
Towards an Optimal Separation of
Space and Length in Resolution∗

Jakob Nordström†

Massachusetts Institute of Technology‡

Cambridge, MA 02139, USA
jakobn@mit.edu

Johan Håstad
KTH – Royal Institute of Technology

SE-100 44 Stockholm, Sweden
johanh@kth.se

June 14, 2009

Abstract

Most state-of-the-art satisfiability algorithms today are variants of the DPLL procedure aug-
mented with clause learning. The main bottleneck for such algorithms, other than the obvious one
of time, is the amount of memory used. In the field of proof complexity, the resources of time and
memory correspond to the length and space of resolution proofs. There has been a long line of re-
search trying to understand these proof complexity measures, as well as relating them to the width
of proofs, i.e., the size of the largest clause in the proof, which has been shown to be intimately
connected with both length and space. While strong results have been proven for length and width,
our understanding of space is still quite poor. For instance, it has remained open whether the fact
that a formula is provable in short length implies that it is also provable in small space (which is
the case for length versus width), or whether these measures are unrelated in the sense that short
proofs can be arbitrarily complex with respect to space.

In this paper, we present some evidence indicating that the latter case should hold and provide
a roadmap for how such an optimal separation result could be obtained. We do so by proving
a tight bound of Θ(

√
n) on the space needed for so-called pebbling contradictions over pyramid

graphs of size n. This yields the first polynomial lower bound on space that is not a consequence
of a corresponding lower bound on width, as well as an improvement of the weak separation of
space and width in [Nordström 2006] from logarithmic to polynomial.

1 Introduction

Ever since the fundamental NP-completeness result of Cook [26], the problem of deciding whether a
given propositional logic formula in conjunctive normal form (CNF) is satisfiable or not has been on
center stage in Theoretical Computer Science. In more recent years, SATISFIABILITY has gone from a
problem of mainly theoretical interest to a practical approach for solving applied problems. Although
all known Boolean satisfiability solvers (SAT-solvers) have exponential running time in the worst case,
enormous progress in performance has led to satisfiability algorithms becoming a standard tool for
solving a large number of real-world problems such as hardware and software verification, experiment
design, circuit diagnosis, and scheduling.

An arguably somewhat surprising aspect of this development is that the most successful SAT-
solvers to date are still variants of the resolution-based Davis-Putnam-Logemann-Loveland (DPLL)

∗A preliminary version [49] of this paper appeared in Proceedings of the 40th Annual ACM Symposium on Theory of
Computing (STOC ’08).

†Research supported in part by the Ericsson Research Foundation, the Foundation Olle Engkvist Byggmästare, and the
Foundation Blanceflor Boncompagni-Ludovisi, née Bildt.

‡This work performed while at the Royal Institute of Technology.

TOWARDS AN OPTIMAL SEPARATION

procedure [30, 31] augmented with clause learning. For instance, the great majority of the best algo-
rithms in recent rounds of the international SAT competitions [59] fit this description. DPLL proce-
dures perform a recursive backtrack search in the space of partial truth value assignments. The idea
behind clause learning, or conflict-driven learning, is that at each failure (backtrack) point in the search
tree, the system derives a reason for the inconsistency in the form of a new clause and then adds this
clause to the original CNF formula (“learning” the clause). This can save a lot of work later on in the
proof search, when some other partial truth value assignment fails for similar reasons. The second main
bottleneck for this approach, in addition to the obvious one of time, is the amount of memory used by
the algorithms. Since there is only a finite amount of space, all clauses cannot be stored. The difficulty
lies in obtaining a highly selective and efficient clause caching scheme that nevertheless keeps the
clauses needed. Thus, understanding time and memory requirements for clause learning algorithms,
and how these requirements are related to one another, is a question of great practical importance.
We refer to, e.g., [10, 42, 57] for a more detailed discussion of clause learning (and SAT-solving in
general) with examples of applications.

The study of proof complexity originated with the seminal paper of Cook and Reckhow [28]. In
its most general form, a proof system for a language L is a predicate P (x, π), computable in time
polynomial in |x| and |π|, such that for all x ∈ L there is a string π (a proof) for which P (x, π) = 1,
whereas for any x 6∈ L it holds for all strings π that P (x, π) = 0. A proof system is said to be
polynomially bounded if for every x ∈ L there is a proof πx of size at most polynomial in |x|. A
propositional proof system is a proof system for the language of tautologies in propositional logic.

From a theoretical point of view, one important motivation for proof complexity is the intimate con-
nection with the question of P versus NP. Since NP is exactly the set of languages with polynomially
bounded proof systems, and since TAUTOLOGY can be seen to be the dual problem of SATISFIABIL-
ITY, we have the famous theorem of [28] that NP = co-NP if and only if there exists a polynomially
bounded propositional proof system. Hence, if it could be shown that there are no such proof systems,
P 6= NP would follow as a corollary since P is closed under complement. One way of approaching this
distant goal is to study stronger and stronger proof systems and try to prove superpolynomial lower
bounds on proof size. However, although great progress has been made in the last couple of decades
for a variety of proof systems, it seems that we are still very far from fully understanding the reasoning
power of even quite simple ones.

A second important motivation is that, as was mentioned above, designing efficient algorithms for
proving tautologies (or, equivalently, testing satisfiability), is a very important problem not only in
the theory of computation but also in applied research and industry. All automated theorem provers,
regardless of whether they actually produce a written proof, explicitly or implicitly define a system in
which proofs are searched for and rules which determine what proofs in this system look like. Proof
complexity analyzes what it takes to simply write down and verify the proofs that such an automated
theorem-prover might find, ignoring the computational effort needed to actually find them. Thus, a
lower bound for a proof system tells us that any algorithm, even an optimal (non-deterministic) one
making all the right choices, must necessarily use at least the amount of a certain resource specified by
this bound. In the other direction, theoretical upper bounds on some proof complexity measure give
us hope of finding good proof search algorithms with respect to this measure, provided that we can
design algorithms that search for proofs in the system in an efficient manner. For DPLL procedures
with clause learning, the time and memory resources used are measured by the length and space of
proofs in the resolution proof system.

The field of proof complexity also has rich connections to cryptography, artificial intelligence and
mathematical logic. Some good surveys providing more details are [8, 12, 60].

1.1 Previous Work

Any formula in propositional logic can be converted to a CNF formula that is only linearly larger and
is unsatisfiable if and only if the original formula is a tautology. Therefore, any sound and complete

2

1 INTRODUCTION

system for refuting CNF formulas can be considered as a general propositional proof system.
Perhaps the single most studied proof system in propositional proof complexity, resolution, is such

a system that produces proofs of the unsatisfiability of CNF formulas. The resolution proof system
appeared in [20] and began to be investigated in connection with automated theorem proving in the
1960s [30, 31, 56]. Because of its simplicity—there is only one derivation rule—and because all lines
in a proof are clauses, this proof system readily lends itself to proof search algorithms.

Being so simple and fundamental, resolution was also a natural target to attack when developing
methods for proving lower bounds in proof complexity. In this context, it is more convenient to prove
bounds on the length of refutations, i.e., the number of clauses, rather than on the total size of refu-
tations. The length and size measure differ by at most a multiplicative factor given by the number
of variables and are hence polynomially related. In 1968, Tseitin [64] presented a superpolynomial
lower bound on refutation length for a restricted form of resolution, called regular resolution, but
it was not until almost 20 years later that Haken [38] proved the first superpolynomial lower bound
for general resolution. This (weakly) exponential lower bound of Haken has later been followed by
many other strong results on resolution refutation length for different formula families, for instance in
[9, 11, 19, 24, 25, 52, 54, 55, 65].

A second complexity measure for resolution, first made explicit by Galil [35], is the width, mea-
sured as the maximal size of a clause in the refutation. Ben-Sasson and Wigderson [19] showed that
the minimal width W(F ` 0) of any resolution refutation of a k-CNF formula F is bounded from
above by the minimal refutation length L(F ` 0) by

W(F ` 0) = O
(√

n log L(F ` 0)
)

, (1.1)

where n is the number of variables in F . Since it is also easy to see that resolution refutations of
polynomial-size formulas in small width must necessarily be short (simply for the reason that (2 ·
#variables)w is an upper bound on the total number of distinct clauses of width w), the result in [19]
can be interpreted as saying roughly that there exists a short refutation of the k-CNF formula F if and
only if there exists a (reasonably) narrow refutation of F . This gives rise to a natural proof search
heuristic: to find a short refutation, search for refutations in small width. It was shown in [16] that
there are formula families for which this heuristic exponentially outperforms any DPLL procedure
regardless of branching function.

The formal study of space1 in resolution was initiated by Esteban and Torán [33, 62]. Intuitively,
the space Sp(π) of a resolution refutation π is the maximal number of clauses one needs to keep in
memory while verifying the refutation, and the space Sp(F ` 0) of refuting F is defined as the minimal
space of any resolution refutation of F . A number of upper and lower bounds for refutation space
in resolution and other proof systems were subsequently presented in, for example, [2, 15, 32, 34].
Just as for width, the minimum space of refuting a formula can be upper-bounded by the size of
the formula. Somewhat unexpectedly, however, it also turned out that the lower bounds on resolution
refutation space for several different formula families exactly matched previously known lower bounds
on refutation width. Atserias and Dalmau [6] showed that this was not a coincidence, but that the
inequality

W(F ` 0) ≤ Sp(F ` 0) + O(1) (1.2)

holds for any k-CNF formula F , where the (small) constant term depends on k. In [47], the first author
proved that the inequality (1.2) is asymptotically strict by exhibiting a k-CNF formula family of size
O(n) refutable in width W(Fn ` 0) = O(1) but requiring space Sp(Fn ` 0) = Θ(log n).

1The space measure discussed in this introduction is known as clause space. Another natural, but less studied, space
measure is variable space as defined by Alekhnovich et al. [2], which counts the maximal number of variable occurrences
that must be kept in memory simultaneously. The focus of the current paper, however, is almost exclusively on clause space.

3

TOWARDS AN OPTIMAL SEPARATION

1.2 Questions Left Open by Previous Research

Despite all the research that has gone into understanding the resolution proof system, a number of
fundamental questions have remained unsolved. We touch briefly on two such questions below, and
then discuss a third one, which is the main focus of this paper, in somewhat more detail.

As was mentioned above, Equation (1.1) says that short refutation length implies narrow refutation
width. We observe, however, that this does not mean that there is a refutation that is both short and
narrow, since there is no guarantee that the refutations on the left- and right-hand sides of (1.1) are
the same one. An intriguing open question is whether small length and width can always be achieved
simultaneously, or whether there is a trade-off between these two measures. For the restricted case of
so-called tree-like resolution it is known that there can be strong trade-offs [14], but the case of the
(much stronger) general resolution proof system has remained open.

A second, analogous problem concerns space and length. Combining Equation (1.2) with the
observation above that narrow refutations are trivially short, one can immediately conclude that small
refutation clause space implies short refutation length. But again, this does not imply that any small-
space refutation must also be short. In fact, it was shown in [14] that the refutations on the two sides of
the inequality (1.2) in general cannot be the same one. An interesting question is whether small space
of a refutation implies that it can also be made short, or whether space and length have to be traded off
against one another.

A third, even more fundamental question is whether short length has any implications for space.
Note that for width, rewriting the bound in (1.1) in terms of the number of clauses |Fn| instead of
the number of variables tells us that if the width of refuting Fn is ω

(√
|Fn| log|Fn|

)
, then the length

of refuting Fn must be superpolynomial in |Fn|. This is known to be almost tight, since [22] shows
that there is a k-CNF formula family {Fn}∞n=1 that requires width Ω

(
3
√
|Fn|

)
but nevertheless can be

refuted in length O(|Fn|). Hence, formula families refutable in polynomial length can have somewhat
wide minimum-width refutations, but not arbitrarily wide ones.

What does the corresponding relation between length and space look like? The inequality (1.2)
tells us that any correlation between length and clause space cannot be tighter than the correlation
between length and width, so in particular we get from the previous paragraph that k-CNF formulas
refutable in polynomial length may have at least “somewhat spacious” minimum-space refutations. At
the other end of the spectrum, given any resolution refutation π of F in length L it can be proven using
results from [33, 40] that the space needed is at most O(L/ log L). This gives an upper bound on any
possible separation of the two measures. But is there a Ben-Sasson–Wigderson kind of upper bound
on space in terms of length similar to (1.1)? Or are length and space on the contrary unrelated in the
sense that there exist k-CNF formulas Fn with short refutations but maximal possible refutation space
Sp(Fn ` 0) = Ω

(
L(Fn ` 0)/ log L(Fn ` 0)

)
in terms of length?

We remark that for the restricted case of tree-like resolution, [33] showed that there is a tight
correspondence between length and space, exactly as for length versus width. The case for general
resolution has been discussed in, for instance, [14, 34, 63], but there has been no consensus on what
the right answer should be. However, these papers identify a plausible formula family for answering
the question, namely so-called pebbling contradictions defined in terms of pebble games over directed
acyclic graphs.

1.3 Our Contribution

The main result in this paper provides evidence that the true answer to the question about the relation-
ship between space and length is more likely to be at the latter extreme, i.e., that the two measures can
be separated in the strongest sense possible. More specifically, as a step towards reaching this goal
we prove an asymptotically tight bound on the clause space of refuting pebbling contradictions over
pyramid graphs.

4

2 PROOF OVERVIEW AND PAPER ORGANIZATION

Theorem 1.1. The clause space of refuting pebbling contradictions over pyramid graphs of height h
in resolution grows as Θ(h), provided that the number of variables per vertex in the pebbling contra-
dictions is at least 2.

This theorem yields the first separation of space and length (in the sense of a polynomial lower
bound on space for formulas refutable in polynomial length) that is not a consequence of a corre-
sponding lower bound on width, as well as an exponential improvement of the separation of space and
width in [47]. Namely, from Theorem 1.1 we easily obtain the following corollary.

Corollary 1.2. For all k ≥ 4, there is a family {Fn}∞n=1 of k-CNF formulas of size Θ(n) that can be
refuted in resolution in length L(Fn ` 0) = O(n) and width W(Fn ` 0) = O(1) but require clause
space Sp(Fn ` 0) = Θ(

√
n).

1.4 Subsequent Developments

In a recent joint paper [17] with Ben-Sasson, the first author has managed to improve the separation in
Corollary 1.2 to clause space Sp(Fn ` 0) = Θ(n/ log n) while still keeping length L(Fn ` 0) = O(n)
and width W(Fn ` 0) = O(1). This is essentially optimal up to multiplicative constants (except
possibly for a logarithmic factor in the space-width separation). The construction in [17] follows the
general roadmap laid out in the current paper, but changes the family of formulas under consideration
in Theorem 1.1. The new results are therefore incomparable with those in the current paper in the
sense that the techniques used in [17] cannot prove Theorem 1.1, whereas our techniques, although
similar, do not extend to the results in [17].

Even considering the progress made in [17], we believe that the results presented in our paper
retain independent interest. This is so since our formula families are simpler, and an improvement
of our techniques could conceivably yield optimal, tight results up to constant additive terms. This,
in turn, could possibly be used to settle the question how hard it is to decide the space requirements
for refuting a k-CNF formula. This problem is easily seen to be in PSPACE but is not known to
be PSPACE-complete. Due to the inherent space blow-up between upper and lower bounds in the
construction in [17], it is hard to envision the results from there being used for similar purposes.

2 Proof Overview and Paper Organization

Since the proof of our main theorem is fairly involved, we start by giving an intuitive, high-level
description of the proofs of our results and outlining how this paper is organized.

2.1 Sketch of Preliminaries

A resolution refutation of a CNF formula F can be viewed as a sequence of derivation steps on a
blackboard. In each step we may write a clause from F on the blackboard (an axiom clause), erase
a clause from the blackboard or derive some new clause implied by the clauses currently written on
the blackboard.2 The refutation ends when we reach the contradictory empty clause. The length of a
resolution refutation is the number of distinct clauses in the refutation, the width is the size of the largest
clause in the refutation, and the clause space is the maximum number of clauses on the blackboard
simultaneously. We write L(F ` 0), W(F ` 0) and Sp(F ` 0) to denote the minimum length, width
and clause space, respectively, of any resolution refutation of F .

The pebble game played on a directed acyclic graph (DAG) G models the calculation described
by G, where the source vertices contain the input and non-source vertices specify operations on the
values of the predecessors. Placing a pebble on a vertex v corresponds to storing in memory the partial

2For our proof, it turns out that the exact definition of the derivation rule is not essential—our lower bound holds for
any sound rule. What is important is that we are only allowed to derive new clauses that are implied by the set of clauses
currently on the blackboard.

5

TOWARDS AN OPTIMAL SEPARATION

(x(r)1 ∨ x(r)2) ∧ (x(u)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(s)1 ∨ x(s)2) ∧ (x(u)1 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(t)1 ∨ x(t)2) ∧ (x(u)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ (x(u)2 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2) ∧ x(z)1
∧ (x(r)2 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ x(z)2
∧ (x(r)2 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2)

∧ (x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

z

u v

r s t

Figure 1: The pebbling contradiction Peb2
Π2

for the pyramid graph Π2 of height 2.

result of the calculation described by the subgraph rooted at v. Removing a pebble from v corresponds
to deleting the partial result of v from memory. A pebbling of a DAG G is a sequence of moves starting
with the empty graph G and ending with all vertices in G empty except for a pebble on the (unique)
sink vertex. The cost of a pebbling is the maximal number of pebbles used simultaneously at any point
in time during the pebbling. The pebbling price of a DAG G is the minimum cost of any pebbling,
i.e., the minimum number of memory registers required to perform the complete calculation described
by G.

The pebble game on a DAG G can be encoded as an unsatisfiable CNF formula Pebd
G, a so-

called pebbling contradiction of degree d. See Figure 1 for a small example. Very briefly, pebbling
contradictions are constructed as follows:

• Associate d variables x(v)1, . . . , x(v)d with each vertex v (in Figure 1 we have d = 2).

• Specify that all sources have at least one true variable, for example, the clause x(r)1 ∨ x(r)2 for
the vertex r in Figure 1.

• Add clauses saying that truth propagates from predecessors to successors. For instance, for
the vertex u with predecessors r and s, clauses 4–7 in Figure 1 are the CNF encoding of the
implication (x(r)1 ∨ x(r)2) ∧ (x(s)1 ∨ x(s)2) → (x(u)1 ∨ x(u)2).

• To get a contradiction, conclude the formula with x(z)1 ∧ · · · ∧ x(z)d where z is the sink of the
DAG.

We will need the observation from [16] that a pebbling contradiction of degree d over a graph with
n vertices can be refuted by resolution in length O

(
d2 · n

)
and width O(d).

2.2 Proof Idea for Pebbling Contradictions Space Bound

Pebble games have been used extensively as a tool to prove time and space lower bounds and trade-offs
for computation. Loosely put, a lower bound for the pebbling price of a graph says that although the
computation that the graph describes can be performed quickly, it requires large space. Our hope is that
when we encode pebble games in terms of CNF formulas, these formulas inherit the same properties as
the underlying graphs. That is, if we pick a DAG G with high pebbling price, since the corresponding

6

2 PROOF OVERVIEW AND PAPER ORGANIZATION

pebbling contradiction encodes a calculation which requires large memory we would like to try to
argue that any resolution refutation of this formula should require large space. Then a separation result
would follow since we already know from [16] that the formula can be refuted in short length.

More specifically, what we would like to do is to establish a connection between resolution refu-
tations of pebbling contradictions on the one hand, and the so-called black-white pebble game [29]
modelling the non-deterministic computations described by the underlying graphs on the other. Our
intuition is that the resolution proof system should have to conform to the combinatorics of the pebble
game in the sense that from any resolution refutation of a pebbling contradiction Pebd

G we should be
able to extract a pebbling of the DAG G.

Ideally, we would like to give a proof of a lower bound on the resolution refutation space of
pebbling contradictions along the following lines:

1. First, find a natural interpretation of sets of clauses currently “on the blackboard” in a refutation
of the formula Pebd

G in terms of black and white pebbles on the vertices of the DAG G.

2. Then, prove that this interpretation of clauses in terms of pebbles captures the pebble game
in the following sense: for any resolution refutation of Pebd

G, looking at consecutive sets of
clauses on the blackboard and considering the corresponding sets of pebbles in the graph we get
a black-white pebbling of G in accordance with the rules of the pebble game.

3. Finally, show that the interpretation captures clause space in the sense that if the content of
the blackboard induces N pebbles on the graph, then there must be at least N clauses on the
blackboard.

Combining the above with known lower bounds on the pebbling price of G, this would imply a
lower bound on the refutation space of pebbling contradictions and a separation from length and width.
For clarity, let us spell out what the formal argument of this would look like.

Consider an arbitrary resolution refutation of Pebd
G. From this refutation we extract a pebbling of

G. At some point in time t in the obtained pebbling, there must be a lot of pebbles on the vertices of G
since this graph was chosen with high pebbling price. But this means that at time t, there are a lot of
clauses on the blackboard. Since this holds for any resolution refutation, the refutation space of Pebd

G

must be large. The separation result now follows from the fact that pebbling contradictions are known
to be refutable in linear length and constant width if d is fixed.

Unfortunately, this idea does not quite work. In the next subsection, we describe the modifications
that we are forced to make, and show how we can make the bits and pieces of our construction fit
together to yield Theorem 1.1 and Corollary 1.2 for the special case of pyramid graphs.

2.3 Detailed Overview of Formal Proof of Space Bound

The black-white pebble game played on a DAG G can be viewed as a way of proving the end result of
the calculation described by G. Black pebbles denote proven partial results of the computation. White
pebbles denote assumptions about partial results which have been used to derive other partial results
(i.e., black pebbles), but these assumptions will have to be verified for the calculation to be complete.
The final goal is a black pebble on the sink z and no other pebbles in the graph, corresponding to
an unconditional proof of the end result of the calculation with any assumptions made along the way
having been eliminated.

