
ON THE APPROXIMATION RESISTANCE

OF A RANDOM PREDICATE

Johan Håstad

Abstract. A predicate is called approximation resistant if it is NP-
hard to approximate the corresponding constraint satisfaction problem
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picks an assignment uniformly at random. In this paper we study pred-
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grow. Samorodnitsky and Trevisan proved that, assuming the Unique
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1. Introduction

We consider constraint satisfaction problems (CSPs) over the Boolean domain.
In our model a problem is defined by a k-ary predicate P and an instance is
given by a list of k-tuples of literals. The task is to find an assignment to the
variables such that all the k-bit strings resulting from the list of k-tuples of
literals under the assignment satisfy the predicate P . In this paper we focus on
Max-CSPs which are optimization problems where we try to satisfy as many
constraints as possible.

The most famous such problem is probably Max-3-Sat where k = 3 and P is
the disjunction of the three bits. Another problem that (almost) falls into this
category is Max-Cut, in which k = 2 and P is non-equality. In traditional Max-
Cut we do not allow negations among the literals and if we do allow negation
the problem becomes Max-E2-Lin-2, linear equations modulo 2 with exactly
two variables in each equation.
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It is a classical result that most Boolean CSPs are NP-complete. In an early
result Schaefer (1978) gave a complete characterization giving only 5 cases for
which the problem is in P while establishing NP-completeness in the other
cases.

Of course if a CSP is NP-complete, the corresponding Max-CSP is NP-hard.
The converse is false and several of Schaefer’s easy satisfiability problems are
in fact NP-hard as optimization problems. We turn to study approximation
algorithms. An algorithm is here considered to be a C-approximation of a
maximization problem if it, on each input, finds an assignment with an ob-
jective value that is at least C times that of the optimal solution. We allow
randomized approximation algorithms and in such a case it is sufficient that
the expected value, over the random choices of the algorithm, of the objective
value satisfies the desired bound.

To define what is non-trivial is a matter of taste but hopefully there is
some consensus that the following algorithm is trivial: Without looking at the
instance, pick a random value for each variable. We say that an approximation
ratio is non-trivial if it gives a value of C that is better than the value obtained
by this trivial algorithm. We call a predicate approximation resistant if it is
NP-hard to achieve a non-trivial approximation ratio.

It is perhaps surprising but many CSPs are approximation resistant and
one basic example, as established by H̊astad (2001), is Max-3-Sat. In their
famous algorithm Goemans & Williamson (1995) show that Max-Cut is not
approximation resistant and this result was extended by H̊astad (2005) to show
that no predicate that depends on two inputs from an arbitrary finite domain
can be approximation resistant.

Zwick (1998) established approximability results for predicates that depend
on three Boolean inputs and from this work it follows that the only predicates
on three inputs that are approximation resistant are those that are implied by
parity or its negation. A predicate P is implied by a predicate Q iff whenever
Q(x) is true so is P (x); as an example, the negation of parity implies disjunction
as if we know that an odd number of variables are true then they cannot all be
false.

Some scattered results on (families of) predicates depending on four or more
Boolean inputs do exist and some can be found in the papers by Guruswami
et al. (1998) and Samorodnitsky & Trevisan (2000). On a more systematic
note, Hast (2005) made an extensive classification of predicates of four inputs.
Predicates that can be made equal by permuting the inputs and/or negating one
or more inputs behave the same with respect to approximation resistance and
with this notion of equivalence there are (exactly) 400 different non-constant
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predicates on 4 Boolean inputs. Hast proved that 79 of these are approximation
resistant, established 275 to be non-trivially approximable leaving the status of
46 predicates open. Zwick (2006) has obtained numerical evidence suggesting
that most of the latter predicates are in fact non-trivially approximable.

The main result of this paper is to give evidence that a random k-ary
predicate for a large value of k is approximation resistant. The result is only
evidence in the sense that it relies on the Unique Games Conjecture (UGC) of
Khot (2002), but on the other hand we establish that a vast majority of the
predicates are approximation resistant under this assumption.

We base our proof on the recent result by Samorodnitsky & Trevisan (2006)
that establishes that if d is the smallest integer such that 2d −1 ≥ k then there
is a predicate of width k that accepts only 2d of the 2k possible k-bit strings and
which, based on the UGC, is approximation resistant. We first extend their
proof to establish that any predicate implied by their predicate is approximation
resistant.

This extension is neither difficult nor surprising given the existing machin-
ery. To prove that a predicate P is approximation resistant one needs to design
a Probabilistically Checkable Proof (PCP) where the verifier reads k bits and
accepts iff these bits satisfy the predicate P . To establish approximation re-
sistance this test needs to have (almost) perfect completeness and a soundness
that (almost) matches the probability that a random assignment satisfies P .
To extend this to a predicate Q that is implied by P one obvious attempt is to
use the same PCP up to the acceptance criteria which we change to be that the
constructed string satisfies Q rather than P . As P implies Q the completeness
of the test remains (almost) perfect and we need only address the soundness
condition. It turns out, in our situation, that the original proof of the soundness
from Samorodnitsky & Trevisan (2006) is not difficult to modify.

