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Abstract

We prove improved inapproximability results for hypergraph coloring using the low-degree
polynomial code (aka, the “short code” of Barak et. al. [SIAM J. Comput., 44(5):1287–1324, 2015.])
and the techniques proposed by Dinur and Guruswami [FOCS 2013] to incorporate this code
for inapproximability results.

In particular, we prove quasi-NP-hardness of the following problems on n-vertex hyper-
graphs:

• Coloring a 2-colorable 8-uniform hypergraph with 22Ω(
√

log log n)
colors.

• Coloring a 4-colorable 4-uniform hypergraph with 22Ω(
√

log log n)
colors.

• Coloring a 3-colorable 3-uniform hypergraph with (log n)Ω(1/ log log log n) colors.

For the first two cases, the hardness results obtained are superpolynomial in what was previ-
ously known, and in the last case it is an exponential improvement. In fact, prior to this result,
(log n)O(1) colors was the strongest quantitative bound on the number of colors ruled out by in-
approximability results for O(1)-colorable hypergraphs, and (log log n)O(1) for O(1)-colorable,
3-uniform hypergraphs.
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1 Introduction

A k-uniform hypergraph G is a pair (V, E) where V is a set of vertices and E is a collection of k-
element subsets of V (i.e., E ⊆ (V

k ) ). These k-element subsets are called the hyperedges of the
hypergraph G. An independent set in a hypergraph G = (V, E) is a subset I of vertices such that
no hyperedge is completely contained inside I. A q-coloring of a hypergraph is a map from V to
the set {1, . . . , q} such that no hyperedge is monochromatic (i.e., every hyperedge has at least two
distinct colors among its vertices). A hypergraph is said to be q-colorable if such a q-coloring exists,
or equivalently if the set of vertices can be partitioned into q independent sets. The hypergraph
coloring problem is that of finding, given G, the smallest q such that G is q-colorable. When k = 2, the
hypergraph is just a graph and the hypergraph coloring problem is the standard graph coloring
problem.

Graph and hypergraph coloring problems have been studied extensively. The first non-trivial
case of this problem is when k = q = 2, i.e., checking if a graph is 2-colorable or equivalently if
the graph is a bipartite graph and this turns out to be easy. Every other case (for larger values of k
or q) happens to be NP-hard; determining if a graph is 3-colorable is a classical NP-hard problem
while for k ≥ 3, even determining if a given k-uniform hypergraph is 2-colorable is known to be
NP-hard. This latter property (2-colorability of hypergraphs for k ≥ 3), also referred to as Property
B, has received a lot of attention in the extremal combinatorics literature.

Given that even checking if a graph is 3-colorable is NP-hard, it is natural to ask if there are
approximately optimal coloring algorithms in the following sense: for a parameter M > 3, is
there an algorithm that on input a 3-colorable graph colors it with at most M colors? It is of
course trivial to color any graph with n colors where n is the number of vertices in the graph —
assign each vertex a different color. A long sequence of works [Wig83, Blu94, KMS98, BK97, AC06,
Chl07, KT12, KT14], using both combinatorial and semi-definite programming techniques, give
efficient polynomial-time algorithms to color 3-colorable graphs with nδ colors where the current
best value of δ is approximately 0.199 . . . . On the other hand, the best known NP-hardness for
approximately coloring 3-colorable graphs are only able to prove that it is NP-hard to 4-color a 3-
colorable graph! [KLS00, GK04, BG16]. Under variants of the Unique Games Conjecture, one can
show hardness of O(1)-coloring 3-colorable graphs [DMR09]. Better hardness results are known
for larger values of q: Huang [Hua13] showed that it is NP-hard to color a q-colorable graph with
2Ω(q1/3) colors improving on the previous bound of 2Ω(log2 q) due to Khot [Kho01]. Observe the
huge disparity between the known upper and lower bounds.

The situation for hypergraph coloring (k ≥ 3) is slightly better. Moving from graphs (k = 2)
to hypergraphs (k ≥ 3) makes the algorithmic problem even harder and thus the best known al-
gorithms still require nΩ(1) colors to a color a 2-colorable hypergraph [KNS01, CF96, AKMH96,
KT14]. From the inapproximability perspective, Guruswami, Håstad and Sudan [GHS02] proved
the first superconstant lower bounds, showing the quasi-NP-hardness of coloring 2-colorable 4-
uniform hypergraphs with Ω

(
log log n

log log log n

)
colors. Since that work, there have been many others

showing quasi-NP-hardness for different values of k and q. A significant result in this line of
work is that of Khot [Kho02a], wherein he obtained the first polylogarithmic lower bound, show-
ing quasi-NP-hardness of coloring q-colorable 4-uniform hypergraphs with (log n)Ω(q) colors for
q ≥ 7. More recently, Dinur and Guruswami [DG15, Appendix B] obtained a similar (but incom-
parable) polylogarithmic hardness result for 2-colorable 8-uniform hypergraphs. Our first results
yield a “super-polynomial” improvement over these results:

Theorem 1.1 (2-colorable 8-uniform hypergraphs). Assuming NP 6⊆ DTIME(n2O(
√

log log n)
), there is
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no polynomial-time algorithm that when given as input an 8-uniform hypergraph H on N vertices can
distinguish between the following:

• H is 2 colorable,

• H has no independent set of size N/22O(
√

log log N)
.

Theorem 1.2 (4-colorable 4-uniform hypergraphs). Assuming NP 6⊆ DTIME(n2O(
√

log log n)
), there is

no polynomial-time algorithm that when given as input a 4-uniform hypergraph H on N vertices can
distinguish between the following:

• H is 4 colorable,

• H has no independent set of size N/22O(
√

log log N)
.

We remark that all the above mentioned hardness results (including ours) prove stronger lower
bounds than stated in the discussion: they show hardness of finding an independent size of
N/M(N), which in turn imply hardness of coloring with M(N) colors. Thus, our two results
imply that there do not exist polynomial-time algorithms that color 2-colorable 8-uniform (simi-

larly 4-colorable 4-uniform) hypergraphs with 22O(
√

log log N)
colors unless NP ⊆ DTIME(n2O(

√
log log n)

).
We then ask if we can prove coloring inapproximability for even smaller uniformity, i.e., k =

3, the case of 3-uniform hypergraphs. The best known inapproximability results in this context
are as follows. Khot [Kho02b] showed that it is quasi-NP-hard to find an independent set of
size N/(log log N)1/9 in a given N-vertex 3-colorable 3-uniform hypergraphs. Dinur, Regev and
Smyth [DRS05] showed that it is quasi-NP-hard to color a 2-colorable 3-uniform hypergraphs with
(log log N)1/3 colors. Our third result yields an “exponential” improvement:

Theorem 1.3 (3-colorable 3-uniform hypergraphs). Assuming NP 6⊆ DTIME
(

n2O(log log n/ log log log n)
)

,
there is no polynomial-time algorithm that when given as input a 3-uniform hypergraph H on N vertices
can distinguish between the following:

• H is 3 colorable.

• H has no independent set of size N/2O(log log N/ log log log N).

Similar to the previous two results, the above result implies the corresponding result on hard-
ness of approximate coloring. More precisely, unless NP ⊆ DTIME

(
n2O(log log n/ log log log n)

)
, there

does not exist a polynomial-time algorithm that colors 3-colorable 3-uniform hypergraphs with
2log log N/ log log log N colors.

1.1 Proof Approach

All known hypergraph coloring inapproximability results are obtained using the machinery of
probabilistically checkable proofs (PCP). A PCP construction in which the verifier queries k loca-
tions of the proof and accepts if the symbols in these locations are not all equal (this is referred to
as the Not-All-Equal (NAE) predicate) naturally yields a hardness result for approximate coloring
of k-uniform hypergraphs via the following correspondence. The vertices of the hypergraph cor-
respond to the locations in the PCP while the hyperedges correspond to the k-sized queries of the
verifier.
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Before we proceed to explain the ideas in our proofs, let us first try to understand why all
previous hypergraph coloring inapproximability techniques got stuck at the poly log n color bar-
rier. Constructions of PCPs with a specific predicate (NAE in our case) typically proceed along
the following lines. An outer PCP verifier is first constructed using the hardness of the so-called
Label Cover problem. This is then composed with an inner verifier that makes tests restricted
to the predicate corresponding to the desired hardness result (NAE in the case of coloring). One
of the quintessential ingredients in the inner verifier construction (in almost all known inapprox-
imability results) is the long code, first introduced by Bellare, Goldreich and Sudan [BGS98]. The
long code, as the name suggests, is a highly redundant encoding of its input (in fact, it is the most
redundant encoding that doesn’t repeat symbols). Under the long code, an n-bit Boolean string
x is encoded by a 22n

-bit string that consists of the evaluation of all Boolean functions on n bits
at the point x. It is this doubly exponential blowup of the long code that prevents the coloring
inapproximability to go past the poly log n barrier.

Recently, Barak et. al. [BGH+15], while trying to understand the tightness of the Arora-Barak-
Steurer algorithm for unique games, introduced the short code, also called the low-degree long
code [DG15]. The low-degree long code is a puncturing of the long code that contains only the
evaluations of low-degree functions (opposed to all functions). Being a “shortening” of the long
code, one might hope to use the low-degree long code as a more size-efficient surrogate for the
long code in inapproximability results. In fact, Barak et. al. [BGH+15] used it obtain a more efficient
version of the MAXCUT inapproximability result of Khot et. al. [KKMO07] assuming the Unique
Games Conjecture, as well as integrality gap instances for Unique Games against exponentially
more rounds of the Sherali Adams + SDP hierarchy than known previously. The short code was
also used by Kane and Meka [KM13] to construct instances of Uniform Sparsest Cut with an ex-
ponentially larger integrality gap (exp(Ω(

√
log log n)) compared to earlier Ω(log log n)) against

powerful semidefinite programs.
One of the challenges in PCP constructions that imply hardness for coloring problems is the

requirement of perfect completeness, i.e., for Yes instances, there must exist a proof that is accepted
by the verifier with probability 1 (this corresponds to the graph or hypergraph obtained by the re-
duction being properly colorable with every (hyper)-edge legally colored). In contrast, reductions
based on the Unique Games Conjecture inherently lack perfect completeness; this offers flexibility
to add noise to the queries made by the inner verifier, which in turns aids in the soundness anal-
ysis of the PCP. In the context of PCPs with perfect completeness, Dinur and Guruswami [DG15]
introduced some elegant techniques to adapt the long-code-based inapproximability results to
low-degree long codes. Barak et. al. [BGH+15] obtained their results by discovering an intimate
connection between Reed-Muller testing of Bhattacharyya et. al. [BKS+10] and analysis of the low-
degree long code. Exploring this connection further, Dinur and Guruswami [DG15] proved a new
result for testing Reed-Muller codes over F2 (i.e., testing whether a given function is close to a
low-degree polynomial over F2), which we describe below.

