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1 INTRODUCTION
This paper is in the setting of propositional proof complexity.We are given a propositional statement

and some reasoning rules. The most basic proof system is resolution. In this proof system we study

clauses, i.e. disjunctions of literals and have a simple way to derive new clauses from existing

clauses. If we derive the empty clause we have reached a contradiction refuting the original formula.

Resolution has been studied extensively and by now we have a large body of work understanding

the strengths and limitations of resolution. In an early paper [19], Tseitin defined the set of

contradictions based on graphs studied in this paper and proved that any regular resolution proof

of this contradiction requires exponential size proofs in general. A later result by Haken [9] gave

the first strong lower bound for unrestricted resolution proving that the pigeon-hole principle

(PHP) requires exponential size proofs. As this paper is not about resolution let us not discuss the

many strong results obtained but only mention the paper of Ben-Sasson and Wigderson [4] as

a high point which in particular established the importance of width when studying resolution

proofs.

There are many proof systems which are more powerful than resolution and in this paper we

study the case when each formula appearing in the proof is restricted to be a Boolean formula of

small depth d . Here d = 1 essentially corresponds to resolution. There are many alternatives for

the reasoning rules and what is said below applies to any constant size set of reasoning rules that

are consistent. The first strong result in this setting was obtained by Ajtai [1] showing that the

PHP cannot be proved in constant depth and polynomial size.

Ajtai did not give an explicit lower bound for the depth of polynomial size proofs but in a

later reformulation by Bellantoni et al. [2], a lower bound of Ω(log
∗ n) was given. This was later

strengthened [11, 13] to obtain Ω(log logn) lower bounds for PHP. Similar bounds were later proved

by Urquhart and Fu [20] and Ben-Sasson [3] for Tseitin contradictions for the complete graph and

for constant-degree expander graphs, respectively.
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2 Johan Håstad

On the positive side Buss [5] proved that there are polynomial sizeO (logn)-depth proofs for the

PHP and similar proofs can be constructed by related methods for the Tseitin contradiction for any

constant-degree graph.

The exponential gap between the depth bounds log logn and logn was recently partly closed

by Pitassi et al. [14] obtaining a Ω(
√

logn) lower bound for Tseitin contradictions on a certain

3-regular expander graph. It is curious to note the size lower bounds of [14], when considering

depth d , is exponential in Ω((logn)2/d2) and thus only weakly superpolynomial. For small values

of d , this bound is weaker than the bounds of the form exp (nc
−d
) obtained in previous paper but

extends the range of d for which the bound is superpolynomial.

In the current work we study the Tseitin contradictions for the 2-dimensional grid and almost

close the gap obtaining size lower bounds exp (Ω(n1/58(d+1) )) for depth d proofs and hence the depth

lower bound Ω(logn/log logn) for polynomial size proofs. Our proofs follow the same paradigm

as earlier proofs and let us sketch the underlying mechanisms at a semi high level to put our

contribution in perspective.

When studying circuits of small depth it has turned out to be profitable to study restrictions that

fix most of the input variables to constants. This is useful as for suitably chosen restrictions it is

possible to decrease the depth of almost all small circuits by one. This was first used to prove lower

bounds for circuit-size [7, 10, 18, 21] and the simplest case is when proving lower bounds for the

size of depth-d circuits computing parity. Let us briefly discuss this case.

In this situation one uses the simplest space of random restrictions usually denoted by Rp . In
such a restriction, each input variable is, independently of all other variables, kept with probability

p and otherwise set to 0 or 1 with equal probabilities. The key notion for decreasing depth is a

switching lemma which says that if you are given a depth two circuit with bottom fanin t then, if
you at the same time apply a restriction, it can be switched to a depth 2 circuit of the other type of

bottom fanin s , except with probability at most (5pt )s .
Using this switching property for the two layers closest to the input creates two adjacent layers of

gates of the same type which makes it possible to decrease the depth of the circuit by one. To prove

a lower bound for parity one just needs to make the trivial observation that the resulting circuit

must compute the parity (or the negation) of the remaining variables. Applying d − 1 restrictions

we are able to make the circuit simple enough to be analyzed directly. The number of remaining

variables is about pd−1n and we need a large enough p to make this this number non-trivial.

To prove lower bounds for the size of proofs for various families of formulas one needs more

subtle restrictions. We are no longer computing a function but instead given a set of axioms. We

want that a restriction reduces the problem to a smaller problem of the same type. This is more

or less equivalent to that each axiom is either reduced to an axiom of the smaller instance or to

something that is a tautology. We must, at all cost, make sure that no axiom is made false as we are

trying to prove that no contradiction can be produced, whereas this could turn one of the axioms

into a contradiction. In most cases each axiom is of constant size and this implies that we cannot

use restrictions, such as those of Rp , that treat the variables independently. Restrictions that give
values in a dependent way cause problems with the proof (or even validity) of the switching lemma.

The key is thus finding a balance between the property of preserving the axioms of the formula we

are studying while still being able to prove a switching lemma with good parameters.

Note that this is a balance to be kept as when studying k-CNF formulas, we need to preserve

these particular clauses while switching implies that we can simplify all functions defined by

depth-d circuits. This is not, however, as impossible as it sounds as we are allowed to make most

clauses true while making sure that a small fraction of the clauses remain undetermined. We must,

however, as stated above, avoid making any clause false.
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On small-depth Frege proofs for Tseitin for grids 3

On the high level, the strength of a switching lemma is controlled by the size of the smaller

instance obtained (which corresponds to the parameter p for independent restrictions) and how the

failure probability depends on the parameters s and t . To fully understand the tradeoffs possible

here requires very detailed understanding of the space of restrictions but let us give some superficial

remarks.

In most situations, the probability of keeping a variable must be lower than the probability of it

taking either the value 0 or 1. When the two values are balanced this is not a severe problem. For

the PHP, however, where a variable taking the value 1 signifies that a particular pigeon flies to a

particular hole this is a limiting factor. In fact this leads to choices corresponding to p = n−c for
some positive constant c . This implies that the size of the problem goes from n to n1−c

in order to

reduce the depth of the formulas in the proof by one. This can only be repeated O (log logn) times

before the problem becomes trivial. This is a bottleneck in some previous arguments.

The set of formulas introduced by Tseitin on a graph G has variables corresponding to edges

and the formula says
1
that the edges adjacent to a node sum to one modulo two. For any odd sized

graph this is a contradiction. For assignments to variables satisfying these conditions locally, 0 and

1 are symmetric and hence the problem of biased bits does not exist for the Tseitin formulas.

The switching lemma of [14], however, has failure bounds on the form (cpt2t )s . The reason for

the factor 2
t
is a bit mysterious and indeed [14] conjectures that it is not needed. We note that the

paper by Mehta [12] describes similar situations where the factor is indeed needed.

We are not quite able to get optimal parameters in the current proof but we do improve the

troublesome factor 2
t
of [14] to tc for a constant c . This implies that the loss in one application

of the switching lemma roughly corresponds to c applications of the lemma with the optimal

parameters and thus we get this multiplicative factor in front of d . As this is a constant we get
asymptotically sharp bounds for the depth of polynomial size proofs.

A key point in the proof is the choice of the space of restrictions. The high level picture is not

surprising. Given a n × n grid we pick sub-squares of size T ×T (where T is poly-logarithmic when

studying polynomial size proofs and nΘ(1/d ) in general) and in each sub-square we pick a node and

connect the picked nodes by paths. For each path P we have a new variable xP , and for each edge e
on P the variable xe is either replaced by xP or its negation x̄P . This is done in a way such that,

independent of the values of these new variables, all constraints, except at the picked nodes, are

automatically satisfied while the constraints at the picked nodes give the constraints of the smaller

instance.

In order to be able to prove a switching lemma we have to be slightly careful. First of all, as we

have limited independence it turns out to be easier to use a labeling argument of Razborov [15]

as opposed to a reasoning with conditional probability of Håstad [10]. Once we have found some

variable that is still alive, the rather rigid topology of the grid reveals other variables that are likely

to be alive. It is advantageous for the analysis if we can immediately tell which other variables are

also alive, and if these depend on the same remaining variable, these are essentially for free. The

easiest way to achieve this would be that any edge determines the entire path on which it lies. This

is impossible to achieve in a constant degree graph such as the grid, as edges close to the picked

nodes must lie on many different paths. For the paths that we use this is the only part of the paths

that intersect and this limited ambiguity of which path(s) an edge might belong to can be handled.

An important property is that even though an edge can lie on many paths, we are able to make

sure that all these paths share an endpoint and this is sufficient for the argument.

1
For readers familiar with this formula, note that we are here using the case when all charges are one as opposed to the

general case.
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4 Johan Håstad

The essential new part of the current paper is the choice of restrictions and the proof of the

switching lemma. The way to analyze how restrictions make all sub-formulas be represented by

small-depth decision trees is done as in previous papers.

An overview of the paper is as follows. We start with some preliminaries in Section 2 and proceed

with some properties of the grid and assignments that satisfy some parity conditions in Section 3.

We define our restrictions in Section 4. The final, full, restriction is picked by a two-stage process.

We first pick a relatively small but fairly dense set of nodes to be potentially used by the restriction.

The key property here is that they can be picked independently and still, with overwhelming

probability, each sub-square has roughly the expected number of potential surviving nodes. We

may then, in the second stage, pick one of the nodes to be the actual survivor in essentially any way.

The first independent picking of surviving nodes is the main probabilistic event that is analyzed in

the switching lemma.

We proceed to recall the formalism of t-evaluations in Section 6 after having described some

basic properties of consistent decision trees in Section 5. Assuming the switching lemma we are

able to complete the proof of our main theorem also in Section 6 and we end by the proof of the

switching lemma in Section 7.

2 SOME PRELIMINARIES
We have a graph G which we call “the grid” but to avoid problems at the perimeter we in fact use

the torus. In other words we have nodes indexed by (i, j ), for 0 ≤ i, j ≤ n − 1 where n is an odd

integer and a node (i, j ) is connected to the four nodes at distance 1, i.e. where one coordinate is

identical and the other moves up or down by 1 modulo n. For each node v we have a charge αv and

for each edge e in the graph we have a variable xe . A Tseitin formula is given by a set of linear set

of equalities modulo 2. In particular for each v we have∑
e ∋v

xe = αv .

The main case we consider, which we call “the Tseitin contradictions” is when αv = 1 for each v .
We do use more general charges in intermediate steps and hence the following lemma is useful for

us.