To establish our main result we proceed to prove that a random predicate is
implied by some predicate which is equivalent to the predicate of Samorodnitsky
and Trevisan. This is established by a second moment method. A standard
random predicate on k bits is constructed by, for each of the 2k inputs, flipping
an unbiased coin to determine whether that input is accepted. It turns out that
our results apply to other spaces of random predicates. In fact, if we construct a
random predicate by accepting each input with probability k−c for some c > 0
we still, with high probability for sufficiently large k, get an approximation
resistant predicate. Here c is a number in the range [1/2, 1] that depends on
how close k is to the smallest number of the form 2d − 1 larger than k.

We make the proof more self-contained by reproving one main technical
lemma of Samorodnitsky & Trevisan (2006) relating to Gowers uniformity
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norms and influences of variables. Our proof is similar in spirit to the orig-
inal proof but significantly shorter and we hence believe it is of independent
interest.

Of course the contribution of this paper heavily depends on how one views
the Unique Games Conjecture, UGC. At the least one can conclude that it
will be difficult to give a non-trivial approximation algorithm for a random
predicate. Our results also point to the ever increasing need to settle the UGC.

An outline of the paper is as follows. We start by establishing some nota-
tion and giving some definitions in Section 2. We prove the lemmas relating to
Gowers uniformity in Section 3 and proceed, in Section 4, to establish that any
predicate implied by the predicate used by Samorodnitsky and Trevisan is ap-
proximation resistant. We then present our applications of this theorem by first
establishing that a random predicate is approximation resistant in Section 5
and that all very dense predicates are approximation resistant in Section 6.
We stress that all our inapproximability results rely on the UGC. We end with
some concluding remarks in Section 7.

This is the full version of the conference version given in H̊astad (2007).

2. Preliminaries

We consider functions mapping {−1, 1}n into the real numbers and usually
into the closed interval [−1, 1]. In this paper we use {−1, 1} as the value set
of Boolean variables but still call the values “bits”. For x, x′ ∈ {−1, 1}n we let
x ·x′ denote the coordinate-wise product. In {0, 1}n-notation this is the simply
the exclusive-or of vectors.

For any α ⊆ [n] we have the character χα which is defined by

χα(x) =
∏
i∈α

xi

and the Fourier expansion is given by

f(x) =
∑
α⊆[n]

f̂αχα(x),

where
f̂α = 2

−n
∑

x

f(x)χα(x).

These numbers satisfy the Parseval identity∑
α

f̂ 2
α = 2

−n
∑

x

f(x)2,
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and as we are mostly considering functions that map into the real interval
[−1, 1] these sums are usually bounded by 1.

We are interested in coding elements [L], by the long code. This code was
introduced by Bellare et al. (1998) and an element v is coded by a function
A : {−1, 1}L → {−1, 1} defined by A(x) = xv. Our main PCP consists of
a number of tables that are supposed to be long codes. We cannot trust a
malicious prover to give tables that are long codes but we limit the power of
such a prover by requiring a table to be folded which is the same as saying
that A(−x) = −A(x). This is enforced by requiring the table only to contain
elements for inputs with x0 = 1. The value when x0 = −1 is defined to
be −A(−x). It is important to us that any folded table is unbiased, i.e. has
expectation 0.

Permutations of [L] play an important role in this papers and we extend
permutations to act on {−1, 1}L by defining π(x)j = xπ(j). For a set S ⊆
{−1, 1}L we let π(S) be the set

{π(x)|x ∈ S}.
For two sets α and β we let α∆β be the symmetric difference of the two

sets.
The influence of a variable xi on a function f , denoted by infif , is the ex-

pected variance of f when all variables, except xi, are fixed to random variables.
It is well known that

infi =
∑
i∈α

f̂ 2
α.

The following lemma from Samorodnitsky & Trevisan (2000) is useful.

Lemma 2.1. Let (fj)
k
j=1, {−1, 1}n → [−1, 1] be k functions, and

f(x) =
k∏

j=1

fj(x).

Then, for every i ∈ [n], infi(f) ≤ k
∑k

j=1 infi(fj).

The pairwise cross-influence of a set of functions (fj)
k
j=1 is defined to be the

maximal simultaneous influence in any two of the functions or more formally

cinfi(fj)
k
j=1 = max

j1 �=j2
min(infi(fj1), infi(fj2)).

Let P be a predicate on k Boolean inputs. An instance of the problem
Max-CSP(P ) is given by a list of k-tuples of literals. The task is to find the
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assignment to the variables that maximizes the number of k-tuples that satisfy
P .

An algorithm is a C-approximation if it, for any instance I of this problem,
produces an assignment which satisfies at least C · Opt(I) constraints where
Opt(I) is the number of constraints satisfied by an optimal solution.

Let d(P ) be the fraction of k-bit strings accepted by P . The trivial algo-
rithm that just picks an assignment uniformly at random satisfies, on the aver-
age, a d(P )-fraction of the constraints and as an optimal solution cannot satisfy
more than all the constraints this yields a (randomized) d(P )-approximation
algorithm. We have the following definition.