Let Pn
d be the set of degree d polynomials on n variables over F2 and χ f (g) = χg( f ) :=

(−1)∑x∈Fn
2

f (x)g(x) denote the correlation between two functions f , g : Fn
2 → F2. Thus, χ f (g) =

χg( f ) = 1 if f and g are orthogonal over F2 (i.e., ∑x∈Fn
2

f (x)g(x) = 0) and −1 otherwise. It is
well-known that Pn

n−d−1 is exactly the set of functions that are orthogonal to all functions in Pn
d . In

particular, χβ(gh) = 1 if β ∈ Pn
n−d−1, g ∈ Pn

d/4 and h ∈ Pn
3d/4. On the other hand, if β /∈ Pn

n−d−1,
we have E f∈Pn

d
[χβ( f )] = 0. The Dinur-Guruswami testing result states that if β : Fn

2 → F2 is
far from any degree n − d − 1 polynomial, then for most degree d/4 polynomials g, β will only
be orthogonal to roughly half of the polynomials gh as h varies over degree 3d/4 polynomials.
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More precisely, if β : Fn
2 → F2 is 2d/2-far1 from Pn

n−d−1, then Eg∈Pn
d/4

∣∣∣Eh∈Pn
3d/4

[χβ(gh)]
∣∣∣ is dou-

bly exponentially small in d (see Theorem 2.12 for the exact statement). This Reed-Muller testing
result let them analyze the low-degree long code and construct inner verifiers with perfect com-
pleteness. Our first two hypergraph coloring results are obtained by constructing an appropriate
NAE-predicate inner verifier using these techniques of Dinur and Guruswami.

For the case of 3-uniform 3-colorable hypergraphs, we adapt Khot’s hardness result [Kho02b]
to the low-degree long code setting. To analyze the low-degree long code in this setting, we prove
the following testing result for Reed-Muller codes over F3 (i.e., moving to a ternary alphabet
instead of the binary alphabet F2). Let Pn

d now denote the set of degree d polynomials on n vari-

ables over F3 and χ f (g) = χg( f ) := ω
∑x∈Fn

3
f (x)g(x) denote the correlation between two functions

f , g : Fn
3 → F3, where ω = e2πi/3. Thus, χ f (g) = χg( f ) = 1 iff f and g are orthogonal over

F3 (i.e., ∑x∈Fn
3

f (x)g(x) = 0). It is known that Pn
2n−`−1 is exactly the set of functions that are or-

thogonal to all functions in Pn
` . In particular, χβ(p2) = 1 if β ∈ Pn

2n−2d−1 and p ∈ Pn
d . Similar in

spirit to the Dinur-Guruswami testing result, we prove the following result: if β : Fn
3 → F3 is far

from any degree 2n − 2d − 1 polynomial, then the correlation of β with the square of a random
degree d polynomial is very small. More precisely, if β : Fn

3 → F3 is 3d/2-far from Pn
2n−2d−1, then∣∣∣Ep∈Pn

d
[χβ(p2)]

∣∣∣ is doubly exponentially small in d. This is proved by considering the following

associated quadratic form Qβ defined as

Q(β) := ∑
x∈Fn

3

β(x) · eval(x) eval(x)T

where eval(x) is the column-vector of evaluation of all degree d monomials at the point x. Ob-
serve that this quadratic form Q(β) satisfies pTQ(β)p = ∑x∈Fn

3
β(x)p2(x). It is well known that

the distance of the random variable pT Ap (for random p and fixed symmetric A) is inverse ex-
ponential in the rank of the quadratic form A. The testing result is thus proved by showing
the following result on the rank of the quadratic form Q(β): if the distance of β from polyno-
mials of degree 2n − 2d − 1is at least 3d/2, then the rank of the matrix Q(β) is 3Ω(d). This rank
bound is proved along the lines of Dinur and Guruswami result [DG15] using the Reed-Muller
tester analysis of Haramaty, Shpilka and Sudan [HSS13] over general fields instead of the Bhat-
tacharyya et. al. [BKS+10] analysis over F2.

1.2 Subsequent work

Saket [Sak14] recently obtained the following improved inapproximability result for 2-colorable
4-uniform hypergraphs: it is quasi-NP-hard to color a 2-colorable 4-uniform hypergraph with
(log n)c colors for some constant c. He obtained this improvement by giving an improved anal-
ysis using reverse hypercontractivity of the long-code based test of Guruswami, Håstad and Su-
dan [GHS02].

Subsequent to our result, Khot and Saket [KS14], in a significant improvement, showed that it
is quasi-NP-hard to color a 2-colorable 12-uniform hypergraph with 2(log n)c

colors for some con-
stant c ∈ (0, 1). This result is obtained by constructing a powerful outer verifier with a strong
soundness property, referred to as the superposition complexity, which is then composed with an
inner verifier based on the quadratic code (equivalently, the low-degree long code of degree two).

1We say that g is ∆-far from a class of functions F if for all f ∈ F , we have |{x ∈ Fn
2 | f (x) 6= g(x)} ≥ ∆ (note that

we are using the non-normalized Hamming distance).
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Huang [Hua15] then gave a slightly simpler construction of PCPs with superposition complex-
ity. Surprisingly, while previous results (including the results in the current paper) employed the
Reed-Muller testing results in the analysis of the inner verifier, Khot and Saket (and then Huang)
used these testing results in the analysis of their outer verifier. Varma [Var15] then showed how
to improve the uniformity of the Khot-Saket 12-query verifier to an 8-query inner verifier based
on the reductions in the current paper to yield the following result: it is quasi-NP-hard to color
a 2-colorable 8-uniform hypergraph (similarly a 4-colorable 4-uniform hypergraph) with 2(log n)c

colors for some constant c ∈ (0, 1).

Organization

We start with some preliminaries in § 2. Theorems 1.1, 1.2, and 1.3 are proved in Sections 4, 5,
and 6 respectively. The proof of the latter theorem requires a technical claim about low-degree
polynomials over F3, which we prove in § 3.

2 Preliminaries

2.1 Label cover

All our reductions start from an appropriate instance of the label cover problem, bipartite or mul-
tipartite. A bipartite label cover instance consists of a bipartite graph G = (U, V, E), label sets
ΣU , ΣV , and a set of projection constraints Π = {πuv : ΣU → ΣV |(u, v) ∈ E}.We consider label
cover instances obtained from 3SAT instances in the following natural manner.

Definition 2.1 (r-repeated label cover). Let ϕ be a 3SAT instance with X as the set of variables and C
the set of clauses. The r-repeated bipartite label cover instance I(ϕ) is specified by:

• A graph G := (U, V, E), where U := Cr, V := Xr.

• ΣU := {0, 1}3r, ΣV := {0, 1}r.

• There is an edge (u, v) ∈ E if the tuple of variables v can be obtained from the tuple of clauses u by
replacing each clause by a variable in it.

• The constraint πuv : {0, 1}3r → {0, 1}r is simply the projection of the assignments on 3r variables
in all the clauses in u to the assignments on the r variables in v.

• For each u there is a set of r functions { f u
i : {0, 1}3r → {0, 1}}r

i=1 such that f u
i (a) = 0 iff the

assignment a satisfies the ith clause in u. Note that f u
i depends only on the 3 variables in the ith

clause.

A labeling LU : U → ΣU , LV : V → ΣV satisfies an edge (u, v) iff πuv(LU(u)) = LV(v) and LU(u)
satisfies all the clauses in u. Let OPT(I(ϕ)) be the maximal fraction of constraints that can be satisfied by
any labeling.

The following theorem is obtained by applying Raz’s parallel repetition theorem [Raz98] with
r repetitions on hard instances of MAX-3SAT where each variable occurs the same number of
times [Fei98].
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Theorem 2.2. There is an algorithm that on input a 3SAT instance ϕ and r ∈ N outputs an r-repeated
label cover instance I(ϕ) in time nO(r) with the following properties.

• If ϕ ∈ 3SAT, then OPT(I(ϕ)) = 1.

• If ϕ /∈ 3SAT, then OPT(I(ϕ)) ≤ 2−ε0r for some universal constant ε0 ∈ (0, 1).

Moreover, the underlying graph G is both left and right regular.

2.2 Multilayered smooth label cover

For our hardness results for 3-uniform 3-colorable hypergraphs, we need a multipartite version of
label cover, satisfying a smoothness condition, which was introduced by Khot [Kho02b].

Definition 2.3 (Smoothness). Let I be a bipartite label cover instance specified by ((U, V, E), ΣU , ΣV , Π).
Then I is η-smooth iff for every u ∈ U and two distinct labels a, b ∈ ΣU

Pr
v
[πuv(a) = πuv(b)] ≤ η,

where v is a random neighbour of u.

Definition 2.4 (r-repeated `-layered η-smooth label cover). Let T := d`/ηe and ϕ be a 3SAT instance
with X as the set of variables and C the set of clauses. The r-repeated `-layered η-smooth label cover instance
I(ϕ) is specified by:

• An `-partite graph with vertex sets V0, · · ·V`−1. Elements of Vi are tuples of the form (C′, X′) where
C′ is a set of (T + `− i)r clauses and X′ is a a set of ir variables.

• ΣVi := {0, 1}mi where mi := 3(T + `− i)r + ir, which corresponds to all Boolean assignments to
the clauses and variables corresponding to a vertex in layer Vi.

• For 0 ≤ i < j < `, Eij ⊆ Vi ×Vj denotes the set of edges between layers Vi and Vj. For vi ∈ Vi, vj ∈
Vj, there is an edge (vi, vj) ∈ Eij iff vj can be obtained from vi by replacing some (j− i)r clauses in
vi with variables occurring in the clauses respectively.

• The constraint πvivj is the projection of assignments for clauses and variables in vi to that of vj.

• For each i < `, vi ∈ Vi, there are (T + `− i)r functions f vi
j : {0, 1}3(T+`−i)r+ir → {0, 1}, one for

each clause j in vi such that f vi
j (a) = 0 iff a satisfies the clause j. This function only depends on the

3 coordinates in j.

Given a labeling Li : Vi → ΣVi for all the vertices, an edge (vi, vj) ∈ Eij is satisfied iff Li(vi) satisfies all
the clauses in vi, Lj(vj) satisfies all the clauses in vj and πvivj(Li(vi)) = Lj(vj). Let OPTij(I(ϕ)) be the
maximum fraction of edges in Eij that can be satisfied by any labeling.

The following theorem was proved by Dinur et. al. [DGKR05] in the context of hypergraph
vertex cover inapproximability (also see [DRS05]).

Theorem 2.5. There is an algorithm that on input a 3SAT instance ϕ and `, r ∈ N, η ∈ [0, 1) outputs a
r-repeated `-layered η-smooth label cover instance I(ϕ) in time nO((1+1/η)`r) with the following properties.

1. ∀ 0 ≤ i < j < `, the bipartite label cover instance on Iij =
(
(Vi, Vj, Eij), ΣVi , ΣVj , Πij

)
is η-smooth.
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2. For 1 < m < `, any m layers 0 ≤ i1 < · · · < im ≤ `− 1, any Sij ⊆ Vij such that |Sij | ≥ 2
m |Vij |,

there exists distinct ij and ij′ such that the fraction of edges between Sij and Sij′
relative to Eijij′

is at
least 1/m2.