Translating this to pebbling contradictions, it turns out that a fruitful way to think of a black pebble
on v is that it should correspond to truth of the disjunction

∨d
i=1 x(v)i of all positive literals over v, or

to “truth of v”. A white pebble on a vertex w can be understood to mean that we need to assume the
partial result on w to derive the black pebbles above w in the graph. Needing to assume the truth of w
is the opposite of knowing the truth of w, so extending the reasoning above we get that a white-pebbled
vertex should correspond to “falsity of w”, i.e., to all negative literals x(w)i, i ∈ [d], over w.

7

TOWARDS AN OPTIMAL SEPARATION



x(u)1 ∨ x(u)2

x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2


(a) Clauses on blackboard.

z

u v

r s t

(b) Corresponding pebbles in the graph.

Figure 2: Example of intuitive correspondence between sets of clauses and pebbles.


x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2


(a) New set of clauses on blackboard.

z

u v

r s t

(b) Corresponding blobs and pebbles.

Figure 3: Intepreting sets of clauses as black blobs and white pebbles.

Using this intuitive correspondence, we can translate sets of clauses in a resolution refutation of
Pebd

G into black and white pebbles in G as in Figure 2. It is easy to see that if we assume x(s)1∨x(s)2
and x(t)1 ∨ x(t)2, this assumption together with the clauses on the blackboard in Figure 2(a) imply
x(v)1 ∨ x(v)2, so v should be black-pebbled and s and t white-pebbled in Figure 2(b). The vertex u is
also black since x(u)1 ∨ x(u)2 certainly is implied by the blackboard. This translation from clauses to
pebbles is arguably quite straightforward, and seems to yield well-behaved black-white pebblings for
all “sensible” resolution refutations of Pebd

G.
The problem is that we have no guarantee that the resolution refutations will be “sensible”. Even

though it might seem more or less clear how an optimal refutation of a pebbling contradiction should
proceed, a particular refutation might contain unintuitive and seemingly non-optimal derivation steps
that do not make much sense from a pebble game perspective. In particular, a resolution derivation has
no obvious reason always to derive truth that is restricted to single vertices. For instance, it could add
the axioms x(u)i ∨ x(v)2 ∨ x(z)1 ∨ x(z)2, i = 1, 2, to the blackboard in Figure 2(a), derive that the
truth of s and t implies the truth of either v or z, i.e., the clauses x(s)i ∨x(t)j ∨x(v)1 ∨x(z)1 ∨x(z)2
for i, j = 1, 2, and then erase x(u)1 ∨x(u)2 from the blackboard. Although it is hard to see from such
a small example, this turns out to be a serious problem in that there appears to be no way that we can
interpret such derivation steps in terms of black and white pebbles without making some component
in the proof idea in Section 2.2 break down.

Instead, what we do is to invent a new pebble game, with white pebbles just as before, but with
black blobs that can cover multiple vertices instead of single-vertex black pebbles. A blob on a vertex
set V can be thought of as truth of some vertex v ∈ V . The derivation sketched in the preceding
paragraph, resulting in the set of clauses in Figure 3(a), will then be translated into white pebbles on
s and t as before and a black blob covering both v and z in Figure 3(b). We define rules in this blob-
pebble game corresponding roughly to black and white pebble placement and removal in the usual
black-white pebble game, and add a special inflation rule allowing us to inflate black blobs to cover
more vertices.

Once we have this blob-pebble game, we use it to construct a lower bound proof as outlined in

8

2 PROOF OVERVIEW AND PAPER ORGANIZATION

Section 2.2. First, we establish that for a fairly general class of graphs, any resolution refutation of
a pebbling contradiction can be interpreted as a blob-pebbling on the DAG in terms of which this
pebbling contradiction is defined. Intuitively, the reason that this works is that we can use the inflation
rule to analyze apparently non-optimal steps in the refutation.

Theorem 2.1. Let Pebd
G denote the pebbling contradiction of degree d ≥ 1 over a layered DAG G.

Then there is a translation function from sets of clauses derived from Pebd
G into sets of black blobs and

white pebbles in G such that any resolution refutation π of Pebd
G corresponds to a blob-pebbling Pπ

of G under this translation.

In fact, the only property that we need from the layered graphs in Theorem 2.1 is that if w is a
vertex with predecessors u and v, then there is no path between the siblings u and v. The theorem
holds for any DAG satisfying this condition.

Next, we carefully design a cost function for black blobs and white pebbles so that the cost of the
blob-pebbling Pπ in Theorem 2.1 is related to the space of the resolution refutation π.

Theorem 2.2. If π is a refutation of a pebbling contradiction Pebd
G of degree d > 1, then the cost of

the associated blob-pebbling Pπ is bounded by the space of π by cost(Pπ) ≤ Sp(π) + O(1).

Without going into too much detail, in order to make the proof of Theorem 2.2 work we can only
charge for black blobs having distinct lowest vertices (measured in topological order), so additional
blobs with the same bottom vertices are free. Also, we can only charge for white pebbles below these
bottom vertices.

Finally, we need lower bounds on blob-pebbling price. Because of the inflation rule in combination
with the peculiar cost function, the blob-pebble game seems to behave rather differently from the
standard black-white pebble game, and therefore we cannot appeal directly to known lower bounds on
black-white pebbling price. However, for a more restricted class of graphs than in Theorem 2.1, but
still including binary trees and pyramids, we manage to prove tight bounds on the blob-pebbling price
by generalizing the lower bound construction for black-white pebbling in [43].

Theorem 2.3. Any so-called layered spreading graph Gh of height h has blob-pebbling price Θ(h).
In particular, this holds for pyramid graphs Πh.

Putting all of this together, we can prove our main theorem.

Theorem 1.1 (restated). Let Pebd
Πh

denote the pebbling contradiction of degree d > 1 over the
pyramid graph of height h. Then the clause space of refuting Pebd

Πh
by resolution is Sp(Pebd

Πh
` 0) =

Θ(h).

Proof. The upper bound Sp(Pebd
Πh

` 0) = O(h) is easy. A pyramid of height h can be pebbled with
h+O(1) black pebbles, and a resolution refutation can mimic such a pebbling in constant extra clause
space (independent of d) to refute the corresponding pebbling contradiction.

The interesting part is the lower bound. Let π be any resolution refutation of Pebd
Πh

. Con-
sider the associated blob-pebbling Pπ provided by Theorem 2.1. On the one hand, we know that
cost(Pπ) = O(Sp(π)) by Theorem 2.2, provided that d > 1. On the other hand, Theorem 2.3 tells
us that the cost of any blob-pebbling of Πh is Ω(h), so in particular we must have cost(Pπ) = Ω(h).
Combining these two bounds on cost(Pπ), we see that Sp(π) = Ω(h).

The pebbling contradiction Pebd
G is a (2+d)-CNF formula and for constant d the size of the for-

mula is linear in the number of vertices of G (compare Figure 1). Thus, for pyramid graphs Πh

the corresponding pebbling contradictions Pebd
Πh

have size quadratic in the height h. Also, when
d is fixed the upper bounds mentioned at the end of Section 2.1 become L(Pebd

G ` 0) = O(n) and
W(Pebd

G ` 0) = O(1). Corollary 1.2 now follows if we set Fn = Pebd
Πh

for d = k−2 and h = b
√

nc
and use Theorem 1.1.

Corollary 1.2 (restated). For all k ≥ 4, there is a family of k-CNF formulas {Fn}∞n=1 of size O(n)
such that L(Fn ` 0) = O(n) and W(Fn ` 0) = O(1) but Sp(Fn ` 0) = Θ(

√
n).

9

TOWARDS AN OPTIMAL SEPARATION

2.4 Paper Organization

Section 3 provides formal definitions of the concepts introduced in Sections 1 and 2, and Section 4
gives precise statements of the results mentioned there, as well as some other result relevant to this
paper.

The bulk of the paper is spent proving the lower-bound part of our main result in Theorem 1.1. In
Section 5, we define our modified pebble game, the “blob-pebble game”, that we will use to analyze
resolution refutations of pebbling contradictions. In Section 6 we prove that resolution refutations
can be translated into pebblings in this game, which is Theorem 2.1 in Section 2.3. In Section 7, we
prove Theorem 2.2 saying that the blob-pebbling price accurately measures the clause space of the
corresponding resolution refutation. Finally, after giving a detailed description of the lower bound
on black-white pebbling of [43] in Section 8 (with a somewhat simplified proof that might be of
independent interest), in Section 9 we generalize this result in a nontrivial way to our blob-pebble
game. This gives us Theorem 2.3. Now Theorem 1.1 and Corollary 1.2 follow as in the proofs given
at the end of Section 2.3.

We conclude in Section 10 by giving suggestions for further research.

3 Formal Preliminaries

In this section, we define resolution, pebble games and pebbling contradictions.

3.1 The Resolution Proof System

A literal is either a propositional logic variable or its negation, denoted x and x, respectively. We
define x = x. Two literals a and b are strictly distinct if a 6= b and a 6= b, i.e., if they refer to distinct
variables.

A clause C = a1 ∨ · · · ∨ ak is a set of literals. Throughout this paper, without loss of generality
all clauses C are assumed to be nontrivial in the sense that all literals in C are pairwise strictly distinct
(otherwise C is trivially true). We say that C is a subclause of D if C ⊆ D. A clause containing at
most k literals is called a k-clause.

A CNF formula F = C1 ∧ · · · ∧ Cm is a set of clauses. A k-CNF formula is a CNF formula
consisting of k-clauses. We define the size S (F) of the formula F to be the total number of literals
in F counted with repetitions. More often, we will be interested in the number of clauses |F | of F .

In this paper, when nothing else is stated it is assumed that A,B, C, D denote clauses, C, D sets of
clauses, x, y propositional variables, a, b, c literals, α, β truth value assignments and ν a truth value 0
or 1. We write

αx=ν(y) =

{
α(y) if y 6= x,
ν if y = x,

(3.1)

to denote the truth value assignment that agrees with α everywhere except possibly at x, to which it
assigns the value ν. We let Vars(C) denote the set of variables and Lit(C) the set of literals in a
clause C.3 This notation is extended to sets of clauses by taking unions. Also, we employ the standard
notation [n] = {1, 2, . . . , n}.

A resolution derivation π : F `A of a clause A from a CNF formula F is a sequence of clauses
π = {D1, . . . , Dτ} such that Dτ = A and each line Di, i ∈ [τ], either is one of the clauses in F
(axioms) or is derived from clauses Dj , Dk in π with j, k < i by the resolution rule

B ∨ x C ∨ x

B ∨ C
. (3.2)

3Although the notation Lit(C) is slightly redundant given the definition of a clause as a set of literals, we include it for
clarity.

10

3 FORMAL PRELIMINARIES

We refer to (3.2) as resolution on the variable x and to B ∨ C as the resolvent of B ∨ x and C ∨ x
on x. A resolution refutation of a CNF formula F is a resolution derivation of the empty clause 0 (the
clause with no literals) from F . Perhaps somewhat confusingly, this is sometimes also referred to as a
resolution proof of F .

For a formula F and a set of formulas G = {G1, . . . , Gn}, we say that G implies F , denoted
G � F , if every truth value assignment satisfying all formulas G ∈ G satisfies F as well. It is well
known that resolution is sound and implicationally complete. That is, if there is a resolution derivation
π : F `A, then F � A, and if F � A, then there is a resolution derivation π : F `A′ for some A′ ⊆ A.
In particular, F is unsatisfiable if and only if there is a resolution refutation of F .

With every resolution derivation π : F `A we can associate a DAG Gπ, with the clauses in π
labelling the vertices and with edges from the assumption clauses to the resolvent for each application
of the resolution rule (3.2). There might be several different derivations of a clause C in π, but if so we
can label each occurrence of C with a timestamp when it was derived and keep track of which copy of
C is used where. A resolution derivation π is tree-like if any clause in the derivation is used at most
once as a premise in an application of the resolution rule, i.e., if Gπ is a tree. (We may make different
“time-stamped” vertex copies of the axiom clauses in order to make Gπ into a tree).

The length L(π) of a resolution derivation π is the number of clauses in it, counted with repetitions.
We define the length of deriving a clause A from a formula F as L(F ` A) = minπ:F `A{L(π)},
where the minimum is taken over all resolution derivations of A. In particular, the length of refuting F
by resolution is denoted L(F ` 0). The length of refuting F by tree-like resolution LT(F ` 0) is
defined by taking the minimum over all tree-like resolution refutations πT of F .

The width W(C) of a clause C is |C|, i.e., the number of literals appearing in it. The width of
a set of clauses C is W(C) = maxC∈C{W(C)}. The width of deriving A from F by resolution is
W(F ` A) = minπ:F `A{W(π)}, and the width of refuting F is denoted W(F ` 0). We observe
that the minimum width measures in general and tree-like resolution coincide, so it makes no sense to
make a separate definition for WT(F ` 0).

We next define the measure of space. Following the exposition in [33], a proof can be seen as a
Turing machine computation, with a special read-only input tape from which the axioms can be down-
loaded and a working memory where all derivation steps are made. The clause space of a resolution
proof is the maximum number of clauses that need to be kept in memory simultaneously during a
verification of the proof. The variable space is the maximum total space needed, where also the width
of the clauses is taken into account.

For the formal definitions, it is convenient to use an alternative definition of resolution introduced
in [2].

Definition 3.1 (Resolution). A clause configuration C is a set of clauses. A sequence of clause
configurations {C0, . . . , Cτ} is a resolution derivation from a CNF formula F if C0 = ∅ and for all
t ∈ [τ], Ct is obtained from Ct−1 by one4 of the following rules:

Axiom Download Ct = Ct−1 ∪ {C} for some C ∈ F .

Erasure Ct = Ct−1 \ {C} for some C ∈ Ct−1.

Inference Ct = Ct−1 ∪ {D} for some D inferred by resolution from C1, C2 ∈ Ct−1.

A resolution derivation π : F `A of a clause A from a formula F is a derivation {C0, . . . , Cτ} such
that Cτ = {A}. A resolution refutation of F is a derivation of the empty clause 0 from F .

Definition 3.2 (Clause space [2, 14]). The clause space of a resolution derivation π = {C0, . . . ,Cτ}
is maxt∈[τ]{|Ct|}. The clause space of deriving A from F is Sp(F ` A) = minπ:F `A{Sp(π)}, and
Sp(F ` 0) denotes the minimum clause space of any resolution refutation of F .

4In some previous papers, resolution is defined so as to allow every derivation step to combine one or zero applications
of each of the three derivation rules. Therefore, some of the bounds stated in this paper for space as defined next are off by a
constant as compared to the cited sources.

11

TOWARDS AN OPTIMAL SEPARATION

Definition 3.3 (Variable space [2]). The variable space of a clause configuration C is VarSp(C) =∑
C∈C W(C). The variable space of a resolution derivation {C0, . . . , Cτ} is maxt∈[τ]{VarSp(Ct)},

and VarSp(F ` 0) is the minimum variable space of any resolution refutation of F .

Restricting the resolution derivations to tree-like resolution, we get the measures SpT(F ` 0) and
VarSpT(F ` 0) in analogy with LT(F ` 0) defined above.

Note that if one wanted to be really precise, the size and space measures should probably measure
the number of bits needed rather than the number of literals. However, counting literals makes matters
substantially cleaner, and the difference is at most a logarithmic factor anyway. Therefore, counting
literals seems to be the established way of measuring formula size and variable space.

In this paper, we will be almost exclusively interested in the clause space of general, unrestricted
resolution refutations. When we write simply “space” for brevity, we mean clause space in general
resolution.

3.2 Pebble Games and Pebbling Contradictions

Pebble games were devised for studying programming languages and compiler construction, but have
found a variety of applications in computational complexity theory. In connection with resolution,
pebble games have been employed both to analyze resolution derivations with respect to how much
memory they consume (using the original definition of space in [33]) and to construct CNF formulas
which are hard for different variants of resolution in various respects (see for example [3, 16, 21, 23]).
An excellent survey of pebbling up to ca 1980 is [51], and a second article with more narrow, in-depth
focus, but also covering some more recent developments is the first author’s upcoming survey [48].

The black pebbling price of a DAG G captures the memory space, i.e., the number of registers,
required to perform the deterministic computation described by G. The space of a non-deterministic
computation is measured by the black-white pebbling price of G. We say that vertices of G with
indegree 0 are sources and that vertices with outdegree 0 are sinks or targets. In the following, unless
otherwise stated we will assume that all DAGs under discussion have a unique sink and this sink will
always be denoted z. The next definition is adapted from [29], though we use the established pebbling
terminology introduced by [40].

Definition 3.4 (Pebble game). Suppose that G is a DAG with sources S and a unique target z. The
black-white pebble game on G is the following one-player game. At any point in the game, there
are black and white pebbles placed on some vertices of G, at most one pebble per vertex. A pebble
configuration is a pair of subsets P = (B,W) of V (G), comprising the black-pebbled vertices B and
white-pebbled vertices W . The rules of the game are as follows:

1. If all immediate predecessors of an empty vertex v have pebbles on them, a black pebble may
be placed on v. In particular, a black pebble can always be placed on any vertex in S.

2. A black pebble may be removed from any vertex at any time.

3. A white pebble may be placed on any empty vertex at any time.

4. If all immediate predecessors of a white-pebbled vertex v have pebbles on them, the white pebble
on v may be removed. In particular, a white pebble can always be removed from a source vertex.

A black-white pebbling from (B1,W1) to (B2,W2) in G is a sequence of pebble configurations
P = {P0, . . . , Pτ} such that P0 = (B1,W1), Pτ = (B2,W2), and for all t ∈ [τ], Pt follows from Pt−1

by one of the rules above. If (B1,W1) = (∅, ∅), we say that the pebbling is unconditional, otherwise
it is conditional.

The cost of a pebble configuration P = (B,W) is cost(P) = |B ∪ W | and the cost of a pebbling
P = {P0, . . . , Pτ} is max0≤t≤τ{cost(Pt)}. The black-white pebbling price of (B,W), denoted
BW-Peb(B,W), is the minimum cost of any unconditional pebbling reaching (B,W).

12

4 REVIEW OF RELATED WORK

A complete pebbling of G, also called a pebbling strategy for G, is an unconditional pebbling
reaching ({z}, ∅). The black-white pebbling price of G, denoted BW-Peb(G), is the minimum cost of
any complete black-white pebbling of G.

A black pebbling is a pebbling using black pebbles only, i.e., having Wt = ∅ for all t. The (black)
pebbling price of G, denoted Peb(G), is the minimum cost of any complete black pebbling of G.

We think of the moves in a pebbling as occurring at integral time intervals t = 1, 2, . . . and talk
about the pebbling move “at time t” (which is the move resulting in configuration Pt) or the moves
“during the time interval [t1, t2]”.

The only pebblings we are really interested in are complete pebblings of G. However, when we
prove lower bounds for pebbling price it will sometimes be convenient to be able to reason in terms of
partial pebbling move sequences, i.e., conditional pebblings.

A pebbling contradiction defined on a DAG G encodes the pebble game on G by postulating
the sources to be true and the target to be false, and specifying that truth propagates through the graph
according to the pebbling rules. The definition below is a generalization of formulas previously studied
in [21, 53].

Definition 3.5 (Pebbling contradiction [19]). Suppose that G is a DAG with sources S, a unique
target z and with all non-source vertices having indegree 2, and let d > 0 be an integer. Associate d
distinct variables x(v)1, . . . , x(v)d with every vertex v ∈ V (G). The dth degree pebbling contradic-
tion over G, denoted Pebd

G, is the conjunction of the following clauses:

•
∨d

i=1 x(s)i for all s ∈ S (source axioms),

• x(z)i for all i ∈ [d] (target axioms),

• x(u)i ∨ x(v)j ∨
∨d

l=1 x(w)l for all i, j ∈ [d] and all w ∈ V (G) \ S, where u, v are the two
predecessors of w (pebbling axioms).

The formula Pebd
G is a (2+d)-CNF formula with O

(
d2 · |V (G)|

)
clauses over d · |V (G)| variables.

An example pebbling contradiction is presented in Figure 1 on page 6.

4 Review of Related Work

This section is a quick overview of related work, including formal statements of some previously
known results that we will need. At the end of Section 4.3 we also try to provide some of the intuition
behind the result proven in this paper.

4.1 General Results About Resolution

If a resolution refutation has constant width, it is easy to see that it must be of size polynomial in the
number of variables (just count the maximum possible number of distinct clauses). Conversely, if all
refutations of a formula are very wide, it seems reasonable that any refutation of this formula must be
very long as well. This intuition was captured in a remarkable way in the paper [19] by Ben-Sasson
and Wigderson.

Theorem 4.1 ([19]). The width of refuting a CNF formula F is bounded from above by

W(F ` 0) ≤ W(F) +
√

8n lnL(F ` 0) ,

where n is the number of variables in F .

Bonet and Galesi [22] showed that this bound on width in terms of length is essentially optimal.
For the special case of tree-like resolution, however, it is possible get rid of the dependence of the
number of variables and obtain a tighter bound.

13

TOWARDS AN OPTIMAL SEPARATION

Theorem 4.2 ([19]). The width of refuting a CNF formula F in tree-like resolution is bounded from
above by W(F ` 0) ≤ W(F) + log2 LT(F ` 0).

For reference, we collect the result in [22] together with some other bounds showing that there
are formulas that are easy with respect to length but moderately hard with respect to width and clause
space and state them as a theorem.5

Theorem 4.3 ([2, 22, 61]). There are arbitrarily large unsatisfiable 3-CNF formulas Fn of size Θ
(
n3

)
with Θ

(
n3

)
clauses and Θ

(
n2

)
variables such that W(Fn ` 0) = Θ(n) and Sp(Fn ` 0) = Θ(n), but

for which there are resolution refutations πn : Fn ` 0 in length L(πn) = O
(
n3

)
, width W(πn) = O(n)

and clause space Sp(πn) = O(n).

As was mentioned above, the fact that all known lower bounds on refutation clause space coincided
with lower bounds on width lead to the conjecture that the width measure is a lower bound for the
clause space measure. This conjecture was proven true by Atserias and Dalmau [6].