Definition 2.2. A predicate P is approximation resistant if, for any ε > 0, it
is NP-hard to approximate Max-CSP(P ) within d(P ) + ε.

Some predicates have an even stronger property and to state it let us first
formally define implication among predicates.

Definition 2.3. A predicate P is implied by a predicate Q if, for any x,
whenever Q(x) is true so is P (x).

A different way of formalizing this fact is, of course, that Q−1(1) ⊆ P−1(1).
We are now ready for a definition of an even stronger notion of hardness.

Definition 2.4. A predicate P is hereditary approximation resistant if any
predicate Q implied by P is approximation resistant.

3. Gowers Uniformity and Influence

Gowers (1998, 2001) introduced the notion of dimension-d uniformity norm
Ud(f) which was used in an essential way by Samorodnitsky & Trevisan (2006).
Their result says that if a function does not have an influential variable and
is unbiased then the dimension-d uniformity norm is small. More importantly
for their application, Samorodnitsky & Trevisan (2006) also proved that if a
set of functions has small cross-influences and at least one function is unbiased
then a product similar to the product giving the Ud-norm is small. We slightly
extend their result by allowing a small bias of the involved functions. Allowing
this extension makes it possible to give a short, direct proof by induction.

We want to emphasize that the results obtained by Samorodnitsky and
Trevisan are sufficient for us but we include the results of this section since we
believe that our proofs are simpler and that the extension might be interesting
on its own and possibly useful in some other context.
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Theorem 3.1. Let f : {−1, 1}n → [−1, 1] be a function with maxi infi(f) ≤ ε
and |E[f ]| ≤ δ, then∣∣∣∣∣∣Ex1,...xd


∏

S⊆[d]

f

(∏
i∈S

xi

)

∣∣∣∣∣∣ ≤ δ + (2d−1 − 1)√ε.

Proof. We prove the theorem by induction over d. Clearly it is true for
d = 1 as the quantity to estimate equals |f(1n)E[f ]|.

For the induction step let gxd
(x) = f(x)f(x · xd). Then, by Lemma 2.1,

maxi infig
xd ≤ 4ε. Furthermore

Ex[g
xd

] = 2−n
∑

x

f(x)f(x · xd) = f ∗ f(xd)(3.2)

and let us for notational simplicity denote this function by h(xd). As con-
volution turns into multiplication on the Fourier transform side we have that
ĥα = f̂ 2

α. For any α = ∅ we have f̂ 2
α ≤ maxi infi(f) ≤ ε and hence

‖h‖2
2 =

∑
α

ĥ2
α =

∑
α

f̂ 4
α ≤ f̂ 4

∅ + ε
∑
α�=∅

f̂ 2
α ≤ δ4 + ε.

This implies, using the Cauchy-Schwartz inequality, that

Exd [|Ex[g
xd

(x)]|] = Exd [|h(xd)|] ≤
√
δ4 + ε ≤ δ2 +

√
ε ≤ δ +

√
ε.(3.3)

Now∣∣∣∣∣∣Ex1,...xd


∏

S⊆[d]

f

(∏
i∈S

xi

)

∣∣∣∣∣∣ ≤ Exd

∣∣∣∣∣∣Ex1,...xd−1


 ∏

S⊆[d−1]

gxd

(∏
i∈S

xi

)

∣∣∣∣∣∣ ,

which, by induction, is bounded by

Exd

[
|Ex[g

xd

]|+ (2d−2 − 1)
√
4ε
]
≤ δ + (2d−1 − 1)√ε.

�

Theorem 3.1 is really a warmup for Theorem 3.4 below which is the theorem
needed for our application. For any reader interested in Theorem 3.1 in itself
let us point out that it is possible to get a sharper estimate by not doing the
wasteful replacement of δ2 by δ in (3.3).

We now turn to the more general situation.
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Theorem 3.4. Let (fS)S⊆[d] be a set of functions {−1, 1}n → [−1, 1], with
maxi cinfi(fS) ≤ ε and minS �=∅ |E[fS]| ≤ δ, then∣∣∣∣∣∣Ex1,...xd


∏

S⊆[d]

fS(
∏
i∈S

xi)



∣∣∣∣∣∣ ≤ δ + (2d − 2)√ε.

Proof. We use induction over d. The base case d = 1 is again straightfor-
ward and let us do the induction step.

By a change of variables we can assume that |E[f[d]]| ≤ δ. Now define a
new set of functions by

gxd

S (x) = fS(x)fS∪{d}(x · xd),

for any S ⊆ [d−1]. The cross-influence of this set of functions is, by Lemma 2.1,
bounded by 4ε. Let h(xd) be the average of gxd

[d−1] and as, similarly to (3.2)

we have that h is the convolution of f[d−1] and f[d] we conclude that ĥα =

f̂[d−1],αf̂[d],α. From this we get

‖h‖2
2 =

∑
α

ĥ2
α = f̂ 2

[d−1],∅f̂
2
[d],∅ +

∑
α�=∅

f̂ 2
[d−1],αf̂

2
[d],α ≤

≤ δ2 +
∑
α�=∅

min(f̂ 2
[d−1],α, f̂

2
[d],α)(f̂

2
[d−1],α + f̂ 2

[d],α) ≤

≤ δ2 +
∑
α�=∅

ε(f̂ 2
[d−1],α + f̂ 2

[d],α) ≤ δ2 + 2ε.