Lemma 2.1. Consider the Tseitin formulas with charges αv . If
∑
v αv = 0 this formula is satisfiable

and has 2
rn solutions where the positive integer rn depends only on n and not on the value of αv .

Proof. Let us first establish that the system is satisfiable. Take any assignment to all variables

xe and suppose we have at least two nodes v1 and v2 whose constraints are violated. Take a path

connecting v1 and v2 and negate all variables on this path. This new assignment satisfies the

constraints at v1 and v2 and does not change the validity at any other node, as for other nodes

either zero or two adjacent variables change their values. We can repeat this process until at most

one constraint is violated. Summing all constraints shows that the number of violated constraints

is even and thus in fact all constraints must be satisfied at the end of this process.

As the number of satisfying assignments to a satisfiable system of linear equations does not

depend on the right hand sides, the other part of the lemma is immediate. □

As a converse to the above lemma, when

∑
v αv = 1 it is easy to see, by summing all equations,

that the system is contradictory. In particular the Tseitin contradictions with αv = 1 for all v are

indeed contradictions for graphs with an odd number of nodes. We note that each Tseitin formula

can be written as a 4-CNF formula by having 8 clauses of length four for each node.
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We are interested in proofs in the form of deriving the constant false from these axioms. The

exact reasoning rules turn out not to be of central importance but are stated in Section 6. The

important properties of these rules are that they are sound and of constant size.

The sub-formulas that appear in this proof are allowed to contain only ∨-gates and negations.

We simulate ∧ using ∧Fi = ¬ ∨ ¬Fi and we define the depth of a formula to be the number of

alternations of ∨ and ¬.

3 PROPERTIES OF ASSIGNMENTS ON THE GRID AND DYNAMIC MATCHINGS
We are interested in solutions to subsystems of the Tseitin contradictions. It follows from Lemma 2.1

that as soon as we drop the constraints at a single node we have a consistent system and indeed

many solutions.

On a set X of nodes we say that a partial assignment is complete if it gives values to exactly all

variable with at least an endpoint in X . The support of a partial assignment α is denoted by supp (α )
and is the set of nodes adjacent to a variable given a value. Note that the support of a complete

assignment on X also includes the neighbors of X .

We consider partial assignments that give values to few variables and in particular we are

interested in cases where the size of the set X is at most 2n/3 and hence cannot touch all rows or

columns of the grid. Let X c
denote the complement of X .

In this case, X c
contains a giant component containing almost all nodes of the grid. This follows

as there are at least n/3 complete rows and columns in X c
and the nodes of these rows and columns

are all connected. The other, small, components of X c
are important to control as an assignment

on X might fail to extend in a consistent way to such a component. To avoid this problem, for a set

X we let the closure of X , cl (X ) denote all nodes either in X or in small connected components of

X c
. Note that cl (X )c is exactly the giant component of X c

.

Definition 3.1. An assignment α with X = supp (α ) is locally consistent if it can be extended to a
complete assignment on cl (X ) that satisfies all parity constraints on this set.

We extend this definition to say that two assignments are consistent with each other if they do

not give different values to the same variable and when you look at the union of the two assignment

this gives a locally consistent assignment. Let us prove a lemma that is fairly obvious but central

for our argument.

Lemma 3.2. Suppose α is a locally consistent assignment where |supp (α ) | ≤ n/2 and xe a variable
not in supp (α ). Then there is a locally consistent assignment α ′ that extends α and gives a value to xe .

Proof. Let X = supp (α ) and X+ be X with the endpoints of e added. First extend α to be an

assignment that satisfies the constraints on cl (X ) and then take any further extension that gives

values to all variables touching cl (X+). Suppose this assignment violates the parity constraint at a

node v . Take a path that starts at v and ends in the giant, and only, component of cl (X+)c and does

not pass through any node in cl (X ). This is possible as cl (X )c is connected and the given assignment

satisfies all constraints on cl (X ) and hence v ∈ cl (X )c . Negate the variables corresponding to edges
on this path. The new assignment satisfies the constraint at v , still extends α and does not cause

any new violations on cl (X+). Repeating this procedure for any v ∈ cl (X+) that has its constraint
violated creates a locally consistent assignment that extends α and gives a value to xe . □

A process that is important for us is the following dynamic matching game. We have two players,

one adversarial player that supplies nodes while the other, matching player PM , is supposed to

dynamically create a matching that contains the nodes given by the adversarial player. As the full

grid is of odd size and hence does not have a perfect matching the adversarial player will eventually
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6 Johan Håstad

win, but clearly PM can survive for a while and this will be sufficient for us. To be more precise we

have the below lemma.

Lemma 3.3. When the dynamic matching game is played on the n × n grid, PM can survive for at
least n/2 moves.

Proof. PM maintains a matching of part of the grid (containing the supplied nodes and some

extra nodes) and if the supplied node is in the support of this matching PM gives the already

predetermined answer. If this is not the case then PM needs to extend the matching.

The partial matching matches a set which is a cross-product of a set R of rows and a set C of

columns. We maintain the property that both these sets are the unions of a number of intervals

each of even size. To avoid a degenerate case we start with R and C both being two adjacent points

covering the first node supplied by the adversary.

Faced with a node (x ,y) outside this set, PM , proceeds as follows. If x is not in R then PM adds x
to R and as the matching PM adds pairs (x , c ), (x , c ′) with c and c ′ adjacent to cover x ×C . This is
easy asC is a union of intervals of even size. This process makes R have exactly one interval of odd

size. This might be the singleton x or a longer interval if x was adjacent to an interval already in R.
In either case it is easy to find an x ′ to add to R to make this interval of even size. This might cause

two intervals of R to merge but as the union of two intervals of even size is an interval of even size,

this is not a problem. A matching on x ′ ×C is found and added to complete the process of adding

rows.

Turning to columns, if y ∈ C we are done but it this is not the case we can add two columns

in an analogous way. As we add at most two rows and two columns in each step the described

process can go on for at least n/2 steps. □

4 RESTRICTIONS
The plan is to make a probabilistic assignment to variables of the grid that reduces the Tseitin

contradiction to a smaller contradiction of the same type in a way that enables us to simplify all

formulas appearing in an attempted proof. As the final product is a rather rigid object we utilize an

intermediate partial restriction that leaves slightly more variables unset but has better independence

properties. We start by defining the full restrictions.

4.1 Full restrictions
In an n × n grid we make sub-squares of size T ×T where T is odd. In each sub-square we choose

2

∆ =
√
T /2 of the nodes and call them centers. These are located evenly spaced on the diagonal of

the 3T /4 × 3T /4 central sub-square. This implies that they have separation 3

√
T /2 = 3∆ in both

dimension. A schematic picture of this is given in Figure 1.

2
For simplicity we assume that some arithmetical expressions that are supposed to be integers are in fact exact as integers.

By a careful choice of parameters this can be achieved but we leave this detail to the reader.
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Fig. 1. The centers and central areas

The centers in neighboring sub-squares are connected by paths that are edge-disjoint except

close to the endpoints. Let us describe how to connect a given center to a center in the sub-square

on top. As there are T /4 = ∆2
rows between the two central areas, for each pair of centers (the

jth center, c j in the bottom sub-square and ith center c ′i in the top sub-square) we can designate a

unique row, ri j in this middle area.

To connect c j to c
′
i we first go i steps to the left and then straight up to the designated row ri j .

This is completed by starting at c ′i and then going j steps to the right and down to the designated

row. We finally use the appropriate segment from the designated row to complete the path (which

might be in either direction). A rough picture of this is given in Figure 2. We index the centers

from 1 to ∆ and hence each path consists of 5 non-empty segments. The first and last segments are

totally within the central area while the middle segment is totally in the area between the central

areas. Segments two and four go from the central areas to the area in-between.

Connecting c j to a center c ′i in a sub-square to the left is done in an analogous way. There is a

unique column ci j reserved for the pair and the path again consists of five non-empty segments.

The first and last segments consist of i vertical edges up from c j , and j vertical edges down from c ′i .
We add horizontal segments connecting to the designated column ci j the and middle segment is

along this column. We state a formal property of these paths.

Lemma 4.1. The described paths are edge-disjoint except for the at most ∆ edges closest to an
endpoint. For each edge e , if there is more than one path containing e , these paths all have the same
endpoint closest to e .

Proof. We start by checking the disjointedness property. Let us first consider a horizontal edge

inside the central area. If it is on the same row as a center then it can only be as the first or last

part of a path connecting two centers in two sub-squares on top of each other. These edges are on

several paths but all have the same closest endpoint.

A horizontal edge not on the rows of a center can only appear on the second and fourth segments

of a path connecting two centers which are sideways of each other. As the length of the first
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r c j
i

ri j

j
rc ′i

Fig. 2. A path

segment of these paths is at most ∆, the center to which it connects is unique and the vertical

distance to the row of this center uniquely identifies the other endpoint.

The above argument continues to hold for horizontal edges in the area between two central

areas which are sideways of each other. For vertical edges in the same area each column uniquely

identifies the two endpoints by definition.

In the area outside the central area but between two central areas, one of the top of the other,

the situation is symmetric. The case of vertical edges in the central area is also analogous to the

case of horizontal edges.

Finally in the area outside the central areas and outside the just described parts, i.e. close to the

corners of the T ×T squares, there are no paths.

Thus the paths are edge-disjoint except the first and last segments close to the endpoints. □

The edges on the three middle segments on a path determine both endpoints of the path. Using

this would slightly improve some constants but for simplicity we do not. We let the term closest
endpoint of an edge denote the closest endpoint of its path if it is in the first or last segment. For

the other segments we could chose either endpoint and we can take the literally closest endpoint

breaking ties in an arbitrary way. The key property we need is that the “closest endpoint” of a path

through an edge is uniquely defined by the edge.

We define the direction of a path to be the relative positions of the sub-squares of its two endpoints.
It is true that the paths are undirected but at times when we consider paths from a fixed center v
it is convenient to think of such paths as starting at v and thus speak of paths going left or right

from v rather than sideways. We note that apart from having the same closest endpoint, all paths

through one fixed edge e have the same direction.

A restriction is defined by first choosing one center in each T × T sub-square and then the

paths described above connecting these centers. Note that these paths are edge-disjoint (and also

vertex-disjoint except at the endpoints, but this is more complicated to see and not important).