Theorem 4.4 ([6]). For any CNF formula F , it holds that Sp(F ` 0)− 3 ≥ W(F ` 0)−W(F).

In other words, the extra clause space exceeding the minimum 3 needed for any resolution deriva-
tion is bounded from below by the extra width exceeding the width of the formula. This inequality was
later shown by the first author to be asymptotically strict in the following sense.

Theorem 4.5 ([47]). For all k ≥ 4, there is a family {Fn}∞n=1 of k-CNF formulas of size Θ(n) such
that L(Fn ` 0) = O(n) and W(Fn ` 0) = O(1) but Sp(Fn ` 0) = Θ(log n).

An immediate corollary of Theorem 4.4 is that for polynomial-size k-CNF formulas constant
clause space implies polynomial proof length. We are interested in finding out what holds in the
other direction, i.e., if upper bounds on length imply upper bounds on space.

For the special case of tree-like resolution, it is known that there is an upper bound on clause space
in terms of length exactly analogous to the one on width in terms of length in Theorem 4.2.

Theorem 4.6 ([33]). For any tree-like resolution refutation π of a CNF formula F it holds that
Sp(π) ≤ dlog L(π)e+ 2. In particular, Sp(F ` 0) ≤ dlog LT(F ` 0)e+ 2.

For general resolution, since clause space is lower-bounded by width according to Theorem 4.4,
the separation of width and length of [22] in Theorem 4.3 tells us that k-CNF formulas refutable in
polynomial length can still have “somewhat spacious” minimum-space refutations. But exactly how
spacious can they be? Does space behave as width with respect to length also in general resolution, or
can one get stronger lower bounds on space for formulas refutable in polynomial length?

All polynomial lower bounds on clause space known prior to this paper can be explained as im-
mediate consequences of Theorem 4.4 applied on lower bounds on width. Clearly, any space lower
bounds derived in this way cannot get us beyond the “Ben-Sasson–Wigderson barrier” implied by The-
orem 4.1 saying that if the width of refuting F is ω

(√
|F | log|F |

)
, then the length of refuting F must

be superpolynomial in |F |. Also, since matching upper bounds on clause space have been known for
all of these formula families, they have not been candidates for showing stronger separations of space
and length. Thus, the best known separation of clause space and length has been the formulas in Theo-
rem 4.3 refutable in linear length L(Fn ` 0) = O(|Fn|) but requiring space Sp(Fn ` 0) = Θ

(
3
√
|Fn|

)
,

as implied by the same bound on width.
Let us also discuss upper bounds on what kind of separations are a priori possible. Given any

resolution refutation π : F ` 0, we can write down its DAG representation Gπ (described on page 11)
with L(π) vertices corresponding to the clauses, and with all non-source vertices having fan-in 2. We

5Note that [22], where an explicit resolution refutation upper-bounding the proof complexity measures is presented, does
not talk about clause space, but it is straightforward to verify that the refutation there can be carried out in length O

`
n3

´
and

clause space O(n).

14

4 REVIEW OF RELATED WORK

can then transform π into as space-efficient a refutation as possible by considering an optimal black
pebbling of Gπ as follows: when a pebble is placed on a vertex we derive the corresponding clause,
and when the pebble is removed again we erase the clause from memory. This yields a refutation π′

in clause space Peb(Gπ) (incidentally, this is the original definition in [33] of the clause space of a
resolution refution π). Since it is known that any constant indegree DAG on n vertices can be black-
pebbled in cost O(n/ log n) (see Theorem 4.9), this shows that Sp(F ` 0) = O

(
L(F ` 0)/ log L(F `

0)
)

is a trivial upper bound on space in terms of length.
Now we can rephrase the question above about space and length in the following way: Is there a

Ben-Sasson–Wigderson kind of lower bound, say L(F ` 0) = exp
(
Ω

(
Sp(F ` 0)2/|F |

))
or so, on

length in terms of space? Or do there exist k-CNF formulas F with short refutations but maximum
possible refutation space Sp(F ` 0) = Ω

(
L(F ` 0)/ log L(F ` 0)

)
in terms of length? Note that the

refutation length L(F ` 0) must indeed be short in this case—essentially linear, since any formula F
can be refuted in space O(|F |) as was noted above. Or is the relation between refutation space and
refutation length somewhere in between these extremes?

This is the main question addressed in this paper. We believe that clause space and length can
be strongly separated in the sense that there are formula families with maximum possible refutation
space in terms of length. As a step towards proving this we improve the lower bound in Theorem 4.5
from Θ(log n) to Θ(

√
n), thus providing the first polynomial lower bound on space that is not the

consequence of a corresponding bound on width.6 We next review some results about the tools that we
use to do this.

4.2 Results About Pebble Games

There is an extensive literature on pebbling, mostly from the 70s and 80s. We just quickly mention
four results relevant to this paper.

Perhaps the simplest graphs to pebble are complete binary trees Th of height h. The black pebbling
price of Th can be established by an easy induction over the tree height. For black-white pebbling,
general bounds for the pebbling price of trees of any arity were presented in [45]. For the case of
binary trees, this result can be simplified to an exact equality (a proof of which can be found in [48]).

Theorem 4.7. For a complete binary tree Th of height h ≥ 1 it holds that Peb(Th) = h + 2 and
BW-Peb(Th) =

⌊
h
2

⌋
+ 3.

In this paper, we will focus on pyramid graphs, an example of which can be found in Figure 1.

Theorem 4.8 ([27, 43]). For a pyramid graph Πh of height h ≥ 1 it holds that Peb(Πh) = h + 2 and
BW-Peb(Πh) = h/2 + O(1).

As we wrote in Section 2, we are interested in DAGs with as high a pebbling price as possible
measured in terms of the number of vertices. For a DAG G with n vertices and constant in-degree, the
best we can hope for is O(n/ log n).

Theorem 4.9 ([40]). For directed acyclic graphs G with n vertices and constant maximum indegree,
it holds that Peb(G) = O

(
n/ log n

)
.

This bound is asymptotically tight both for black and black-white pebbling.

Theorem 4.10 ([37, 50]). There is a family of explicitly constructible7 DAGs Gn with Θ(n) vertices
and vertex indegrees 0 or 2 such that Peb(G) = Θ(n/ log n) and BW-Peb(G) = Θ(n/ log n).

6As noted in the introduction, this result has recently been improved to an optimal separation Ω
`
L(F ` 0)/ log L(F `

0)
´

in [17].
7This was not known at the time of the original theorems in [37, 50]. What is needed is an explicit construction of

superconcentrators of linear density, and it has since been shown how to do this (with [4] apparently being the currently best
construction).

15

TOWARDS AN OPTIMAL SEPARATION

It should be pointed out that although the black and black-white pebbling prices coincide asymp-
totically in all of the theorems above, this is not the case in general. In [41], a family of DAGs with a
quadratic difference in the number of pebbles between the black and the black-white pebble game was
presented. We note that this is the best separation possible, since by [46] the difference in black and
black-white pebbling price can be at most quadratic.

4.3 Results About Pebbling Contradictions Plus Some Intuition

Although any constant indegree will be fine for the results covered in this subsection, we restrict our
attention to DAGs with vertex indegrees 0 or 2 since these are the graphs that will be studied in the rest
of this paper.

It was observed in [16] that Pebd
G can be refuted in resolution by deriving

∨d
i=1 x(v)i for all

v ∈ V (G) inductively in topological order and then resolving with the target axioms x(z)i, i ∈ [d].
Writing down this resolution proof, one gets the following proposition (which is proven together with
Proposition 4.14 below).

Proposition 4.11 ([16]). For any DAG G with all vertices having indegree 0 or 2, there is a resolution
refutation π : Pebd

G ` 0 in length L(π) = O
(
d2 · |V (G)|

)
and width W(π) = O(d).

Tree-like resolution is good at refuting first-degree pebbling contradictions Peb1
G but is bad at

refuting Pebd
G for d ≥ 2.

Theorem 4.12 ([14]). For any DAG G with all vertices having indegree 0 or 2, there is a tree-like
resolution refutation π of Peb1

G such that L(π) = O(|V (G)|) and Sp(π) = O(1).

Theorem 4.13 ([16]). For any DAG G with all vertices having indegree 0 or 2, LT(Peb2
G ` 0) =

2Ω(Peb(G)).

As to space, it is not too difficult to see that the black pebbling price of G provides an upper bound
for the refutation clause space of Pebd

G.

Proposition 4.14. For any DAG G with vertex indegrees 0 or 2, Sp(Pebd
G ` 0) ≤ Peb(G) + O(1).

Essentially, this is just a matter of combining an optimal black pebbling of G with the resolution
refutation idea from [16] sketched above. Since we need the upper bounds on width and space in
Propositions 4.11 and 4.14 in the proof of our main theorem, we write down the details for complete-
ness.

Proof of Propositions 4.11 and 4.14. Consider first the bound on space.
Given a black pebbling of G, we construct a resolution refutation of Pebd

G such that if at some point
in time there are black pebbles on a set of vertices V , then we have the clauses

{∨d
i=1 x(v)i | v ∈ V

}
in memory. When some new vertex v is pebbled, we derive

∨d
i=1 x(v)i from the clauses already in

memory. We claim that with a little care, this can be done in constant extra space independent of d.
When a black pebble is removed from v, we erase the clause

∨d
i=1 x(v)i. We conclude the resolution

proof by resolving
∨d

i=1 x(z)i for the target z with all target axioms x(z)i, i ∈ [d], in space 3.
It is clear that given our claim about the constant extra space needed when a vertex is black-

pebbled, this yields a resolution refutation in space equal to the pebbling cost plus some constant. In
particular, given an optimal black pebbling of G, we get a refutation in space Peb(G) + O(1).

To prove the claim, note first that it trivially holds for source vertices v, since
∨d

i=1 x(v)i is an
axiom of the formula. Suppose for a non-source vertex r with predecessors p and q that at some point
in time a black pebble is placed on r. Then p and q must be black-pebbled, so by induction we have
the clauses

∨d
i=1 x(p)i and

∨d
j=1 x(q)j in memory. We will use that the clause x(p)i ∨

∨d
l=1 x(r)l for

any i can be derived in additional space 3 by resolving
∨d

j=1 x(q)j with x(p)i ∨ x(q)j ∨
∨d

l=1 x(r)l

16

4 REVIEW OF RELATED WORK

for j ∈ [d], leaving the easy verification of this fact to the reader. To derive
∨d

l=1 x(r)l, first resolve∨d
i=1 x(p)i with x(p)1 ∨

∨d
l=1 x(r)l to get

∨d
i=2 x(p)i ∨

∨d
l=1 x(r)l, and then resolve this clause with

the clauses x(p)i ∨
∨d

l=1 x(r)l for i = 2, . . . , d one by one to get
∨d

l=1 x(r)l in total extra space 4.
It is easy to see that this proof has width O(d), which proves the claim about width in Proposi-

tion 4.11. To get the claim about length, we observe that the subderivation needed when a vertex is
black-pebbled has length O

(
d2

)
. If we use a pebbling that black-pebbles all vertices once in topologi-

cal order without ever removing a pebble, we get a refutation in length L(π) = O
(
d2 · |V (G)|

)
.

Thus, the refutation clause space of a pebbling contradiction is upper-bounded by the black peb-
bling price of the underlying DAG. Proposition 4.14 is not quite an optimal strategy with respect
to clause space, though. For binary trees [34] improved this bound somewhat to Sp(Peb2

Th
` 0) ≤

2
3h + O(1) by constructing resolution proofs that try to mimic not black pebblings but instead op-
timal black-white pebblings of Th as presented in [45]. And for one variable per vertex, we know
from Theorem 4.12 that Sp(Peb1

G ` 0) = O(1).
Proving lower bounds on space for pebbling contradictions of degree d ≥ 2 has turned out to be

much harder. For quite some time there was no lower bound on Sp(Pebd
G ` 0) for any DAG G in

general resolution (in terms of pebbling price or otherwise). In [34], a lower bound SpT(Pebd
Th
` 0) =

h + O(1) was obtained for the special case of tree-like resolution. Unfortunately, this does not tell us
anything about general resolution. For tree-like resolution, if the only way of deriving a clause D is
from clauses C1, C2 such that SpT(F ` Ci) ≥ s, then it holds that SpT(F ` D) ≥ s + 1 since
one of the clauses Ci must be kept in memory while deriving the other clause. This seems to be very
different from how general resolution works with respect to space. In [47], the first author showed a
lower bound Sp(Pebd

Th
` 0) = Ω(h) for binary trees and d ≥ 2, which matches the upper bound up

to a constant factor. As the techniques in [47] do not yield anything for more general graphs, this is all
that was known prior to this paper.

We now try to present our own intuition for what the correct lower bound on the refutation clause
space of pebbling contradictions should be. Although the reasoning is quite informal and non-rigorous,
our hope is that it will help the reader to navigate the formal proofs that will follow.

As we noted above, the resolution refutation of Peb2
Th

in [34] used to prove the 2
3h + O(1) upper

bound for binary tree pebbling contradictions is structurally quite similar to the optimal black-white
pebbling of Th presented in [45], and it somehow feels implausible that any resolution refutation
would be able to do significantly better. Also, the lower bound in [47] is proven by relating resolution
refutations to black-white pebblings and deriving a lower bound on clause space in terms of pebbling
price. This raises the suspicion that the black-white pebbling price BW-Peb(G) might be a lower
bound for Sp(Pebd

G ` 0) also for more general graphs as long as d ≥ 2.
This suspicion is somewhat strengthened by the fact that for variable space, we do have such a

lower bound in terms of black-white pebbling price.8

Theorem 4.15 ([14]). For any d ∈ N+, VarSp(Pebd
G ` 0) ≥ BW-Peb(G).

If the refutation clause space of pebbling contradictions for general DAGs would be constant or
very slowly growing, Theorem 4.15 would imply that as BW-Peb(G) grows larger, the clauses in
memory get wider, and thus weaker. Still it would somehow be possible to derive a contradiction from
a very small number of these clauses of unbounded width. This appears counterintuitive.

On the other hand, for one variable per vertex, i.e., d = 1, refutations of Peb1
G in constant space

have exactly these “counterintuitive” properties. The resolution refutation of Peb1
G in Theorem 4.12 is

constructed by first downloading the pebbling axiom for the target z and then moving the false literals
downwards by resolving with pebbling axioms for vertices v ∈ V (G) \ S in reverse topological order.
This finally yields a clause

∨
v∈S x(v)1∨x(z)1 of width |S|+1, which can be eliminated by resolving

8To be precise, the result in [14] is for d = 1, but the proof generalizes easily to any d ∈ N+.

17

TOWARDS AN OPTIMAL SEPARATION

with the source axioms x(v)1 one by one for all v ∈ S and then with the target axiom x(z)1 to yield
the empty clause 0.

If we want to establish a non-constant lower bound on Sp(Pebd
G ` 0) for d ≥ 2, we have to pin

down why this case is different. Intuitively, the difference is that with only one variable per vertex, a
single clause x(v1)1 ∨ . . . ∨ x(vm)1 can express the disjunction of the falsity of an arbitrary number
of vertices v1, . . . , vm, but for d = 2, the straightforward way of expressing that both variables x(vi)1
and x(vi)2 are false for at least one out of m vertices requires 2m clauses.

As was argued in Section 2, to prove a lower bound on the refutation clause space of pebbling
contradictions it seems natural to try to interpret resolution refutations of Pebd

G in terms of pebblings
of the underlying graph G. Let us say that a vertex v is “true” if

∨d
i=1 x(v)i has been derived and

“false” if x(v)i has been derived for all i ∈ [d]. Any resolution proof refutes a pebbling contradiction
by deriving that some vertex v is both true and false and then resolving to get 0. Let w be any vertex
with predecessors u, v. Then we can see that if we have derived that u and v are true, by downloading
x(u)i ∨ x(v)j ∨

∨d
l=1 x(w)l for all i, j ∈ [d] we can derive

∨d
l=1 x(w)l. This appears analogous

to the rule that if u and v are black-pebbled we can place a black pebble on w. In the opposite
direction, if we know x(w)l for all l ∈ [d], using the axioms x(u)i∨x(v)j ∨

∨d
l=1 x(w)l we can derive

that either u or v is false. This looks similar to eliminating a white pebble on w by placing white
pebbles on the predecessors u and v, and then removing the pebble from w. Generalizing this loose,
intuitive reasoning, we argue that a set of black-pebbled vertices V should correspond to the derived
conjunction of truth of all v ∈ V , and that a set of white-pebbled vertices W should correspond to the
derived disjunction of falsity of some w ∈ W .

Suppose that we could show that as the resolution derivation proceeds, the black and white pebbles
corresponding to different clause configurations as outlined above move about on the vertices of G in
accordance with the rules of the pebble game. If so, we would get that there is some clause configu-
ration C corresponding to a lot of pebbles. This could in turn hopefully yield a lower bound for the
refutation clause space. For if C corresponds to N black pebbles, i.e., implies N disjoint clauses, it
seems likely that |C| should be linear in N . And if C corresponds to N white pebbles, |C| should grow
with N if d ≥ 2, since C has to force d literals false simultaneously for one out of N vertices.

This is the guiding intuition that served as a starting point for proving the results in this paper. And
although quite a few complications arise along the way, we believe that it is important when reading
the paper not to let all technical details obscure the rather simple intuitive correspondence sketched
above.

5 A Game for Analyzing Pebbling Contradictions

We now start our construction for the proof of Theorem 1.1, which will require the rest of this paper.
In this section we present the modified pebble game that we will use to study the clause space of
resolution refutations of pebbling contradictions.

5.1 Some Graph Notation and Definitions

We first present some notation and terminology that will be used in what follows. See Figure 4 for an
illustration of the next definition.

Definition 5.1. We let succ(v) denote the immediate successors and pred(v) denote the immediate
predecessors of a vertex v in a DAG G. Taking the transivite closures of succ(·) and pred(·), we let
GO

v denote all vertices reachable from v (vertices “above” v) and Gv
M denote all vertices from which

v is reachable (vertices “below” v). We write G
\v
M and GO

\v to denote the corresponding sets with the
vertex v itself removed. If pred(v) = {u, w}, we say that u and w are siblings. If u 6∈ Gv

M and v 6∈ Gu
M,

we say that u and v are non-comparable vertices. Otherwise they are comparable.

18

5 A GAME FOR ANALYZING PEBBLING CONTRADICTIONS

v

G
\v
M

GO
\v

G \
(
Gv

M ∪GO
v

)

Figure 4: Notation for sets of vertices in DAG G with respect to a vertex v.

When reasoning about arbitrary vertices we will often use as a canonical example a vertex r with
assumed predecessors pred(r) = {p, q}.

Note that for a leaf v we have pred(v) = ∅, and for the sink z of G we have succ(z) = ∅. Also
note that Gv

M and GO
v are sets of vertices, not subgraphs. However, we will allow ourselves to overload

the notation and sometimes use this notation both for the subgraph and its vertices. Moreover, as a rule
we will overload the notation for the graph G itself and its vertices, and usually write only G when we
mean V (G), and when this should be clear from context.

For our pebble game to work, we require of the graphs under study that they have the following
property.

Property 5.2 (Sibling non-reachability). We say that a DAG G has the Sibling non-reachability
property if for all vertices u and v that are siblings in G, it holds that u /∈ Gv

M and v /∈ Gu
M, i.e., the

siblings are not reachable from one another.

Phrased differently, Property 5.2 asserts that siblings are non-comparable.
A sufficient condition for Property 5.2 to hold is that if v is reachable from u, then all paths

P : u v have the same length. This holds for instance for the class of layered graphs defined next,
and it is also easy to see directly that these graphs possess Property 5.2.

Definition 5.3 (Layered DAG). A layered DAG G is a DAG whose vertices are partitioned into
(nonempty) sets of layers V0, V1, . . . , Vh on levels 0, 1, . . . , h, and whose edges run between con-
secutive layers. That is, if (u, v) is a directed edge, then the level of u is L− 1 and the level of v is L
for some L ∈ [h]. We say that h is the height of the layered DAG G.

Throughout this paper, we will assume that all source vertices in a layered DAG are located on the
bottom level 0. Let us next give a formal definitions of the pyramid graphs that are the focus of this
paper.

Definition 5.4 (Pyramid graph). The pyramid graph Πh of height h is a layered DAG with h + 1
levels, where there is one vertex on the highest level (the sink z), two vertices on the next level et cetera
down to h + 1 vertices at the lowest level 0. The ith vertex at level L has incoming edges from the ith
and (i + 1)st vertices at level L− 1.

We also need some notation for contiguous and non-contiguous topologically ordered sets of ver-
tices in a DAG.

19

TOWARDS AN OPTIMAL SEPARATION

Definition 5.5 (Paths and chains). We say that V is a (totally) ordered set of vertices in a DAG G, or
a chain, if all vertices in V are comparable (i.e., if for all u, v ∈ V , either u ∈ Gv

M or v ∈ Gu
M). A path

P is a contiguous chain, i.e., such that succ(v) ∩ P 6= ∅ for all v ∈ P except the top vertex.
We write P : v w to denote a path starting in v and ending in w. A source path is a path that

starts at some source vertex of G. A path via w is a path such that w ∈ P . We will also say that P
visits w. For a chain V , we let

• bot(V) denote the bottom vertex of V , i.e., the unique v ∈ V such that V ⊆ GO
v ,

• top(V) denote the top vertex of V , i.e., the unique v ∈ V such that V ⊆ Gv
M,

• Pin(V) denote the set of all paths P : bot(V) top(V) via V or agreeing with V , i.e., such
that V ⊆ P , and

• Pvia(V) denote the set of all source paths agreeing with V .

We write
⋃

Pin(V) to denote the union of the vertices in all paths P ∈ Pin(V) and
⋃

Pvia(V) for the
union of all vertices in paths P ∈ Pvia(V).

In the rest of this paper, we will almost exclusively discuss DAGs with certain structural properties.
The next definition is so that we will not have to repeat these properties over and over again.

Definition 5.6 (Blob-pebblable DAG). A blob-pebblable DAG is a DAG that has a unique sink, which
we will alway denote z, that has vertex indegree 2 for all non-sources, and that satisfies the Sibling
non-reachability property 5.2.