Using induction and the Cauchy-Schwartz inequality as in the previous proof
we get∣∣∣∣∣∣Ex1,...xd


∏

S⊆[d]

fS

(∏
i∈S

xi

)

∣∣∣∣∣∣ ≤ Exd

∣∣∣∣∣∣Ex1,...xd−1


 ∏

S⊆[d−1]

gxd

S

(∏
i∈S

xi

)

∣∣∣∣∣∣ ≤

Exd

[
|E[gxd

[d−1]]|+ (2d−1 − 2)
√
4ε
]
≤ δ + 2

√
ε+ (2d − 4)√ε ≤ δ + (2d − 2)√ε.

�

4. The ST-predicate

Fix k and let d be such that 2d−1 ≤ k ≤ 2d − 1. For any integer i with
0 ≤ i ≤ 2d − 1 let î ⊆ [d] be the set whose characteristic vector is equal to the
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binary expansion of i. We define PST (x), a predicate on k-bit strings, to be
true if for all triplets i1, i2, and i3 such that î1∆î2 = î3 we have xi1xi2 = xi3 .
Note that PST depends on k but as k (and d) remains fixed we suppress this
dependence.

The accepted strings form a linear space of dimension d and the following
procedure for picking a random string accepted by PST is a good way to visu-
alize the predicate. For each i that is a power of two, set xi to a random bit.
For other values of i set

xi =
∏
j∈î

x2j .

We consider Max-CSP(PST ) and have the following theorem obtained by
Samorodnitsky and Trevisan.

Theorem 4.1. Samorodnitsky & Trevisan (2006) Assuming the UGC, for any
ε > 0, it is NP-hard to approximate Max-CSP(PST ) within 2d−k + ε.

Equivalently, the theorem says that PST , assuming UGC, is approximation
resistant. We are interested in the following extension.

Theorem 4.2. Assuming UGC, PST is hereditary approximation resistant.

It is satisfying to note that for k = 3 the predicate PST is simply parity and
hence this instance of the theorem was proved by H̊astad (2001) without using
the UGC.

Proof. Let Q be any predicate of arity k implied by PST . Our proof is very
similar to the proof of Samorodnitsky & Trevisan (2006) but we use a slightly
different terminology. We assume that the reader is familiar with Probabilis-
tically Checkable Proofs (PCPs) and their relation to inapproximability result
for Max-CSPs. Details of the connection can be found in many places, two
possible places being the papers by H̊astad (2001) and Bellare et al. (1998),
but let us give a very quick summary.

To prove that Max-CSP(Q) is approximation resistant we need, for any
γ > 0, to design a PCP for an NP-hard problem where the acceptance condition
is given by the predicate Q with the following properties. For positive instances
there is a proof with acceptance probability at least 1 − γ while for negative
instances the maximal acceptance probability is at most d(Q) + γ. It is also
needed that the verifier uses O(logn) random bits when checking proofs of
statements of size n. The latter property implies that the proof is of polynomial
size.
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As in Samorodnitsky & Trevisan (2006) we use a form of the UGC which,
using the terminology of that paper, is called the k-ary unique games. We have
variables (vi)

n
i=1 taking values in a finite domain of size L, which we assume

to be [L]. We are given a list of m constraints where the #’th constraint, C�,
is given by a k-tuple, (vi�j

)kj=1 of variables and k permutations (π�
j)

k
j=1. An

assignment V strongly satisfies C� iff the k elements π
�
j(V (v

�
ij
)) are all equal

and V weakly satisfies C� iff these values are not all distinct. The following
result, originally derived in Khot & Regev (2003), is stated in the following
form in Samorodnitsky & Trevisan (2006).

Theorem 4.3. If the UGC is true, then for every integer k and real number
ε > 0 there is an L = L(k, ε) such that, given a k-ary unique game problem
with alphabet size L and m constraints, it is NP-hard to distinguish the case in
which there is an assignment that strongly satisfies at least (1−ε)m constraints
from the case where every assignment weakly satisfies at most εm constraints.

We proceed to construct a PCP based on this k-ary unique game prob-
lem. The test is as described in Samorodnitsky & Trevisan (2006) but slightly
reformulated.

The proof consists of n tables, Ai, each describing a function {−1, 1}L →
{−1, 1}, which are accessed with the folding mechanism described in Section 2.
To guide the intuition, let us note that, as we describe below in the proof of
Lemma 4.4, an honest prover constructing a correct proof for a positive instance
defines Ai to be the long code of the value for vi.

We use noise vectors µ ∈ {−1, 1}L which has the property that µv is picked
randomly and independently and for each v ∈ [L] and equals 1 with probability
1 − δ. The real number δ is a crucial parameter and need to be chosen as a
function of γ.