3. If ϕ ∈ 3SAT, then there is a labeling for I(ϕ) that satisfies all the constraints.

4. If ϕ /∈ 3SAT, then
OPTi,j(I(ϕ)) ≤ 2−Ω(r), ∀0 ≤ i < j ≤ `.

2.3 Low-degree long code

Let Fp be the finite field of size p where p is a prime. The results in this section apply when p = 2, 3.
The choice of p will be clear from context and hence the dependence of p on the quantities defined
will be omitted. Let Pn

d be the set of polynomials of degree at most d on n variables over Fp. Let
Fn := Pn

(p−1)n. Note that Fn is the set of all functions from Fn
p to Fp. Fn is a Fp-vector space of

dimension pn and Pn
d is its subspace of dimension nO(d). The Hamming distance between f and

g ∈ Fn, denoted by ∆( f , g), is the number of inputs on which f and g differ. When S ⊆ Fn,
∆( f , S) := ming∈S ∆( f , g). We say f is ∆-far from S if ∆( f , S) ≥ ∆ and f is ∆-close to S otherwise.
Given f , g,∈ Fn, the dot product between them is defined as

〈 f , g〉 := ∑
x∈Fn

p

f (x)g(x) .

For a subspace S ⊆ Fn, the dual subspace is defined as

S⊥ := {g ∈ Fn : ∀ f ∈ S, 〈g, f 〉 = 0} .

The following theorem relating dual spaces is well known and is used to index the characters of
Pn

d (see Lemma 2.10).

Lemma 2.6. (Pn
d)
⊥ = Pn

(p−1)n−d−1.

Proof. First note that the dimensions of the two subspaces are equal by a counting argument.
Next we show that (Pn

d)
⊥ ⊇ Pn

(p−1)n−d−1. We just need to show that for any monomial of degree
(p − 1)n − d − 1 with individual degrees < p, the dot product with any monomial of degree d
with individual degrees < p is 0. The product of any such pair of monomials is a monomial with
total degree at most (p− 1)n− 1, and hence has a variable with degree < p− 1. Without loss of
generality, let this variable be x1 with degree t < p− 1. Notice that ∑x1∈Fp

xt
1 = 0 and hence the

dot product is 0.

We need the following Schwartz-Zippel-like Lemma for degree d polynomials. It is used in the
soundness analysis of the low-degree long code tests, to lower bound the rejection probabilities.

Lemma 2.7 (Schwartz-Zippel lemma [HSS13, Lemma 3.2]). Let f ∈ Fp[x1, · · · , xn] be a non-zero
polynomial of degree at most d with individual degrees at most p− 1. Then Pra∈Fn

p [ f (a) 6= 0] ≥ p−d/(p−1).

We now define the low-degree long code (introduced as the short code by Barak et. al. [BGH+15]
in the F2 case).
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Definition 2.8 (low-degree long code). For a ∈ Fn
p, the degree d long code for a is a function LCd(a) :

Pn
d → Fp defined as

LCd(a)( f ) := f (a).

Note that for d = (p − 1)n, this matches with the definition of the original long code over the
alphabet Fp.

Definition 2.9 (characters). A character of Pn
d is a function χ : Pn

d → C such that

χ(0) = 1 and ∀ f , g ∈ Pn
d , χ( f + g) = χ( f )χ(g).

The following lemma lists the basic properties of characters. They are used in the soundness
analysis of the low-degree long code tests, analogous to Fourier analysis for long code tests.

Lemma 2.10. Let {1, ω, · · · , ωp−1} be the pth roots of unity and for β ∈ Fn, f ∈ Pn
d , χβ( f ) := ω〈β, f 〉.

• The characters of Pn
d are {χβ : β ∈ Fn}.

• For any β, β′ ∈ Fn, χβ = χ′β if and only if β− β′ ∈ (Pn
d)
⊥.

• For β ∈ (Pn
d)
⊥, χβ is the constant 1 function.

• ∀β, ∃β′ such that β− β′ ∈ (Pn
d)
⊥ and | support(β′)| = ∆(β, (Pn

d)
⊥) (i.e., the constant 0 function

is (one of) the closest function to β′ in (Pn
d)
⊥). We call such a β′ a minimum support function for the

coset β + (Pn
d)
⊥.

• Characters forms an orthonormal basis for the vector space of functions from Pn
d to C, under the inner

product 〈A, B〉 := E f∈Pn
d

[
A( f )B( f )

]
• Any function A : Pn

d → C can be uniquely decomposed as

A( f ) = ∑
β∈Λn

d

Â(β)χβ( f )

where Â(β) := Eg∈Pn
d

[
A(g)χβ(g)

]
and Λn

d is the set of minimum support functions, one for each

of the cosets in Fn/(Pn
d)
⊥, with ties broken arbitrarily.

• Parseval’s identity: For any function A : Pn
d → C, ∑β∈Λn

d
|Â(β)|2 = E f∈Pn

d
[|A( f )|2]. In particular,

if A : Pn
d → {1, ω, · · · , ωp−1}, ∑β∈Λn

d
|Â(β)|2 = 1.

The following lemma relates characters over different domains related by co-ordinate projections.

Lemma 2.11. Let m ≤ n and π : Fn
p → Fm

p be a (co-ordinate) projection i.e., there exist indices 1 ≤ ii <
· · · < im ≤ n such that π(x1, . . . , xn) = (xi1 , · · · , xim). Then for f ∈ Pm

d , β ∈ Pn
d ,

χβ( f ◦ π) = χπp(β)( f ),

where πp(β)(y) := ∑x∈π−1(y) β(x).

Proof.

χβ( f ◦ π) = ω
∑x∈Fn

3
f (π(x))β(x)

= ω
∑y∈Fm

3
f (y)

(
∑x∈π−1(y) β(x)

)
= ω

∑y∈Fm
3

f (y)πp(β)(y)
= χπp(β)( f ).
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Dinur and Guruswami [DG15] proved the following theorem about Reed-Muller codes over F2
using Bhattacharyya et. al. [BKS+10] testing result.

Theorem 2.12 ([DG15, Theorem 1]). Let d be a multiple of 4 and p = 2. If γ ∈ Fn is 2d/2-far from
(Pn

d)
⊥ = Pn

n−d−1, then

E
g∈Pn

d/4

[∣∣∣∣∣ E
h∈Pn

3d/4

[χγ(gh)]

∣∣∣∣∣
]
≤ 2−2(d/4−2)

. (2.1)

(Theorem 1 in [DG15] states an upper bound of 2−4·2d/4
on the expectation in (2.1); however the

proof in fact shows the bound 2−2(d/4−2)
. This small change is inconsequential, and the key is the

doubly exponential decay in d.)

2.4 Folding over satisfying assignments

Lemma 2.13. Let d > 1, X be a set of pd − 1 points in Fn
p and f : X → Fp an arbitrary function. Then

there exists a polynomial q of degree at most (p− 1)d such that q agrees with f on all points in X.

Proof. By Lemmas 2.6 and 2.7, any non-zero polynomial in (Pn
(p−1)d)

⊥ has support size at least pd.

In other words, the evaluations of (Pn
(p−1)d)

⊥ at Fn
p forms a code of distance at least pd. Therefore

its dual code, namely the evaluations of Pn
(p−1)d at Fn

p, induces a (pd − 1)-wise independent dis-
tribution. Hence, it is possible to interpolate a degree (p− 1)d polynomial to take on any desired
values at an arbitrary subset of pd − 1 points in Fn

p.

For any set S, a function A : Pn
(p−1)d → S is said to be folded over a subspace J ⊆ Pn

(p−1)d if A is
constant over cosets of J in Pn

(p−1)d.

Fact 2.14. Given a function A : Pn
(p−1)d/J → S there is a unique function A′ : Pn

(p−1)d → S that is folded
over J such that for g ∈ Pn

(p−1)d, A′(g) = A(g + J). We call A′ the lift of A.

Given q1, · · · , qk ∈ Pn
3(p−1), let

J(q1, . . . , qk) :=

{
∑

i
riqi : ri ∈ Pn

(p−1)(d−3)

}
.

The following lemma shows that if a function is folded over J = J(q1, . . . , qk), then it cannot
have weight on small support characters that are non-zero on J (this is a generalization of the
corresponding lemma in [DG15] to other fields).

Lemma 2.15. Let β ∈ Fn is such that | support(β)| < pd−3, and there exists x ∈ support(β) with
qi(x) 6= 0 for some i. Then if A : Pn

d → C is folded over J = J(q1, . . . , qk), then Â(β) = 0.

Proof. Construct a polynomial r that is zero at all points in support of β except at x. From Lemma 2.13,
its possible to construct such a polynomial of degree at most (p− 1)(d− 3). Then we have that
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rqi ∈ J and 〈β, rqi〉 6= 0. Now

E
h

[
A(h)χβ(h)

]
=

1
p

E
h

[
A(h)χβ(h) + A(h + rqi)χβ(h + rqi) + · · ·+ A(h + (p− 1)rqi)χβ(h + (p− 1)rqi)

]
=

1
p

E
h

[
A(h)χβ(h) + A(h)χβ(h + rqi) + · · ·+ A(h)χβ(h + (p− 1)rqi)

]
=

1
p

E
h

[
A(h)χβ(h)(1 + χβ(rqi) + · · ·+ χβ((p− 1)rqi))

]
= 0 [since χβ(rqi) 6= 1] .

3 Correlation with a random square

In this section, we analyze the quantity 〈β, p2〉, where p ∈ Pn
d is chosen uniformly at random and

β : Fn
3 → F3 is a fixed function having distance exactly ∆ from (Pn

2d)
⊥ = Pn

2n−2d−1.
Throughout this section, we work over the field F3. For a ∈ Nn, let |a| := ∑i ai and xa denote

the monomial ∏i xai
i . Over F3, the individual degrees are at most 2 (since x3 ≡ x). Hence, we

assume wlog. that the coefficient vector a ∈ {0, 1, 2}n. In this notation, p(x) = ∑|a|≤d paxa where
pa are chosen independently and uniformly at random from F3. For x ∈ Fn

3 , let ex be the column
vector of evaluation of all degree d monomials at x, i.e., ex := (xa)|a|≤d. Then p(x) = pTex where p
is now thought of as the column vector (pa)|a|≤d and hence, p2(x) = (pTex)2 = pT(exeT

x )p.

〈β, p2〉 = ∑
x

β(x)
(

pTexeT
x p
)
= pT

(
∑
x

β(x)exeT
x

)
p.

We are thus, interested in the quadratic form represented by the matrix Qβ := ∑x β(x)eT
x ex. Ob-

serve that all β belonging to the same coset in Pn
2n/Pn

2n−2d−1 have the same value for 〈β, p2〉 and
the matrix Qβ. Hence, by Lemma 2.10, we might wlog. assume that β satisfies | support(β)| = ∆.
The following lemma (an easy consequence of [LN97, Theorem 6.21]), shows that it suffices to
understand the rank of Qβ.