5.2 Description of the Blob-Pebble Game and Formal Definition

To prove a lower bound on the refutation space of pebbling contradictions, we want to interpret deriva-
tion steps in terms of pebble placements and removals in the corresponding graph. In Section 2, we
outlined an intuitive correspondence between clauses and pebbles. The problem is that if we try to
use this correspondence, the pebble configurations that we get do not obey the rules of the black-white
pebble game. Therefore, we are forced to to change the pebbling rules. In this section, we present the
modified pebble game used for analyzing resolution derivations.

Our first modification of the pebble game is to alter the rule for white pebble removal so that a white
pebble can be removed from a vertex when a black pebble is placed on that same vertex. This will
make the correspondence between pebblings and resolution derivations much more natural. Clearly,
this is only a minor adjustment, and it is easy to prove formally that it does not really change anything.

Our second, and far more substantial, modification of the pebble game is motivated by the fact
that in general, a resolution refutation a priori has no reason to follow our pebble game intuition.
Since pebbles are induced by clauses, if at some derivation step the refutation chooses to erase “the
wrong clause” from the point of view of the induced pebble configuration, this can lead to pebbles just
disappearing. Whatever our translation from clauses to pebbles is, a resolution proof that suddenly
out of spite erases practically all clauses must surely lead to practically all pebbles disappearing, if
we want to maintain a correspondence between clause space and pebbling cost. This is all in order for
black pebbles, but if we allow uncontrolled removal of white pebbles we cannot hope for any nontrivial
lower bounds on pebbling price (just white-pebble the two predecessors of the sink, then black-pebble
the sink itself and finally remove the white pebbles).

Our solution to this problem is to keep track of exactly which white pebbles have been used to get
a black pebble on a vertex. Loosely put, removing a white pebble from a vertex v without placing a
black pebble on the same vertex should be in order, provided that all black pebbles placed on vertices
above v in the DAG with the help of the white pebble on v are removed as well. We do the necessary
bookkeeping by defining subconfigurations of pebble configurations, each subconfiguration consisting
of black pebble together with all the white pebbles this black pebble depends on, and require that if

20

5 A GAME FOR ANALYZING PEBBLING CONTRADICTIONS

any pebble in a subconfiguration is removed, then all other pebbles in this subconfiguration must be
removed as well.

Another problem is that resolution derivation steps can be made that appear intuitively bad given
that we know that the end goal is to derive the empty clause, but where formally it appears where hard
to nail down wherein this supposed badness lies. To analyze such apparently non-optimal derivation
steps, we introduce an inflation rule in which a black pebble can be inflated to a blob covering multiple
vertices. The way to think of this is that a black pebble on a vertex v corresponds to derived truth ov v,
whereas for a blob pebble on V we only know that some vertex v ∈ V is true, but not which one. For
reasons that will perhaps become clearer in Sections 8 and 9, in is natural to consider blobs that are
chains (Definition 5.5).

We now present the formal definition of the concept used to “label” each black blob pebble with the
set of white pebbles (if any) this black pebble is dependent on. The intended meaning of the notation
[B]〈W 〉 is a black blob on B together with the white pebbles W below v with the help of which we
have been able to place the black blob on B. These “associated” or “supporting” white pebbles can
be located on any vertex w /∈ B that can be visited by a source path P to top(B) agreeing with B.
Formally, the legal pebble positions with respect to a chain B with b = bot(B) is the set of vertices

lpp(B) = G
\b
M ∪

(⋃
Pin(B) \B

)
=

⋃
Pvia(B) \B . (5.1)

We refer to the structure [B]〈W 〉 grouping together a black blob B and its associated white pebbles W
as a blob subconfiguration, or just subconfiguration for short.

Definition 5.7 (Blob subconfiguration). For sets of vertices B,W in a blob-pebblable DAG G,
[B]〈W 〉 is a blob subconfiguration if B 6= ∅ is a chain and W ⊆ lpp(B). We refer to B as a
(single) black blob and to W as (a number of different) white pebbles supporting B. We also say that
B is dependent on W . If W = ∅, B is independent. Blobs B with |B| = 1 are said to be atomic.
A set of blob subconfigurations S =

{
[Bi]〈Wi〉 | i = 1, . . . ,m

}
together constitute a blob-pebbling

configuration.

Note in particular that it always holds that B ∩ W = ∅ for a blob subconfiguration [B]〈W〉.
Since the definition of the game we will play with these blobs and pebbles is somewhat involved,

let us first try to give an intuitive description.

• There is one single rule corresponding to the two rules 1 and 3 for black and white pebble
placement in the black-white pebble game of Definition 3.4. This introduction rule says that we
can place a black pebble on a vertex v together with white pebbles on its predecessors (unless v
is a source, in which case no white pebbles are needed).

• The analogy for rule 2 for black pebble removal in Definition 3.4 is a rule for “shrinking” black
blobs. A vertex v in a blob can be eliminated by merging two blob subconfigurations, provided
that there is both a black blob and a white pebble on v, and provided that the two black blobs
involved in this merger do not intersect the supporting white pebbles of one another in any other
vertex than v. Removing black pebbles in the black-white pebble game corresponds to shrinking
atomic black blobs.

• A black blob can be inflated to cover more vertices, as long as it does not collide with its own
supporting white vertices. Also, new supporting white pebbles can be added at an inflation
move. There is no analogy of this move in the usual black-white pebble game.

• The rule 4 for white pebble removal also corresponds to merging in the blob-pebble game, since
the white pebble used in the merger is eliminated as well. In addition, however, a white pebble
on w can also disappear if its black blob B changes so that w no longer can be visited on a path
via B (i.e., if w is no longer a legal pebble position with respect to B).

21

TOWARDS AN OPTIMAL SEPARATION

• Other than that, individual white pebbles, and individual black vertices covered by blobs, can
never just disappear. If we want to remove a white pebble or parts of a black blob, we can do so
only by erasing the whole blob subconfiguration.

The formal definition follows. See Figure 5 for some examples of blob-pebbling moves.

Definition 5.8 (Blob-pebble game). For a blob-pebblable DAG G and blob-pebbling configurations
S0 and Sτ on G, a blob-pebbling from S0 to Sτ in G is a sequence P =

{
S0, . . . , Sτ

}
of configurations

such that for all t ∈ [τ], St is obtained from St−1 by one of the following rules:

Introduction St = St−1 ∪
{
[v]〈pred(v)〉

}
.

Merger St = St−1 ∪
{
[B]〈W〉

}
if there are [B1]〈W1〉, [B2]〈W2〉 ∈ St−1 such that

1. B1 ∪ B2 is (totally) ordered,

2. B1 ∩ W2 = ∅,

3. |B2 ∩ W1| = 1; let v∗ denote this unique element in B2 ∩ W1,

4. B = (B1 ∪ B2) \ {v∗}, and

5. W =
(
(W1 ∪ W2) \ {v∗}

)
∩ lpp(B),

We write [B]〈W〉 = merge([B1]〈W1〉, [B2]〈W2〉) and refer to this as a merger on v∗.

Inflation St = St−1 ∪
{
[B]〈W〉

}
if there is a [B′]〈W ′〉 ∈ St−1 such that

1. B ⊇ B′,

2. B ∩ W ′ = ∅, and

3. W ⊇ W ′ ∩ lpp(B).

We say that [B]〈W〉 is derived from [B′]〈W ′〉 by inflation or that [B′]〈W ′〉 is inflated to yield
[B]〈W〉.

Erasure St = St−1 \
{
[B]〈W〉

}
for [B]〈W〉 ∈ St−1.

The blob-pebbling P is unconditional if S0 = ∅ and conditional otherwise. A complete blob-pebbling
of G is an unconditional pebbling P ending in Sτ =

{
[z]〈∅〉

}
for z the unique sink of G.

5.3 Blob-Pebbling Price

We have not yet defined what the price of a blob-pebbling is. The reason is that it is not a priori clear
what the “correct” definition of blob-pebbling price should be.

It should be pointed out that the blob-pebble game has no obvious intrinsic value—its function is
to serve as a tool to prove lower bounds on the resolution refutation space of pebbling contradictions.
The intended structure of our lower bound proof for resolution space is that we want look at resolution
refutations of pebbling contradictions, interpret them in terms of blob-pebblings on the underlying
graphs, and then translate lower bounds on the price of these blob-pebblings into lower bounds on the
size of the corresponding clause configurations. Therefore, we have two requirements for the blob-
pebbling price Blob-Peb(G):

1. It should be sufficiently high to enable us to prove good lower bounds on Blob-Peb(G), pre-
ferrably by relating it to the standard black-white pebbling price BW-Peb(G).

2. It should also be sufficiently low, so that lower bounds on Blob-Peb(G) translate back to lower
bounds on the size of the clause configurations.

22

5 A GAME FOR ANALYZING PEBBLING CONTRADICTIONS

(a) Empty pyramid. (b) Introduction move.

(c) Two subconfigurations before merger. (d) The merged subconfiguration.

(e) Subconfiguration before inflation. (f) Subconfiguration after inflation.

(g) Another subconfiguration before inflation. (h) After inflation with vanished white pebbles.

Figure 5: Examples of moves in the blob-pebble game.

23

TOWARDS AN OPTIMAL SEPARATION

Hence, when defining pebbling price in Definition 5.9 below, we also have to have in mind the coming
Definition 6.2 saying how we will interpret clauses in terms of blobs and pebbles and that these two
definitions together should make it possible for us to lower-bound clause set size in terms of pebbling
cost.

For black pebbles, we could try to charge 1 for each distinct blob. But this will not work, since
then the second requirement above fails. For the translation of clauses to blobs and pebbles sketched in
Section 2.3 it is possible to construct clause configurations that correspond to an exponential number
of distinct black blobs measured in the clause set size. The other natural extreme seems to be to charge
only for mutually disjoint black blobs. But this is far too generous, and the first requirement above
fails. To get a trivial example of this, take any ordinary black pebbling of G and translate in into
an (atomic) blob-pebbling, but then change it so that each black pebble [v] is immediately inflated to
[{v, z}] after each introduction move. It is straightforward to verify that this would yield a pebbling
of G in constant cost. For white pebbles, the first idea might be to charge 1 for every white-pebbled
vertex, just as in the standard pebble game. On closer inspection, though, this seems to be not quite
what we need.

The definition presented below turns out to give us both of the desired properties above, and allows
us to prove an optimal bound. Namely, we define blob-pebbling price so as to charge 1 for each
distinct bottom vertex among the black blobs, and so as to charge for the subset of supporting white
pebbles W ∩ Gb

M in a subconfiguration [B]〈W〉 that are located below the bottom vertex bot(B) of
its black blob B. Multiple distinct blobs with the same bottom vertex come for free, however, and any
supporting white pebbles above the bottom vertex of its own blob are also free, although we still have
to keep track of them.

Definition 5.9 (Blob-pebbling price). For a subconfiguration [B]〈W〉, we say that B([B]〈W〉) =
{bot(B)} is the chargeable black vertex and that WM([B]〈W〉) = W ∩ G

bot(B)
M are the chargeable

white vertices. The chargeable vertices of the subconfiguration [B]〈W〉 are all vertices in the union
B([B]〈W〉) ∪ WM([B]〈W〉). This definition is extended to blob-pebbling configurations S in the
natural way by letting

B(S) =
⋃

[B]〈W〉∈S

B([B]〈W〉) =
{
bot(B) | [B]〈W〉 ∈ S

}
and

WM(S) =
⋃

[B]〈W〉∈S

WM([B]〈W〉) =
⋃

[B]〈W〉∈S

(
W ∩ G

bot(B)
M

)
.

The cost of a blob-pebbling configuration S is cost(S) =
∣∣B(S) ∪ WM(S)

∣∣, and the cost of a blob-
pebbling P =

{
S0, . . . , Sτ

}
is cost(P) = maxt∈[τ]

{
cost(St)

}
.

The blob-pebbling price of a blob subconfiguration [B]〈W〉, denoted Blob-Peb([B]〈W〉), is the
minimal cost of any unconditional blob-pebbling P = {S0, . . . , Sτ} such that Sτ =

{
[B]〈W〉

}
. The

blob-pebbling price of a DAG G is Blob-Peb(G) = Blob-Peb([z]〈∅〉), i.e., the minimal cost of any
complete blob-pebbling of G.

We will also write W(S) to denote the set of all white-pebbled vertices in S, including non-
chargeable ones.

6 Resolution Derivations Induce Blob-Pebblings

For simplicity, in this section, as well as in the next one, we write v1, . . . , vd instead of x(v)1, . . . , x(v)d

for the d variables associated with v in a dth degree pebbling contradiction. That is, in Sections 6 and 7
small letters with subscripts denote only variables in propositional logic and nothing else.

It turns out that for technical reasons, it is more natural to ignore the target axioms z1, . . . , zd and
focus on resolution derivations of

∨d
l=1 zl from the rest of the formula rather than resolution refutations

24

6 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

of all of Pebd
G. Let us write *Pebd

G = Pebd
G \

{
z1, . . . , zd

}
to denote the pebbling formula over G

with the target axioms in the pebbling contradiction removed. The next lemma is the formal statement
saying that we may just as well study derivations of

∨d
l=1 zl from this pebbling formula *Pebd

G instead
of refutations of Pebd

G.

Lemma 6.1. For any DAG G with sink z, it holds that Sp(Pebd
G ` 0) = Sp(*Pebd

G `
∨d

l=1 zl).

Proof. For any resolution derivation π∗ : *Pebd
G `

∨d
l=1 zl, we can get a resolution refutation of Pebd

G

from π∗ in the same space by resolving
∨d

l=1 zl with all zl, l = 1, . . . , d, in space 3.
In the other direction, for π : Pebd

G ` 0 we can extract a derivation of
∨d

l=1 zl in at most the same
space by simply omitting all downloads of and resolution steps on zl in π, leaving the literals zl in the
clauses. Instead of the final empty clause 0 we get some clause D ⊆

∨d
l=1 zl, and since *Pebd

G 2 D $∨d
l=1 zl and resolution is sound, we have D =

∨d
l=1 zl.

In view of Lemma 6.1, from now on we will only consider resolution derivations from *Pebd
G and

try to convert clause configurations in such derivations into sets of blob subconfigurations.
To avoid cluttering the notation with an excessive amount of brackets, we will sometimes use

sloppy notation for sets. We will allow ourselves to omit curly brackets around singleton sets when
this is clear from context, writing for instance V ∪ v instead of V ∪ {v} and [B ∪ b]〈W ∪ w〉 instead
of [B ∪ {b}]〈W ∪ {w}〉. Also, we will sometimes omit the curly brackets around sets of vertices in
black blobs and write, for instance, [u, v] instead of [{u, v}].

6.1 Definition of Induced Configurations and Theorem Statement

If r is a non-source vertex with predecessors pred(r) = {p, q}, we say that the axioms for r in *Pebd
G

is the set
Ax d(r) =

{
pi ∨ qj ∨

∨d
l=1 rl | i, j ∈ [d]

}
(6.1)

and if r is a source, we define Ax d(r) =
{∨d

i=1 ri

}
. For V a set of vertices in G, we let Ax d(V) ={

Ax d(v) | v ∈ V
}

. Note that with this notation, we have *Pebd
G =

{
Ax d(v) | v ∈ V (G)

}
. For

brevity, we introduce the shorthand notation

B(V) =
{∨d

i=1 vi | v ∈ V
}

(6.2)

and
All+(V) =

∨
v∈V

∨d
i=1 vi . (6.3)

One can think of B(V) as “truth of all vertices in V ” and All+(V) as “truth of some vertex in V ”.
We say that a set of clauses C implies a clause D minimally if C � D but for all C′ $ C it holds

that C′ 2 D. If C � 0 minimally, C is said to be minimally unsatisfiable. We say that C implies a
clause D maximally if C � D but for all D′ $ D it holds that C′ 2 D′. To define our translation of
clauses to blob subconfigurations, we use implications that are in a sense both minimal and maximal.
We remind the reader that the vertex set lpp(B) of legal pebble positions for white pebbles with respect
to the chain B was defined in Equation (5.1) on page 21.

Definition 6.2 (Induced blob subconfiguration). Let G be a blob-pebblable DAG and C a clause
configuration derived from *Pebd

G. Then C induces the blob subconfiguration [B]〈W〉 if there is a
clause set CB ⊆ C and a vertex set S ⊆ G \B with W = S ∩ lpp(B) such that

CB ∪ B(S) � All+(B) (6.4a)

but for which it holds for all strict subsets C′
B $ CB , S′ $ S and B′ $ B that

C′
B ∪ B(S) 2 All+(B) , (6.4b)

CB ∪ B(S′) 2 All+(B) , and (6.4c)

CB ∪ B(S) 2 All+(B′) . (6.4d)

25

TOWARDS AN OPTIMAL SEPARATION

We write S(C) to denote the set of all blob subconfigurations induced by C.
To save space, when all conditions (6.4a)–(6.4d) hold, we write

CB ∪ B(S) B All+(B) (6.5)

and refer to this as precise implication or say that the clause set CB ∪ B(S) implies the clause All+(B)
precisely. Also, we say that the precise implication CB ∪ B(S) B All+(B) witnesses the induced blob
subconfiguration [B]〈W〉.

In the following, we will use the definition of precise implicationB also for clauses All+(V) where
the vertex set V is not a chain.

Let us see that this definition agrees with the intuition presented in Section 2.3. An atomic black
pebble on a single vertex v corresponds, as promised, to the fact that

∨d
i=1 vi is implied by the current

set of clauses. A black blob on V without supporting white pebbles is induced precisely when the
disjunction All+(V) =

∨
v∈V

∨d
i=1 vi of the corresponding clauses follow from the clauses in memory,

but no disjunction over a strict subset of vertices V ′ $ V is implied. Finally, the supporting white
pebbles just indicate that if we indeed had the information corresponding to black pebbles on these
vertices, the clause corresponding to the supported black blob could be derived. Remember that our
cost measure does not take into account the size of blobs. This is natural since we are interested in
clause space, and since large blobs, in an intuitive sense, corresponds to large (i.e., wide) clauses rather
than many clauses.

The main result of this section is as follows.

Theorem 6.3. Let π =
{
C0, . . . , Cτ

}
be a resolution derivation of

∨d
i=1 zi from *Pebd

G for a blob-
pebblable DAG G. Then the induced blob-pebbling configurations

{
S(C0), . . . , S(Cτ)

}
form the

“backbone” of a complete blob-pebbling P of G in the sense that

• S(C0) = ∅,

• S(Cτ) = {[z]〈∅〉}, and

• for every t ∈ [τ], the transition S(Ct−1) S(Ct) can be accomplished in accordance with the
blob-pebbling rules in cost max

{
cost(S(Ct−1)), cost(S(Ct))

}
+ O(1).

In particular, to any resolution derivation π : *Pebd
G `

∨d
i=1 zi we can associate a complete blob-

pebbling Pπ of G such that cost(Pπ) ≤ maxC∈π

{
cost(S(C))

}
+ O(1).

We prove the theorem by forward induction over the derivation π. By the pebbling rules in Def-
inition 5.8, any subconfiguration [B]〈W〉 may be erased freely at any time. Consequently, we need
not worry about subconfigurations disappearing during the transition from Ct−1 to Ct. What we do
need to check, though, is that no subconfiguration [B]〈W〉 appears inexplicably in S(Ct) as a result
of a derivation step Ct−1 Ct, but that we can always derive any [B]〈W〉 ∈ S(Ct) \ S(Ct−1) from
S(Ct−1) by the blob-pebbling rules. Also, when several pebbling moves are needed to get from S(Ct)
to S(Ct−1), we need to check that these intermediate moves do not affect the pebbling cost by more
than an additive constant.

The proof boils down to a case analysis of the different possibilities for the derivation step Ct−1
Ct. Since the analysis is quite lengthy, we divide it into subsections. But first of all we need some
technical lemmas.

6.2 Some Technical Lemmas

The next three lemmas are not hard, but will prove quite useful. We present the proofs for complete-
ness.

26

6 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

Lemma 6.4. Let C be a set of clauses and D a clause such that C � D minimally and a ∈ Lit(C) but
a 6∈ Lit(C). Then a ∈ Lit(D).

Proof. Suppose not. Let C1 = {C ∈ C | a ∈ Lit(C)} and C2 = C \ C1. Since C2 2 D there is a
truth value assignment α such that α(C2) = 1 and α(D) = 0. Note that α(a) = 0, since otherwise
α(C1) = 1 which would contradict C1 ∪ C2 = C � D. It follows that a /∈ Lit(D). Flip a to true
and denote the resulting truth value assignment by αa=1. By construction αa=1(C1) = 1 and C2 and
D are not affected since {a, a} ∩

(
Lit(C2) ∪ Lit(D)

)
= ∅, so αa=1(C) = 1 and αa=1(D) = 0.

Contradiction.

Lemma 6.5. Suppose that C,D are clauses and C is a set of clauses. Then C ∪
{
C

}
� D if and only

if C � a ∨D for all a ∈ Lit(C).

Proof. Assume that C ∪
{
C

}
� D and consider any assignment α such that α(C) = 1 and α(D) = 0

(if there is no such α, then C � D ⊆ a ∨ D). Such an α must set C to false, i.e., all a to true.
Conversely, if C � a ∨D for all a ∈ Lit(C) and α is such that α(C) = α(C) = 1, it must hold that
α(D) = 1, since otherwise α(a ∨D) = 0 for some literal a ∈ Lit(C) satisfied by α.

Lemma 6.6. Suppose that C � D minimally. Then no literal from D can occur negated in C, i.e., it
holds that {a | a ∈ Lit(D)} ∩ Lit(C) = ∅.

Proof. Suppose not. Let C1 = {C ∈ C | ∃a such that a ∈ Lit(C) and a ∈ Lit(D)} and C2 = C\C1.
Since C2 2 D there is an α such that α(C2) = 1 and α(D) = 0. But then α(C1) = 1, since every C ∈
C1 contains a negated literal a from D, and these literals are all set to true by α. Contradiction.