The chosen centers naturally form a n/T × n/T grid if we interpret the paths between the chosen

centers as edges. We proceed to make the correspondence more complete by assigning values to

variables.
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On small-depth Frege proofs for Tseitin for grids 9

We choose a solution to the Tseitin formula with charges 0 at the chosen centers and 1 at other

nodes. As the number of chosen centers is odd, by Lemma 2.1, there are many such solutions. For

variables not on the chosen paths these are the final values while for variables on the chosen paths

we call them suggested values.
For each path P between two chosen centers we have a new variable xP and for each variable xe

on P it is replaced by xP if the suggested value of xe is 0 and otherwise it is replaced by x̄P .
We claim that with these substitutions we have reduced the Tseitin problem on an n × n grid

to the same problem on an n/T × n/T grid. This is true in the sense that we have an induced grid

when we interpret paths as new edges and we need to see what happens to the axioms.

Given a formula F we can apply a restriction σ to it in the natural way resulting in a formula

denoted by F ⌈σ . Variables given constant values are replaced by constants while surviving variables

are replaced by the appropriate negation of the corresponding path-variable. A restriction has a

natural effect on the Tseitin contradiction as follows.

• The axioms for nodes not on a chosen paths are all reduced to true as all variables occurring

in them are fixed in such a way that the axioms are true.

• The axioms for interior nodes of a chosen path are reduced to tautologies as the axiom is

true independent of the value of the involved variable(s) xP . This is true as flipping a single

xP changes the value of two variables next to any such node.

• The axioms at the chosen centers turn into the axioms of the smaller instance.

These just defined restrictions are called full restrictions as they completely reduce a full size

problem to a smaller problem. A typical full restriction is denoted by σ . Note that these full

restrictions are really “affine restrictions” in the vocabulary of [17] as they do not only assign

values to variables but also identify several old variables with the same new variable that might

also be negated. For simplicity, however, we keep the simpler term “restrictions”.

We construct a full restriction by first making a partial restriction and we turn to defining these

next.

4.2 Partial restrictions and pairings
A typical partial restriction is called ρ and as we mostly discuss partial restrictions we simply

call them “restrictions” while we use the term “full restrictions” when that is what we have in

mind. At the same time as describing partial restrictions we give a probability distribution on such

restrictions.

Let k be an odd integer of the formCs (n/T )2 for a constantC to be determined, where s an upper

bound on the depth of the decision tree we are analyzing. The first step of constructing ρ is picking

k centers uniformly at random from the set of all ∆(n/T )2 centers defined in the previous section.

These are the alive centers. In the future we only consider the case when the number of live centers

in each sub-square is between a factor .99 and 1.01 of its expected value Cs . The probability of this

being false is O (n2e−Ω(s ) ) and this is simply added to other failure probabilities. We are careful to

make sure that s = ω (logn).
We define charges that are 0 for all live centers and 1 for dead centers. As the number of live

centers is odd we can apply Lemma 2.1 and pick a random solution with these charges to the Tseitin

formula. For edges not on paths between live centers these are final values while for variables on

such paths we call them preferred values.
The choice of the centers together with the fixed and preferred variables is denoted by ρ. The

choice of ρ is the main probabilistic event. Note that by Lemma 2.1 the number of possible values

for fixed and preferred values is independent of which centers are alive and even of k as long as it

is odd.
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10 Johan Håstad

A partial restriction ρ is, for the analysis, preferable to a full restriction σ as it behaves much

more independently. A drawback is, however, that as soon as a live center v is discovered then we

have many paths leavingv in ρ and this could result in a deep decision tree if they all corresponded

to live variables. In order to avoid this we add a second step, a pairing π , turning a partial restriction
into a full restriction.

Choose one center to survive in each sub-square
3
. These are called the chosen centers and paths

between such centers correspond to the variables that remain and are called chosen paths. Centers
that were alive through the first part of the process but are not chosen are called non-chosen. The
centers killed already by ρ are simply called dead.

The simplest way to eliminate the non-chosen centers would be if we were able to pair them up

in such a way that the two centers in a pair are in adjacent sub-squares and hence connected by a

path. In such a case we could negate the preferred values along this path and after this make the

preferred values permanent outside the chosen paths. Note that this makes sure that the parity

conditions at these non-chosen centers are now satisfied. For variables on the chosen paths we

turn the preferred values into suggested values completing the full restriction.

Such a pairing might exist with high probability but, as we do not know how to prove this fact,

we allow a more general way of eliminating non-chosen centers. We still call this object a pairing

as it is not too far from the truth and gives the right intuition.

Definition 4.2. A pairing π is a graph supported on the non-chosen centers. Each component of π
is either a single edge or a star of size four with one center and three nodes of degree one. Connected
centers are located in adjacent sub-squares.

Before we study pairings let us establish some notation. As the original grid is also a graph with

edges we from now on use the term “grid-edges” to refer to edges in the original grid. The chosen

centers form a smaller grid and this also has edges and we call these “new grid-edges”. We only

consider paths in the original grid and we keep the shorter term “path” for these. In other words,

from now on an “edge” is a connection between two live centers and corresponds to a path in the

grid-graph. A “new grid-edge” corresponds to a chosen path and is thus also an edge in the graph of

the live centers. We say that two chosen centers are neighbors if they are in adjacent sub-squares.

Some edges are conflicting in that we do not allow them to be present in the graph at the same

time. More precisely we allow at most one path in each of the four directions from a center. As

picking a path corresponds to changing the variables on this path this is the same as saying that

the variables can only change values at most once.

Lemma 4.3. If each sub-square has between .99Cs and 1.01Cs non-chosen centers, a pairing π exists.

Proof. For each pair of neighboring sub-squares we want to determine the number of edges of

π to go between these two sub-squares. Assume for notational simplicity that .26Cs is an integer

and let us denote this bym. We make sure that the number of edges between any two neighboring

sub-squares is eitherm orm + 1. As each non-chosen center must be of odd degree in π , the parity
of the number of edges leaving a fixed sub-square is determined and we need to take this into

account. We do this by finding a solution to a solvable Tseitin instance.

For each pair of neighboring sub-squares introduce a variables ye (these correspond to new

grid-edges) and make the constraint that the four such variables leading into a sub-square sum

modulo 2 to the parity of the number of non-chosen centers in this sub-square. As the total number

of non-chosen centers is even (both k and the number of chosen centers are odd) this is a solvable

instance. Take any solution and fix the number of paths between two sub-squares corresponding

to new grid-edge e to bem + ye .

3
This choice can be done in an arbitrary way but to be definite let us choose the center from the lowest numbered row.
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On small-depth Frege proofs for Tseitin for grids 11

Consider any sub-square. Suppose that the number of non-chosen centers in it is a. By the just

determined variables we know that we should have 1.04Cs + δ edges leaving the sub-square where

δ is the sum of four ye -variables and hence δ ∈ [0, 4]. This fixes the number of degree three centers

in that sub-square to (1.04Cs +δ −a)/2 and by the construction of the numbers ye this is an integer

and by the assumption a ∈ [.99Cs, 1.01Cs] it is positive and bounded by .025Cs + 2. Choose this

number of centers to be of degree 3 and connect these to centers in adjacent sub-squares, making

sure to connect each center only once. Once this is done we can pair up the remaining centers

respecting the number of edges between any two sub-squares. □

We could have a probability distribution on π but this does not seem natural and in fact we work

with any π . This choice does not matter greatly and this can be seen as follows. In the end when

analyzing the process of creating a decision tree we only use a very local piece of π . In particular

when looking for a decision tree of depth s we only analyze what happens to O (s ) centers in π .
There are only sO (s )

alternatives for these centers and factors of this size change very little in our

argument.

As stated above π makes it possible to turn ρ into σ . Variables not on live paths take their fixed

values. Variables on live paths but not on chosen paths take their preferred values unless they are

on a path chosen by π in which case these values are negated. On the chosen paths, the preferred

values now becomes suggested and this completes the description of σ .
We use the term “preferred values” as a vast majority of the variables will eventually be fixed to

these values as very few variables appear on the paths of π or turn into suggested values. On the

other hand “suggested values” are much less certain as the path-variables should be thought of as

equally likely to be 0 and 1 and thus these variables are equally likely to take also the non-suggested

value.

As an intermediate between ρ and the full restriction σ we have ρ and some information in the

form of existence or non-existence of edges. We have the following definition.

Definition 4.4. A piece of information is either in form of an edge (v,w ) for two centers v andw
or (v,δ ,⊥) where v is a center and δ is a direction (i.e. “left”, “right” “up” or “down”). The former says
that there is an edge from v tow while the latter says that there is no edge from v in the direction δ .

We note that, as edges are undirected, (v,w ) and (w,v ) denote the same information. In some

situations we are, however, interested in the information starting from a center v in all four

directions and then it useful to use the notation with v in the first component. We use sets of

information pieces.

Definition 4.5. An information set, I , is a collection of information pieces. Its support, denoted by
supp (I ), is the set of centers mentioned in these pieces. An information set is consistent if it does not
have two different pieces of information from the same center in one fixed direction. Furthermore, if I
has information in all four directions from a center v then it has an odd number of edges touching v .

Note that here, as opposed to the grid, we do not have a problem of small connected components

in the complement of a set of centers. This follows as we only consider information sets of size

roughly s and a center has a potential edge to all centers in neighboring sub-squares.

A partial assignment to some path-variables naturally corresponds to a set of information pieces.

An assignment of 0 to a path-variable gives two non-edges, in the appropriate directions, with

closest end-points at the two chosen centers connected by this path. An assignment of 1 gives

an information piece in the form of an edge between the two chosen centers. We use the term

“consistent” both for sets of information pieces and partial assignments. Consistency for assignments

requires an odd number of ones adjacent to any center that has all its variable assigned and this
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exactly corresponds to the property of information pieces in all four directions in the definition

above. This makes the two notions close and hence using “consistent” for both should hopefully

not confuse the reader.

Jointly with ρ an information set fixes the values of some more variables as follows.

Definition 4.6. Let ρ be a restriction and I an information set. A variable xe is considered forced
by (ρ, I ) iff either its closest endpoint, v , is not live in ρ or if the information of v in the direction of e
is contained in I . It is forced to its preferred value in ρ unless the relevant information piece states that
there is an edge from v in the direction of e that corresponds to a path that passes through e in which
case it takes the opposite value. Variables not on live paths take the value given by ρ.

There are other situations where the value of a variable might be determined by ρ and I , such
as the lack, or scarcity, of live centers in a sub-square but we do not use this information in the

reasoning below. We need the notion of a closed information set.

Definition 4.7. An information set I is closed if for each v ∈ supp (I ), the set I contains the
information in all four directions.

