by the exclusion of a dense fence of

height m or by a reduction by m in the height of each of t fences. 2
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Lemma 5.14 If � � kt before a call of OneProbe, the call increases � by at most 4.

Proof. Unless a call of OneProbe simply executes a call of PutZero, which increases � by at

most 1 according to the previous lemma, it begins by extending a fence F 0 by one position or

creating a new fence F 0 from scratch. Extending an existing fence by one position increases its

value by 1, and the value of a fence of height and weight 1 is bounded by 3; we here use the fact

that there are never more than t fences, so that we never employ �i for i > t. Until this point,

therefore, � has increased by at most 3.

Subsequently to the operation on the fence F 0, it may disappear through exclusion because

it is in the column next to the 0-barrier, as part of the execution of a call of PutZero, or through

merging with its right neighbor. The �rst case is ruled out by Lemma 5.11 in conjunction with

Equation (5), which shows that e�a � n1=4 � n1=4�1=(4t) � n1=8 � 2, where the last inequality

follows from the assumption t � 2. The second case increases � by another at most 1, according

to Lemma 5.13, for a total increase in � of at most 4. What remains, therefore is to assume

that F 0 merges with its right neighbor F and show that this does not increase �.

Let the indices of F and F 0 be i and i + 1, respectively. The new fence resulting from the

merge has index i, and the remaining fences are a�ected by the merge only insofar as some of

them decrease their index by 1; since this decreases �, we need not account for it here. What

is to be shown, hence, is that the value of the new fence resulting from the merge is no larger

than the combined value of the two fences from which it is formed.

All three fences of interest have the same height jF j. Let us write kF 0k = ukFk, where u > 0

is a suitable real number. Then the weight of the new fence is (1 + u)kFk, so that the relation

to be shown is

(jF j+ kFk+ �i(kFk)) + (jF j+ ukFk+ �i+1(ukFk))� (jF j+ (1 + u)kFk+ �i((1 + u)kFk)) � 0

or, equivalently,

jF j+ �i(kFk) + �i(uvkFk)
v

� �i((1 + u)kFk) � 0:

The derivative of the left-hand side above with respect to u is

kFk�0i(uvkFk) � kFk�0i((1 + u)kFk):

Recall that �0i is a strictly increasing function. This implies that the original left-hand side has

a unique minimum that occurs for the value of u satisfying uv = 1 + u, i.e., u = 1=(v � 1). It

therefore su�ces to prove the original claim for this value of u, i.e., to show that

jF j+ �i(kFk) + 1

v
�i

�
v

v � 1
kFk

�
� �i

�
v

v � 1
kFk

�
� 0

or, equivalently, that
1

q
�i(qkFk) � �i(kFk) � jF j;

where we introduced the abbreviation q = v=(v � 1). Note that q = 1 + 1=(3a) and hence

qa=t =

�
1 +

1

3a

�a=t
� e1=(3t):
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Take z = kFik=vt�i. Then

1

q
�i(qkFk) � �i(kFk) =

kFk
t

(qz)a=t ln(qz + e)� kFk
t

za=t ln(z + e)

� kFk
t

za=t
h
qa=t(ln q + ln(z + e)) � ln(z + e)

i

=
kFk
t

za=t
h
(qa=t � 1) ln(z + e) + qa=t ln q

i

� kFk
t

za=t
�
(e1=(3t) � 1) ln(z + e) + e1=(3t)

1

3a

�
:

By Equation (4), we can bound the right-hand side above by

kFk
2t2

� za=t ln(z + e) +
kFk
2at

� za=t = �i(kFk)
2t

+
kFk
2at

� za=t:

Since critical fences are excluded as soon as they arise, F is not dense at the time of the merge.

Thus the �rst term of the right-hand side above is bounded by jF j=2, and Lemma 5.2 shows

that the same is true of the second term. This completes the proof of the lemma. 2

Lemma 5.15 If � � kt� 4 before a call of Process, the call increases � by at most 4.

Proof. Consider a call Process(r; c). If (r; c) is buried, the call increases jP j by at most 1 and

� by at most 4. Otherwise the call executes a call of OneProbe and subsequently, zero or more

times, executes a call of OneProbe and decreases jP j by at least 1 and hence � by at least 4. By

a simple induction based on Lemma 5.14, � � kt at the start of each call of OneProbe, and �

altogether increases by at most 4. The �nal consolidation does not a�ect �. 2

Theorem 5.1 follows from Lemmas 5.8, 5.12 and 5.15.

6 Conclusions

We have given tight bounds for a fundamental searching problem. The problem is natural and

easy to formulate, yet the solution|the bound achieved as well as its proof|is surprisingly

complicated.

As mentioned in the introduction, the problem becomes much easier if preprocessing and

extra space is allowed. It should be noted that our lower bound imposes no restrictions on the

model of computation other than the absence of preprocessing; a search algorithm is allowed to

use extra memory and arbitrary data structures during its execution.
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