We also need the following key technical lemma connecting implication with inflation moves.

Lemma 6.7. Let C be a clause set derived from *Pebd
G. Suppose that B is a chain and that S ⊆ G\B

is a vertex set such that C ∪ B(S) � All+(B) and let W = S ∩ lpp(B). Then the blob subconfigu-
ration [B]〈W〉 is derivable by inflation from some [B′]〈W ′〉 ∈ S(C).

Proof. Pick C′ ⊆ C, S′ ⊆ S and B′ ⊆ B minimal such that C′ ∪ B(S′) � All+(B′). Then
C′ ∪ B(S′) B All+(B′) by definition. Note, furthermore, that B′ 6= ∅ since the clause set on the left-
hand side must be non-contradictory. Also, C′ 6= ∅ since B′ ∩ S′ ⊆ B ∩ S = ∅, so by Lemma 6.4 it
cannot be that B(S′) � All+(B′). This means that C induces [B′]〈W ′〉 for W ′ = S′ ∩ lpp(B′). We
claim that [B′]〈W ′〉 can be inflated to [B]〈W〉, from which the lemma follows.

To verify this claim, note that first two conditions B′ ⊆ B and B ∩ W ′ ⊆ B ∩ S = ∅ for inflation
moves in Definition 5.8 clearly hold by construction. As to the third condition, we get

W ′ ∩ lpp(B) =
(
S′ ∩ lpp(B′)

)
∩ lpp(B) ⊆ S ∩ lpp(B) = W

which proves the claim.

We now start the case analysis in the proof of Theorem 6.3 for the different possible derivation
steps in a resolution derivation.

6.3 Erasure

Suppose that Ct = Ct−1 \ {C} for C ∈ Ct−1. It is easy to see that the only possible outcome of
erasing clauses is that blob subconfigurations disappear. We note for future reference that this implies
that the blob-pebbling cost decreases monotonically when going from S(Ct−1) to S(Ct).

27

TOWARDS AN OPTIMAL SEPARATION

6.4 Inference

Suppose that Ct = Ct−1 ∪ {C} for some clause C derived from Ct−1. No blob subconfigurations can
disappear at an inference move since Ct−1 ⊆ Ct. Suppose that [B]〈W〉 is a new subconfiguration at
time t arising from CB ⊆ Ct−1 and S ⊆ G\B such that W = S ∩ lpp(B) and CB ∪ {C} ∪ B(S) B
All+(B). Since C is derived from Ct−1, we have Ct−1 � C. Thus it holds that Ct−1 ∪B(S) � All+(B)
and Lemma 6.7 tells us that [B]〈W〉 is derivable by inflation from S(Ct−1).

Since no subconfiguration disappears, the pebbling cost increases monotonically when going from
S(Ct−1) to S(Ct) for an inference step, which is again noted for future reference.

6.5 Axiom Download

This is the interesting case. Assume that a new blob subconfiguration [B]〈W〉 is induced at time t as
the result of a download of an axiom C ∈ Ax d(r). Then C must be one of the clauses inducing the
subconfiguration, and we get that there are CB ⊆ Ct−1 and S ⊆ G \ B with W = S ∩ lpp(B) such
that

CB ∪ {C} ∪ B(S) B All+(B) . (6.6)

Our intuition is that download of an axiom clause C ∈ Ax d(r) in the resolution derivation should
correspond to an introduction of [r]〈pred(r)〉 in the induced blob-pebbling. We want to prove that any
other blob subconfiguration [B]〈W〉 in S(Ct) can be obtained by the pebbling rules from S(Ct−1) ∪
[r]〈pred(r)〉. Also, we need to prove that the pebbling moves needed to go from S(Ct−1) to the new
configuration S(Ct) do not increase the blob-pebbling cost by more than an additive constant compared
to max

{
cost(S(Ct−1)), cost(S(Ct))

}
= cost(S(Ct)).

We do the proof by a case analysis over r depending on where in the graph this vertex is located in
relation to B. To simplify the proofs for the different cases, we first show a general technical lemma
about pebble induction at axiom download.

Lemma 6.8. Suppose that Ct = Ct−1 ∪ C for an axiom C ∈ Ax d(r) and that [B]〈W〉 is a new blob
subconfiguration induced at time t as witnessed by (6.6). Then it holds that:

1. r /∈ S.

2. pred(r) ∩ B = ∅.

3. If r /∈ B, then Ct−1 induces [B]〈W ∪ ({r} ∩ lpp(B))〉 if r is a source, and otherwise this
subconfiguration can be derived from S(Ct−1) by inflation.

4. If r is a non-source vertex and v ∈ pred(r) is such that v ∈ lpp(B) \ S, then we can derive
[B ∪ v]〈S ∩ lpp(B ∪ v)〉 from S(Ct−1) by inflation.

Proof. Suppose that [B]〈W〉 ∈ S(Ct) \ S(Ct−1). For part 1, noting that B(r) � C for C ∈ Ax d(r) we
see that r /∈ S, as otherwise the implication (6.6) cannot be precise since C can be omitted.

If r is a source part 2 is trivial, so suppose pred(r) = {p, q} and C = pi ∨ qj ∨
∨d

l=1 rl. Then it
follows from Lemma 6.6 that {p, q} ∩ B = ∅.

For part 3, if r is a source, we have C =
∨d

i=1 ri and (6.6) becomes

CB ∪ B(S ∪ r) B All+(B) (6.7)

for S ∪ r ⊆ G \B, which shows that Ct−1 induces

[B]〈(S ∪ r) ∩ lpp(B)〉 = [B]〈(S ∩ lpp(B)) ∪ (r ∩ lpp(B))〉
= [B]〈(W ∪ (r ∩ lpp(B))〉 .

(6.8)

If r is a non-source we do not get a precise implication but still have

CB ∪ B(S ∪ r) � All+(B) (6.9)

28

6 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

B

b = bot(B)

⋃
Pin(B) \B

G
\b
M

G \
(
Gb

M ∪
⋃

Pin(B)
)

Figure 6: Cases for vertex r with respect to new black blob B at download of axiom C ∈ Axd(r).

and Lemma 6.7 yields that [B]〈(S ∪ r) ∩ lpp(B)〉 = [B]〈W ∪ (r ∩ lpp(B))〉 is derivable by infla-
tion from S(Ct−1).

If v ∈ pred(r) in part 4, the downloaded axiom can be written on the form C = C ′ ∨ vi. Applying
Lemma 6.5 on (6.6) we get

CB ∪ B(S) � All+(B) ∨ vi ⊆ All+(B ∪ v) . (6.10)

By assumption, we have that B ∪ v is a chain and that S ⊆ G \ (B ∪ v), so Lemma 6.7 says that
[B ∪ v]〈S ∩ lpp(B ∪ v)〉 is derivable from S(Ct−1) by inflation.

What we get from Lemma 6.8 is not in itself sufficient to derive the new blob subconfiguration
[B]〈W〉 in the blob-pebble game, but the lemma provides subconfigurations that will be used as build-
ing blocks in the derivations of [B]〈W〉 below.

Now we are ready for the case analysis over the vertex r for the downloaded axiom clause C ∈
Ax d(r). Recall that the assumption is that there exists a blob subconfiguration [B]〈W〉 ∈ S(Ct) \
S(Ct−1) induced through (6.6) for CB ⊆ Ct−1 and S ⊆ G \ B with W = S ∩ lpp(B). Remember
also that we want to explain all new subconfigurations in S(Ct) \ S(Ct−1) in terms of pebbling moves
from S(Ct) ∪ {[r]〈pred(r)〉}. As illustrated in Figure 6, the cases for r are:

1. r ∈ G \
(
Gb

M ∪
⋃

Pin(B)
)

for b = bot(B),

2. r ∈
⋃

Pin(B) \B,

3. r ∈ B \ {b} for b = bot(B),

4. r = bot(B), and

5. r ∈ G
\b
M for b = bot(B).

29

TOWARDS AN OPTIMAL SEPARATION

6.5.1 Case 1: r ∈ G \
(
Gb

M ∪
⋃

Pin(B)
)

for b = bot(B)

If r ∈ G \
(
Gb

M ∪
⋃

Pin(B)
)
, this means that the vertex r is outside the set of vertices covered by

source paths via B to top(B). In other words, r /∈ lpp(B) ∪ B and part 3 of Lemma 6.8 yields that[
B

]〈
W ∪ (r ∩ lpp(B))

〉
= [B]〈W〉 is derivable from S(Ct−1) by inflation. Note that we need no

intermediate subconfigurations in this case.

6.5.2 Case 2: r ∈
⋃

Pin(B) \B

This is the first more challenging case, and we do it in some detail to show how the reasoning goes.
The proofs for the rest of the cases are analogous and will be presented in slightly more condensed
form.

The condition r ∈
⋃

Pin(B) \ B says that the vertex r is located on some path from bot(B) via
B to top(B) strictly above the bottom vertex b = bot(B). In particular, this means that r cannot be a
source vertex. Let pred(r) = {p, q} and denote the downloaded axiom clause C = pi ∨ qj ∨

∨d
l=1 rl.

Part 3 of Lemma 6.8 says that we can derive the blob subconfiguration

[B]〈W ∪ (r ∩ lpp(B))〉 = [B]〈W ∪ r〉 (6.11)

by inflation from S(Ct−1), where the equality holds since r ∈
⋃

Pin(B) \ B ⊆ lpp(B) by Defini-
tion 5.7. Also, since r is on some path above b, at least one of the predecessors of r must be located on
some path from b as well. That is, translating what was just said into our notation we have that the fact
that r ∈

⋃
Pin(B) ∩ GO

\b implies that either p ∈
⋃

Pin(B) or q ∈
⋃

Pin(B) or both. By symmetry,
we get two cases: p ∈

⋃
Pin(B), q /∈

⋃
Pin(B) and {p, q} ⊆

⋃
Pin(B). Let us look at them in order.

I. p ∈
⋃

Pin(B), q /∈
⋃

Pin(B): We make a subcase analysis depending on whether p ∈ B ∪ W
or not. Recall from part 2 of Lemma 6.8 that p /∈ B. The two remaining cases are p ∈ W and
p /∈ B ∪ W .

(a) p ∈ W : Let v be the uppermost vertex in B below p, or in formal notation

v = top(Gp
M ∩ B) . (6.12)

Such a vertex v must exist since p ∈
⋃

Pin(B)\B. Since p is above v and is a predecessor
of r, it lies on some path from v to r, i.e., p ∈

⋃
Pin({v, r}) \ {v, r}. For the sibling

q we have q /∈
⋃

Pin({v, r}). This is so since q /∈
⋃

Pin(B) and for any path P ∈
Pin({v, r}) it holds that P ⊆

⋃
Pin(B) since there is nothing inbetween v and r in B,

i.e.,
(⋃

Pin({v, r}) \ {v, r}
)
∩ B = ∅. Also, q /∈ G

\p
M ⊇ G

\v
M because of the Sibling

non-reachability property 5.2. Hence, it must hold that q /∈ lpp({v, r}).
We can use this information to make blob-pebbling moves resulting in [B]〈W〉 as follows.
First introduce [r]〈p, q〉 and inflate this subconfiguration to

[v, r]〈{p, q} ∩ lpp({v, r})〉 = [v, r]〈p〉 . (6.13)

Then derive the subconfiguration [B]〈W ∪ r〉 in (6.11) by inflation from S(Ct−1). Finally,
merge the two subconfigurations (6.11) and (6.13). The result of this merger move is
[B ∪ v]〈W ∪ p〉 = [B]〈W〉.

(b) p /∈ B ∪ W : Note that p ∈ Pin(B)\B by assumption. Also, it must hold that p /∈ S since
otherwise we would get the contradiction p ∈ S ∩ (Pin(B) \ B) ⊆ S ∩ lpp(B) = W .
Thus, p ∈ lpp(B) \ S and part 4 of Lemma 6.8 yields that we can derive the blob subcon-
figuration

[B ∪ p]〈Wp〉 for Wp ⊆ W (6.14)

30

6 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

by inflation from S(Ct−1), where Wp = S ∩ lpp(B ∪ p) ⊆ S ∩ lpp(B) = W since
lpp(B ∪ p) ⊆ lpp(B) if p ∈

⋃
Pin(B). (This last claim is easily verified directly from

Definition 5.7.)
With v = top(Gp

M ∩ B) as in (6.12), introduce [r]〈p, q〉 and inflate to [v, r]〈p〉 as in (6.13).
Merging the subconfigurations (6.13) and (6.14) yields

[B ∪ {v, r}]〈Wp〉 = [B ∪ r]〈Wp〉 (6.15)

and a second merger of the resulting subconfiguration (6.15) with the subconfiguration in
(6.11) produces [B]〈W ∪ Wp〉 = [B]〈W〉.

This finishes the case p ∈
⋃

Pin(B), q /∈
⋃

Pin(B).

II. {p, q} ⊆
⋃

Pin(B): By part 2 of Lemma 6.8 {p, q} ∩ B = ∅, so {p, q} ⊆ Pin(B) \ B. By
symmetry, we have the following subcases for p and q with respect to membership in B and W .

(a) {p, q} ⊆ W ,

(b) p ∈ W, q /∈ W ,

(c) {p, q} ∩ (B ∪ W) = ∅.

We analyze these subcases one by one.

(a) {p, q} ⊆ W : This is easy. Just introduce [r]〈p, q〉 and merge this subconfiguration with
the subconfiguration (6.11) to get [B]〈W ∪ {p, q}〉 = [B]〈W〉.

(b) p ∈ W, q /∈ W : In this case it must hold that q /∈ S since otherwise we would have
q ∈ S ∩ (Pin(B) \ B) ⊆ S ∩ lpp(B) = W contradicting the assumption. Thus q ∈
(Pin(B) \B) \ S ⊆ lpp(B) \ S and part 4 of Lemma 6.8 allows us to derive

[B ∪ q]〈Wq〉 for Wq ⊆ W (6.16)

by inflation from S(Ct−1). Here we have Wq = S ∩ lpp(B ∪ q) ⊆ S ∩ lpp(B) = W
since lpp(B ∪ q) ⊆ lpp(B) when q ∈

⋃
Pin(B).

Introduce [r]〈p, q〉 and merge with the subconfiguration (6.16) to get

[B ∪ r]〈Wq ∪ p〉 (6.17)

and then merge (6.17) with [B]〈W ∪ r〉 from (6.11) to get [B]〈W ∪ Wq ∪ p〉 = [B]〈W〉.
(c) {p, q} ∩ B ∪ W = ∅: Just as for the vertex q in case case IIb, here it holds for both p and

q that {p, q} ⊆ lpp(B) \ S. Part 4 of Lemma 6.8 yields subconfigurations [B ∪ p]〈Wp〉
for Wp ⊆ W as in (6.14) and [B ∪ q]〈Wq〉 for Wq ⊆ W as in (6.16) derived by inflation
from S(Ct−1).
Introduce [r]〈p, q〉 and merge with (6.14) on p to get

[B ∪ r]〈Wp ∪ q〉 (6.18)

and then merge (6.18) with (6.16) on q resulting in

[B ∪ r]〈Wp ∪ Wq〉 . (6.19)

Finally, merge (6.19) with (6.11) on r to get [B]〈W ∪ Wp ∪ Wq〉 = [B]〈W〉.

31

TOWARDS AN OPTIMAL SEPARATION

This concludes the case r ∈
⋃

Pin(B) \B. We can see that in all subcases, the new blob subcon-
figuration [B]〈W〉 is derivable from S(Ct−1) ∪ [r]〈pred(r)〉 by inflation moves followed by mergers
on some subset of {p, q, r}.

Let us analyze the cost of deriving [B]〈W〉. We want to bound the cost of the intermediate sub-
configurations that are used in the transition from S(Ct−1) to S(Ct) but are not present in S(Ct). We
first note that for the subconfigurations [B]〈W ∪ r〉, [B ∪ p]〈Wp〉, [B ∪ q]〈Wq〉 and [B ∪ r]〈W ′〉
for various W ′ ⊆ W , the chargeable vertices are all subsets of the chargeable vertices of the final
subconfiguration [B]〈W〉. This is so since b = bot(B) is the bottom vertex in all these black blobs,
and all chargeable white vertices are contained in W ∩ Gb

M. The subconfigurations [r]〈p, q〉 and
[v, r]〈p〉 for v = top(Gp

M ∩ B) can incur an extra cost, however, but this cost is clearly bounded by
|{p, q, r, v}| = 4.

6.5.3 Case 3: r ∈ B \ {b} for b = bot(B)

First we note that in this case, we can no longer use part 3 of Lemma 6.8 to derive the blob subcon-
figuration [B]〈W ∪ r〉 of (6.11). The vertex r cannot be added to the support S since it is contained
in B. Also, we note that r cannot be a source since it is above the bottom vertex b. As usual, let us
write pred(r) = {p, q}.

Observe that just as in case 2 (Section 6.5.2) we must have either p ∈
⋃

Pin(B) or q ∈
⋃

Pin(B)
or both. By symmetry we get the same two cases for membership of p and q in

⋃
Pin(B), namely

p ∈
⋃

Pin(B), q /∈
⋃

Pin(B) and {p, q} ⊆
⋃

Pin(B).

I. p ∈
⋃

Pin(B), q /∈
⋃

Pin(B): As before, p /∈ B by part 2 of Lemma 6.8. We make a subcase
analysis depending on whether p ∈ W or p /∈ B ∪ W .

As in (6.12) we let v = top(Gp
M ∩ B) and note that p ∈

⋃
Pin({v, r}) \ {v, r}. For q we have

q /∈
⋃

Pin({v, r}) since q /∈
⋃

Pin(B) but {v, r} ⊆
⋃

Pin(B) and there is nothing inbetween
v and r in B. Also, q /∈ G

\p
M ⊇ G

\v
M because of the Sibling non-reachability property 5.2. Hence,

it holds that q /∈ lpp({v, r}).

(a) p ∈ W : Introduce [r]〈p, q〉, inflate [r]〈p, q〉 to [v, r]〈{p, q} ∩ lpp({v, r})〉 = [v, r]〈p〉 as
in (6.13) and continue the inflation to [B ∪ {v, r}]〈W ∪ p〉 = [B]〈W〉.

(b) p /∈ B ∪ W : Just as in case 2, p /∈ W implies p /∈ S, so p ∈ lpp(B) \ S and we can
use part 4 of Lemma 6.8 to derive [B ∪ p]〈Wp〉 for Wp ⊆ W as in (6.14). Introduce
[r]〈p, q〉, inflate to [v, r]〈p〉 as in (6.13) and merge (6.13) and (6.14) on p resulting in
[B ∪ {v, r}]〈Wp〉 = [B]〈Wp〉, which can be inflated to [B]〈W〉.

II. {p, q} ⊆
⋃

Pin(B): We have the same possibilities to consider for containment of p and q in
B ∪ W as in case 2(II) on page 31.

(a) {p, q} ⊆ W : This is immediate. Introduce the subconfiguration [r]〈p, q〉 and inflate to
[B ∪ r]〈W ∪ {p, q}〉 = [B]〈W〉.

(b) p ∈ W, q /∈ B ∪ W : Apply part 4 of Lemma 6.8 to derive [B ∪ q]〈Wq〉 for Wq ⊆ W by
inflation from S(Ct−1). Then introduce [r]〈p, q〉 and merge on q to get the subconfiguration
[B ∪ r]〈Wq ∪ p〉 = [B]〈Wq ∪ p〉, which can be inflated further to [B]〈Wq ∪ p ∪ W 〉 =
[B]〈W〉.

(c) {p, q} ∩ (B ∪ W) = ∅: In the same way as in case IIb, derive the subconfigurations
[B ∪ p]〈Wp〉 and [B ∪ q]〈Wq〉with Wp ∪Wq ⊆ W from S(Ct−1) by inflation. Introduce
[r]〈p, q〉 and merge twice, first on p and then on q, to get [B]〈Wp ∪ Wq〉, which can be
inflated to [B]〈W〉.

32

6 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

This concludes the case r ∈ B \ {b}. We see that in all subcases the new blob subconfiguration
[B]〈W〉 is derivable from S(Ct−1) ∪ [r]〈pred(r)〉 by inflation moves followed by mergers on some
subset of {p, q}, possibly followed by one more inflation move.

As in the previous case, the bottom vertex in all of the black blobs [B ∪ p], [B ∪ q] and [B ∪ r]
is b = bot(B), and the corresponding chargeable white pebbles are subsets of those of W . The extra
cost caused by the subconfigurations [r]〈p, q〉 and [v, r]〈p〉 is at most 4.

6.5.4 Case 4: r = bot(B)

If r is a source, any [B]〈W〉 with r ∈ B can be derived by introducing [r]〈pred(r)〉 = [r]〈∅〉 and
inflating. Suppose therefore that r = bot(B) is not a source and let pred(r) = {p, q}. Then it holds
that {p, q} ⊆ G

\r
M ⊆ lpp(B), i.e., the vertex sets B ∪ p and B ∪ q are both chains.

By symmetry, we have three cases for p and q with respect to membership in W . (It is still true
that {p, q} ∩ B = ∅ by part 2 of Lemma 6.8.)

(a) {p, q} ⊆ W : Immediate. Introduce [r]〈p, q〉 and inflate to [B ∪ r]〈W ∪ {p, q}〉 = [B]〈W〉.

(b) p ∈ W, q /∈ W : Enlist the help of our old friend Lemma 6.8, part 4, to derive [B ∪ q]〈Wq〉 for
Wq ⊆ W by inflation from S(Ct−1) (where Wq ⊆ W holds since lpp(B ∪ v) ⊆ lpp(B)
if v ∈ G

\b
M). Introduce [r]〈p, q〉 and merge with [B ∪ q]〈Wq〉 to get [B ∪ r]〈Wq ∪ p〉 =

[B]〈Wq ∪ p〉. Then inflate [B]〈Wq ∪ p〉 to [B]〈Wq ∪ p ∪ W 〉 = [B]〈W〉.