The definition implies that for any v ∈ supp (I ), in any direction δ where there is not an element

of supp (I ), we have a non-edge (v,δ ,⊥). When considered as a graph such an information set is an

odd-degree graph (with degrees one and three) on the centers of supp (I ).
Note that if we have a closed information set I then if we consider all variables forced by (ρ, I )

this can be described by a restriction where the centers in the supp (I ) are killed. We simply negate

the values of any preferred variable on any path in I and then forget that the centers in supp (I )
were alive.

Thus, if we let such a closed information set operate on a restriction ρ we get a restriction with

fewer live centers where the number of killed centers is exactly the number of centers in the support

of the corresponding graph.

5 DECISION TREES
We have decision trees where each internal node is marked with a variable and the outgoing edges

are marked with 0 and 1. The leaves of a decision tree are labeled by 0 and 1. We allow decision

tree of depth 0 which are constants 0 or 1.

All decision trees considered in this paper have a depth that is smaller than half the dimension

of the grid we are currently considering. For each branch in a decision tree there is minimal partial

assignment, τ such that any extension of this partial assignment creates an assignment that follows

this path. We use this τ to identify that branch and we call it consistent if τ is consistent in the sense

of Definition 3.1.

We trim decision trees to maintain the property that all branches of a decision tree are consistent.

When a decision tree is created this is not a problem but trimming takes place when we consider

what happens under a partial assignment τ or a full restriction σ . In that latter case, the initial

decision tree uses the variables xe while the resulting decision tree uses the new variables xP .
We sometimes think of a decision tree T as the set of all branches leading from the root to the

leaves. These have labels and fit together in a tree structure and each corresponds to a partial

assignment τ ′ as discussed above. When creating the decision tree after τ or σ the idea is to keep

all branches that are consistent with the new information.

In the case of a partial assignment τ we keep all branches corresponding to τ ′ such that τ and τ ′

are consistent as discussed after Definition 3.1. In the case of a full restriction σ the situation is not

difficult but slightly more complicated so let us define this explicitly.
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On small-depth Frege proofs for Tseitin for grids 13

The assignment τ ′ assigns values to some variables xe . Some of these are given values by σ while

the rest are now on chosen paths. To be consistent we require that for the variables given values

by both σ and τ ′, the two values agree. For each variable xe given a value by τ ′ we get a value
for the corresponding path-variable xP . For σ and τ ′ to be consistent we require that no xP gets

two conflicting values and that the values xP are consistent in the sense of Definition 3.1 when

considered as an assignment on the smaller grid.

The key property that we need is that if the depth ofT is small enough then at least some branch

of T is consistent with τ or σ . In the former case we make sure that the total number of assigned

variables under τ and τ ′ is at most half the dimension of the grid and in the latter case that the

depth is a most half the dimension of the grid after σ . This together with the fact for each internal

node of T has out-degree two and Lemma 3.2 makes sure that some branch is consistent.

Once we have identified which branches remain it is easy to see that they form a decision tree.

In fact it is also possible to define the new decision tree by a dynamic process where we start at

the root of T and consider each node in the tree. As we walk down the tree we can, for each node,

check whether both values of the current variable are consistent with the partial assignment of the

branch so far jointly with τ or σ . For a full restriction σ we of course take into account that once

we have determined the value on one variable on a path, all the other variables on the same path

are determined. If only one value is consistent we eliminate the other sub-tree while if both values

are consistent we have found a node in the new tree. In some situations we might get a tree which

has a single branch consistent with τ or σ . This is considered a depth-0 tree with only one leaf.

We let a 1-tree be a decision tree where all leaves are labeled 1 and define a 0-tree analogously.
Special cases of such trees are trees of depth 0. Next we turn to a procedure of representing formulas

by decision trees of small depth.

6 t-EVALUATIONS
We have a supposed proof and we have the set of formulas that appear in the proof. We also

have each sub-formula in each of these formulas and this gives a set of formulas Γ. We consider

t-evaluations φ, as defined by [20], that map formulas to decision trees of depth at most t . Such
mappings will not be total and we are interested in finding t-evaluations defined over as large set of
formulas as possible. This is made possible by, at the same time as extending the domain, applying

a restriction. Let us define the desired properties required of t-evaluations.

(1) The constant true is represented by a depth 0 1-tree and the constant 0 is represented by a

depth 0 0-tree.

(2) If F is an axiom of the Tseitin contradiction then φ (F ) is a 1-tree.
(3) If φ (F ) = T then φ (¬F ) is a decision tree with the same topology as T but where the value at

each leaf is negated.

(4) Suppose F = ∨Fi . Consider a leaf in φ (F ) and the partial assignment, τ leading to this leaf.

If the leaf is labeled 0 then for each i φ (Fi )⌈τ is a 0-tree and if the leaf is labeled 1 then for

some i , φ (Fi )⌈τ is a 1-tree.

The intuitive role of φ (F ) is that it represents the formula F as a function on all assignments that

satisfy
4
“the relevant” local Tseitin constraints. As F might depend on all variables this does not

make complete sense, but for F that depends on few variables this intuitive notion is literally true.

For large formulas the correspondence is not as direct and for F = ∨Fi the representation might

depend on the order of the sub-formulas Fi .
As an example let us explicitly give the representation of an axiom and take (xe1

∨xe2
∨xe3

∨xe4
)

where ei are the four grid-edges incident to a center v . Naturally each variable is represented by

4
This is achieved since we only consider branches in decision trees which are consistent.
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a decision tree of depth one. This clause is represented by a decision tree of depth three with all

leaves labeled 1 querying the variables xe1
, xe2

, and xe3
in order. A one-answer to any of these

queries immediately leads to a leaf labeled one but also the branch with three 0-answers leads to a

leaf with label one. In this leaf, xe4
is reduced to a decision tree of depth 0 with label 1 as the only

value of xe4
which is consistent with the three 0s is 1.

Note that we cannot represent this formula by a smaller tree as, by rule 4, for each 1-leaf, we

must have an assignment that forces one of the decision trees for xei to be a 1-tree.

As another example consider the conjunction of all the axioms. As we do not have any ∧-gates,

this is represented as the negation of the disjunction of the negations of all axioms. As we just

saw, each axiom is represented by a 1-tree of depth 3 and hence its negation is a 0-tree of the same

depth. Any disjunction of such trees can be represented by a decision tree of depth zero where the

only leaf has label 0 and hence the representation of the negation of such a disjunction is a tree of

depth 0 with label 1.

Thus we have constant one as a representation for a formula that, when interpreted in the natural

way, evaluates to false on each input. The reason is that each sub-formula looks true in the local

sense and the conjunction of any number of sub-formulas that look true is considered true.

For a general set of formulas we cannot hope to have a t-evaluation for a small t and our plan is

to proceed as follows for i = 0, 1, 2 . . .d .

• We have a t-evaluation for all formulas of Γ that were originally of depth i .
• Pick a random full restriction σi and extend the t-evaluation to all formulas of Γ⌈σi of original
depth at most i + 1.

At the starting point, i = 0, each formula is a literal which is represented by a natural decision

tree of depth 1 and we start by proving that t-evaluations are compatible with restrictions.

Lemma 6.1. Given a set of formulas Γ′ and a t-evaluation φ whose domain includes Γ′ and let σ be
full restriction whose output is a grid of size n. Then, provided that t < n/4, φ (F )⌈σ is a t-evaluation
whose domain includes Γ′⌈σ .

Proof. This is an easy consequence of the definitions but let us go over the various possibilities.

Hitting a decision tree with a full restriction can never increase the depth of the decision tree and

hence all representations are decision trees of depth at most t . Note also that as t < n/4 some

branch of the decision tree is consistent with σ . We need to check the properties of a t-evaluation.
The first and second properties are obvious as a restriction does not change the fact that something

is 1-tree or a 0-tree.

The third property is also rather obvious. The decision trees for F and ¬F are effected the same

way and there is nothing that can change that the corresponding leaves have labels that are the

negations of each other.

For the fourth property, let T = φ (F ) and Ti = φ (Fi ). Consider any branch that appears in T ⌈σ
and the corresponding partial assignment τ (on the path-variables) which, by the definition of

T ⌈σ , is consistent with σ and thus we can study what happens to all involved trees under the

combination of τ and σ .
The branch corresponding to τ in T ⌈σ comes from a branch of T defined by some partial

assignment, τ ′, to the original variables. By assumption the combination of σ and τ forces the

original variables to take the values according to τ ′.
If the leaf of this branch is labeled with 0 then, for every i , Ti ⌈τ ′ is a 0-tree and as σ and τ jointly

force the values of τ ′ (and possibly to other values) (Ti ⌈σ )⌈τ is a 0-tree for every i . If the leaf is
labeled with 1 then for some i we have that Ti ⌈τ ′ is a 1-tree and hence so is (Ti ⌈σ )⌈τ . □

Now we finally come to the key lemma of the entire argument.
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Lemma 6.2. Let s ′ be an integer and s = max(s ′, t ), then there is a constantA such that the following
holds. Suppose there is a t-evaluation that includes Fi , 1 ≤ i ≤ m in its domain and let F = ∨mi=1

Fi . Let
σ be a random full restriction from the space of restrictions defined in Section 4. Then the probability
that F ⌈σ cannot be represented by a decision tree of depth at most s ′ is at most

(As27t∆−1)s
′/108.

We postpone the proof of this lemma to Section 7 and see how to use it. We apply it with

s ′ = t = s = 1

2
n1/(58(d+1))

and ∆ = s29
(and hence T = 4s58

) and let us fix these values.

We start with the original Tseitin contradiction on the n × n grid. Let ni = nT
−i
. We are going to

choose a sequence of full restrictions σi mapping a grid of size ni to a grid of size ni+1 randomly.

Let σ ∗i be the composition of σ0, σ1, . . . σi . As stated above, Γ is the set of sub-formulas that appear

in an alleged proof and we let

Γi = {F ⌈σ ∗i | F ∈ Γ ∧ depth(F ) ≤ i}.

Let fi be the number of sub-formulas of depth at most i in Γ.

Lemma 6.3. With probability 1 − fi (s/A)
−s/108 there is a t-evaluation φi whose domain includes Γi .

Proof. This is essentially collecting the pieces. We prove the lemma by induction over i . For
i = 0 we have the t-evaluation that maps each literal to its natural decision tree of depth 1.

When going from depth i to depth i + 1 we need to define φi+1 on all formulas originally of depth

at most i + 1 and consider any such F .

(1) Each F of depth at most i is, by induction, in the domain of φi and we can appeal to Lemma 6.1.

(2) If F is of depth i then φi+1 (¬F ) is defined from φi+1 (F ) negating the labels at the leaves.

(3) For F = ∨Fi where each Fi is of at most depth i we apply Lemma 6.2.