Lemma 3.1. Let A be a n × n, symmetric matrix with entries from F3. The statistical distance of the
random variable pT Ap from uniform is exp(−Ω(rank(A))).

In the next sequence of lemmas, we relate rank(Qβ) to ∆. In particular, we show that rank(Qβ)
is equal to ∆ if ∆ ≤ 3d/2 and is exponential in d otherwise. Recall that over F3, Pn

2n is the set of all
function from Fn

3 to F3 and
(
Pn

2d

)⊥
= Pn

2n−2d−1.

Lemma 3.2. rank(Qβ) ≤ ∆.

Proof. By assumption, β satisfies ∆ = | support(β)|. The lemma follows from the fact that exeT
x are

rank one matrices and Qβ = ∑x β(x)exeT
x .

Lemma 3.3. If ∆ < 3d/2, then rank(Qβ) = ∆.

Proof. By assumption, β satisfies ∆ = | support(β)| and Qβ = ∑x β(x)exeT
x . Since (Pn

d)
⊥ = Pn

2n−d−1
and any non-zero polynomial with degree 2n− d− 1 has support at least 3d/2 (Lemma 2.7). Ar-
guing as in Lemma 2.13, any d3d/2e − 1 vectors ex are linearly independent. In particular, the ∆
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vectors ex for x in support(β) are linearly independent. Consider any non-zero v in the kernel of
the matrix Qβ. The linear independence of ex’s gives that eT

x v = 0 for all x ∈ support(β). Hence,
the kernel of Qβ resides in a ∆-codimensional space which implies that rank(Qβ) = ∆.

We conjecture that Lemma 3.3 holds for larger values of ∆, but for our purposes we only need
a lower bound on the rank when ∆ ≥ 3d/2.

Lemma 3.4. There exists a constant d0 such that if d > d0 and ∆ > 3d/2 then rank(Qβ) ≥ 3d/9.

Proof. The proof of this theorem is similar to the proof of [DG15, Theorem 17] for the F2 case and
we follow it step by step. Define Bn

d,k(β) :=
{

q ∈ Pn
k : qβ ∈ Pn

2n−2d−1+k

}
.

Claim 3.5. ker(Qβ) = Bn
d,d(β).

Proof. The matrix Qβ satisfies that Qβ(a, b) = 〈β, xaxb〉, for all a, b ∈ {0, 1, 2}n, |a|, |b| ≤ d. Using
this description of Qβ, we obtain the following description of ker(Qβ).

(ha)|a|≤d ∈ ker(Qβ)⇔ ∀a : |a| ≤ d, ∑
b:|b|≤d

〈
β, xaxb

〉
hb = 0

⇔ ∀a : |a| ≤ d,

〈
β, xa ∑

b:|b|≤d
hbxb

〉
= 0

⇔ ∀a : |a| ≤ d, 〈βxa, h〉 = 0
⇔ ∀q ∈ Pn

d , 〈βq, h〉 = 0
⇔ ∀q ∈ Pn

d , 〈βh, q〉 = 0
⇔ βh ∈ Pn

2n−d−1

Thus to prove Lemma 3.4, it suffices to show that rank(Qβ) = dim(Pn
d/Bn

d,d(β)) ≥ 3d/9. Towards
this end, we define

Φd,k(D) := min
n>d/2,β∈Pn

2n :∆(β,Pn
2n−2d−1)>D

dim(Pn
k /Bn

d,k(β)). (3.1)

In terms of Φd,k, Lemma 3.4 now reduces to showing that Φd,d(3d/2) ≥ 3d/9. We obtain this
lower bound by recursively bounding this quantity . The following serves as the base case of the
recursion.

Claim 3.6. For k > 2d , ∀D, Φd,k(D) = 0 and for k ≤ 2d, Φd,k(1) ≥ 1.

Proof. Let β be the polynomial that attains the minimum in (3.1). The first part of the claim follows
from the fact that if k > 2d then Bn

d,k(β) = Pn
k .

Now for the second part. Since β /∈ Pn
2n−2d−1, there is a monomial xa with |a| ≤ 2d such that

〈β, xa〉 6= 0⇐⇒ 〈βxa, 1〉 6= 0⇐⇒ βxa /∈ Pn
2n−1.

If |a| ≤ k, xa /∈ Bn
d,k(β) and we are done. Otherwise, consider b such that b ≤ a coordinate-

wise and |b| = k. Suppose xbβ ∈ Pn
2n−2d−1+k then xaβ ∈ Pn

2n−1 which is a contradiction. Hence,
xbβ /∈ Pn

2n−2d−1+k and the second part of the claim follows.

For the induction step, we need the following claim.
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Claim 3.7. There exists a constant d0 such that if 35 < ∆ < 3d, d > d0 where β is ∆-far from Pn
2n−2d−1,

then there exists nonzero ` ∈ Pn
1 such that ∀c ∈ F3, β|`=c are ∆/27 far from the restriction of Pn

2n−2d−1 to
affine hyperplanes.

See Appendix A for a proof of Claim 3.7 from Theorems 4.16 and 1.7 of [HSS13].

Claim 3.8. If 35 ≤ D ≤ 3d and d > d0, then

Φd,k(D) ≥ Φd−1,k(D/27) + Φd−1,k−1(D/27) + Φd−1,k−2(D/27).

Proof. From Lemma 3.7, we get that there exists nonzero ` ∈ Pn
1 such that for all c ∈ F3, β|`=c is

D/27 far from Pn−1
2n−2d−1. By applying a change of basis, we can assume that ` = xn.

Let β = (x2
n− 1)γ+ xnη + θ and q = (x2

n− 1)r+(xn− 1)s+ t where γ, η, θ, r, s, t do not depend
on xn. Note that θ−γ, θ + η, θ− η are D/27 far from Pn−1

2n−2d−1. Expanding the product βq, we have

βq = (x2
n − 1) ((θ − γ)r + γt + ηs− γs) + (xn − 1) ((θ − η)s + ηt) + (θ + η)t.

Comparing terms, we observe that βq ∈ Pn
2n−2d−1+k iff the following three items are true:

1. (θ − γ)r + γt + ηs− γs ∈ Pn−1
2n−2d−1+k−2,

2. (θ − η)s + ηt ∈ Pn−1
2n−2d−1+k−1,

3. (θ + η)t ∈ Pn−1
2n−2d−1+k.

Since r ∈ Pn
k−2, s ∈ Pn

k−1, t ∈ Pn
k , this is equivalent to the following (written in reverse order):

1. t ∈ Bn−1
d−1,k(θ + η),

2. s ∈ −ηt + Bn−1
d−1,k−1(θ − η),

3. r ∈ γs− ηs− γt + Bn−1
d−1,k−2(θ − γ).

Since t, s, r belongs to sets with the same size as Bn−1
d−1,k(θ + η), Bn−1

d−1,k−1(θ − η), Bn−1
d−1,k−2(θ − γ)

respectively and each choice gives a distinct element of Bn
d,k(β), we get the following equality.

dim(Bn
d,k(β)) = dim(Bn−1

d−1,k(θ + η)) + dim(Bn−1
d−1,k−1(θ − η)) + dim(Bn−1

d−1,k−2(θ − γ))

Combining this with dim(Pn
k ) = dim(Pn−1

k ) + dim(Pn−1
k−1 ) + dim(Pn−1

k−2 ), we obtain

dim(Pn
k /Bn

d,k(β)) = dim(Pn−1
k /Bn−1

d−1,k(θ + η)) + dim(Pn−1
k−1 /Bn−1

d−1,k−1(θ − η)) + dim(Pn−1
k−2 /Bn−1

d−1,k−2(θ − γ))

≥ Φd−1,k(D/27) + Φd−1,k−1(D/27) + Φd−1,k−2(D/27).

The last inequality follows from the fact that θ − γ, θ + η, θ − η are D/27 far from Pn−1
2n−2d−1 =

Pn−1
2(n−1)−2(d−1)−1. Thus, proved.

To prove Lemma 3.4, we start with Φd,d(3d/2) and apply Claim 3.8 recursively d/6− 2 times
and finally use the base case from Claim 3.6 (this can be done as long as d/6− 2 ≤ d/2). This
gives rank(Qβ) ≥ Φd,d(3d/2) ≥ 3d/6−2 ≥ 3d/9 as long as d0 is large enough.
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4 Hardness of coloring 2-colorable 8-uniform hypergraphs

We prove the theorem by a reduction from 3SAT via the instances of the repeated label cover
problem obtained in Theorem 2.2. Let r ∈ N be a parameter, which we will fix later, and let I(ϕ)
be an instance of r-repeated label cover obtained in Theorem 2.2 starting from a 3SAT instance ϕ.

We denote by G = (U, V, E) the underlying left and right regular bipartite graph. For u ∈ U
and i ∈ [3r], fix functions f u

i : {0, 1}3r → {0, 1} as in Definition 2.1. Throughout this section, we
work over F2. For a degree parameter d, which we will determine later, and a vertex u ∈ U, we
define the subspace Ju :=

{
∑3r

i=1 ri f u
i : ri ∈ P3r

(d−3)

}
. Note that since each f u

i depends only on 3

variables, it is a polynomial of degree at most 3 and hence, Ju is indeed a subspace of P3r
d . Let Nu

denote the cardinality of the quotient space P3r
d /Ju.

We now define the hypergraph H produced by the reduction. The vertices of H — denoted
V(H) — are obtained by replacing each u ∈ U by a block Bu of Nu vertices, which we identify
with elements of P3r

d /Ju. Let N denote |V(H)| = ∑u∈U Nu.
We think of a 2-coloring of V(H) as a map from V(H) to F2. Given a coloring A : V(H)→ F2,

we denote by Au : P3r
d /Ju → F2 the restriction of A to the block Bu (under our identification of Bu

with P3r
d /Ju). Let A′u : P3r

d → F2 denote the lift of Au as defined in Fact 2.14.
The (weighted) edge set E(H) of H is specified implicitly by the following PCP verifier for the

label cover instance I(ϕ), which expects as its input a 2-coloring A : V(H)→ F2.

2-Color 8-Uniform Test(d)

1. Choose a uniformly random v ∈ V and then choose u, w ∈ U uniformly random neighbors
of v (by the right regularity of G, both (u, v) and (u, w) are uniform random edges in E). Let
π denote πuv : F3r

2 → Fr
2 and similarly, let π′ be πwv.

2. Choose f ∈ Pr
d, e1, e2, e3, e4 ∈ P3r

d , and g1, g2 ∈ P3r
d/4 and h1, h2, h3, h4 ∈ P3r

3d/4 independently
and uniformly at random. Define functions η1, η2, η3, η4 ∈ P3r

d as follows.

η1 := 1 + f ◦ π + g1h1, η3 := f ◦ π′ + g2h3,
η2 := 1 + f ◦ π + (1 + g1)h2, η4 := f ◦ π′ + (1 + g2)h4.

3. Accept if and only if A′u(e1), A′u(e1 + η1), A′u(e2), A′u(e2 + η2), A′w(e3), A′w(e3 + η3), A′w(e4), A′w(e4 +
η4) are not all equal.