(c) {p, q} ∩ W = ∅: Following an established tradition, mimic case b and derive [B ∪ p]〈Wp〉
and [B ∪ q]〈Wq〉 with Wp ∪ Wq ⊆ W by inflation from S(Ct−1). Introduce [r]〈p, q〉, do two
mergers to get [B]〈Wp ∪ Wq〉 and inflate to [B]〈W〉.

This takes care of the case r = b. Again, in all subcases our new subconfiguration [B]〈W〉 is
derivable from S(Ct−1) ∪ [r]〈pred(r)〉 by inflation moves followed by mergers on some subset of
{p, q}, possibly followed by one more inflation move.

This time the blobs [B ∪ p] and [B ∪ q] can cause an extra intermediate cost of 1 each for the
bottom vertices p and q, and [r]〈p, q〉 potentially adds an extra cost 1 for r, giving that the intermediate
extra cost is bounded by 3.

6.5.5 Case 5: r ∈ G
\b
M for b = bot(B)

This final case is very similar to the previous case r = bot(B). Note first that r ∈ G
\b
M ⊆ lpp(B). If r

is a source, then C =
∨d

i=1 ri and we have

CB ∪ {C} ∪ B(S) = CB ∪ B(S ∪ r) B All+(B) (6.20)

at time t − 1, which shows that [B]〈W ∪ r〉 ∈ S(Ct−1). Hence, we can introduce [r]〈pred(r)〉 =
[r]〈∅〉 and merge on r to get [B]〈W〉.

As usual, the more interesting case is when r is a non-source with pred(r) = {p, q}. The case
analysis is just as in case 4 (Section 6.5.4). However, note that now we can again use part 3 of
Lemma 6.8 to derive [B]〈W ∪ r〉 from S(Ct−1) by inflation since it holds that r /∈ B.

(a) {p, q} ⊆ W : Introducing [r]〈p, q〉 and merging with [B]〈W ∪ r〉 yields [B]〈W〉.

(b) p ∈ W, q /∈ W : Appeal to part 4 of Lemma 6.8 to get [B ∪ q]〈Wq〉 for Wq ⊆ W by inflation
from S(Ct−1). Introduce [r]〈p, q〉 and merge to get [B ∪ r]〈Wq ∪ p〉, and merge again with
[B]〈W ∪ r〉 to get [B]〈W〉.

33

TOWARDS AN OPTIMAL SEPARATION

(c) {p, q} ∩ W = ∅: As in case b above for q, derive [B ∪ p]〈Wp〉 and [B ∪ q]〈Wq〉 with
Wp ∪ Wq ⊆ W by inflation from S(Ct−1). Introduce [r]〈p, q〉 and do two mergers to get
[B ∪ r]〈Wp ∪ Wq〉. Finally merge [B ∪ r]〈Wp ∪ Wq〉 with [B]〈W ∪ r〉 to get [B]〈W〉.

This takes care of the case r = G
\b
M. We note that in all subcases of this case, [B]〈W〉 is derivable

from S(Ct−1) ∪ [r]〈pred(r)〉 by inflation moves followed by mergers on some subset of {p, q, r}.
Again, the extra intermediate pebbling cost is bounded by |{p, q, r}| = 3.

6.6 Wrapping up the Proof

If π =
{
C0, . . . , Cτ

}
is a derivation of

∨d
i=1 zi from *Pebd

G, it is easily verified from Definition 6.2
that S(C0) = S(∅) = ∅ and S(Cτ) = S({

∨d
i=1 zi}) = {[z]〈∅〉}.

In Sections 6.3, 6.4, and 6.5, we have shown how to do the intermediate blob-pebbling moves to
get from S(Ct−1) to S(Ct) in the case of erasure, inference and axiom download, respectively. For
erasure and inference, the blob-pebbling cost changes monotonically during the transition S(Ct−1)
S(Ct). In the case of axiom download, there can be an extra cost of 4 incurred for deriving each
[B]〈W〉 ∈ S(Ct) \ S(Ct−1). We have no a priori upper bound on

∣∣S(Ct) \ S(Ct−1)
∣∣, but if we just

derive the new subconfigurations one by one and erase all intermediate subconfigurations inbetween
these derivations, we will keep the total extra cost below 4.

This shows that the complete blob-pebbling Pπ of the graph G associated to any resolution deriva-
tion π : *Pebd

G `
∨d

i=1 zi by the construction in this section has blob-pebbling cost bounded from above
by cost(Pπ) ≤ maxC∈π

{
cost(S(C))

}
+ 4. Theorem 6.3 is thereby proven.

7 Induced Blob Configurations Measure Clause Set Size

In this section we prove that if a set of clauses C induces a blob-pebbling configuration S(C) according
to Definition 6.2, then the cost of S(C) as specified in Definition 5.9 is at most |C|. That is, the cost
of an induced blob-pebbling configuration provides a lower bound on the size of the set of clauses
inducing it. This is Theorem 7.5 below.

Note that we cannot expect a proof of this fact to work regardless of the pebbling degree d. The
induced blob-pebbling in Section 6 makes no assumptions about d, but for first-degree pebbling con-
tradictions we know that Sp(*Peb1

G ` z1) = Sp(Peb1
G ` 0) = O(1). Provided d ≥ 2, though, we

show that one has to pay at least |C| ≥ N clauses to get an induced blob-pebbling configuration of
cost N .

We introduce some notation to simply the proofs in what follows. Let us define Varsd(u) =
{u1, . . . , ud}. We say that a vertex u is represented in a clause C derived from *Pebd

G, or that C
mentions u, if Varsd(u) ∩ Vars(C) 6= ∅. We write

V (C) =
{
u ∈ V (G)

∣∣Varsd(u) ∩Vars(C) 6= ∅
}

(7.1)

to denote all vertices represented in C. We will also refer to V (C) as the set of vertices mentioned
by C. This notation is extended to sets of clauses by taking unions. Furthermore, we write

CJUK = {C ∈ C | V (C) ∩ U 6= ∅} (7.2)

to denote the subset of all clauses in C mentioning vertices in a vertex set U .
We now show some technical results about CNF formulas that will come in handy in the proof of

Theorem 7.5. Intuitively, we will use Lemma 7.1 below together with Lemma 6.4 on page 27 to argue
that if a clause set C induces a lot of subconfigurations, then there must be a lot of variable occurrences
in C for variables corresponding to these vertices. Note, however, that this alone will not be enough,
since this will be true also for pebbling degree d = 1.

34

7 INDUCED BLOB CONFIGURATIONS MEASURE CLAUSE SET SIZE

Lemma 7.1. Suppose for a set of clauses C and clauses D1 and D2 with Vars(D1) ∩ Vars(D2) = ∅
that C � D1 ∨D2 but C 2 D2. Then there is a literal a ∈ Lit(C) ∩ Lit(D1).

Proof. Pick a truth value assignment α such that α(C) = 1 but α(D2) = 0. Since C � D, we must
have α(D1) = 1. Let α′ be the same assignment except that all satisfied literals in D1 are flipped
to false (which is possible since they are all strictly distinct by assumption). Then α′(D1 ∨D2) = 0
forces α′(C) = 0, so the flip must have falsified some previously satisfied clause in C.

The fact that a minimally unsatisfiable CNF formula must have more clauses than variables seems
to have been proven independently a number of times (see, for instance, [1, 7, 25, 44]). We will need
the following formulation of this result, relating subsets of variables in a minimally implicating CNF
formula and the clauses containing variables from these subsets.

Theorem 7.2. Suppose that F is CNF formula that implies a clause D minimally. For any subset
of variables V of F , let FV = {C ∈ F | Vars(C) ∩ V 6= ∅} denote the set of clauses containing
variables from V . Then if V ⊆ Vars(F) \ Vars(D), it holds that |FV | > |V |. In particular, if F is a
minimally unsatisfiable CNF formula, we have |FV | > |V | for all V ⊆ Vars(F).

Proof. The proof is by induction over V ⊆ Vars(F) \Vars(D).
The base case is easy. If |V | = 1, then |FV | ≥ 2, since any x ∈ V must occur both unnegated and

negated in F by Lemma 6.4.
The inductive step just generalizes the proof of Lemma 6.4. Suppose that |FV ′ | > |V ′| for all strict

subsets V ′ $ V ⊆ Vars(F) \ Vars(D) and consider V . Since FV ′ ⊆ FV if V ′ ⊆ V , choosing any
V ′ of size |V | − 1 we see that |FV | ≥ |FV ′ | ≥ |V ′|+ 1 = |V |.

If |FV | > |V | there is nothing to prove, so assume that |FV | = |V |. Consider the bipartite graph
with the variables V and the clauses in FV as vertices, and edges between variables and clauses for
all variable occurrences. Since for all V ′ ⊆ V the set of neighbours N(V ′) = FV ′ ⊆ FV satisfies
|N(V ′)| ≥ |V ′|, by Hall’s marriage theorem there is a perfect matching between V and FV . Use this
matching to satisfy FV assigning values to variables in V only.

The clauses in F ′ = F \ FV are not affected by this partial truth value assignment, since they do
not contain any occurrences of variables in V . Furthermore, by the minimality of F it must hold that
F ′ can be satisfied and D falsified simultaneously by assigning values to variables in Vars(F ′) \ V .

The two partial truth value assignments above can be combined to an assignment that satisfies all of
F but falsifies D, which is a contradiction. Thus |FV | > |V |. The theorem follows by induction.

Continuing our intuitive argument, given that Lemmas 6.4 and 7.1 tell us that many induced sub-
configurations implies the presence of many variables in C, we will use Theorem 7.2 to demonstrate
that a lot of different variable occurrences will have to translate into a lot of different clauses pro-
vided that the pebbling degree d is at least 2. Before we prove this formally, let us try to pro-
vide some intuition for why it should be true by studying two special cases. Recall the notation
B(V) =

{∨
i∈[d] vi

∣∣v ∈ V
}

and All+(V) =
∨

v∈V

∨
i∈[d] vi from Section 6.

Example 7.3. Suppose that C is a clause set derived from *Pebd
G that induces N independent black

blobs B1, . . . , BN that are pairwise disjoint, i.e., Bi ∩ Bj = ∅ if i 6= j. Then the implications

C � All+(Bi) (7.3)

hold for i = 1, . . . , N . Remember that since *Pebd
G is non-contradictory, so is C.

It is clear that a non-contradictory clause set C satisfying (7.3) for i = 1, . . . , N is quite simply
the set

C =
{
All+(Bi)

∣∣i = 1, . . . N
}

(7.4)

consisting precisely of the clauses implied. Also, it seems plausible that this is the best one can do.
Informally, if there would be strictly fewer clauses than N , some clause would have to mix variables

35

TOWARDS AN OPTIMAL SEPARATION

from different blobs Bi and Bj . But then Lemma 6.4 says that there will be extra clauses needed
to “neutralize” the literals from Bj in the implication C � All+(Bi) and vice versa, so that the total
number of clauses would have to be strictly greater than N .

As it turns out, the proof that |C| ≥ N when C induces N pairwise disjoint and independent black
blobs is very easy. Suppose on the contrary that (7.3) holds for i = 1, . . . , N but that |C| < N . Let
α be a satisfying assignment for C. Choose α′ ⊆ α to be any minimal partial truth value assignment
fixing C to true. Then for the size of the domain of α′ we have |Dom(α′)| < N , since at most one
distinct literal is needed for every clause C ∈ C to fix it to true. This means that there is some Bi such
that α′ does not set any variables in Varsd(Bi). Consequently α′ can be extended to an assignment
α′′ setting C to true but All+(Bi) to false, which is a contradiction. With some more work, and using
Theorem 7.2, one can show that the bound |C| > N holds even if variables from distinct blobs are
mixed.

Note that the above argument works for any pebbling degree including d = 1. Intuitively, this
means that one can charge for black blobs even in the case of first degree pebbling formulas.

Example 7.4. Suppose that the clause set C induces an blob subconfiguration [B]〈W〉 with W 6= ∅,
and let us assume for simplicity that C is minimal and W = S so that the implication

C ∪ B(W) � All+(B) (7.5)

holds and is minimal. We claim that |C| ≥ |W |+ 1 provided that d > 1.
Since by definition B ∩ W = ∅ we have Vars(All+(B)) ∩ Vars(B(W)) = ∅, and Theorem 7.2

yields that |C ∪ B(W)| ≥ |CJW K ∪ B(W)| > |Vars(B(W))|, using the notation from (7.2). This is
not quite what we want—we have a lower bound on |C ∪ B(W)|, but what we need is a bound on |C|.
But if we observe that |Vars(B(W))| = d|W | while |B(W)| = |W |, we get that

|C| ≥ |Vars(B(W))| − |B(W)|+ 1 = (d− 1)|W |+ 1 ≥ |W |+ 1 (7.6)

as claimed.
We remark that this time we had to use that d > 1 in order to get a lower bound on the clause set

size. And indeed, it is not hard to see that a single clause on the form C = v1 ∨
∨

w∈W w1 can induce
an arbitrary number of white pebbles if d = 1. Intuitively, white pebbles can be had for free in first
degree pebbling formulas.

In general, matters are more complicated than in Examples 7.3 and 7.4. If [B1]〈W1〉 and [B2]〈W2〉
are two induced blob subconfigurations, the black blobs B1 and B2 need not be disjoint, the supporting
white pebbles W1 and W2 might also intersect, and the black blob B1 can intersect the supporting white
pebbles W2 of the other blob. Nevertheless, if we choose with some care which vertices to charge for,
the intuition provided by our examples can still be used to prove the following theorem.

Theorem 7.5. Suppose that G is a blob-pebblable DAG and let C be a set of clauses derived from the
pebbling formula *Pebd

G for d ≥ 2. Then |C| ≥ cost(S(C)).

Proof. Suppose that the induced set of blob subconfigurations is S(C) =
{
[Bi]〈Wi〉

∣∣i ∈ [m]
}

. By
Definition 5.9, we have cost(S(C)) =

∣∣B ∪ WM
∣∣ where

B =
{
bot(Bi)

∣∣[Bi]〈Wi〉 ∈ S(C)
}

(7.7)

and
WM =

⋃
[Bi]〈Wi〉∈S(C)

(
Wi ∩ G

bot(Bi)
M

)
. (7.8)

We need to prove that |C| ≥
∣∣B ∪ WM

∣∣.
We first show that all vertices in B ∪ WM are represented in some clause in C. By Definition 6.2,

for each [Bi]〈Wi〉 ∈ S(C) there is a clause set Ci ⊆ C and a vertex set Si ⊆ G \ Bi with Wi =
Si ∩ lpp(Bi) ⊆ Si such that

Ci ∪ B(Si) � All+(Bi) (7.9)

36

7 INDUCED BLOB CONFIGURATIONS MEASURE CLAUSE SET SIZE

and such that this implication does not hold for any strict subset of Ci, Si or Bi. Fix (arbitrarily) such
Ci and Si for every [Bi]〈Wi〉 ∈ S(C) for the rest of this proof.

For the induced black blobs Bi we claim that Bi ⊆ V (Ci), which certainly implies bot(Bi) ∈
V (C). To establish this claim, note that for any v ∈ Bi we can apply Lemma 7.1 with D1 =

∨d
j=1 vj

and D2 = All+(Bi \ {v}) on the implication (7.9), which yields that the vertex v must be repre-
sented in Ci ∪ B(Wi) by some positive literal vj . Since Bi ∩ Si = ∅, we have Vars(B(Si)) ∩
Vars(All+(Bi)) = ∅ and thus vj ∈ Lit(Ci).

Also, we claim that Si ⊆ V (Ci). To see this, note that since Bi ∩ Si = ∅ and the implication (7.9)
is minimal, it follows from Lemma 6.4 that for every w ∈ Si, all literals wj , j ∈ [d], must be present
in Ci. Thus, in particular, it holds that Wi ∩ G

bot(Bi)
M ⊆ V (Ci).

We now prove by induction over subsets R ⊆ B ∪ WM that |CJRK| ≥ |R|. The theorem clearly
follows from this since |C| ≥ |CJRK|. (The reader can think of R as the set of vertices representing
the blob-pebbling configurations [Bi]〈Wi〉 ∈ S(C) in the clause set C.)

The base case |R| = 1 is immediate, since we just demonstrated that all vertices r ∈ R are
represented in C.

For the induction step, suppose that |CJR′K| ≥ |R′| for all R′ $ R. Pick a “topmost” vertex r ∈ R,
i.e., such that GO

\r ∩ R = ∅. We associate a blob subconfiguration [Bi]〈Wi〉 ∈ S(C) with r as follows.
If r = bot(Bi) for some [Bi]〈Wi〉, fix [Bi]〈Wi〉 arbitrarily to such a subconfiguration. Otherwise,
there must exist some [Bi]〈Wi〉 such that r ∈ Wi ∩ G

bot(Bi)
M , so fix any such subconfiguration. We

note that it holds that
R ∩ GO

bot(Bi)
⊆ {r} (7.10)

for [Bi]〈Wi〉 chosen in this way.
Consider the clause set Ci ⊆ C and vertex set Si ⊇ Wi from (7.9) associated with [Bi]〈Wi〉 above.

Clearly, by construction r ∈ V (Ci) is one of the vertices of R mentioned by Ci. We claim that the total
number of vertices in R mentioned by Ci is upper-bounded by the number of clauses in Ci mentioning
these vertices, i.e., that ∣∣CiJRK

∣∣ ≥ ∣∣R ∩ V (Ci)
∣∣ . (7.11)

Let us first see that this claim is sufficient to prove the theorem. To this end, let

R[i] = R ∩ V (Ci) (7.12)

denote the set of all vertices in R mentioned by Ci and assume that |CiJRK| = |CiJR[i]K| ≥ |R[i]|.
Observe that CiJR[i]K ⊆ CJRK, since Ci ⊆ C and R[i] ⊆ R. Or in words: the set of clauses in Ci

mentioning vertices in R[i] is certainly a subset of all clauses in C mentioning any vertex in R. Also,
by construction Ci does not mention any vertices in R \R[i] since R[i] = R ∩ V (Ci). That is,

CJR \R[i]K ⊆ CJRK \ Ci (7.13)

in our notation. Combining the (yet unproven) claim (7.11) for CiJRK = CiJR[i]K asserting that∣∣CiJR[i]K
∣∣ ≥ |R[i]| with the induction hypothesis for R \R[i] ⊆ R \ {r} $ R we get∣∣CJRK

∣∣ =
∣∣CiJRK

.
∪ (C \ Ci)JRK

∣∣
≥

∣∣CiJR ∩ V (Ci)K
.
∪ CJR \ V (Ci)K

∣∣
=

∣∣CiJR[i]K
∣∣ +

∣∣CJR \R[i]K
∣∣ (7.14)

≥ |R[i]|+ |R \R[i]|
= |R|

and the theorem follows by induction.
It remains to verify the claim (7.11) that |CiJR[i]K| ≥ |R[i]| for R[i] = R ∩ V (Ci) 6= ∅. To do so,

recall first that r ∈ R[i]. Thus, R[i] 6= ∅ and if R[i] = {r} we trivially have |CiJR[i]K| ≥ 1 = |R[i]|.
Suppose therefore that R[i] % {r}.

37

TOWARDS AN OPTIMAL SEPARATION

We want to apply Theorem 7.2 on the formula F = Ci ∪ B(Si) on the left-hand side of the minimal
implication (7.9). Let R′ = R[i] \ {r}, write R′ = R1

.
∪R2 for R1 = R′ ∩ Si and R2 = R′ \R1, and

consider the subformula

FR′ =
{
C ∈

(
Ci ∪ B(Si)

)∣∣V (C) ∩ R′ 6= ∅
}

= CiJR′K ∪ B(R1)
(7.15)

of F = Ci ∪ B(Si). A key observation for the concluding part of the argument is that by (7.10) we
have Varsd(R′) ∩ Vars(All+(Bi)) = ∅.

For each w ∈ R1, the clauses in B(R1) contain d literals w1, . . . , wd and these literals must
all occur negated in Ci by Lemma 6.4. For each u ∈ R2, the clauses in CiJR′K contain at least
one variable ui. Appealing to Theorem 7.2 with the subset of variables Varsd(R′) ∩ Vars(Ci) ⊆
Vars(F) \Vars(All+(Bi)), we get∣∣FR′

∣∣ =
∣∣CiJR′K ∪ B(R1)

∣∣
≥

∣∣Varsd(R′) ∩ Vars(Ci)
∣∣ + 1 (7.16)

≥ d
∣∣R1

∣∣ +
∣∣R2

∣∣ + 1 ,

and rewriting this as ∣∣CiJR[i]K
∣∣ ≥ ∣∣CiJR′K

∣∣
=

∣∣FR′
∣∣− ∣∣B(R1)

∣∣
≥ (d− 1)

∣∣R1

∣∣ +
∣∣R2

∣∣ + 1
≥

∣∣R[i]
∣∣

(7.17)

establishes the claim.

We have two concluding remarks. Firstly, we note that the place where the condition d ≥ 2 is
needed is the very final step (7.17). This is where an attempted lower bound proof for first degree
pebbling formulas *Peb1

G would fail for the reason that the presence of many white pebbles in S(C)
says absolutely nothing about the size of the clause set C inducing these pebbles. Secondly, another
crucial step in the proof is that we can choose our representative vertices r ∈ R so that (7.10) holds.
It is thanks to this fact that the inequalities in (7.16) go through. The way we make sure that (7.10)
holds is to charge only for (distinct) bottom vertices in the black blobs, and only for supporting white
pebbles below these bottom vertices.

8 Black-White Pebbling and Layered Graphs

Having come this far in the paper, we know that resolution derivations induce blob-pebblings. We also
know that blob-pebbling cost gives a lower bound on clause set size and hence on the space of the
derivation. The final component needed to make the proof of Theorem 1.1 complete is to show lower
bounds on the blob-pebbling price Blob-Peb(Gi) for some nice family of blob-pebblable DAGs Gi.