The only place where the extension might fail is under step three but, by Lemma 6.2, the

probability of failure for any individual formula is at most (s/A)−s/108
and as we have at most

fi − fi−1 formulas of depth exactly i the induction is complete. □

As a final piece we establish that all formulas appearing in a short proof must be represented by

1-trees and as the constant false is represented by a 0-tree we cannot derive the desired contradiction

in a short proof. In order to prove this we must go over the derivation rules of our proof system.

The details are not important and we choose the same rules as [14] and these are as follows.

• (Excluded middle) (p ∨ ¬p)
• (Expansion rule) p → (p ∨ q)
• (Contraction rule) (p ∨ p) → p
• (Association rule) p ∨ (q ∨ r ) → (p ∨ q) ∨ r
• (Cut rule) p ∨ q,¬p ∨ r → q ∨ r .

In particular, for any formula p such that (p ∨¬p) is of depth at most d we can, by excluded middle,

at any time write down the formula p∨¬p. Similarly the expansion rule says that if we have derived

the formula p, then for any q such that p ∨ q is of depth at most d we can write down this formula.

Lemma 6.4. Suppose we have derivation using the above rules and using the Tseitin axioms in
the n × n grid. Let Γ be the set of formulas appearing as sub-formulas of any formula in the given
derivation and suppose that we have a t-evaluation whose domain includes Γ where t ≤ n/8. Then
each line in the derivation is mapped to a 1-tree. In particular we do not reach a contradiction.

Proof. We prove this by induction over the number of lines in the derivation. We constantly

make use of the fact that t ≤ n/8 to conclude that for any decision tree, T , in the domain of the

t-evaluation and any assignment τ to at most 2t variables we have that T ⌈τ is still a non-empty

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2020.



16 Johan Håstad

decision tree. By assumption each axiom is represented by a 1-tree and we consider the derivation

rules.

Let us first look at excluded middle F = p ∨¬p. Take any leaf in φ (F ) and let τ be the assignment

leading to this leaf. As p and ¬p are represented by trees that only differ in that the labels at the

leaves are negated they cannot both be reduced to 0-trees by τ and hence we conclude that the

label of the leaf in φ (F ) must be 1.

For the expansion rule let F = p ∨ q. Take any leaf in φ (F ) and let τ be the assignment leading to

this leaf. If this leaf has label 0 then, by definition, φ (p)⌈τ must be a 0-tree but this contradicts that

φ (p) is a 1-tree.
Now consider the contraction rule and F = p. Take any leaf in φ (F ) and let τ be the assignment

leading to this leaf. If this leaf has label 0 then consider φ (p ∨ p)⌈τ and take any branch τ1 in this

tree consistent with τ . As φ (p ∨ p) is a 1-tree this must lead to a label 1 but this contradicts the

definitions as both sub-formulas (p and p) cannot be reduced to 1-trees under τ1 as τ1 is consistent

with τ and φ (p)⌈τ is a 0-tree.

Next consider the association rule. We have F = (p ∨ q) ∨ r and take a supposed leaf with label

0 in φ (F ) and let τ be the assignment leading to this leaf. By definition, φ (r )⌈τ as well φ (p ∨ q)⌈τ
are 0-trees. From the latter statement we conclude that also φ (p)⌈τ and φ (q)⌈τ are 0-trees. Let us

consider φ (p ∨ (q ∨ r ))⌈τ . There is some branch τ1 in this tree that is consistent with τ and this

leads to a leaf with a label 1 as this is a 1-tree. One of the three sub-formulas is reduced to a 1-tree

at this leaf and we reach the usual contradiction.

Let us finally look the cut rule. We have F = (q ∨ r ) and let us take a supposed leaf with label 0

in φ (F ) and let τ be the assignment leading to this leaf. We know that φ (q)⌈τ and φ (r )⌈τ are both

0-trees. Consider any branch in φ (p)⌈τ and let τ1 be the assignment of this branch. Assume this leaf

is labeled 0, the other case being similar. Now take any branch in φ (p ∨ q)⌈τ τ1
. As this is a 1-tree

the label at this branch must be 1. This contradicts that φ (p)⌈τ1
as well as φ (q)⌈τ are both 0-trees.

This concludes the case analysis. □

Fixing parameters we get the main theorem of this paper.

Theorem 6.5. Suppose thatd ≤ logn
59 log logn , then, for sufficiently largen, any depth-d Frege refutation

of the Tseitin contradiction on the n × n grid requires size exp (Ω(n1/58(d+1) )).

Proof. Suppose we have a refutation of size S ≤ exp (c ′n1/58(d+1) ) for a constant c ′ and consider

the corresponding set of sub-formulas Γ. Remember that s ′ = t = s = 1

2
n1/(58(d+1))

and ∆ = s29
.

With the given choice of ∆ we have T ≤ n1/(d+1)
and we have a nT −d ≥ T sized grid remaining

after σ ∗d . The probability that we fail to have a t-evaluation that includes all formulas of Γ in its

domain after σ ∗d is, by Lemma 6.2 bounded by S (s/A)−s/108
. The probability that we at any stage

of the process we do not have between .99Cs and 1.01Cs alive centers in a sub-square is bounded

by n2e−Ω(s )
. As s = ω (logn), the sum of these two failure probabilities, for sufficiently large n and

sufficiently small c ′, is smaller than 1 and hence there exists a σ ∗d which makes all sub-formulas in

the proof have a t-evaluation and such that the final restriction gives a grid of size at least T . As
t = o(T ) we can appeal to Lemma 6.4 and the proof is complete. □

We have an immediate corollary.

Corollary 6.6. Any polynomial size Frege refutation of the Tseitin contradiction requires formulas
of depth Ω(

logn
log logn ).

Finally we turn to the proof of the switching lemma which is the heart of the argument.
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7 PROOF OF THE SWITCHING LEMMA
Remember that we have F = ∨Fi and we have a t-evaluation φ that includes each Fi in its domain

and let Ti = φ (Fi ). We create an extended canonical decision tree for F ⌈σ by going over the trees

Ti one by one. If there is a branch in Ti that leads to a leaf with label 1 that is consistent with the

information we have so far, we explore the variables of this branch (and some extra variables). Let

us proceed.

It is important that the constructed decision tree does not depend on the preferred values along

the chosen paths but we may, and indeed we will, let it depend on other parameters and in particular

we make use of the knowledge of the identity of the chosen centers and non-chosen centers.

As we go over the Ti ’s we have a set of centers, S , that will be called exposed centers and an

information set I that, jointly with ρ, guides the construction of the decision tree. Both S and I start
out empty and we proceed in stages where at each stage we find an interesting 1-branch of one Ti
and this causes us to add additional elements to S and additional information pieces to I .
For non-chosen centers in S , the set I contains the information pieces corresponding to their

component in π (both edges and non-edges) and if one center in such a connected component

belongs to S then so does the entire component. Thus, for these non-chosen centers we have

information pieces in all four directions.

For chosen centers in S we have, in the decision tree, queried all variables xP adjacent to these

centers and this information is present as information pieces in I . The one-answers are recorded in

the form of a path while the zero answers as two non-edges, one at the neighboring chosen center

in the appropriate direction which may or may not be an element of S . The obtained set of answers

given by the decision tree up to this point is denoted by τ . These are answers in a decision tree

querying new variables xP . Note that the value of xP jointly with ρ determines the value of all xe
on the chosen path P .

We go over the decision trees one by one and let us see what happens when we considerTi . Take
the first (in some fixed order) branch in Ti that leads to a leaf labeled 1 (if no such branch exists we

continue to Ti+1). For the variables appearing on this branch we have unique values required to

reach this leaf. We let a possible forcing information, J , be an information set that, jointly with I
and ρ, forces5 all variables on this branch, from now on called the forceable branch to take these

unique values. The intuition is that if the information set J agrees with the actual input, then indeed

the forceable branch is followed and the we can safely end with a leaf with label 1. In most cases,

however, the actual input does not agree with J and we need to continue the branch in the decision

tree. We require the following properties of J .

(1) If J contains a non-edge from a chosen center it also contains a non-edge in the “reverse

direction”. As an example if it contains a non-edge going left from a chosen center v then it

contains a non-edge going right from the chosen center in the sub-square to the left of v .
(2) Neither I nor J contains a path between a chosen center and a non-chosen center.

(3) The information sets I and J are consistent and disjoint.

(4) J is minimal, given the above properties and the fact that it should determine the values of

all the variables on the forceable branch.

Even given these requirements we might have many different J forcing the same branch. Any

such possible forcing information works equally well and any rule for making this rather arbitrary

choice is equally good for us.

At any point when forming the extended canonical decision tree, the information I comes from

information in π and from queries already done in the decision tree with answers τ . Remember

5
Please remember, by Definition 4.6 for a variable to be forced we need to know the relevant information at its closest

endpoint.
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that σ includes all the information from π and we next establish that the lack of possible forcing

information implies thatTi ⌈στ is reduced to a 0-tree by the answer given so far in the decision tree,

i.e. by τ .

Lemma 7.1. Suppose there is no possible forcing information for any 1-branch in Ti after we have
obtained answers τ in the decision tree. Then Ti ⌈στ is a 0-tree.

Proof. Suppose indeed that there is a branch inTi ⌈σ that leads to a 1-leaf and is consistent with

τ . This implies that we can extend τ to τ1 such that we reach this leaf. In other words, σ and τ1

jointly determine a value to each variable on this branch and for any variable xe on this branch,

not already fixed by ρ we have the information of its closest endpoint in its direction either from π
or, if its closest endpoint is chosen, by τ1.

We proceed to construct some possible forcing information J . Let us consider a variable xe on
the branch. For e whose closest endpoint is not chosen we include the information from π on this

closest endpoint in the direction of e into J . If the closest endpoint of e is chosen then it may or

may not be on the chosen path in its direction.

If e is on the chosen path then the information pieces corresponding to τ1 must determine the

value of the corresponding path-variable. This information is included in J in the form of an edge

or two non-edges. If e is not on the chosen path then we choose some value to the path-variable in

its direction from its closest endpoint that is consistent with τ1 and choices for previous variable

set in the current process creating a larger partial assignment τ2. Given the value of this variable

we include this in the information set J either as an edge or two non-edges.

This constructed information set J clearly forces the values of the variables on the branch to the

values needed to follow the branch and we need to check that it is an allowed information set. The

first property is true by construction.