We are now ready to define our central PCP.

Q-test(δ).

1. Pick a random k-ary constraint, C� given by variables (vi�j
)kj=1, and per-

mutations (π�
j)

k
j=1.

2. Pick d independent random unbiased xi ∈ {−1, 1}L and k independent
noise functions µj ∈ {−1, 1}L.

3. Let yj =
∏

i∈ĵ x
i and bj = Ai�j

(π�
j(y

j) · µj).
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4. Accept iff Q(b) = Q(b1, b2, . . . bk) is true.

We first address completeness.

Lemma 4.4. For any γ > 0 there exists δ, ε > 0 such that if there is an
assignment that strongly satisfies (1−ε)m constraints in the k-ary unique game
problem then the verifier in Q-test(δ) can be made to accept with probability
1− γ.

Proof. Let V be an assignment that satisfies (1−ε)m constraints. Consider
the proof where Ai is the long code of V (vi). Suppose the chosen constraint, C�,
is satisfied by V and let v be the common value of π�

j(V (vi�j
)). Then assuming

that µj
V (v

i�
j
) = 1 for all j we have

bj = yj

π�
j(V (v

i�
j
))
· µj

V (v
i�
j
) = yj

v =
∏
i∈ĵ

xi
v.

It follows that b satisfies PST and hence also Q. As each µv = 1 with probability
1−δ the probability of acceptance is at least (1−δ)k(1−ε) which, for sufficiently
small ε and δ, is at least 1− γ. �

Let us turn to the more challenging task of analyzing the soundness.

Lemma 4.5. For any γ > 0, δ > 0 there exist ε = ε(k, δ, γ) > 0 such that if the
verifier in Q-test(δ) accepts with probability at least d(Q) + γ there exists an
assignment that weakly satisfies at least a εm constraints in the k-ary unique
game problem.

Proof. We assume that the verifier accepts with probability d(Q) + γ and
turn to define a (randomized) assignment that weakly satisfies a fraction of the
constraints that only depends on k, δ and γ.

Consider the multilinear representation of Q

Q(b) =
∑

β

Q̂β

∏
j∈β

bj .

The constant term Q̂∅ is exactly d(Q) and hence if the verifier accepts with
probability d(Q) + γ there must be some nonempty β such that

|E[
∏
j∈β

bj ]| ≥ 2−kγ,(4.6)
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where the expectation is taken over a random C� and the random choices of xi

and µj.
Let us first study the expectation over the noise vectors. Towards this end

let us define
Bj(y) = Eµ[Aj(y · µ)],

which is useful as Eµj (bj) = Bij(πj(y
j)). It is a standard fact (for a proof see

H̊astad (2001)) that
B̂j,β = (1− 2δ)|β|Âj,β

and hence ∑
|β|≥t

B̂2
j,β ≤ (1− 2δ)2t(4.7)

for any t. Now set Γ = 2−2(d+k+2)γ2 and let t = Θ(δ−1 log Γ−1) be such that

(1− 2δ)2t ≤ Γ/2,

and define
Tj = {i |infiBj ≥ Γ}.

As

infiBj =
∑
i∈β

B̂2
j,β,(4.8)

by (4.7) and the definition of t, if i ∈ Tj then we must have∑
β|i∈β∧|β|<t

B̂2
j,β ≥ Γ/2.(4.9)

We conclude that
|Tj| ≤ 2/Γ

∑
β,i|i∈β∧|β|<t

B̂2
j,β ≤ 2t/Γ.

Now, consider the probabilistic assignment that for each vj chooses a ran-
dom element of Tj . If Tj is empty we choose an arbitrary value for vj. Let us
analyze the expected number of constraints satisfied by this assignment.

By (4.6) we know that for at least 2−kγm/2 of the constraints C� we have∣∣∣∣∣Exi,µj

[∏
j∈β

bj

]∣∣∣∣∣ ≥ 2−kγ/2.(4.10)
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Fix any such constraint and for j ∈ β or k < j ≤ 2d − 1 set hĵ to be identically
one while if j ∈ β define hĵ by

hĵ(y) = Bi�j
(π�

j(y)).

As yj =
∏

i∈ĵ x
i these definitions imply that

Eµ

[∏
j∈β

bi

]
=
∏

S⊆[d]

hS

(∏
i∈S

xi

)
(4.11)

and hence we are in a position to apply Theorem 3.4. Note first that, by folding,
each h that is non-constant is in fact unbiased and hence, as β is non-empty,
the minimum bias of the set of functions is 0.

We now claim that the maximal cross-influence of the function set hS is at
least Γ. Indeed suppose that this is not the case. Then, by Theorem 3.4, the
expectation of (4.11), over the choice of vectors xi, is at most

(2d − 2)
√
Γ < 2d2−(d+k+2)γ ≤ 2−kγ/2

contradicting (4.10).
As the cross-influence is at least Γ we have j1, j2 ∈ β and an i such that

infihĵk
≥ Γ for k = 1, 2. By definition,

infihĵk
= inf(π�

jk
)−1(i)(Bi�jk

).