We now analyze the above test.

Lemma 4.1 (Completeness). If ϕ is satisfiable, then there exists a 2-coloring A : V(H) → F2 such that
the verifier accepts with probability 1. In other words, the hypergraph H is 2-colorable.

Proof. Since ϕ is satisfiable, Theorem 2.2 tells us that there are labelings LU : U → F3r
2 and LV :

V → Fr
2 such that for all u ∈ U, LU(u) satisfies all the clauses in U and moreover, for every edge

(u, v) ∈ E, we have πuv(LU(u)) = LV(v). Fix such LU , LV . Let au denote LU(u) for any u ∈ U and
bv denote LV(v) for any v ∈ V.

Now, the coloring A : V(H)→ F2 is defined to ensure that for each u ∈ U, its restriction Au is
such that its lift A′u = LCd(au). Note that this makes sense since LCd(au) is folded over Ju: indeed,
given any g ∈ P3r

d and h = ∑i ri f u
i ∈ Ju, we have LCd(au)(g + h) = g(au) + h(au) = g(au) as

h(au) = ∑i ri(au) f u
i (au) = 0 for any satisfying assignment au of the clauses corresponding to u.
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We now show that the verifier accepts A with probability 1. Fix any choices of v ∈ V and
u, w ∈ U, f , ei, hi (i ∈ [4]) and gi (i ∈ [2]) as in the test. By the definitions of LU and LV , we
must have π(au) = π′(aw) = bv. This implies that the 8 positions in A viewed by the verifier
respectively contain the following values:

e1(au), e1(au) + 1 + f (bv) + g1(au)h1(au),
e2(au), e2(au) + 1 + f (bv) + (1 + g1(au))h2(au),
e3(aw), e3(aw) + f (bv) + g2(aw)h3(aw),
e4(aw), e4(aw) + f (bv) + (1 + g2(aw))h4(aw).

If f (bv) = 0, then

e1(au) 6= e1(au) + 1 + f (bv) + g1(au)h1(au) or e2(au) 6= e2(au) + 1 + f (bv) + (1 + g1(au))h2(au).
(4.1)

Else if f (bv) = 1, then

e3(aw) 6= e3(aw) + f (bv) + g2(aw)h3(aw) or e4(aw) 6= e4(aw) + f (bv) + (1 + g2(aw))h4(aw). (4.2)

Thus, the verifier always accepts.

Remark 4.2. Lemma 4.1 actually yields a stronger statement. Let us group the probes of the
verifier as (ei, ei + ηi) for i ∈ [4]. Then, for the given coloring A in Lemma 4.1 and any random
choices of the verifier, there is some i ∈ [4] such that A is not constant on inputs in the ith group.
We use this in § 5 to devise a 4-query verifier over an alphabet of size 4.

Lemma 4.3 (Soundness). Let d ≥ 16 be a multiple of 4 , δ > 0 and ε0 be the constant from Theorem 2.2.
If ϕ is unsatisfiable and H contains an independent set of size δN, then δ8 ≤ 2d/2+1 · 2−ε0r + 2−2d/8

.

Proof. Fix any independent set I ⊆ V(H) of size δN. Let A : V(H) → {0, 1} be the indicator
function of I . For u ∈ U, let Au : P3r

d /Ju → {0, 1} denote the restriction of A to the block
of vertices corresponding to u and let A′u : P3r

d → {0, 1} be the lift of Au. Note that we have
E(g+Ju)∈P3r

d /Ju
[Au(g)] = Eg∈P3r

d
[A′u(g)] for any u ∈ U. In particular,

E
u∈U

E
g∈P3r

d

[
A′u(g)

]
= E

u∈U
E

(g+Ju)∈P3r
d /Ju

[Au(g)] ≥ δ. (4.3)

Since I is an independent set, in particular it must be the case that the probability that a ran-
dom edge (chosen according to the probability distribution defined on E(H) by the PCP verifier)
completely lies inside I is 0. We note that another expression for this probability is given by
the quantity Ev∈V,u,w∈U [Q(v, u, w)] where v ∈ V and u, w ∈ U are as chosen by the PCP verifier
described above and Q(v, u, w) is defined as follows:

Q(v, u, w) := E
η1,η2
η3,η4

 E
e1,e2e3,e4

[
∏
i∈[2]

A′u(ei)A′u(ei + ηi)A′w(ei+2)A′w(ei+2 + ηi+2)

] .

We analyze the right hand side of the above using its Fourier expansion (see Lemma 2.10). As
defined in § 2.3, let Λ3r

d be a set of minimum weight coset representatives of the cosets of (P3r
d )⊥ in
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F3r. Standard computations yield the following:

Q(v, u, w) = ∑
α1,α2

β1,β2∈Λ3r
d

(
∏
i∈[2]

Â′u(αi)
2Â′w(βi)

2

)
E

η1,η2
η3,η4

[
∏
i∈[2]

χαi(ηi)χβi(ηi+2)

]
︸ ︷︷ ︸

ξv,u,w(α1,α2,β1,β2)

. (4.4)

When v, u, w are clear from context, we use ξ(α1, α2, β1, β2) instead of ξv,u,w(α1, α2, β1, β2).
We analyze the above expression by breaking it up as follows. Let

FAR := {(α1, α2, β1, β2) ∈ (Λ3r
d )4 : max{∆(αi,P3r

d ), ∆(βi,P3r
d )} ≥ 2d/2}, and

NEAR := (Λ3r
d )4 \ FAR .

We now make the following claim for every v, u, w, the proof of which is deferred to the end of the
section.

Claim 4.4. For d ≥ 16, we have ∑(α1,α2,β1,β2)∈FAR |ξ(α1, α2, β1, β2)| ≤ 2−2d/8
.

Substituting in (4.4), we have for any v ∈ V and u, w ∈ U,

Q(v, u, w) ≥ ∑
(α1,α2,β1,β2)∈NEAR

ξ(α1, α2, β1, β2)− ∑
(α1,α2,β1,β2)∈FAR

|ξ(α1, α2, β1, β2)|

≥ ∑
(α1,α2,β1,β2)∈NEAR

ξ(α1, α2, β1, β2)− 2−2−d/8
. (4.5)

Now fix any (α1, α2, β1, β2) ∈ NEAR. We analyze the expectation term in ξ(α1, α2, β1, β2) further
as follows.

E
η1,η2
η3,η4

[
∏
i∈[2]

χαi(ηi)χβi(ηi+2)

]
= E

g1,g2, f
h1,...,h4

[
χα1(1 + f ◦ π + g1h1)χα2(1 + f ◦ π + (1 + g1)h2)χβ1( f ◦ π′ + g2h3)χβ2( f ◦ π′ + (1 + g2)h4)

]

= E
gi ,hj

[
∏
i∈[2]

χαi(1 + (1 + i + g1)hi)χβi((1 + i + g2)hi+2) ·E
f

[
χπ2(α1+α2)+π′2(β1+β2)( f )

] ]
. (4.6)

where π2 and π′2 are as defined in Lemma 2.11. The innermost expectation is 0 unless χπ2(α1+α2)+π′2(β1+β2)

is the trivial character on Pr
d or equivalently, γ := π2(α1 + α2) + π′2(β1 + β2) ∈ (Pr

d)
⊥.

We claim that this implies that γ = 0. To see this, we observe from the definition of π2 and π′2
that | support(γ)| ≤ ∑i∈[2] | support(αi)|+ | support(βi)| ≤ 4 · 2d/2, since (α1, α2, β1, β2) ∈ NEAR

and | support(α)| = ∆(α, (P3r
d )⊥) for α ∈ Λ3r

d . However, if γ 6= 0 and γ ∈ (Pr
d)
⊥, by Lemma 2.7,

we must have | support(γ)| ≥ 2d > 4 · 2d/4 since d ≥ 8. This implies that γ = 0. Substituting in
(4.6), we get

E
η1,η2
η3,η4

[
∏
i∈[2]

χαi(ηi)χβi(ηi+2)

]
=

{
0, if π2(α1 + α2) + π′2(β1 + β2) 6= 0,

Egj,hi

[
∏i∈[2] χαi(1 + (1 + i + g1)hi)χβi((1 + i + g2)hi+2)

]
, otherwise.

(4.7)
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Substituting back in (4.5), we have

Q(v, u, w) = ∑
(α1,α2,β1,β2)∈NEAR:

π2(α1+α2)+π′2(β1+β2)=0

ξ(α1, α2, β1, β2)− 2−2d/8
. (4.8)

We partition the terms in the above sum further into

NEAR0 := {(α1, α2, β1, β2) ∈ NEAR : π2(α1 + α2) = π′2(β1 + β2) = 0}, and
NEAR1 := {(α1, α2, β1, β2) ∈ NEAR : π2(α1 + α2) = π′2(β1 + β2) 6= 0} ,

and make the following claims about the contributions of these subsets.

Claim 4.5. Ev,u,w

[
∑(α1,α2,β1,β2)∈NEAR1

|ξv,u,w(α1, α2, β1, β2)|
]
≤ 2d/2+1 · 2−ε0r.

Claim 4.6. Let δ be the fractional size of the independent set.

E
v,u,w

 ∑
(α1,α2,β1,β2)∈NEAR0

ξv,u,w(α1, α2, β1, β2)

 ≥ δ8.

Assuming these claims for now, we can finish the proof of Lemma 4.3 as follows. By (4.8),

0 = E
v,u,w

[Q(v, u, w)]

≥ E
v,u,w

 ∑
(α1,α2,β1,β2)∈NEAR0

ξv,u,w(α1, α2, β1, β2)

− E
v,u,w

 ∑
(α1,α2,β1,β2)∈NEAR1

|ξv,u,w(α1, α2, β1, β2)|

− 2−2d/8

≥ δ8 − 2d/2+1 · 2−ε0r − 2−2d/8
.

We now turn to the proofs of Claims 4.4–4.6.