As π only contains paths between two non-chosen centers and pieces included due to τ2 only

paths between two chosen centers, we cannot have a path between a chosen and non-chosen center

in J and we need to check consistency with I .
On the non-chosen centers, I contains some information from π and as the information in J on

the non-chosen part is also from π this is consistent (clearly any duplicated information can simply

be dropped from J ).
On the chosen centers we know that τ2 is an extension of τ , the information obtained in the

decision tree up to this point. As the information in I on the chosen centers is exactly given by τ
and the information in J which is from τ2 is consistent with τ we conclude that J is consistent with
I .
We conclude that the constructed J can be used as possible forcing information. This is a

contradiction to the assumption of the lemma and we conclude that the assumed 1-branch in Ti
does not exist. □

Given a possible forcing information set J we continue the construction of the decision tree as

follows. We expose all centers in supp (J ) but also some additional centers as follows.

• For any non-chosen center v in supp (J ), we expose the centers in its connected component

in π .
• We let the chosen centers in supp (J ) be the nodes supplied by the adversary in the matching

6

game described in Section 3 played on the grid given by the chosen nodes.We apply Lemma 3.3

and expose also the partners of these nodes in the matching provided by PM . We remind the

6
Note that each branch in the decision tree we create have its own execution of the matching game supplying additional

nodes for each processed J .

J. ACM, Vol. 1, No. 1, Article . Publication date: September 2020.



On small-depth Frege proofs for Tseitin for grids 19

reader that this game is played simply on nodes of grid and does not take into account any

other information from I or J .

We note that if supp (J ) is of size r then the number of exposed centers is at most 4r as we expose
at most 3 more centers for any non-chosen center and at most one extra center for any chosen

center.

We now extend the information I to I ′ by including the connected component, both in the form

of edges and non-edges, from π of the non-chosen exposed centers. For the chosen centers we query

all variables adjacent to any exposed center causing an extension of τ to τ ′. We record one-answers

as an edge in I ′ and zero-answers as two non-edges including the other endpoint of a potential

chosen path, i.e. the chosen center in the adjacent sub-square in the given direction. Remember

here that we only consider branches in the decision tree that are consistent (as assignments) and

hence we create consistent information sets.

Given I ′ it is possible to tell whether the forceable branch in Ti is traversed. This follows as for
any variable on the branch the closest endpoint is now exposed and for each exposed center we

have information pieces in all four directions. If this branch is indeed followed, the process is ended

as Ti ⌈στ ′ is a 1-tree and the branch of the decision tree can be terminated with label 1.

If the forceable branch is not followed we continue the process to find the first forceable path

under information I ′. We first consider later branches of Ti and then proceed to Ti′ for i
′ > i .

Finally, if all Ti ’s have been processed we terminate the branch in the decision tree and label the

leaf 0. This ends the description of the creation of the extended canonical decision tree for F ⌈σ . We

observe that we have created a decision tree that is a legitimate choice for φ (F ). Indeed, at any leaf

labeled 1 we have found a Ti that is reduced to a 1-tree and if all Ti have been processed then, by

Lemma 7.1, this leaf in the decision tree is correctly labeled 0.

Example 1: To illustrate the above process let us give a concrete example. Consider the first step

of the above procedure when I is still empty and we only use the information from ρ. Suppose the
possible forcing information, J , is given by an edge (u,v ), the fact thatw1 has no edge going right,

and thatw2 has no edge going left. Here u andv are non-chosen centers withv to the right of u and

w1 andw2 are chosen centers wherew2 is in the sub-square to the right of the sub-square ofw1.

Suppose u is matched to u1 in π where u1 is in the sub-square above u while v is the center of a

star in π with vertices v1 (left), v2 (up) and v3 (right). We then add the following information pieces

from π to I :

(u,u1), (u, down,⊥), (u, left,⊥), (u, right,⊥), (u1, up,⊥), (u1, left,⊥), (u1, right,⊥)

and

(v,v1), (v,v2), (v,v3), (v, down,⊥), (v1, up,⊥), (v1, left,⊥), (v1, down,⊥),

(v2, up,⊥), (v2, right,⊥), (v2, left,⊥), (v3, up,⊥), (v3, right,⊥), (v3, down,⊥).

Pictorially this looks as follows with a half edge denoting a non-edge in the corresponding

direction.

Furthermore assume thatw1 is matched tow ′
1
in the dynamic matching andw2 is matched tow ′

2
.

Then all these 4 centers are exposed and all new variables next to these are queried in the extended

canonical decision tree. Pictorially the situation might look as follows.
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Fig. 4. Exposed centers are solid, their neighbors ordinary circles.

In the extended canonical decision tree the new variables corresponding to any two centers

of which at least one is a “w”-variable in Figure 4 are asked and recorded in I . For instance, an
answer 1 to the question corresponding to (w1,w2) is recorded as the edge (w1,w2) while a 0 to the
question (w1,u1) is recorded as the pair (w1, left,⊥) and (u1, right,⊥). Let us return to the main

argument.

The creation of the extended canonical decision tree depends on ρ and π but not, in a serious

way, on the negations of the preferred values along the paths between the chosen centers. We have

the following lemma.

Lemma 7.2. Let σ1 be obtained from ρ1 and π and σ2 from ρ2 and π where ρ1 and ρ2 pick the same
set of centers and fixed values. Assume furthermore that the only difference between ρ1 and ρ2 is that
for each chosen path P there is a bit cP such that for each grid-edge e on P the preferred values of xe
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differ by cP in ρ1 and ρ2. Then the only difference between the extended canonical decision trees of
F ⌈σ1

and F ⌈σ2
is the labeling of the internal edges.

Proof. This follows by inspection of the procedure for forming the extended canonical decision

tree. The only difference is that variables on chosen paths in one case are forced by the path and in

the other case by two non-edges and this does not cause any difference as the supports of the two

corresponding sets J are identical. □

In the decision tree, during the processing of a forceable path, we query all variables touching

the chosen centers of the set S . We say that the set of answers is closed iff the answer to a query is

one exactly when it corresponds to an edge in the dynamic matching created by PM . This slightly

overloading the notion “closed” but as the information pieces given by the answers on a closed

branch of the decision tree is (essentially) a closed information set we hope that there is no confusion.

The following lemma is now an immediate consequence of Lemma 7.2.

Lemma 7.3. If the probability that F ⌈σ needs a decision tree of depth s ′ is at least q, then the
probability that the extended canonical decision tree of F ⌈σ contains a closed branch of length at least
s ′ is at least 2

−s ′q.

Remark: In Example 1 above, for the path to be closed we want that the only one-answers are

to the paths corresponding to (w1,w
′
1
) and (w2,w

′
2
) and in particular this means that we would

automatically fulfill the information given by the two non-edges in the set J . This seems to be a

restriction. The points is, however, that there are other ρ that can contribute to the event of having

a long branch in the decision tree. In particular take ρ ′ obtained by flipping the preferred values

of ρ along the four paths (w1,w
′
1
), (w ′

1
,u4), (u4,w2) and (w1,w2). For ρ

′
the possible forcing set J

would contain the edge (w1,w2) instead of two non-edges. The queries in the decision tree would

be exactly the same, but now the closed answer set does not automatically satisfy the information

of J .

In view of Lemma 7.3, we complete the proof by analyzing the probability of such a closed branch.

This analysis is done using the labeling technique of Razborov [16]. In other words we take a ρ
that contributes to the above event and create a ρ∗ which is also a restriction but with fewer live

centers. We then establish that given ρ∗ and some extra information it is possible to reconstruct ρ.
The proof is finished by establishing the fact that there are many fewer ρ∗ than ρ and the extra

information can be limited in size.

As the overall structure closely follow the proof of Razborov let recall his proof as it is helpful for

reference. Razborov has a restriction that keeps exactly k randomly picked variables undetermined

and randomly gives values 0 and 1 to the other variables. He creates a canonical decision tree by

the process below where the counter j indicates the stage.

(1) Set j = 1

(2) Find the first possible 1-branch of a decision tree, Ti j that can be traversed given the random

restriction ρ and the values queried in the decision tree so far. If no such branch exists in any

remaining tree, answer 0 and halt.

(3) Let S j be the set of undetermined variables on this branch.

(4) Let σj be the values of the the variables in S j that force this 1-branch to be traversed.

(5) Query the variables in S j in the decision tree. Record the answers as τj . If τj = σj answer 1
and halt, otherwise set j = j + 1 and go to step 2.

The restriction ρ∗ is now defined as ρ with the addition that the variables in S j are given the

values given by σj . A good picture to keep in mind is the given in Figure 5.
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Fig. 5. The long path in the decision tree is given by the τi following the middle line. In each step there is an
assignment σi that leads to a 1-leaf.

It is not difficult to see that ρ∗ makes the input follow the 1-branch in Ti1 . The reconstruction
information tells which variable(s) on this branch belong(s) to S1 and their values in τ1. It is not

difficult to see that this can be done with (4t ) |S1 |
alternatives. The reason is that once the branch

is given, the elements in S1 can be identified by giving their index on the branch. Given this

information the reconstruction algorithm changes that values of the variables in S1 from σ1 to τ1

creating a restriction ρ∗
1
. This restriction forces the 1-branch ofTi2 and thus it is possible to identify

S2 and τ2 at a cost (4t )
|S2 |

. We then change the values on S2 from σ2 to τ2 and continue this way

until all sets S j have been identified. Finally ρ is defined as the restriction obtained from ρ∗ by
changing all elements of ∪iSi to undetermined.

If the decision tree needs to query s variables then ρ∗ has k − s undetermined variables and the

information set used by the reconstruction procedure takes at most (4t )s different values.
There are at most (

n

k − s

)
2
n+s−k

possible ρ∗ and thus at most

(4t )s
(

n

k − s

)
2
n+s−k

different ρ can be reconstructed this way. As there are(
n

k

)
2
n−k
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possible ρ the probability that ρ gives a branch of length at most s in the canonical decision tree is

at most

(4t )s
(
n

k−s

)
2
n+s−k(

n
k

)
2
n−k

≈

(
8kt

n

)s
and this finishes the argument.

We follow the same recipe and the information set J at stage j plays the role of σj while the
discovered information from π and the queries to the decision tree plays the role of τj . In Razborov’s

proof σj and τj are different assignments to the same set of variables and thus it is obvious that τj
is compatible with σj′ for j , j ′. This compatibility requires some care in our case. One important

step is also to enlarge the given forcing information J to a closed information set. This is useful

for at least two reasons. Firstly, a restriction combined with a closed information set gives values

to the same variables as a restriction with fewer live variables. Secondly, closed information sets

supported on disjoint set of variables are always consistent. The fact that we are analyzing a closed

branch makes also the information set I “almost” closed as stated by the following lemma.