We conclude that i belongs to π�
jk
(Ti�jk

) for k = 1, 2 and thus our probabilistic

assignment weakly satisfies C� with probability at least

1

|Ti�j1
| ·

1

|Ti�j2
| ≥

Γ2

4t2
.

As this conclusion holds for at least 2−kγm/2 constraints our probabilistic
assignment weakly satisfies, on the average, at least

2−kγΓ2m

8t2

constraints. Clearly there exists a standard, deterministic assignment that
satisfies the same number of constraints. This finishes the proof of Lemma 4.5.

�
As stated before Lemma 4.4 and Lemma 4.5 together with the fact that the

acceptance criteria of Q-test(δ) is given by Q is sufficient to prove Theorem 4.2.
Note that the randomness used by the verifier is bounded by O(logn) and most
of the randomness is used to choose a random constraint as all other random
choices only require O(1) random bits. �



14 Johan H̊astad

5. Random Predicates

Clearly two predicates P and Q that can be obtained from each other by
permuting the inputs and/or negating some inputs are equivalent with respect
to approximation resistance. Thus Theorem 4.2 does not only apply to PST

but also to any predicate which is equivalent to it.

Consider the following space of random predicates.

Definition 5.1. Let Qp,k be the probability space of predicates in k variables
where each input is accepted with probability p.

A uniformly random predicate corresponds to a predicate fromQ1/2,k but we
consider also smaller values of p. Whenever needed in calculations we assume
p ≤ 1/2.

We want to analyze the probability that a random predicate from Qp,k is
implied by a negated and/or permuted variant of PST and let us give a ball
park estimate for what values of p and k it is reasonable to believe that this is
the case.

We have k! permutations of the inputs and 2k possible ways to negate the
inputs. Thus the expected number of PST -equivalent predicates that imply a
random predicate from Qp,d is

p2d

2kk!.

For this number to be at least one we need, ignoring low order terms, that

p ≥ k−k2−d

.

This lower bound is between k−1 and k−1/2 and in particular it is smaller
than any constant. In fact this rough estimate is very close to what we can
establish and thus we are, up to error estimates, able to get the strongest
possible result using this approach. The proof works by an application of
the second moment method. A problem to be overcome is that some pairs
of PST -equivalent predicate have large intersection of their accepted sets. To
address this problem we pick a large subset of the PST -equivalent predicates
with bounded size intersections. We proceed to state our main theorem.

Theorem 5.2. Assuming UGC and suppose 2d−1 ≤ k ≤ 2d − 1 then, there is
a value c of the form c = k2−d(1− o(1)), such that, with probability 1− o(1),
a random predicate chosen according to Q(p, k) with p = k−c is hereditary
approximation resistant.
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Proof. In view of Theorem 4.2 we need only prove that a random predicate
from Qp,k with high probability is implied by some predicate which can be
obtained from PST by negations and/or a permutation of the inputs.

Let us denote the set accepted by PST by L. It is a linear space of dimen-
sion d. Negating one or more inputs gives an affine space that is either L or
completely disjoint from L. We get 2k−d disjoint affine spaces denoted by L+α
where α ranges over a suitable set of cardinality 2k−d. We can also permute
the coordinates and this gives a total of k!2k−d sets

π(L+ α)

A set of the form

π(L+ α) ∩ π′(L+ β)

is an affine space which is either empty or of dimension of the linear space

π(L) ∩ π′(L).

We prove that for random choices of π and π′ this dimension is likely to be
small.

Lemma 5.3. Let d0 and k0 be sufficiently large constants and let r be a number
such that 2d−r ≥ d0 and assume that k ≥ k0. Let L be the linear space accepted
by PST . Then, if π and π′ are two random permutations we have

Pr[dim(π(L) ∩ π′(L)) ≥ r] ≤ 2(2−r)k.

Proof. We can clearly assume that π′ is the identity. Let (xi)
r
i=1 and (yi)

r
i=1

and be any two sets, each of r independent points from L. We analyze the
probability that π(xi) = yi for 1 ≤ i ≤ r.

Fixing j, consider the r bits (xi
j)

r
i=1 as an integer, tj, in the range 0 ≤ tj ≤

2r − 1. Suppose the number m appears for kx
m different values of j. Let the

numbers ky
m be defined similarly. Unless

kx
m = ky

m(5.4)

for all m, the probability that π(xi) = yi for all 1 ≤ i ≤ r is 0. On the other
hand if (5.4) holds then the probability of equality is exactly

∏2r−1
m=0 km!

k!
.(5.5)
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We claim that kx
m ≤ 2d−r for each m. To see this, suppose we extend the

x-vectors to length 2d by adding the linearly dependent coordinates to get a
point in the linear space accepted by PST on inputs of length 2

d − 1 and also
add a constant coordinate 1. We claim that in such a case any set of r linearly
independent vectors xi results in km = 2d−r for any m in the above notation.