Proof of Claim 4.4. Fix any (α1, α2, β1, β2) ∈ FAR. Conditioned on any choice of f , the expectation
term in |ξ(α1, α2, β1, β2)|may be bounded as follows:∣∣∣∣∣∣ E

η1,η2
η3,η4

[
∏
i∈[2]

χαi(ηi)χβi(ηi+2)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
g1,g2

h1,...,h4

[
χα1(1 + f ◦ π + g1h1)χα2(1 + f ◦ π + (1 + g1)h2)χβ1( f ◦ π′ + g2h3)χβ2( f ◦ π′ + (1 + g2)h4)

]∣∣∣∣∣∣
≤ E

g1,g2

[
∏
i∈[2]

∣∣∣∣Ehi

[χαi(1 + f ◦ π + (1 + i + g1)hi)]

∣∣∣∣ · ∣∣∣∣ E
hi+2

[
χβi( f ◦ π′ + (1 + i + g2)hi+2)

]∣∣∣∣
]

= E
g1,g2

[
∏
i∈[2]

∣∣∣∣Ehi

[χαi((1 + i + g1)hi)]

∣∣∣∣ · ∣∣∣∣ E
hi+2

[
χβi((1 + i + g2)hi+2)

]∣∣∣∣
]

≤ E
g1,g2

[
min

{∣∣∣∣Ehi

[χαi((1 + i + g1)hi)]

∣∣∣∣ ,
∣∣∣∣ E
hi+2

[
χβi((1 + i + g2)hi+2)

]∣∣∣∣ : i ∈ [2]

}]

≤ min

{
E
g1

[∣∣∣∣Ehi

[χαi((1 + i + g1)hi)]

∣∣∣∣] , E
g2

[∣∣∣∣ E
hi+2

[
χβi((1 + i + g2)hi+2)

]∣∣∣∣
]

: i ∈ [2]

}
. (4.9)
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Note that for any i ∈ [2], (1 + i + g1) and (1 + i + g2) are uniformly random elements of P3r
d/4

that are independent of h1, . . . , h4. Moreover, since (α1, α2, β1, β2) ∈ FAR, we know that there is a
γ ∈ {α1, α2, β1, β2} such that ∆(γ, (P3r

d )⊥) ≥ 2d/2. Therefore, by Theorem 2.12, we have

E
g∈P3r

d/4

[∣∣∣∣∣ E
h∈P3r

3d/4

[χγ(gh)]

∣∣∣∣∣
]
≤ 2−2(d/4−2) ≤ 2−2d/8

where the second inequality follows because d ≥ 16. Substituting the above in (4.9), we obtain∣∣∣∣∣∣ E
η1,η2
η3,η4

[
∏
i∈[2]

χαi(ηi)χβi(ηi+2)

]∣∣∣∣∣∣ ≤ 2−2d/8
.

Thus, we obtain

∑
(α1,α2,β1,β2)∈FAR

|ξ(α1, α2, β1, β2)| ≤ 2−2d/8 · ∑
α1,α2,β1,β2∈Λ3r

d

(
∏
i∈[2]

Â′u(αi)
2Â′w(βi)

2

)
≤ 2−2d/8

,

where the last inequality follows from Parseval’s identity and the fact that |A(x)| ≤ 1 for all
x ∈ V(H).

Proof of Claim 4.5. We use a Fourier decoding argument. Formally, we sample random labelings
LU : U → F3r

2 and LV : V → Fr
3 such that LU(u) satisfies all clauses in u and such that

Pr
(u,v)∈E,LU ,LV

[πuv(LU(u)) = LV(v)] ≥
1

2d+2 E
v,u,w

 ∑
(α1,α2,β1,β2)∈NEAR1

|ξv,u,w(α1, α2, β1, β2)|

 . (4.10)

Since OPT(I(ϕ)) ≤ 2−ε0r, the left hand side of the above inequality is at most 2−ε0r. This implies
the claim.

Define LU : U → F3r
2 as follows: given u ∈ U, we sample a random pair α1, α2 ∈ Λ3r

d such
that |α1|, |α2| < 2d/2 with probability proportional to Â′u(α1)

2Â′u(α2)2 and set LU(u) to be au for a
uniformly random au chosen from support(α1) ∪ support(α2). Since |α1|, |α2| < 2d/2 < 2d−4, by
Lemma 2.15, any α1, α2 sampled as above is supported only on satisfying assignments of all the
clauses in u.

We also define LV : V → Fr
2 similarly: given v ∈ V, we sample a random neighbor w ∈

U of v and choose at random a pair β1, β2 ∈ Λ3r
d such that |β1|, |β2| < 2d/2 with probability

proportional to Â′w(β1)
2 Â′w(β2)2 and set LV(v) to be πwv(aw) for a uniformly random aw chosen

from support(β1) ∪ support(β2).
Let (u, v) ∈ E be a uniformly random edge of G and consider the probability that πuv(LU(u)) =

LV(v). This probability can clearly be lower bounded as follows.

Pr
(u,v)∈E,LU ,LV

[π(LU(u)) = LV(v)] ≥ E
v,u,w

 ∑
(α1,α2,β1,β2)∈NEAR:

π(support(α1)∪support(α2))∩
π′(support(β1)∪support(β2)) 6=∅

∏
i∈[2]

Â′u(αi)
2Â′w(βi)

2

 ·
1

2d+2 ,
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where π denotes πuv and π′ denotes πwv. Observe that if (α1, α2, β1, β2) ∈ NEAR1, then π2(α1 +
α2) = π′2(β1 + β2) 6= 0 and in particular,

π(support(α1) ∪ support(α2)) ∩ π′(support(β1) ∪ support(β2)) 6= ∅ .

Therefore, we get the following which implies (4.10) and hence proves the claim:

Pr
(u,v)∈E,LU ,LV

[π(LU(u)) = LV(v)] ≥
1

2d+2 E
v,u,w

 ∑
(α1,α2,β1,β2)∈NEAR1

∏
i∈[2]

Â′u(αi)
2Â′w(βi)

2

 .

Proof of Claim 4.6. We argue below that for any v ∈ V and its neighbours u, w ∈ U and any
(α1, α2, β1, β2) ∈ NEAR0,

ξ(α1, α2, β1, β2) ≥ 0. (4.11)

Given (4.11), we have

E
v,u,w

 ∑
(α1,α2,β1,β2)∈NEAR0

ξv,u,w(α1, α2, β1, β2)

 ≥ E
v,u,w

[ξv,u,w(0, 0, 0, 0)] = E
v,u,w

[
Â′u(0)

4Â′w(0)
4
]

.

Conditioned on v ∈ V, u and w are independent and randomly chosen neighbours of v. Thus, the
above may be further lower bounded as follows.

E
v,u,w

[
Â′u(0)

4 Â′w(0)
4
]
= E

v

( E
u:(u,v)∈E

[
Â′u(0)

4
])2


≥
(

E
(u,v)∈E

[
Â′u(0)

])8

=

(
E

u∈U,g∈P3r
d

[
A′u(g)

])8

≥ δ8,

where the first inequality follows from repeated applications of the Cauchy-Schwarz inequality
and the last from (4.3).

For any v, u, w and (α1, α2, β1, β2) ∈ NEAR0, it remains to prove (4.11) (i.e., non-negativity of
ξv,u,w(α1, α2, β1, β2)). From (4.4), it suffices to argue the non-negativity of

E
η1,η2
η3,η4

[
∏
i∈[2]

χαi(ηi)χβi(ηi+2)

]
= E

g1,g2

[
∏
i∈[2]

E
hi

[χαi(1 + (1 + i + g1)hi)] E
hi+2

[
χβi((1 + i + g2)hi+2)

]]

= E
g1,g2

[
(−1)∑x α1(x)+α2(x) · ∏

i∈[2]
E
hi

[
χαi(1+i+g1)(hi)

]
E

hi+2

[
χβi(1+i+g2)(hi+2)

]]
,

(4.12)

where we have used (4.7) for the first equality and the fact that χα(gh) = χαg(h) for the second.
We claim that all the terms inside the final expectation are non-negative.

Firstly, since (α1, α2, β1, β2) ∈ NEAR0, we have π2(α1 + α2) = 0 and hence (−1)∑x α1(x)+α2(x) =

(−1)∑y π2(α1+α2)(y) = 1. Secondly, the orthonormality of characters implies that for any α ∈ F3r, we
have Eh∈Pr

3d/4
[χα(h)] ∈ {0, 1} and hence non-negative.

This shows that the right-hand side of (4.12) is non-negative. and hence proves (4.11).
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Proof of Theorem 1.1. Given the completeness (Lemma 4.1) and soundness (Lemma 4.3), we only
need to fix parameters. Let d = C log r for a large enough constant C ≥ 16 determined shortly.
By Lemma 4.3, if H has an independent set of size δN, then δ8 ≤ 2d/2 · 2−ε0r + 2−2d/8

< 2−ε0r/2 for
large enough C > 0 and r ∈N. Hence, H has no independent sets of δ′N, where δ′ = 2−ε0r/16.

The hypergraph H can be produced in time polynomial in N = nO(r)2rO(d)
= nO(r)2rO(log r)

.

Setting r = 2Θ(
√

log log n), we get N = n2O(
√

log log n)
, and δ′ = 2−Ω(r) = 2−2Θ(

√
log log n)

= 2−2Θ(
√

log log N)
,

proving Theorem 1.1.

5 Hardness of coloring 4-colorable 4-uniform hypergraphs

This construction is motivated by Remark 4.2 above. We observe that the 8-query PCP test used
in the above inapproximability result has a stronger completeness guarantee than required to
prove the above result: the 8 queries of the Not-All-Equal (NAE) PCP test, say {ei, e′i}4

i=1 in the
completeness case satisfy

4∨
i=1

NAE(A(ei), A(e′i))

, which is stronger than the required

NAE(A(e1), A(e′1), A(e2), A(e′2), A(e3), A(e′3), A(e4), A(e′4)).

Furthermore, for each i ∈ {1, 4}, the queries ei, e′i, ei+1, e′i+1 appear in the same table. This lets us
perform the following “doubling of queries”: each location is now indexed by a pair of queries,
e.g., (e1, e2) and is expected to return 2 bits that are the answers to the two queries respectively.
The stronger completeness property yields a 4-query NAE PCP test over an alphabet of size 4 with
the completeness property,

NAE(B(e1, e2), B(e′1, e′2)) ∨NAE(B(e3, e4), B(e′3, e′4)),

which suffices for the completeness for proving inapproximability results for 4-colorable 4-uniform
hypergraphs. We show that the soundness analysis also carries over to yield the following hard-
ness for 4-colorable 4-uniform hypergraphs.

We remark that the doubling method, mentioned above, when used in the vanilla long code
setting (as opposed to low-degree long code setting) already yields the following inapproxima-
bility: it is quasi-NP-hard to color a 4-colorable 4-uniform hypergraph with (log N)Ω(1) colors.
This result already improves upon the above mentioned result of Khot [Kho02a] for 7-colorable
4-uniform hypergraphs. Another feature of the doubling method is that although the underlying
alphabet is of size 4, namely {0, 1}2, it suffices for the soundness analysis to perform standard
Fourier analysis over F2.

In the language of covering complexity2, (the proof of) Theorem 1.2 demonstrates a Boolean
4CSP for which it is quasi-NP-hard to distinguish between covering number of 2 vs. exp(

√
log log N).

The previous best result for a Boolean 4CSP was 2 vs. log log N, due to Dinur and Kol [DK13].
We now turn to the formal construction of the verifier each of whose queries correspond to

two queries of the verifier described above. Let I(ϕ), G = (U, V, E), and Ju (u ∈ U) be as defined
in § 4.