Lemma 7.4. On a closed branch, after the completion of each stage, I contains a closed part jointly
with a set of non-edges from non-exposed chosen centers.

Proof. This is not hard to verify. The part from π is by definition closed. On the exposed centers

the answer give a closed information set. The only other information pieces in I are the ones

described by the lemma. □

After this detour let us return to the main argument and thus we have a ρ giving a closed branch

of length at least s ′ in the extended canonical decision tree and and we proceed to construct ρ∗. We

later describe the information needed to invert this mapping.

We stop the creation of the extended canonical decision tree when we have completed a stage

after which we have at least s ′ exposed centers and we analyze the probability that we ever reach

this point. Suppose this happens after the дth stage, where д ≤ s ′ as we expose at least one center
in each stage.

At the end of the process we have a set, Sд , of exposed centers which is of cardinality at least s ′

and at most s ′ + 8t , as we at each stage expose at most 8t centers. This follows as J contains at most

2t centers as the length of each branch in Ti j is at most t and we add at most 2 centers for each

variable on the branch. We later expose at most three more centers for each element in supp (J ).
Let us look at the possible forcing information in stage j and introduce some notation. The

forceable branch appears in Ti j and let Jj be the possible forcing information set. As we continue

processing the same Ti after a stage is completed it might be the case that Ti j = Ti j+1
, but then

the forceable branches are different. We now extend the information set Jj to transform it into

a closed set called γj . Note that this extension only happens after the long closed branch in the

extended canonical decision tree has been found. We have to find an extension such that we have

the information pieces in all direction for any center v in supp (Jj ) maintaining that it is incident to

a odd number of edges. If this causes us to add edges next to v this might cause for the addition of

additional centers to the support.

Consider any center v ∈ supp (Jj ). It has information in some of its directions coming from I and
Jj . By Lemma 7.4 the pieces from I can only be in the form on non-edges and we include all these

pieces in γj . If v has information pieces in in all four directions we need not add anything more to

γj and as I and and Jj are consistent we already have an odd number of edges next to v .
If there are some direction(s) in which v does not have an information piece first add a non-edge

in all but one such direction to γj . If we have an odd number of edges next to v we add a non-edge

also in the final direction and otherwise we add an edge to a fresh center in the suitable sub-square.
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By a fresh center we mean a non-chosen center that is not an element of Sд and has not been used

for an earlier Jj . As we use at most one fresh center for each element in Sд the number of non-fresh

centers is at most 2|Sд | ≤ 2s ′+16t . As there are .99Cs non-chosen centers in any sub-square there is

always, provided that C is a large enough constant, a fresh center to add. Finally we add non-edges

from the fresh center in the other three directions. Note that we choose which fresh center to add

to γj only after the entire long branch has been determined and hence we can make sure that these

nodes do not appear in any other set considered.

Remark. In our Example 1, γ1 first consists of the edge (u,v ) together with non-edge information

in all directions of u except right and non-edge information in all directions of v except left. We

also have non-edge information in three direction ofw1. By definition we need such information

going right, but the other two-directions are arbitrary and suppose we choose up and down. Finally

we add an edge (w1,v
′) where v ′ is a fresh center in the sub-square to the left of the sub-square of

w1. Similarly γ1 has three non-edges next tow1 (including left) and one edge to a fresh center.

The addition of edges to fresh centers is the only place in the entire argument where add an edge

between a chosen center and a non-chosen center. As the construction of the long closed path is

already complete we allow ourselves to bend the rules. The freedom to add such paths allows us

not to worry about consistency of the chosen parts of the different γj . There is a small price to pay

as γj can force 1-paths that cannot be forced by any possible forcing information J . This is taken
care of by the introduction of “signatures” below.

When we have processed all centers of Jj we have created a closed graph γj . Below we establish

that the γj have disjoint supports, but let us assume that this is true for the time being and continue

the outline of the proof. The process is quite similar to the proof of Razborov for the ordinary

switching lemma and a picture of it can be seen in Figure 6.

As discussed previously, closed graphs can be used to define restrictions with fewer live centers

and we define ρ∗ to be the restriction defined by ρ together with the graph γ = ∪
д
j=1

γj . This is

a standard restriction where all centers in supp (γ ) are now dead. We call these the disappearing
centers.

For the curious reader let us point out a subtle point. It is true that any collection of closed

information sets with disjoint supports are consistent, but this is only true as long as we forget

what centers are chosen as we could have the case that the four chosen neighbors of a chosen

center all have a non-edge in its direction. This would not be acceptable as part of an information

set but causes no problems once we forget which centers are chosen.

Before we turn to the reconstruction process let us add some more additional definitions as well

as some comments on the construction.

Let us denote the information set added at stage j by Ij . By Lemma 7.4 it consists of a closed

part and possibly some non-edges at chosen and non-exposed centers. As we expose all centers in

supp (Jj ) at stage j they all belong to the closed part of Ij . Please keep in mind that although the

supports of Jj and Ij are quite similar, the set of edges can be quite different.

Furthermore, note that supp (γj ) consists of supp (Jj ) and the additional fresh centers added at

the end of the process. As Jj is contained in the closed part of Ij and the closed part of the different

Ij are disjoint we conclude, as claimed above, that supp (γj ) are pairwise disjoint for distinct j.

We let I ∗j denote ∪
j−1

i=1
Ii , the information set gathered during the first j − 1 stages. It turns out to

be convenient to consider ∪
д
i=jγi , the graphs added after stage j, and we let γ ∗j denote this graph.

The high level plan is now as follows. As γj extends the possible forcing information Jj we
have that (ρ, I ∗j ∪ γj ) and hence (ρ, I ∗j ∪ γ

∗
j ) forces the input to traverse the jth forceable branch.

This branch should enable us to find a good fraction of the elements of γj , namely the closest
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Fig. 6. The long path in the decision tree. The Ij contains all information relevant to centers mentioned in the
sets Jj . The information comes from π and the answers in the decision tree. The possible forcing information
sets Jj are completed to closed information sets γj once the full long path has been found.

endpoints of all variables on this branch. We then use some external information to find the rest

of the elements of γj (as well as its graph structure). Finally we then use external information to

reconstruct Ij and proceed with stage j + 1.

As I ∗
1
is the empty set and γ ∗

1
= γ the starting point of the decision process is (ρ,γ ) which forces

exactly the same variables as ρ∗ and thus we know where to start. Although these two objects

force the same variables the information content is slightly different in that (ρ,γ ) contains the
information we are trying to recreate, the identity of the disappeared centers.

We let ρ∗j be the restriction obtained from applying γ ∗j to ρ and at stage j we will be working

with (ρ∗j , I
∗
j ) instead of (ρ, I

∗
j ∪γ

∗
j ). Again these two objects force the same set of variables but have

slightly different information contents.

It is important to identify Ti j and the forceable branch but unfortunately it might not be the first

1-branch traversed by (ρ∗j , I
∗
j ). The reason for this is that we might reach a 1-leaf by a branch using

variables that would give possible forcing information that is not allowed to appear in J . The most

obvious such information is the fresh centers added to make γj closed. They give edges between

chosen and non-chosen centers and this type of information piece cannot be part of J . A more
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subtle problem is that of requiring the other endpoint of non-edges on chosen centers when used

as possible forcing information. It turns out that it is difficult to make sure that the information at

the other endpoint is consistent with the rest of the information.

Let I ∗−j be I ∗j except that we remove the information pieces that have at least one of their closest

end-points in supp (γ ∗j ). Furthermore, let I−j be Ij with the same type of pieces taken away. The

removed pieces are easy to describe.

Lemma 7.5. An information piece in I ∗j that is on a center in supp (γ ∗j ) is in the form of a non-edge
from a chosen center in the direction of an exposed chosen center.

Proof. The information set I ∗j consists of a closed graph jointly with non-edge information on

chosen centers of the type allowed in the lemma. Since any information set Ji for i ≥ j is disjoint
with I ∗j no γi with i ≥ j can intersect the closed graph part of I ∗j . □

As Lemma 7.5 says that we do not exclude many pieces of information when changing from I ∗j
to I ∗−j we see that many of the same variables are forced.

Lemma 7.6. Any variable forced by (ρ, I ∗j ) is forced also by (ρ∗j , I
∗−
j ).

Proof. The removed pieces of I ∗j are, by Lemma 7.5, on centers that have disappeared in ρ∗j and
hence any variable forced by such a piece is fixed in ρ∗j . As the piece of information is a non-edge

in both I ∗j and γ
∗
j it is forced to the same value. □

As stated above we might have some 1-branch before the forceable branch of stage j . This could,
in some vague sense, be good in that it reveals some element of γ , but as we cannot count on this

happening we need to make sure that this is not bad. Thus, we have to be careful to make sure

that the reconstruction process is not fooled. Towards this end we introduce the signature of any
disappearing center, v , as follows.

(1) The value of j such that v ∈ γj . This has at most s possibilities.
(2) The information of whether v is a closest endpoint to any variable on the forceable branch

at stage j and in such a case in which direction(s) it has variables appearing on this branch.

This has O (1) possibilities.

On the high level the reconstruction procedure maintains the following information.

(1) A counter j of the current stage to be reconstructed. Initially j = 1.

(2) The restriction ρ∗j . Initially ρ∗
1
= ρ∗ and we describe below how to update.

(3) The information set I ∗−j . Initially this is empty and we describe below how to update.

(4) A set E of (prematurely identified) disappearing centers together with their signatures. Initially

E is empty.

In the reconstruction process we need to find the identity of some centers. For intuition let us

discuss different contexts where this happens and how much external information is needed. For

some disappearing centers we also specify the signature which amounts to O (s ) possibilities for
each center. We have the following cases.

(1) A disappearing center that is the closest endpoint of a variables on a discovered 1-branch.

This can be found by giving the distance from the root on the branch at cost t .
(2) A disappearing center that is not the closest endpoint of a variable on a branch but we know

the sub-square where it is located. This can be specified at cost ∆.
(3) A non-disappearing and live center where we know the sub-square. This can be specified at

cost 1.01Cs as these are the number of live centers in any sub-square.
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The two first situations appear when finding centers in γj while the last situation appears when

finding centers in Ij that are not contained in γ
∗
j . Identifying a disappearing center has “profit” (as is

seen in the final calculation of counting the number of ρ∗ compared to the number of ρ) of Ω(∆/s ).
As ∆ is significantly larger then s and t there is a huge net profit of Ω(∆/st ) in the first case and a

moderate net loss of O (s ) in the second case. For the third case there is no associated profit but on

other hand only a moderate cost. The key for the final analysis is to bound the number of costly

step by a constant times the number of profitable steps of the first kind. Let us now formally define

the reconstruction process.