Perhaps the first idea that comes to mind is to try to establish lower bounds on blob-pebbling
price by reducing this problem to the problem of proving lower bounds for the standard black-white
pebble game of Definition 3.4. This is what is done in [47] for the restricted case of trees. There,
for the pebblings Pπ that one gets from resolution derivations π : *Pebd

T `
∨d

i=1 zi in a rather different
so-called “labelled” pebble game, an explicit procedure is presented to transform Pπ into a complete
black-white pebblings of T in asymptotically the same cost. The lower bound on pebbling price in
the labelled pebble game then follows immediately by using the known lower bound for black-white
pebbling of trees in Theorem 4.7.

Unfortunately, the blob-pebble game seems more difficult than the game in [47] to analyze in terms
of the standard black-white pebble game. The problem is the inflation rule in combination with the

38

8 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

cost function. It is straightforward to show that without inflation, the blob-pebble game is essentially
just a disguised form of black-white pebbling. Thus, if we could convert any blob-pebbling into an
equivalent pebbling not using inflation moves without increasing the cost by more than, say, some
constant factor, we would be done. But in contrast to the case for the labelled pebble game in [47]
played on binary trees, it seems very hard to transform blob-pebblings into black-white pebblings in a
cost-preserving way.

Instead, what we do is to prove lower bounds directly for the blob-pebble game. This is not
immediately clear how to do, since the lower bound proofs for black-white pebbling price in, for
instance, [29, 37, 43, 45] all break down for the more general blob-pebble game. And indeed, to obtain
lower bounds we have to limit our attention to the class of layered spreading graphs (to be defined
below), a class that includes binary trees and pyramid graphs.

In our proof, we borrow heavily from the corresponding bound for black-white pebbling in [43],
but we need to go quite deep into the construction in order to make the changes necessary for the
proof go through in the blob-pebbling case. In this section, we therefore give a detailed exposition of
the lower bound in [43], in the process simplifying the proof somewhat. We believe that an in-depth
description of this construction, which has been modified somewhat as compared to [43], is necessary
to give the reader a fair chance to understand what is going on in the next section, where we generalize
the bound from the black-white pebble game to the blob-pebble game in Definition 5.8.

8.1 Some Preliminaries and a Tight Bound for Black Pebbling

Unless otherwise stated, in the following G denotes a layered DAG; u, v, w, x, y denote vertices of G;
U, V, W, X, Y denote sets of vertices; P denotes a path; and P denotes a set of paths. We will also use
the following notation.

Definition 8.1 (Layered DAG notation). For a vertex u in a layered DAG G we let level(u) denote
the level of u. For a vertex set U we let minlevel(U) = min{level(u) : u ∈ U} and maxlevel(U) =
max{level(u) : u ∈ U} denote the lowest and highest level, respectively, of any vertex in U . Vertices
in U on particular levels are denoted as follows:

• U{�j} = {u ∈ U | level(u) ≥ j} denotes the subset of all vertices in U on level j or higher.

• U{�j} = {u ∈ U | level(u) > j} denotes the vertices in U strictly above level j.

• U{∼j} = U{�j} \ U{�j} denotes the vertices exactly on level j.

The vertex sets U{�j} and U{≺j} are defined wholly analogously.

For the layered DAGs G under consideration we will assume that all sources are on level 0, that all
non-sources have indegree 2, and that there is a a unique sink z. Since all layered DAGs also possess
the Sibling non-reachability property 5.2, this means that we are considering blob-pebblable DAGs
(Definition 5.6), and so the blob-pebble game can be played on them.

Although most of what will be said in what follows holds for arbitrary layered DAGs, we will
focus on pyramids since these are the graphs that we are most interested in. Figure 7(a) presents a
pyramid graph with labelled vertices that we will use as a running example. Pyramid graphs can also
be visualized as triangular fragments of a directed two-dimensional rectilinear lattice. Perhaps this can
sometimes make it easier for the reader to see that “obvious” statements about properties of pyramids
in some of the proofs below are indeed obvious. In Figure 7(b), the pyramid in Figure 7(a) is redrawn
as such a lattice fragment.

In the standard black and black-white pebble games, we have the following upper bounds on
pebbling price of layered DAGs.

Lemma 8.2. For any layered DAG Gh of height h with a unique sink z and all non-sources having
vertex indegree 2, it holds that Peb(Gh) ≤ h + O(1) and BW-Peb(Gh) ≤ h/2 + O(1).

39

TOWARDS AN OPTIMAL SEPARATION

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Pyramid graph of height h = 6.

z y1

y2

x1

x2

x3

w1

w2

w3

w4

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

u6

s1

s2

s3

s4

s5

s6

s7

1

2

3

4

..
.

h

h+1

1 2 3 4 . . . h h+1
(b) Pyramid as fragment of 2D rectilinear lattice.

Figure 7: The pyramid Π6 of height 6 with labelled vertices.

z

u v

r s t

p q m n

(a) Pyramid graph Π3 of height 3.

z1

u1 v1

r1 s1 s2 t1

p1 q1 q2 m1 q3 m2 m3 n1

(b) Binary tree T3 with vertex labels from Π3.

Figure 8: Binary tree with vertices labelled by pyramid graph vertices as in proof of Lemma 8.2.

Proof. The bounds above are true for complete binary trees of height h according to Theorem 4.7. It
is not hard to see that the corresponding pebbling strategies can be used to pebble any layered graph
of the same height with at most the same amount of pebbles.

Formally, suppose that the sink z of the DAG Gh has predecessors x and y. Label the root of Th

by z1 and its predecessors by x1 and y1. Recursively, for a vertex in Th labelled by wi, look at the
corresponding vertex w in Gh and suppose that pred(w) = {u, v}. Then label the vertices pred(wi)
in Th by uj and vk for the smallest positive indices j, k such that there are not already other vertices
in Th labelled uj and vk. In Figure 8 there is an illustration of how the vertices in a pyramid Π3 of
height 3 are mapped to vertices in the complete binary tree T3 in this manner.

The result is a labelling of Th where every vertex v in Gh corresponds to one or more distinct
vertices v1, . . . , vkv in Th, and such that if pred(wi) = {uj , vk} in Th, then pred(w) = {u, v} in Gh.
Given a pebbling strategy P for Th, we can pebble Gh with at most the same amount of pebbles by
mimicking any move on any vi in Th by performing the same move on v in Gh. The details are easily
verified.

In this section, we will identify some layered graphs Gh for which the bound in Lemma 8.2 is also
the asymptotically correct lower bound. As a warm-up, and also to introduce some important ideas, let
us consider the black pebbling price of the pyramid Πh of height h.

Theorem 8.3 ([27]). Peb(Πh) = h + 2 for h ≥ 1.

40

8 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

Figure 9: Set of converging source paths (dashed) for the path P : u4 y1 (solid).

To prove this lower bound, it turns out that it is sufficient to study blocked paths in the pyramid.

Definition 8.4. A vertex set U blocks a path P if U ∩ P 6= ∅. U blocks a set of paths P if U blocks
all P ∈ P.

Proof of Theorem 8.3. It is easy to devise (inductively) a black pebbling strategy that uses h + 2 peb-
bles (using, for instance, Lemma 8.2). We show that this is also a lower bound.

Consider the first time t when all possible paths from sources to the sink are blocked by black
pebbles. Suppose that P is (one of) the last path(s) blocked. Obviously, P is blocked by placing a
pebble on some source vertex u. The path P contains h + 1 vertices, and for each vertex v ∈ P \ {u}
there is a unique path Pv that coincides with P from v onwards to the sink but arrives at v in a straight
line from a source “in the opposite direction” of that of P , i.e., via the immediate predecessor of v not
contained in P . At time t− 1 all such paths {Pv | v ∈ P \ {u}} must already be blocked, and since P
is still open no pebble can block two paths Pv 6= Pv′ for v, v′ ∈ P \ {u}, v 6= v′. Thus at time t there
are at least h + 1 pebbles on Πh. Furthermore, without loss of generality each pebble placement on a
source vertex is followed by another pebble placement (otherwise perform all removals immediately
following after time t before making the pebble placement at time t). Thus at time t + 1 there are
h + 2 pebbles on Πh.

We will use the idea in the proof above about a set of paths converging at different levels to another
fixed path repeatedly, so we write it down as a separate observation.

Observation 8.5. Suppose that u and w are vertices in Πh on levels Lu < Lw and that P : u w
is a path from u to w. Let K = Lw − Lv and write P = {v0 = u, v1, . . . , vK = w}. Then
there is a set of K paths P = {P1, . . . , PK} such that Pi coincides with P from vi onwards to w
arrives to vi in a straight line from a source vertex via the immediate predecessor of vi which is not
contained in P , i.e., is distinct from vi−1. In particular, for any i, j with 1 ≤ i < j ≤ k it holds that
Pi ∩ Pj ⊆ Pj ∩ P ⊆ P \ {u}.

We will refer to the paths P1, . . . , PK as a set of converging source paths, or just converging paths,
for P : u w. See Figure 9 for an example.

8.2 A Tight Bound on the Black-White Pebbling Price of Pyramids

The rest of this section contains an exposition of Klawe [43], with some simplifications of the proofs.
Much of the notation and terminology has been changed from [43] to fit better with this paper in

41

TOWARDS AN OPTIMAL SEPARATION

general and (in the next section) the blob-pebble game in particular. Also, it should be noted that
we restrict all definitions to layered graphs, in contrast to Klawe who deals with a somewhat more
general class of graphs. We concentrate on layered graphs mainly to avoid unnecessary complications
in the exposition, and since it can be proven that no graphs in [43] can give a better size/pebbling price
trade-off than one gets for layered graphs anyway.

Recall from Definition 5.5 that a path via w is a path P such that w ∈ P . We will also say
that P visits w. The notation Pvia(w) is used to denote all source paths visiting w. Note that a path
P ∈ Pvia(w) visiting w may continue after w, or may end in w.

Definition 8.6 (Hiding set). A vertex set U hides a vertex w if U blocks all source paths visiting w,
i.e., if U blocks Pvia(w). U hides W if U hides all w ∈ W . If so, we say that U is a hiding set for W .
We write VUW to denote the set of all vertices hidden by U .

Our perspective is that we are standing at the sources of G and looking towards the sink. Then U
hides w if we “cannot see” w from the sources since U completely hides w. When U blocks a path P
is is possible that we can “see” the beginning of the path, but we cannot walk all of the path since it
is blocked somewhere on the way. The reason why this terminological distinction is convenient will
become clearer in the next section.

Note that if U should hide w, then in particular it must block all paths ending in w. Therefore,
when looking at minimal hiding sets we can assume without loss of generality that no vertex in U is
on a level higher than w.

It is an easy exercise to show that the hiding relation is transitive, i.e., that if U hides V and V
hides W , then U hides W .

Proposition 8.7. If V ⊆ VUW and W ⊆ VV W then W ⊆ VUW.

One key concept in Klawe’s paper is that of potential. The potential of P = (B,W) is intended to
measure how “good” the configuration P is, or at least how hard it is to reach in a pebbling. Note that
this is not captured by the cost of the current pebble configuration. For instance, the final configuration
Pτ = ({z}, ∅) is the best configuration conceivable, but only costs 1. At the other extreme, the
configuration P in a pyramid with, say, all vertices on level L white-pebbled and all vertices on level
L + 1 black-pebbled is potentially very expensive (for low levels L), but does not seem very useful.
Since this configuration on the one hand is quite expensive, but on the other hand is extremely easy
to derive (just white-pebble all vertices on level L, and then black-pebble all vertices on level L + 1),
here the cost seems like a gross overestimation of the “goodness” of P.

Klawe’s potential measure remedies this. The potential of a pebble configuration (B,W) is defined
as the minimum measure of any set U that together with W hides B. Recall that U{�j} denotes the
subset of all vertices in U on level j or higher in a layered graph G.

Definition 8.8 (Measure). The jth partial measure of the vertex set U in G is

mj
G(U) =

{
j + 2|U{�j}| if U{�j} 6= ∅,
0 otherwise,

and the measure of U is mG(U) = maxj

{
mj

G(U)
}

.

Definition 8.9 (Potential). We say that U is a hiding set for a black-white pebble configuration P =
(B,W) in a layered graph G if U ∪ W hides B. We define the potential of the pebble configuration
to be

potG(P) = potG(B,W) = min{mG(U) : U is a hiding set for (B,W)} .

If U is a hiding set for (B,W) with minimal measure mG(U) among all vertex sets U ′ such that
U ′ ∪ W hides B, we say that U is a minimum-measure hiding set for P.

42

8 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Since the graph under consideration will almost always be clear from context, we will tend to omit
the subindex G in measures and potentials.

We remark that although this might not be immediately obvious, there is quite a lot of nice intuition
why Definition 8.9 is a relevant estimation of how “good” a pebble configuration is. We refer the reader
to Section 2 of [43] for a discussion about this. Let us just note that with this definition, the pebble
configuration Pτ = ({z}, ∅) has high potential, as we shall soon see, while the configuration with all
vertices on level L white-pebbled and all vertices on level L + 1 black-pebbled has potential zero.

Remark 8.10. Klawe does not use the level of a vertex u in Definitions 8.8 and 8.9, but instead the
black pebbling price Peb({u}, ∅) of the configuration with a black pebble on u and no other pebbles
in the DAG. For pyramids, these two concepts are equivalent, and we feel that the exposition can be
made considerably simpler by using levels.

Klawe proves two facts about the potentials of the pebble configurations in any black-white peb-
bling P = {P0, . . . , Pτ} of a pyramid graph Πh:

1. The potential correctly estimates the goodness of the current configuration Pt by taking into
account the whole pebbling that has led to Pt. Namely, pot(Pt) ≤ 2 ·maxs≤t{cost(Ps)}.

2. The final configuration Pτ = ({z}, ∅) has high potential, namely pot({z}, ∅) = h + O(1).

Combining these two parts, one clearly gets a lower bound on pebbling price.
For pyramids, part 2 is not too hard to show directly. In fact, it is a useful exercise if one wants to

get some feeling for how the potential works. Part 1 is much trickier. It is proven by induction over
the pebbling. As it turns out, the whole induction proof hinges on the following key property.

Property 8.11 (Limited hiding-cardinality property). We say that the black-white pebble config-
uration P = (B,W) in G has the Limited hiding-cardinality property, or just the LHC property for
short, if there is a vertex set U such that

1. U is a hiding set for P,

2. potG(P) = m(U),

3. U = B or |U | < |B|+ |W | = cost(P).

We say that the graph G has the Limited hiding-cardinality property if all black-white pebble configu-
rations P = (B,W) on G have the Limited hiding-cardinality property.

Note that requirements 1 and 2 just say that U is a vertex set that witnesses the potential of P. The
important point here is requirement 3, which says (basically) that if we are given a hiding set U with
minimum measure but with size exceeding the cost of the black-white pebble configuration P, then we
can pick another hiding set U ′ which keeps the minimum measure but decreases the cardinality to at
most cost(P).

Given Property 8.11, the induction proof for part 1 follows quite easily. The main part of the
paper [43] is then spent on proving that a class of DAGs including pyramids have Property 8.11. Let
us see what the lower bound proof looks like, assuming that Property 8.11 holds.

Lemma 8.12 (Theorem 2.2 in [43]). Let G be a layered graph possessing the LHC property and
suppose that P = {P0 = ∅, P1, . . . , Pτ} is any unconditional black-white pebbling on G. Then it
holds for all t = 1, . . . , τ that potG(Pt) ≤ 2 ·maxs≤t{cost(Ps)}.

Proof. To simplify the proof, let us assume without loss of generality that no white pebble is ever
removed from a source. If P contains such moves, we just substitute for each such white pebble
placement on v a black pebble placement on v instead, and when the white pebble is removed we
remove the corresponding black pebble. It is easy to check that this results in a legal pebbling P ′ that
has exactly the same cost.

43

TOWARDS AN OPTIMAL SEPARATION

The proof is by induction. The base case P0 = ∅ is trivial. For the induction hypothesis, suppose
that pot(Pt) ≤ 2 · maxs≤t{cost(Ps)} and let Ut be a vertex set as in Property 8.11, i.e., such that
Ut ∪ Wt hides Bt, pot(Pt) = m(Ut) and |Ut| ≤ cost(Pt) = |B|+ |W |.

Consider Pt+1. We need to show that pot(Pt+1) ≤ 2 · maxs≤t+1{cost(Ps)}. By the induction
hypothesis, it is sufficient to show that

pot(Pt+1) ≤ max{pot(Pt), 2 · cost(Pt+1)} . (8.1)

We also note that if Ut ∪ Wt+1 hides Bt+1 we are done, since if so pot(Pt+1) ≤ m(Ut) = pot(Pt).
We make a case analysis depending on the type of move made to get from Pt to Pt+1.

1. Removal of black pebble: In this case, Ut ∪ Wt+1 = Ut ∪ Wt obviously hides Bt+1 ⊂ Bt as
well, so pot(Pt+1) ≤ pot(Pt).

2. Placement of white pebble: Again, Ut ∪ Wt+1 ⊃ Ut ∪ Wt hides Bt+1 = Bt, so pot(Pt+1) ≤
pot(Pt).

3. Removal of white pebble: Suppose that a white pebble is removed from the vertex w, so Wt+1 =
Wt \ {w}. As noted above, without loss of generality w is not a source vertex. We claim that
Ut ∪ Wt+1 still hides Bt+1 = Bt, from which pot(Pt+1) ≤ pot(Pt) follows as above.

To see that the claim is true, note that pred(w) ⊆ Bt ∪ Wt by the pebbling rules, for otherwise
we would not be able to remove the white pebble on w. If pred(w) ⊆ Wt we are done, since
then Ut ∪ Wt+1 hides Ut ∪ Wt and we can use the transitivity in Proposition 8.7. If instead
there is some v ∈ pred(w) ∩ Bt, then Ut ∪ Wt = Ut ∪ Wt+1 ∪ {w} hides v by assumption.
Since w is a successor of v, and therefore on a higher level than v, we must have Ut ∪ Wt \{w}
hiding v. Thus in any case Ut ∪ Wt+1 hides pred(w), so by transitivity Ut ∪ Wt+1 hides Bt+1.

4. Placement of black pebble: Suppose that a black pebble is placed on v. If v is not a source, by
the pebbling rules we again have that pred(v) ⊆ Bt ∪ Wt. In particular, Bt ∪ Wt hides v and
by transitivity we have that Ut ∪ Wt+1 = Ut ∪ Wt hides Bt ∪ {v} = Bt+1.

The case when v is a source turns out to be the only interesting one. Now Ut ∪ Wt does not
necessarily hide Bt ∪ {v} = Bt+1 any longer. An obvious fix is to try with Ut ∪ {v} ∪
Wt instead. This set clearly hides Bt+1, but it can be the case that m(Ut ∪ {v}) > m(Ut).
This is problematic, since we could have pot(Pt+1) = m(Ut ∪ {v}) > m(Ut) = pot(Pt).
And we do not know that the inequality pot(Pt) ≤ 2 · cost(Pt) holds, only that pot(Pt) ≤
2 · maxs≤t{cost(Ps)}. This means that it can happen that pot(Pt+1) > 2 · cost(Pt+1), in
which case the induction step fails. However, we claim that using the Limited hiding-cardinality
property 8.11 we can prove for Ut+1 = Ut ∪ {v} that

m(Ut+1) = m(Ut ∪ {v}) ≤ max{m(Ut), 2 · cost(Pt+1)} , (8.2)

which shows that (8.1) holds and the induction steps goes through.

Namely, suppose that Ut is chosen as in Property 8.11 and consider Ut+1 = Ut ∪ {v}. Then
Ut+1 is a hiding set for Pt+1 = (Bt ∪ {v},Wt) and hence pot(Pt+1) ≤ m(Ut+1). For j > 0,
it holds that Ut+1{�j} = Ut{�j} and thus mj(Ut+1) = mj(Ut). On the bottom level, using
that the inequality |Ut| ≤ cost(Pt) holds by the LHC property, we have

m0(Ut+1) = 2 · |Ut+1| = 2 · (|Ut|+ 1) ≤ 2 · (cost(Pt) + 1) = 2 · cost(Pt+1) (8.3)

and we get that

m(Ut+1) = maxj

{
mj(Ut+1)

}
= max

{
maxj>0

{
mj(Ut)

}
,m0(Ut+1)

}
≤ max{m(Ut), 2 · cost(Pt+1)} = max{pot(Pt), 2 · cost(Pt+1)} (8.4)

which is exactly what we need.

44

8 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

We see that the inequality (8.1) holds in all cases in our case analysis, which proves the lemma.

The lower bound on black-white pebbling price now follows by showing that the final pebble
configuration ({z}, ∅) has high potential.

Lemma 8.13. For z the sink of a pyramid Πh of height h, the pebble configuration ({z}, ∅) has
potential potΠh

({z}, ∅) = h + 2.

Proof. This follows easily from the Limited hiding-cardinality property (which says that U can be
chosen so that either U ⊆ {z} or |U | ≤ 0), but let us show that this assumption is not necessary here.
The set U = {z} hides itself and has measure m(U) = mh(U) = h + 2 · 1 = h + 2. Suppose that
z is hidden by some U ′ 6= {z}. Without loss of generality U ′ is minimal, i.e., no strict subset of U ′

hides z. Let u be a vertex in U ′ on minimal level minlevel(U) = L < h. The fact that U ′ is minimal
implies that there is a path P : u z such that (P \{u}) ∩ U ′ = ∅ (otherwise U ′ \{u} would hide z).
By Observation 8.5, there must exist h− L converging paths from sources to z that are all blocked by
distinct pebbles in U ′ \ {u}. It follows that

m(U ′) ≥ mL
(
U ′) = L + 2

∣∣U ′{�L}
∣∣ = L + 2

∣∣U ′∣∣ ≥ L + 2 · (h + 1− L) > h + 2 (8.5)

(where we used that U ′{�L} = U ′ since L = minlevel(U)). Thus U = {z} is the unique minimum-
measure hiding set for ({z}, ∅), and the potential is pot({z}, ∅) = h + 2.

Since [43] proves that pyramids possess the Limited hiding-cardinality property, and since there
are pebblings that yield matching upper bounds, we have the following theorem.

Theorem 8.14 ([43]). BW-Peb(Πh) = h
2 + O(1).