2The covering number of a CSP is the minimal number of assignments to the vertices so that each hyperedge is
covered by at least one assignment.
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Now the vertices of the hypergraph H produced by the reduction denoted by V(H) are ob-
tained by replacing each u ∈ U by a block Bu of N2

u vertices, which we identify with elements of
P3r

d /Ju × P3r
d /Ju. Let N denote |V(H)| = ∑u∈U N2

u .
We think of a 4-coloring of V(H) as a map from V(H) to the 4-element set F2 × F2. Given a

coloring A : V(H) → F2 × F2, we denote by Au : P3r
d /Ju × P3r

d /Ju → F2 × F2 the restriction of
A to the block Bu. Let A′u : P3r

d × P3r
d → F2 × F2 denote the lift of Au as defined by A′u(g1, g2) :=

Au(g1 + Ju, g2 + Ju).
The verifier is defined as follows. The verifier is identical to the verifier in § 4 but for the dou-

bling of queries.

4-Color 4-Uniform Test(d)

1. Choose a uniformly random v ∈ V and then choose u, w ∈ U uniformly random neighbors
of v. Let π denote πuv : F3r

2 → Fr
2 and similarly, let π′ be πwv.

2. Choose f ∈ Pr
d, e1, e2, e3, e4 ∈ P3r

d , and g1, g2 ∈ P3r
d/4 and h1, h2, h3, h4 ∈ P3r

3d/4 independently
and uniformly at random. Define functions η1, η2, η3, η4 ∈ P3r

d as follows.

η1 := 1 + f ◦ π + g1h1, η3 := f ◦ π′ + g2h3,
η2 := 1 + f ◦ π + (1 + g1)h2, η4 := f ◦ π′ + (1 + g2)h4.

3. Accept if and only if A′u(e1, e2), A′u(e1 + η1, e2 + η2), A′w(e3, e4), A′w(e3 + η3, e4 + η4) are not
all equal.

The analysis of the above test closely follows that of the 2-color 8-uniform test.

Lemma 5.1 (Completeness). If ϕ is satisfiable, then there exists a 4-coloring A : V(H)→ F2 ×F2 such
that the verifier accepts with probability 1. In other words, the hypergraph H is 4-colorable.

Proof. Follows directly from Remark 4.2.

The soundness lemma requires us to perform Fourier analysis on functions A : P3r
d × P3r

d →
{0, 1}, for which we need the following easily verifiable facts.

Fact 5.2. Let A : P3r
d × P3r

d → C be any function. A non-zero function χ : P3r
d × P3r

d → C is a character if
χ(g1 + h1, g2 + h2) = χ(g1, g2)χ(h1, h2).

• χ : P3r
d ×P3r

d → C is a character if and only if there exist (α1, α2) ∈ F3r × F3r such that χ(g1, g2) =
χα1(g1)χα2(g2) for any g1, g2 ∈ P3r

d × P3r
d where χα1 and χα2 are characters of P3r

d .

• (α1, α2) and (β1, β2) yield the same character if and only if (α1 − β1), (α2 − β2) ∈ (P3r
d )⊥.

• Folding: Fix A : P3r
d × P3r

d → C be any function folded over the subgroup J × J where J :=
{∑k

i=1 riqi : ri ∈ P3r
d−3} and q1, . . . , qk ∈ P3r

3 . Then, for any (α1, α2) ∈ F3r × F3r such that |αj| :=
∆(αj, (P3r

d )⊥) < 2d−3 for j ∈ {1, 2} and Â(α1, α2) 6= 0, it must be the case that support(α1) ∪
support(α2) only contains x such that qi(x) = 0 for each i ∈ [k].

Lemma 5.3 (Soundness). Let d ≥ 8 be a multiple of 4 , δ > 0 and ε0 be the constant from Theorem 2.2.
If ϕ is unsatisfiable and H contains an independent set of size δN, then δ4 ≤ 2d/2+1 · 2−ε0r + 2−4·2−d/4

.
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The proof of Lemma 5.3 is similar to the proof of Lemma 4.3. The parameters are set exactly as
in Theorem 1.1 to yield Theorem 1.2.

Proof of Lemma 5.3. As the proof is similar to that of of Lemma 4.3, we only give a proof sketch,
highlighting the salient differences.

As before, fix any independent set I ⊆ V(H) of size δN. Let A : V(H) → {0, 1} be the
indicator function of I . We have Eu∈U Eg1,g2∈P3r

d
[A′u(g1, g2)] ≥ δ.

Again, we analyze Ev∈V,u,w∈U [Q(v, u, w)], which gives the probability that a random edge
(chosen according to the probability distribution defined on E(H) by the PCP verifier) completely
lies inside the independent set I , and is hence 0. Here, Q(v, u, w) is defined as follows:

Q(v, u, w) := E
η1,η2
η3,η4

 E
e1,e2e3,e4

[
A′u(e1, e2)A′u(e1 + η1, e2 + η2)A′w(e3, e4)A′w(e3 + η3, e4 + η4)

] .

The Fourier expansion of this expression (see Fact 5.2) yields the following. From Fact 5.2, we
have that C ′d := Λ3r

d ×Λ3r
d gives us all the distinct characters of P3r

d × P3r
d . Standard computations

give us

Q(v, u, w) = ∑
α1,α2

β1,β2∈Λ3r
d

Â′u(α1, α2)
2Â′w(β1, β2)

2
E

η1,η2
η3,η4

[
∏
i∈[2]

χαi(ηi)χβi(ηi+2)

]
︸ ︷︷ ︸

ξ ′v,u,w(α1,α2,β1,β2)

.

As in Lemma 4.3, let FAR := {(α1, α2, β1, β2) ∈ (Λ3r
d )4 : max{∆(αi,P3r

d ), ∆(βi,P3r
d )} ≥ 2d/2},

NEAR := (Λ3r
d )4 \ FAR, NEAR0 := {(α1, α2, β1, β2) ∈ NEAR : π2(α1 + α2) = π′2(β1 + β2) = 0},

and NEAR1 := {(α1, α2, β1, β2) ∈ NEAR : π2(α1 + α2) = π′2(β1 + β2) 6= 0}.
Note that the expectation term in ξ ′v,u,w(α1, α2, β1, β2) is exactly as that in ξv,u,w(α1, α2, β1, β2) in

Lemma 4.3. This means that the remaining computations can be carried out almost exactly as in
Lemma 4.3.

The following can be proved in the same way as Claims 4.4, 4.5 and 4.6.

Claim 5.4. For any fixed v, u, w, we have ∑(α1,α2,β1,β2)∈FAR |ξ ′v,u,w(α1, α2, β1, β2)| ≤ 2−4·2−d/4
.

Claim 5.5. Ev,u,w

[
∑(α1,α2,β1,β2)∈NEAR1

|ξ ′v,u,w(α1, α2, β1, β2)|
]
≤ 2d/2+1 · 2−ε0r.

(There is a small difference here from the proof of Claim 4.5 owing to the fact that the Fourier
coefficients appearing in ξ ′v,u,w(α1, α2, β1, β2) have a slightly different form. The only change that
needs to be made is to sample α1, α2 ∈ Λ3r

d and β1, β2 ∈ Λ3r
d with probability proportional to

Â′u(α1, α2)2 and Â′w(β1, β2)2 respectively.)

Claim 5.6. Ev,u,w

[
∑(α1,α2,β1,β2)∈NEAR0

ξ ′v,u,w(α1, α2, β1, β2)
]
≥ δ4.

As in Lemma 4.3, the above can be used to show:
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0 ≥ E
v,u,w

 ∑
(α1,α2,β1,β2)∈NEAR0

ξ ′v,u,w(α1, α2, β1, β2) + ∑
(α1,α2,β1,β2)∈NEAR1

ξ ′v,u,w(α1, α2, β1, β2)

− 2−4·2−d/4

≥ E
v,u,w

 ∑
(α1,α2,β1,β2)∈NEAR0

ξ ′v,u,w(α1, α2, β1, β2)

− E
v,u,w

 ∑
(α1,α2,β1,β2)∈NEAR1

|ξ ′v,u,w(α1, α2, β1, β2)|

− 2−4·2−d/4

≥ δ4 − 2d/2+1 · 2−ε0r − 2−4·2−d/4
.

This completes the proof of Lemma 5.3.

6 Hardness of coloring 3-colorable 3-uniform hypergraphs

This construction is an adaptation of Khot’s construction [Kho02b] to the low-degree long code
setting. We prove the theorem by a reduction from 3SAT via the instances of the multilayered
label cover problem obtained in Theorem 2.5. Let r, `, η be parameters, which will be determined
later, and let I(ϕ) be an instance of the r-repeated `-layered η-smooth label cover instance with
constraint graph G = (V0, . . . , V`−1, {Eij}0≤i<j<`) obtained from the 3SAT instance ϕ. We use the
results from the preliminaries with the field set to F3 = {0, 1, 2}. For every layer i and every vertex
v ∈ Vi, let {c1, · · · c(T+`−i)r} be the clauses corresponding to v where T = dl/ηe as in Definition 2.4.
We construct polynomials {p1, · · · p(T+`−i)r} of degree at most 6 over F3 such that pj depends
only on variables in cj with the following properties. Let a ∈ F3

3. If a /∈ {0, 1}3 then pj(a) 6= 0.
Otherwise pj(a) = 0 iff cj(a) = 1. For a degree parameter d, which we will determine later, for
each vertex v define the subspace Jv :=

{
∑i qi pi : qi ∈ Pmv

2d−6

}
where mv := mi = 3(T + `− i)r + ir.

We now define the hypergraph H produced by the reduction. The vertices of H — denoted
V(H) — are obtained by replacing each v ∈ G by a block Bv of Nv := |Pmv

2d /Jv|. vertices, which we
identify with elements of Pmv

2d /Jv. Let N denote |V(H)| = ∑v Nv.
We think of a 3-coloring of V(H) as a map from V(H) to F3. Given a coloring A : V(H)→ F3,

we denote by Av : Pmv
2d /Jv → F3 the restriction of A to the block Bv. Let A′v : Pmv

2d → F3 denote the
lift of Av as defined in Fact 2.14.

The (weighted) edge set E(H) of H is specified implicitly by the following PCP verifier.

3-Color 3-Uniform Test(d)

1. Choose two layers 0 ≤ i < j < ` uniformly at random and then choose a uniformly random
edge (u, v) ∈ Eij. Let π denote πuv : F

mu
3 → F

mv
3 .

2. Choose p ∈ Pmu
d , g ∈ Pmu

2d and f ∈ Pmv
2d independently and uniformly at random and let

g′ := p2 + 1− g− f ◦ π.

3. Accept if and only if A′v( f ), A′u(g), A′u(g′) are not all equal.

The above hypergraph construction explains the reasons (as in [DRS05, Kho02b]) for using the
multilayered label cover. Unlike the constructions in the previous two sections, the hyperedges in
the 3-uniform case straddle both sides of the corresponding edge (u, v) in the label cover instance.
Hence, if constructed from the bipartite label cover, the corresponding 3-uniform hypergraph will
also be bipartite and hence always 2-colorable irrespective of the label cover instance. Using the
multilayered construction gets around this problem.
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Lemma 6.1 (Completeness). If ϕ ∈ 3SAT, then there is proof A : V(H) → F3 that the verifier accepts
with probability 1. In other words, the hypergraph H is 3-colorable.