(1) Set j = 1, ρ∗
1
= ρ∗, initialize I ∗−

1
as well as E to the empty set.

(2) Find the next 1-branch traversed by the information (ρ∗j , I
∗−
j ).

(3) Locate the closest endpoints of all variables on this branch. If any such center belongs to

E and its signature does not match the current branch, go to step 2. By “not matching” we

mean that the stage information is incorrect or that the direction(s) of the edges involved

does not exactly match the signature.

(4) Read a bit b to determine if there are more disappearing centers to be found as the closest

endpoint to variables on this branch.

(5) If b = 1 read one integer that is at most t to determine a disappearing center that is the closest

endpoint of a variable on this branch. Read its signature. If this signature agrees with the

current branch repeat step 4 and otherwise include it in E and go to step 2.

(6) If b = 0 we have found the forceable branch. We read some external information to determine

γj and I
−
j (details below). Update ρ∗j to ρ∗j+1

and I ∗−j to I ∗−j+1
, drop any disappearing center of

stage j from E, set j = j + 1, and repeat from 2.

Let us for the record note that for each variable identified on the forceable path we have signature

of its closest endpoint. This follows as such a center either belongs to E or is identified under step 5.

The are a few details and facts about this reconstruction procedure to understand. Let us start

with establishing that we are indeed correctly identifying the forceable branch.

Lemma 7.7. If a 1-branch is traversed by (ρ∗j , I
∗−
j ) and the signatures of all closest endpoints of

variables on this branch match (as discussed under item 3 above) and it is the first such branch, then
this branch is the jth forceable branch.

Proof. As all variables on the branch are forced we must have the information of their closest

endpoints in the correct direction(s). As none of the variables have a closest endpoint of a stage

later than j the branch is forced by (ρ, I ∗−j ∪ Jj ) jointly possibly with a non-edge in γj contained in

I ∗j . This implies that the possible forcing information Jj is valid for this branch and being the first

such branch it must be the jth forceable branch. □

Let us now see how to reconstruct γj . We have already identified all the closest endpoints of

variables on the forceable branch and we know, by their signature which directions they need

another center as the other endpoint of an edge. We read the identity of these other endpoints at a

cost
7
of at most ∆ for each center. This identifies Jj . To finalize the description of γj we read the

identity of the unique fresh centers used to make γj closed. This is done at a cost of ∆ for each such

center. Having identified γj we turn to I−j . We first have a bit for each element in γj to indicate

whether it is also an element of Ij .

7
It might be the case that some of these centers were found previously and are part of E or that also the other endpoint is

uniquely defined by occurring variable. In either case the cost, including the signature is O (st ) which is bounded by ∆.
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First observe that any center in supp (I−j ) cannot belong to supp (γj′ ) for j
′ > j and thus any such

center is still alive in ρ∗j and thus can be identified at as cost of at most 1.01Cs provided we know

the sub-square to which it belongs.

First we reconstruct the non-chosen centers. For each non-chosen center in Jj using O (1) bits
we find out the size of the connected component in π and the directions of each edge. Then we

identify the other endpoint of each such edge at cost 1.01Cs .
For the chosen centers we can again discover the graph part withO (1) bits per center for structure

and an integer of size 1.01Cs for the identity. The non-edges not in supp (γ ∗j ) are also reconstructed

at cost 1.01Cs for identity and O (1) bits per center for direction.
Finally for any center in γj we have 4 bits to describe whether the piece of information in the

form of non-edge in any direction(s) should be added in I ∗−j+1
.

This terminates the description of the reconstruction and we need to sum up the external

information needed. Let aj be the number of disappearing centers that are discovered through

being the closest endpoint of a discovered variable and are part of the jth forceable branch and let

bj the number of additional centers in γj . Furthermore let c j the number of centers needed to be

discovered in I−j after γj was discovered.

Lemma 7.8. We have bj + c j ≤ 25aj .

The fact that there is some constant such that the above lemma is true is fairly obvious but as

the constant goes into the exponent of the final result we make a moderate effort to minimize it.

Proof. All centers contributing to bj and c j are discovered while processing the jth forceable

branch. We start with some centers discovered as closest endpoints and find other centers in γj and
Ij . Let us see how many centers that can be included based on a single starting point v . Let us first
assume for simplicity that all these starting points are at distance at least 7 from each other. Let us

first consider that case when v is a chosen center.

Remember that a discovered v is the closest endpoint of a variable on the discovered 1-branch.

The information set Jj might contain also the other endpoint(s) of paths starting atv . When forming

γj we might add additional centers to make it closed. Finally when construction Ij we expose the
partners in the matching provided by PM and then also the neighbor of all chosen exposed centers.

There are a number of cases to consider.

The centerv might have up to four neighbors in Jj and let us first assume that all four are present.

As Jj is consistent, v must have an edge to one of the neighbors but for the other three we might

have to add a fresh center as a neighbor to γj to make it closed.

In the information set Ij we first expose the partners of v and its neighbors in Jj in the matching

provided by PM . As v needs to be matched to one of it neighbors
8
this is a total of at most 8 centers

that can be exposed. The chosen center neighbors of all these centers are members of Ij .
In total v might hence cause us to identify the 4 chosen centers at distance one, the 8 chosen

centers at distance 2 and 9 chosen centers at distance 3 (we had at most 3 centers at distance 2 as

partners of neighbors and each of these have 3 neighbors not counted before). We also have the

3 fresh centers that might be included in γj . This is a total of 24 centers that might be needed to

identify all centers of γj and Ij . It is not difficult to see that the worst situation is when the partners

in the matching are in the outward direction from the point of view of v and we illustrate this

situation in Figure 7.

8
This need not be to the same neighbor as in Jj , but it is one neighbor.
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Fig. 7. The small solid circles are the neighbors of v . Their neighbors in the matching are large circles where
we assume that v is matched tow . The small circles are their neighbors.

Let us turn to the case when v has information in three directions in Jj .
In this case all the four centers (v and its three neighbors in Jj ) might be of degree 0 and need

a fresh neighbor when forming γj . The set of exposed centers can be the same as in the case of

four neighbors of v in Jj . This is true as v might be matched to the missing neighbor. The rest of

the argument is the same and thus the difference is that we might have added four centers when

forming γj as opposed to three, and thus we end up with the bound of 25 added centers in this case.

It is not difficult to see that if v has one or two neighbors in Jj then we add fewer centers.

Finally if the starting centers are not well separated then some centers are counted twice and this

compensates for some center that becomes degree two and needs a fresh center as a neighbor. We

omit the details. We conclude that the estimate holds also in this case. Let us turn to non-chosen

centers.

Such a center can only have neighbors in Jj in three directions. This follows as for non-edges at

non-chosen centers we do not need the information of the other endpoint of a possible path.

For each of these, the connected component in π might given another three centers to be

identified. Thus in this case a single discovered center can only give 12 centers total to be identified

and thus the bound for the case of chosen centers gives the bound of the lemma. □

Nowwe are ready to make the final calculation. Letting a =
∑д

j=1
aj and defining b and c similarly

we can add up the extra information as follows.

• The disappearing centers that are discovered as closest endpoints contribute a factor ta .
• The other disappearing centers contribute a factor at most ∆b

(or less as discussed in the

footnote 7).

• The signatures contribute at most (As ′)a for a constant A as signatures are only needed for

disappearing centers discovered as closest endpoints.

• The centers discovered to be part of I contribute a factor (1.01Cs )c .
• The graph structure of γ and I as well as the information which elements of γj are included

in I J contributes a factor B
a+b+c

, for some constant B.
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• The bits b contribute 2
s ′+8t+s ′

. This follows as we can have at most s ′ + 8t bits that are 1 (as
each time a disappearing variable is discovered) and at most s ′ bits that are 0 (as each time a

stage is ended).

Letm = ∆(n/T )2 be the total number of centers. The number ofways to choose ρ∗ is9 2
1+rn

(
m

k−(b+a)

)
where 2

rn
is the number of possibilities for the choice of fixed and preferred variables once the

choice of centers is fixed. Similarly the number of choices for ρ is 2
rn

(
m
k

)
. This implies that the

probability of having a described closed branch is bounded by

ta∆bsascAa+b+c
2

1+rn
(

m
k−(a+b )

)
2
rn

(
m
k

) (1)

for some (modified) absolute constant A. The quotient of the the binomial coefficients equals

a+b−1∏
i=0

k − i

m + i − k
≤

(
k

m − k

)a+b
=

( Cs

∆ −Cs

)a+b
≤ ∆−(a+b )sa+bAa+b ,

for some (again different) constant A. We conclude that the probability of the closed branch in the

decision tree we are analyzing is at most

∆−as2a+b+ctaAa+b+c , (2)

for again a new constant A. Applying Lemma 7.8 and modifying A we have that this is bounded by

∆−as27ataAa = (As27t∆−1)a . (3)

Finally as the number of exposed centers is at most a + b + c and as the numbered of queried

variables is at most four times the number of exposed centers we have a + b + c ≥ s ′/4 and hence

a ≥ s ′/108 and this concludes that analysis of the probability of a closed branch. Lemma 6.2 now

follows from Lemma 7.3 and a final modification of the constant A.

8 FINAL WORDS
Our lower bound for the Tseitin on the torus gives lower bounds for any graph in which we can

embed the torus. In particular we do get lower bounds for the grid as it is not difficult to see that it

is possible to embed the n × n torus in and (2n + 3) × (2n + 2) grid. The wrap-around edges are

mapped to paths of full length running between the vertices of the torus that are mapped in the

natural way to nodes with both coordinates even.

More generally, using a result of Chuzhoy [6] any graph of tree-widthm contains a grid of size

Ω(m1/20), Galesi et al. [8] were able to extend our results to arbitrary graphs.

This paper makes proof complexity “catch up” with circuit complexity when it comes to small-

depth circuits containing and-gates and or-gates. We have other situations where circuit complexity

still has the lead. This includes small-depth circuits containing modulo p gates for a prime p and

also hierarchy theorems proving that depth d circuits are much more powerful than depth d − 1

circuits. Almost needless to say, progress on those problems would be highly interesting.

ACKNOWLEDGMENTS
Some early ideas of this paper were discussed with Pavel Pudlak and Jakob Nordström. I am also

grateful for later discussions with Ilario Bonacina, Susanna F. de Rezende, Marc Vinyals, Joseph

Swernofsky and Mladen Mikša. I gratefully acknowledge the many comments of the anonymous

9
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