To see this consider the r-bit strings that appear in positions 2j of the xi.
By the definition of PST the values that appear as r-bit strings giving numbers
m are all nonempty exclusive-ors of these strings. The added constant one
coordinate corresponds to the empty exclusive-or. This implies that a random
coordinate has an r-bit string that is a random point from a linear space and
as the xi are linearly independent it must be the full space which is observed
with uniform probability.

Let us use kx
m ≤ 2d−r to estimate (5.5). First note that for any n1 ≤ n2 we

have (n1!)
n2 ≤ (n2)!

n1. This is true as each side is a product of n1n2 integers
and the it easy to find a matching where each factor in (n1!)

n2 is matched to
factor of at least the same size in (n2)!

n1 . We conclude that

kx
m! ≤ (2d−r!)k

x
m2r−d

and as
∑2r−1

m=0 km = k we have

2r−1∏
m=0

kx
m! ≤ (2d−r!)k2r−d

.

By Stirling’s formula (n! =
√
2πn(n/e)n(1 + O(1/n))) we can conclude, for

sufficiently large value of d− r, that

2d−r! ≤ 3 · 2(d−r)/22(d−r)2d−r

e−2d−r

.

Using k! ≥ (k/e)k we get the upper bound

(3 · 2(d−r)/2)k2r−d

(
2d−r

k

)k

(5.6)

for (5.5) and thus the probability that π(xi) = π(yi) for 1 ≤ i ≤ r. The first
factor of (5.6) is, as a function of d − r, of the form (1 + o(1))k and thus for
sufficiently large values of d−r it is bounded by (3/2)k. As k ≥ 2d−1 the second
factor of (5.6) is bounded by 2(1−r)k. Finally there are(

2d

r

)2

≤ 22dr
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ways to chose the points (xi)ri=1 and (y
i)ri=1. As r ≤ d this number is bounded

by 2O((log k)2) and hence it is of the form of the form (1 + o(1))k. Thus a total
estimate for the event of the lemma is

(3/2 + o(1))k2(1−r)k ≤ 2(2−r)k

and the proof is complete. �
From now on let us fix values of k and r such that Lemma 5.3 is true.
Let R = 2k(r−2) and we claim that we can choose R permutations (πi)

R
i=1

such that
dim(πi(L) ∩ πj(L)) ≤ r

for any i = j. To see this first pick 2R permutations (σj)
2R
j=1 uniformly at

random. The expected number of pairs (i, j), i < j, with

dim(σi(L) ∩ σj(L)) ≥ r + 1(5.7)

is, by Lemma 5.3, bounded by(
2R

2

)
2(1−r)k ≤ 2R22(1−r)k ≤ R

and hence there is a choice of 2R permutations such that the number of pairs
violating (5.7) is bounded by R. Erase one of the two permutations in each
such pair (and possibly some additional permutations to make the remaining
number of permutations exactly R), and we have the desired permutations
(πi)

R
i=1, which we fix once and for all.
Let Xi,α be the indicator variable for the event that a random predicate

from Qk,p is identically one on the set

πi(L+ α),

and define
X =

∑
i,α

Xi,α.

If X = 0 there is some PST -equivalent predicate that implies the randomly
chosen predicate and thus to prove Theorem 5.2 we need only estimate Pr[X =
0] and we proceed to do this using the second moment method. Clearly

E[X] = p2d

2k−dR.(5.8)

The variance of X equals

E

[ ∑
i1,i2,α1,α2

(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)

]
.(5.9)

We have the following lemma.
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Lemma 5.10. We have E[(Xi1,α1 − p2d
)(Xi2,α2 − p2d

)] = 0 if πi1(L + α1) and
πi2(L + α2) are disjoint while if the size of the intersection is K it is bounded
by

p2d+1−K .

Proof. In fact

E[(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)] = E[Xi1,α1Xi2,α2 ]− p2d+1

= p2d+1−K − p2d+1

.

�

Let us estimate the sum (5.9) and first consider terms with i1 = i2. If
α1 = α2 then

E
[
(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)
]
≤ p2d

while if α1 = α2 then the expectation is 0 and thus the total contribution to
(5.9) of terms with i1 = i2 is bounded by E[X].

Next consider terms with i1 = i2 and let us fix α1 and analyze∑
α2

E
[
(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)
]
.(5.11)

If

dim(πi1(L) ∩ πi2(L)) = r′

then (5.11) has 2d−r′ terms with set-intersection size 2r′ while all other inter-
sections are empty leading to the upper estimate

2d−r′p2d+1−2r′ ≤ 2d−rp2d+1−2r

(using the assumption p ≤ 1/2) for the sum (5.11). Summing over all i1, i2
and α1 we get

σ2(X) ≤ E[X] +R22k−d2d−rp2d+1−2r

= E[X] +R22k−rp2d+1−2r

.(5.12)

By Chebychev’s inequality we have

Pr[X = 0] ≤ σ2(X)

E[X]2
≤ 1

E[X]
+
R22k−rp2d+1−2r

R222(k−d)p2d+1(5.13)

≤ 1

E[X]
+ 22d−(k+r)p−2r

.(5.14)
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Set p = k−c for some c ≤ 1. We need to prove that for some c of the form
2−dk(1 − o(1)) and for a suitable choice of r the probability in (5.14) is o(1).
Note first that provided

2r log k < (k + r)− 2d− ω(1)

the second term of (5.14) is small. This is possible to achieve with r =
d − Θ(log d). Note that this choice also ensures d − r ∈ ω(1) as required
by Lemma 5.3.