Proof. Since ϕ ∈ 3SAT, Theorem 2.5 tells us that there are labelings Li : Vi → {0, 1}mi for 0 ≤ i < `
that satisfy all the constraints in I(ϕ). For ∀i, v ∈ Vi, we set Av : Pmv

2d /Jv → F3 such that its lift
A′v = LC2d(Li(v)). This is possible since A′v is folded over Jv. For any edge (u, v) between layers i, j,
with labels Li(u) = a, Lj(v) = b such that π(a) = b, (A′v( f ), A′u(g), A′u(g′)) = ( f (b), g(a), g′(a)).
The lemma follows by observing that g′(a) + g(a) + f (b) 6= 0 always (since p2(a) + 1 6= 0).

Lemma 6.2 (Soundness). Let ` = 32/δ2. If ϕ /∈ 3SAT and H contains a independent set of size δ|V(H)|,
then

δ5/29 ≤ 2−Ω(r) · 3d + η · 3d + exp(−3Ω(d)).

Proof. Let A : V(H)→ {0, 1} be the characteristic function of the independent set of fractional size
exactly δ. We have that ∀v, Eg∈Pmv

2d /Jv
[Av(g)] = Eg∈Pmv

2d
[A′v(g)] where A′v is the lift of Av. Define

Q(u, v) := E
f ,g,p

[
A′v( f )A′u(g)A′u(p2 + 1− f ◦ π − g)

]
.

Observe that Ei,j,u,v [Q(u, v)] = 0 as A corresponds to an independent set. Using Lemma 2.10, we
have the following Fourier expansion of Q:

Q(u, v) = ∑
α,β,γ

Â′v(α)Â′u(β)Â′u(γ) E
f ,g,p

[
χα( f )χβ(g)χγ(g′)

]
, (6.1)

where the summation is over α ∈ Λmv
2d , β, γ ∈ Λmu

2d and Λ is as defined in Lemma 2.10. From the
orthonormality of characters, the non-zero terms satisfy β = γ and α = π3(β). Substituting in
(6.1), we get

Q(u, v) = ∑
β

Â′u(β)2Â′v(π3(β))E
p

[
χβ(p2 + 1)

]
︸ ︷︷ ︸

ξu,v(β)

. (6.2)

Claim 6.3. If ` = 32/δ2, there exists layers 0 ≤ i < j < ` such that E(u,v)∈Eij
[ξu,v(0)] ≥ δ5/29.

Proof. Since A′ has fractional size δ, there exists a set S of vertices of fractional size δ/2 such that
∀v ∈ S, Â′v(0) = E f [A′v( f )] ≥ δ/2. Furthermore, there exists δ`/4 layers, in which the fractional
size of Si := S ∩ Vi in layer Vi is at least δ/4. Since ` = 32/δ2, we obtain from Theorem 2.5 that
there exists layers i, j such that the fraction of edges in Eij between Si and Sj is at least δ′ = δ2/64.
From above, we have that

E
(u,v)∈Eij

[ξu,v(0)] ≥ δ′ · (δ/2)3 ≥ δ5/29.

For the rest of the proof, layers i, j will be fixed as given by Claim 6.3. To analyze the expression
in (6.2), we consider the following breakup of Λmi

2d \ {0} for every (u, v) ∈ Eij:

FAR := {β ∈ Λmi
2d : ∆(β, (Pmi

2d)
⊥) ≥ 3d/2} ,

NEAR1 := {β ∈ Λmi
2d \ FAR : β 6= 0 and π3(β) /∈ (Pmi

2d)
⊥}, and

NEAR0 := {β ∈ Λmi
2d \ FAR : β 6= 0 and π3(β) ∈ (Pmi

2d)
⊥} .

In Claims 6.4, 6.5 and 6.6, we bound the absolute values of the sum of Eu,v [ξu,v(β)] for β in
FAR, NEAR0 and NEAR1 respectively.
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Claim 6.4.
∣∣∣E(u,v)∈Eij

[
∑β∈FAR ξu,v(β)

]∣∣∣ ≤ exp(−3Ω(d)).

Claim 6.5.
∣∣∣E(u,v)∈Eij

[
∑β∈NEAR1

ξu,v(β)
]∣∣∣ ≤ 2−Ω(r) · 3d.

Claim 6.6.
∣∣∣E(u,v)∈Eij

[
∑β∈NEAR0

ξu,v(β)
]∣∣∣ ≤ η · 3d.

Combined with Claim 6.3, this exhausts all terms in the expansion (6.2). Lemma 6.2 now
follows from Claims 6.3–6.6.

We now proceed to the proofs of Claims 6.4, 6.5 and 6.6.

Proof of Claim 6.4.∣∣∣∣∣ E
(u,v)∈Eij

[
∑

β∈FAR

ξu,v(β)

]∣∣∣∣∣ ≤ E
(u,v)∈Eij

[
∑

β∈FAR

|Â′u(β)|2 · |Â′v(π3(β))| ·
∣∣∣∣Ep [ω〈β,p2+1〉

]∣∣∣∣
]

.

The quantity 〈β, p2〉 is analyzed in § 3. Let z be a uniformly random F3 element. By Lem-
mas 3.1 and 3.4, we get that the statistical distance between the distributions of 〈β, p2 + 1〉 and z
is exp(−3Ω(d)). Since the Ez [ωz] = 0, we have that

∣∣∣Ep

[
ω〈β,p2+1〉

]∣∣∣ ≤ exp(−3Ω(d)). The claim

follows since
∣∣∣Â′v(α)∣∣∣ ≤ 1 for any α and ∑β |Â′u(β)|2 ≤ 1 .

Proof of Claim 6.5. It suffices to bound the following for proving the claim.

E
(u,v)∈Eij

[
∑

β∈NEAR1

|Â′u(β)|2 · |Â′v(π3(β))|
]

≤ E
(u,v)∈Eij

√ ∑
β∈NEAR1

|Â′u(β)|2 · |Â′v(π3(β))|2
√

∑
β∈NEAR1

|Â′u(β)|2
 [ by Cauchy-Schwarz ]

≤

√√√√ E
(u,v)∈Eij

[
∑

β∈NEAR1

|Â′u(β)|2 · |Â′v(π3(β))|2
]

[ by Jensen’s inequality ].

We bound the above using a Fourier decoding argument as in the proof of Claim 4.5. For
every vertex v ∈ Vi ∪Vj, pick a random β according to |Â′v(β)|2 (note ∑β |Â′v(β)|2 ≤ 1) and assign
a random labeling to v from the support of β. By an argument identical to the proof of Claim 4.5,
we get (using the soundness of the multilayered labelcover from Theorem 2.5),

1
3d E

(u,v)∈Eij

[
∑

β∈NEAR1

|Â′v(π3(β))|2|Â′u(β)|2
]
≤ 2−Ω(r).

Proof of Claim 6.6. We bound this sum using the smoothness property of the label cover instance.

E
(u,v)∈Eij

[
∑

β∈NEAR0

|Â′u(β)|2 · |Â′v(π3(β))|
]
≤ E

u∈Vi

 ∑
β/∈FAR∪{0}

Pr
v:(u,v)∈Eij

[
π3(β) ∈ (Pmv

2d )
⊥
]
· |Â′u(β)|2

 .
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We now argue that for every u and β /∈ FAR ∪ {0},

Pr
(u,v)∈Eij

[
π3(β) /∈ (Pmv

2d )
⊥
]
≤ 3d · η.

This combined with the fact that ∑β |Â′u(β)|2 ≤ 1 yields the claim. For every u ∈ Vi and β such
that 0 6= | support(β)| = ∆(β, (Pmu

2d )
⊥) ≤ 3d/2, by the smoothness property (Theorem 2.5), we

have that with probability at least 1− 3dη, we have

∀a 6= a′ ∈ support(β), π(a) 6= π(a′). (6.3)

When (6.3) holds, we have π3(β) 6= 0. Now since

| support(π3(β))| ≤ | support(β)| ≤ 3d/2

and non-zero polynomials in (Pmv
2d )
⊥ has support at least 3d, we can further conclude that π3(β) /∈

(Pmv
2d )
⊥ whenever (6.3) holds.

Proof of Theorem 1.3. Given the completeness (Lemma 6.1) and soundness(Lemma 6.2), we only
need to fix parameters. Let n be the size of the 3SAT instance and N the size of the hypergraph
produced by the reduction.

Let d = C1 log log(1/δ′), η = (δ′)5/C2 and r = C3 log(1/δ′) for large enough constants
C1, C2, C3 and parameter δ′ ∈ (0, 1) to be determined shortly. By Lemma 6.2, if H has an inde-
pendent set of size δN, then δ5/29 ≤ 3d · 2−Ω(r) + 3d · η + exp(−3Ω(d)) < (δ′)5/29 for large enough
C1, C2, C3. Hence, H has no independent sets of δ′N.

The hypergraph H produced by the reduction is of size N = `n(1+1/η)`r3((1+1/η)`r)O(d)
. Setting

` = C4/(δ′)2, log(1/δ′) = Θ(log log n/ log log log n) and since log log n = Θ(log log N), we get
that

N = n2O(log log n/ log log log n)
and 1/δ′ = 2Θ(log log N/ log log log N).

This completes the proof of Theorem 1.3.
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A Proof of Claim 3.7

We need the following theorem due to Haramaty, Shpilka and Sudan [HSS13].

Theorem A.1 ([HSS13, Theorem 4.16, 1.7] specialized to F3 and using absolute distances instead
of fractional distances). There exists a constant λ3 such that the following holds. For β : Fn

3 → F3, let
A1, . . . , AK be hyperplanes such that β|Ai is ∆1-close to some degree r polynomial on Ai. If K > 3d

r+1
2 e+λ3

and ∆1 < 3n−r/2−2/2, then ∆(β,Pn
r ) ≤ 6∆1 + 8 · 3n/K.

Setting the degree r = 2n− 2d− 1 in the above theorem implies that if there are K > 3n−d+λ3

hyperplanes A1, . . . , AK such that β|Ai is ∆1-close to a degree (2n− 2d− 1) polynomial on Ai, then
∆(β,Pn

2n−2d−1) ≤ 6∆1 + 8 · 3n/K.
Suppose Claim 3.7 were false. Then, for every nonzero l ∈ Pn

1 , at least one of β|`=0 or β|`=1 or
β|`=2 is ∆/27-close to a degree (2n− 2d− 1) polynomial. We thus, get K = (3n− 1)/2 hyperplanes
such that the restriction of β to these hyperplanes is ∆/27-close to a degree (2n− 2d− 1) polyno-
mial. Observe that K ≥ 3n−d+λ3 if d ≥ d0 ≥ λ3 + 2 and ∆/27 < 3n−(2n−2d−1)/2−2/2 = 3d−1.5/2
if ∆ < 3d. Hence, by Theorem A.1 we have ∆(β,Pn

2n−2d−1) ≤ 6∆/27 + 2 · 8 · 3n/(3n − 1) <

6∆/27 + 32 < ∆ (since ∆ ≥ 34). This contradicts the hypothesis that β is ∆-far from Pn
2n−2d−1.
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