Fixing this value of r, the first term of (5.14) is o(1) provided that

p2d ≥ 2(2−r)k

which with, p = k−c, is equivalent to

c ≤ k2−d · r − 2
log k

.(5.15)

As the second factor of the bound in (5.15) is (1− o(1)) we have proved The-
orem 5.2. �

As we have many more permutations πi than translations α one might be
given the (false) impression that the translations are not necessary. In fact this
does not seem to be the case and let us argue why the translations are indeed
needed.

To make sure the variance is small it has to be the case that most terms
in the expression (5.9) are small or preferably 0 and this does not follow if we
only use the permutations πi.

On a more formal level, consider the second term of (5.14). The factor p−2r

is large and comes from the fact that we do have intersection of sizes up to 2r

between our subspaces. The saving factor (which is roughly 2−k) comes from
the fact that only a fraction about 2d−k of the pairs of sets in fact have any
intersections at all.

One can wonder about reasonable values for p for small values of k. Par-
ticularly good values for k are numbers of the form 2d − 1 as this gives an
unusually sparse predicate PST . Numerical simulations suggests that a random
predicate on 7 bits that accepts M of the 128 inputs has a probability at least
1/2 of being implied by a PST -equivalent predicate iff M ≥ 60. Thus it seems
like the asymptotic bound of density essentially k−1 is approached slowly.

6. Very Dense Predicates

As PST only accepts 2
d inputs we can derive approximation resistance of many

predicates but let us here give only one immediate application.
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Theorem 6.1. Let 2d−1 ≤ k ≤ 2d − 1 and P be any predicate that accepts
at least 2k + 1 − 2k−d inputs, then, assuming the UGC, P is approximation
resistant.

Proof. We use the same notation as used in the proof of Theorem 5.2.
We need to prove that any such predicate is implied by a PST -equivalent

predicate. This time we need only apply negations and consider L + α for all
the 2k−d different representatives α. As P only rejects 2k−d − 1 different inputs
and the sets L+ α are disjoint, one such set is included in the accepted inputs
of P . The corresponding suitable negated form of PST hence implies P and
Theorem 6.1 follows from Theorem 4.2. �

It is an interesting question how dense a non-trivially approximable pred-
icate can be. Let dk be the maximum value of d(P ) for all predicates on k
variables which are not approximation resistant. We have d2 = d3 = 3/4 and
Hast (2005) proved that d4 =

13
16
and, as we can always ignore any input, dk

is an increasing function of k. It is not obvious whether dk tends to one as k
tends to infinity.

Our results show that, assuming the UGC, dense predicates which can be
non-trivially approximated need to be extremely structured as they cannot be
implied by any PST -equivalent predicate.

7. Concluding Remarks

The key result in the current paper is to prove that, assuming the UGC, PST is
hereditary approximation resistant. This is another result indicating that the
more inputs accepted by the predicate P , the more likely it is to be approx-
imation resistant. One could be tempted to conclude that all approximation
resistant predicates are in fact hereditary approximation resistant. We would
like to point that this is false and Hast (2005) has an example of two predi-
cates P and Q where P is approximation resistant, P implies Q and Q is not
approximation resistant.

That a predicate is approximation resistant is almost the ultimate hardness.
There is a stronger notion; approximation resistance on satisfiable instances. In
such a case no efficient algorithm is able to do significantly better than picking
a random assignment even in the case when the instance is satisfiable.

An example of a predicate which is approximation resistant but not ap-
proximation resistant on satisfiable instances is Max-E3-Lin-2, linear equations
modulo 2 with three variables in each equation. In this case, for a satisfiable in-
stance, it is easy to find an assignment that satisfies all constraints by Gaussian
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elimination.
In most cases, however, approximation resistant predicates have turned

out to be approximation resistant also on satisfiable instances and it would
seem reasonable to conjecture that a random predicate is indeed approximation
resistant on satisfiable instances. If true it seems hard to prove this fact using
the Unique Games Conjecture in that the non-perfect completeness of UGC
would tend to produce instances of the CSP which are not satisfiable. There
are variants of the unique games conjecture of Khot (2002) which postulate
hardness of label cover problems with perfect completeness but it would be
much nicer to take a different route not relying on any conjectures.

Another open problem is of course to establish approximation resistance in
absolute terms and not to rely on the UGC or, more ambitiously, to prove the
UGC.

Acknowledgements

I am grateful to Per Austrin for useful comments on the current manuscript.

References

M. Bellare, O. Goldreich & M. Sudan (1998). Free Bits, PCPs and Non-
Approximability—Towards tight Results. SIAM Journal on Computing 27, 804–915.

M. Goemans & D. Williamson (1995). Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM 42, 1115–1145.

T. Gowers (1998). A new proof of Szemerédi’s theorem for progressions of length
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