Proof. The upper bound was shown in Lemma 8.2. For the lower bound, Lemma 8.13 says that the
final pebble configuration ({z}, ∅) in any complete pebbling P of Πh has potential pot({z}, ∅) =
h + 2. According to Lemma 8.12, pot({z}, ∅) ≤ 2 · cost(P). Thus BW-Peb(Πh) ≥ h/2 + 1.

In the final two subsections of this section, we provide a fairly detailed overview of the proof
that pyramids do indeed possess the Limited hiding-cardinality property. As was discussed above, the
reason for giving all the details is that we will need to use and modify the construction in non-trivial
ways in the next section, where we will use ideas inspired by Klawe’s paper to prove lower bounds on
the pebbling price of pyramids in the blob-pebble game.

8.3 Proving the Limited Hiding-Cardinality Property

We present the proof of that pyramids have the Limited hiding-cardinality property in a top-down
fashion as follows.

1. First, we study what hiding sets look like in order to better understand their structure. Along
the way, we make a few definitions and prove some lemmas culminating in Definition 8.20 and
Lemma 8.24.

2. We conclude that it seems like a good idea to try to split our hiding set into disjoint components,
prove the LHC property locally, and then add everything together to get a proof that works
globally. We make an attempt to do this in Theorem 8.25, but note that the argument does
not quite work. However, if we assume a slightly stronger property locally for our disjoint
components (Property 8.27), the proof goes through.

3. We then prove this stronger local property by assuming that pyramid graphs have a certain
spreading property (Definition 8.34 and Theorem 8.35) and showing in Lemmas 8.33 and 8.36
that the stronger local property holds for such spreading graphs.

45

TOWARDS AN OPTIMAL SEPARATION

4. Finally, in Section 8.4, we give a simplified proof of the theorem in [43] that pyramids are indeed
spreading.

From this, the desired conclusion follows.
For a start, we need two definitions. The intuition for the first one is that the vertex set U is tight if

is does not contain any “unnecessary” vertex u hidden by the other vertices in U .

Definition 8.15 (Tight vertex set). The vertex set U is tight if for all u ∈ U it holds that u /∈
VU \ {u}W.

If x is a vertex hidden by U , we can identify a subset of U that is necessary for hiding x.

Definition 8.16 (Necessary hiding subset). If x ∈ VUW, we define UTxU to be the subset of U such
that for each u ∈ UTxU there is a source path P ending in x for which P ∩ U = {u}.

We observe that if U is tight and u ∈ U , then UTuU = {u}. This is not the case for non-tight
sets. If we let U = {u} ∪ pred(u) for some non-source u, Definition 8.16 yields that UTuU = ∅. The
vertices in UTxU must be contained in every subset of U that hides x, since for each v ∈ UTxU there is
a source path to x that intersects U only in v. But if U is tight, the set UTxU is also sufficient to hide x,
i.e., x ∈ VUTxUW.

Lemma 8.17 (Lemma 3.1 in [43]). If U is tight and x ∈ VUW, then UTxU hides x and this set is also
contained in every subset of U that hides x.

Proof. The necessity was argued above, so the interesting part is that x ∈ VUTxUW. Suppose not. Let
P1 be a source path to x such that P1 ∩ UTxU = ∅. Since U hides x, U blocks P1. Let v be the
highest-level element in P1 ∩ U (i.e., , the vertex on this path closest to x). Since U is tight, U \ {v}
does not hide v. Let P2 be a source path to v such that P2 ∩ (U \ {v}) = ∅. Then going first along
P2 and switching to P1in v we get a path to x that intersects U only in v. But if so, we have v ∈ UTxU

contrary to assumption. Thus, x ∈ VUTxUW must hold.

Given a vertex set U , the tight subset of U hiding the same elements is uniquely determined.

Lemma 8.18. For any vertex set U in a layered graph G there is a uniquely determined minimal subset
U∗ ⊆ U such that VU∗W = VUW, U∗ is tight, and for any U ′ ⊆ U with VU ′W = VUW it holds that
U∗ ⊆ U ′.

Proof. We construct the set U∗ bottom-up, layer by layer. We will let U∗
i be the set of vertices on

level i or lower in the tight hiding set under construction, and U r
i be the set of vertices in U strictly

above level i remaining to be hidden.
Let L = minlevel(U). For i < L, we define U∗

i = ∅. Clearly, all vertices on level L in U must be
present also in U∗, since no vertices in U{�L} can hide these vertices and vertices on the same level
cannot help hiding each other. Set U∗

L = U{∼L} = U \ U{�L}. Now we can remove from U all
vertices hidden by U∗

L, so set U r
L = U \ VU∗

LW. Note that there are no vertices on or below level L left
in U r

L, i.e., U r
L = U r

L{�L}, and that U∗
L hides the same vertices as does U{�L} (since the two sets

are equal).
Inductively, suppose we have constructed the vertex sets U∗

i−1 and U r
i−1. Just as above, set U∗

i =
U∗

i−1 ∪ U r
i−1{∼ i} and U r

i = U r
i−1 \ VU∗

i W. If there are no vertices remaining on level i to be hidden,
i.e., if U r

i−1{∼ i} = ∅, nothing happens and we get U∗
i = U∗

i−1 and U r
i = U r

i−1. Otherwise the vertices
on level i in U r

i−1 are added to U∗
i and all of these vertices, as well as any vertices above in U r

i−1 now
being hidden, are removed from U r

i−1 resulting in a smaller set U r
i .

To conclude, we set U∗ = U∗
M for M = maxlevel(U). By construction, the invariant

VU∗
i W = VU{� i}W (8.6)

46

8 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Hiding set U with large size and measure.

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(b) Smaller hiding set U∗ with smaller measure.

Figure 10: Illustration of hiding sets in Example 8.19 (with vertices in hiding sets cross-marked).

holds for all levels i. Thus, VU∗W = VUW. Also, U∗ must be tight since if v ∈ U∗ and level(v) = i,
by construction U∗{≺ i} does not hide v, and (as was argued above) neither does U∗{� i} \ {v}.
Finally, suppose that U ′ ⊆ U is a hiding set for U with U∗ * U ′. Consider v ∈ U∗ \ U ′ and
suppose level(v) = i. On the one hand, we have v /∈ VU∗

i−1W by construction. On the other hand, by
assumption it holds that v ∈ VU ′{≺ i}W and thus v ∈ VU{≺ i}W. But then by the invariant (8.6) we
know that v ∈ VU∗

i−1W, which yields a contradiction. Hence, U∗ ⊆ U ′ and the lemma follows.

We remark that U∗ can in fact be seen to contain exactly those elements u ∈ U such that u is not
hidden by U \ {u}.

It follows from Lemma 8.18 that if U is a minimum-measure hiding set for P = (B,W), we can
assume without loss of generality that U ∪ W is tight. More formally, if U ∪ W is not tight, we can
consider minimal subsets U ′ ⊆ U and W ′ ⊆ W such that U ′ ∪ W ′ hides B and is tight, and prove
the LHC property for B and W ′ with respect to this U ′ instead. Then clearly the LHC property holds
also for B and W .

Suppose that we have a set U that together with W hides B. Suppose furthermore that B contains
vertices very far apart in the graph. Then it might very well be the case that U ∪ W can be split into
a number of disjoint subsets Ui ∪ Wi responsible for hiding different parts Bi of B, but which are
wholly independent of one another. Let us give an example of this.

Example 8.19. Suppose we have the pebble configuration (B,W) = ({x1, y1, v5}, {w3, s6, s7}) and
the hiding set U = {v1, u2, u3, v3, s5} in Figure 10(a). Then U ∪ W hides B, but U seems unnec-
essarily large. To get a better hiding set U∗, we can leave s5 responsible for hiding v5 but replace
{v1, u2, u3, v3} by {x1, y1}. The resulting set U∗ = {x1, y1, s5} in Figure 10(b) has both smaller size
and smaller measure (we leave the straightforward verification of this fact to the reader).

Intuitively, it seems that the configuration can be split in two components, namely (B1,W1) =
({x1, y1}, {w3}) with hiding set U1 = {v1, u2, u3, v3} and (B2,W2) = ({v5}, {s6, s7}) with hiding
set U2 = {s5}, and that these two components are independent of one another. To improve the hiding
set U , we need to do something locally about the bad hiding set U1 in the first component, namely
replace it with U∗

1 = {x1, y1}, but we should keep the locally optimal hiding set U2 in the second
component.

We want to formalize this understanding of how vertices in B, W and U depend on one another in
a hiding set U ∪ W for B. The following definition constructs a graph that describes the structure of
the hiding sets that we are studying in terms of these dependencies.

Definition 8.20 (Hiding set graph). For a tight (and non-empty) set of vertices X in G, the hiding set
graph H = H(G, X) is an undirected graph defined as follows:

• The set of vertices of H is V (H) = VXW.

47

TOWARDS AN OPTIMAL SEPARATION

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Vertices hidden by U ∪ W .

y1

x1 x2

w1 w2 w3

v1 v2 v3 v5

u2 u3 u5 u6

s5 s6 s7

(b) Hiding set graph H(U ∪ W).

Figure 11: Pebble configuration with hiding set and corresponding hiding set graph.

• The set of edges E(H) of H consists of all pairs of vertices (x, y) for x, y ∈ VXW such that
Gx

M ∩ VXTxUW ∩ Gy
M ∩ VXTyUW 6=∅.

We say that the vertex set X is hiding-connected if H(G, X) is a connected graph.

When the graph G and vertex set X are clear from context, we will sometimes write only H(X)
or even just H. To illustrate Definition 8.20, we give an example.

Example 8.21. Consider again the pebble configuration (B,W) = ({x1, y1, v5}, {w3, s6, s7}) from
Example 8.19 with hiding set U = {v1, u2, u3, v3, s5}, where we have shaded the set of hidden vertices
in Figure 11(a). The hiding set graph H(X) for X = U ∪ W = {v1, u2, u3, v3, w3, s5, s6, s7} has
been drawn in Figure 11(b). In accordance with the intuition sketched in Example 8.19,H(X) consists
of two connected components.

Note that there are edges from the top vertex y1 in the first component to every other vertex in
this component and from the top vertex v5 to every other vertex in the second component. We will
prove presently that this is always the case (Lemma 8.22). Perhaps a more interesting edge in H(X)
is, for instance, (w1, x2). This edge exists since XTw1U = {v1, u2, u3} and XTx2U = {u2, u3, v3, w3}
intersect and since as a consequence of this (which is easily verified) we have Πw1

M ∩ VXTw1UW ∩
Πx2

M ∩ VXTx2UW 6= ∅. For the same reason, there is an edge (u5, u6) since XTu5U = {s5, s6} and
XTu6U = {s6, s7} intersect.

Lemma 8.22. Suppose for a tight vertex set X that x ∈ VXW and y ∈ XTxU. Then x and y are in the
same connected component of H(X).

Proof. Note first that x, y ∈ VXW by assumption, so x and y are both vertices in H(X). Since x
is above y we have Gx

M ⊇ Gy
M and we get Gx

M ∩ VXTxUW ∩ Gy
M ∩ VXTyUW = VXTxUW ∩ Gy

M ∩
{y} = {y} 6= ∅. Thus, (x, y) is an edge in H(X), so x and y are certainly in the same connected
component.

Corollary 8.23. If X is tight and x ∈ VXW then x and all of XTxU are in the same connected compo-
nent of H(X).

The next lemma says that if H(X) is a hiding set graph with vertex set V = VXW, then the
connected components V1, . . . , Vk of H(X) are themselves hiding set graphs defined over the hiding-
connected subsets X ∩ V1, . . . , X ∩ Vk.

Lemma 8.24 (Lemma 3.3 in [43]). Let X be a tight set and let Vi be one of the connected components
in H(X). Then the subgraph of H(X) induced by Vi is identical to the hiding set graph H(X ∩ Vi)
defined on the vertex subset X ∩ Vi. In particular, it holds that Vi = VX ∩ ViW.

48

8 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Proof. We need to show that Vi = VX ∩ ViW and that the edges of H(X) in Vi are exactly the edges
in H(X ∩ Vi). Let us first show that y ∈ Vi if and only if y ∈ VX ∩ ViW.

(⇒) Suppose y ∈ Vi. Then XTyU ⊆ Vi by Corollary 8.23. Also, XTyU ⊆ X by definition, so
XTyU ⊆ X ∩ Vi. Since y ∈ VXTyUW by Lemma 8.17, clearly y ∈ VX ∩ ViW.

(⇐) Suppose y ∈ VX ∩ ViW. Since X is tight, its subset X ∩ Vi must be tight as well. Applying
Lemma 8.17 twice, we deduce that (X ∩ Vi)TyU hides y and that XTyU ⊆ (X ∩ Vi)TyU since XTyU

is contained in any subset of X that hides y. But then a third appeal to Lemma 8.17 yields that
(X ∩ Vi)TyU ⊆ XTyU since XTyU ⊆ (X ∩ Vi)TyU ⊆ X ∩ Vi and consequently

XTyU = (X ∩ Vi)TyU . (8.7)

By Corollary 8.23, y and all of (X ∩ Vi)TyU = XTyU are in the same connected component. Since
XTyU ⊆ Vi it follows that y ∈ Vi.

This shows that Vi = VX ∩ ViW. Plugging (8.7) into Definition 8.20, we see that (x, y) is an edge
in H(X) for x, y ∈ Vi if and only if (x, y) is an edge in H(X ∩ Vi).

Now we are in a position to describe the structure of the proof that pyramid graphs have the LHC
property.

Theorem 8.25 (Analogue of Theorem 3.7 in [43]). Let P = (B,W) be any black-white pebble
configuration on a pyramid Π. Then there is a vertex set U such that U ∪ W hides B, potΠ(P) =
m(U) and either U = B or |U | < |B|+ |W |.

The idea is to construct the graph H = H(Π, U ∪ W), study the different connected components
in H, find good hiding sets locally that satisfy the LHC property (which we prove is true for each local
hiding-connected subset of U ∪ W), and then add all of these partial hiding sets together to get a
globally good hiding set.

Unfortunately, this does not quite work. Let us nevertheless attempt to do the proof, note where
and why it fails, and then see how Klawe fixes the broken details.

Tentative proof of Theorem 8.25. Let U be a set of vertices in Π such that U ∪ W hides B and
pot(P) = m(U). Suppose that U has minimal size among all such sets, and furthermore that among
all such minimum-measure and minimum-size sets U has the largest intersection with B.

Assume without loss of generality (Lemma 8.18) that U ∪ W is tight, so that we can construct H.
Let the connected components of H be V1, . . . , Vk. For all i = 1, . . . , k, let Bi = B ∩ Vi, Wi =
W ∩ Vi, and Ui = U ∩ Vi. Lemma 8.24 says that Ui ∪ Wi hides Bi. In addition, all Vi are pairwise
disjoint, so |B| =

∑k
i=1|Bi|, |W | =

∑k
i=1|Wi| and |U | =

∑k
i=1|Ui|.

Thus, if the LHC property 8.11 does not hold for U globally, there is some hiding-connected subset
Ui ∪ Wi that hides Bi but for which |Ui| ≥ |Bi| + |Wi| and Ui 6= Bi. Note that this implies that
Bi * Ui since otherwise Ui would not be minimal.

Suppose that we would know that the LHC property is true for each connected component. Then
we could find a vertex set U∗

i with U∗
i ⊆ Bi or

∣∣U∗
i

∣∣ < |Bi| + |Wi| such that U∗
i ∪ Wi hides

Bi and m
(
U∗

i

)
≤ m(Ui). Setting U∗ = (U \ Ui) ∪ U∗

i , we would get a hiding set with either
|U∗| < |U | or |U∗ ∩ B| > |U ∩ B|. The second inequality would hold since if |U∗| = |U |, then∣∣U∗

i

∣∣ = |Ui| ≥ |Bi ∪ Wi| and this would imply U∗
i = Bi and thus

∣∣U∗
i ∩ Bi

∣∣ > |Ui ∩ Bi|. This
would contradict how U was chosen above, and we would be home.

Almost. We would also need that U∗
i could be substituted for Ui in U without increasing the

measure, i.e., that m
(
U∗

i

)
≤ m

(
Ui

)
should imply m

(
(U \ Ui) ∪ U∗

i

)
≤ m

(
(U \ Ui) ∪ Ui

)
. And

this turns out not to be true.

The reason that the proof above does not quite work is that the measure in Definition 8.8 is ill-
behaved with respect to unions. Klawe provides the following example of what can happen.

49

TOWARDS AN OPTIMAL SEPARATION

Example 8.26. With vertex labels as in Figures 7 and 9–11, let X1 = {s1, s2}, X2 = {w1} and X3 =
{s3}. Then m(X1) = 4 and m(X2) = 5 but taking unions with X3 we get that m(X1 ∪ X3) = 6
and m(X2 ∪ X3) = 5. Thus m(X1) < m(X2) but m(X1 ∪ X3) > m(X2 ∪ X3).

So it is not enough to show the LHC property locally for each connected component in the graph.
We also need that sets Ui from different components can be combined into a global hiding set while
maintaining measure inequalities. This leads to the following strengthened condition for connected
components of H.

Property 8.27 (Local limited hiding-cardinality property). We say that the pebble configuration
P = (B,W) has the Local limited hiding-cardinality property, or just the Local LHC property for
short, if for any vertex set U such that U ∪ W hides B and is hiding-connected, we can find a vertex
set U∗ such that

1. U∗ is a hiding set for (B,W),

2. for any vertex set Y with Y ∩ U = ∅ it holds that m
(
Y ∪ U∗) ≤ m(Y ∪ U),

3. U∗ ⊆ B or
∣∣U∗∣∣ < |B|+ |W |.

We say that the graph G has the Local LHC property if all black-white pebble configurations P =
(B,W) on G do.

Note that if the Local LHC property holds, this in particular implies that m
(
U∗) ≤ m(U) (just

choose Y = ∅). Also, we immediately get that the LHC property holds globally.

Lemma 8.28. If G has the Local limited hiding-cardinality property 8.27, then G has the Limited
hiding-cardinality property 8.11.

Proof. Consider the tentative proof of Theorem 8.25 and look at the point where it breaks down. If we
instead use the Local LHC property to find U∗

i , this time we get that m
(
U∗

i

)
≤ m

(
Ui

)
does indeed

imply m
(
(U \ Ui) ∪ U∗

i

)
≤ m

(
(U \ Ui) ∪ Ui

)
, and the theorem follows.

An obvious way to get the inequality m(Y ∪ U∗) ≤ m(Y ∪ U) in Property 8.27 would be to
require that mj(U∗) ≤ mj(U) for all j, but we need to be slightly more general. The next definition
identifies a sufficient condition for sets to behave well under unions with respect to the measure in
Definition 8.8.

Definition 8.29. We write U -m V if for all j ≥ 0 there is an i ≤ j such that mj(U) ≤ mi(V).

Note that it is sufficient to verify the condition in Definition 8.29 for j = 1, . . . ,maxlevel(U). For
j > maxlevel(U) we get mj(U) = 0 and the inequality trivially holds.

It is immediate that U -m V implies m(U) ≤ m(V), but the relation -m gives us more informa-
tion than that. Usual inequality m(U) ≤ m(V) holds if and only if for every j we can find an i such
that mj(U) ≤ mi(V), but in the definition of -m we are restricted to finding such an index i that is
less than or equal to j. So not only is m(U) ≤ m(V) globally, but we can also explain locally at each
level, by “looking downwards”, why U has smaller measure than V .

In Example 8.26, X1 6-m X2 since the relative cheapness of X1 compared to X2 is explained not
by a lot of vertices in X2 on low levels, but by one single high-level, and therefore expensive, vertex
in X2 which is far above X1. This is why these sets behave badly under union. If we have two sets
X1 and X2 with X1 -m X2, however, reversals of measure inequalities when taking unions as in
Example 8.26 can no longer occur.

Lemma 8.30 (Lemma 3.4 in [43]). If U -m V and Y ∩ V = ∅, then m(Y ∪ U) ≤ m(Y ∪ V).

50

8 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Proof. To show that m(Y ∪ U) ≤ m(Y ∪ V), for each level j = 1, . . . ,maxlevel(Y ∪ U) we want
to find a level i such that mj(Y ∪ U) ≤ mi(Y ∪ V). We pick the i ≤ j provided by the definition
of U -m V such that mj(U) ≤ mi(V). Since V ∩ W = ∅ and i ≤ j implies Y {�j} ⊆ Y {� i}, we
get

mj(Y ∪ U) = j + 2 · |(U ∪ Y){�j}| ≤ j + 2 · |U{�j}|+ 2 · |Y {�j}| ≤
i + 2 · |V {� i}|+ 2 · |Y {� i}| = mi(Y ∪ V) (8.8)

and the lemma follows.

So when locally improving a blocking set U that does not satisfy the LHC property to some set
U∗ that does, if we can take care that U∗ -m U in the sense of Definition 8.29 we get the Local LHC
property. All that remains is to show that this can indeed be done.

When “improving” U to U∗, we will strive to pick hiding sets of minimal size. The next definition
makes this precise.

Definition 8.31. For any set of vertices X , let

L�j(X) = min{|Y | : X{�j} ⊆ VY W and Y {�j} = Y }

denote the size of a smallest set Y such that all vertices in Y are on level j or higher and Y hides all
vertices in X on level j or higher.

Note that we only require of Y to hide X{�j} and not all of X . Given the condition that Y =
Y {�j}, this set cannot hide any vertices in X{≺j}. We make a few easy observations.

Observation 8.32. Suppose that X is a set of vertices in a layered graph G. Then:

1. L�0(X) is the minimal size of any hiding set for X .

2. If X ⊆ Y , then L�j(X) ≤ L�j(Y) for all j.

3. It always holds that L�j(X) ≤ |X{�j}| ≤ |X|.

Proof. Part 1 follows from the fact that V {�0} = V for any set V . If X ⊆ Y , then X{�j} ⊆
Y {�j} and any hiding set for X{�j} works also for Y {�j}, which yields part 2. Part 3 holds since
X{�j} ⊆ X is always a possible hiding set for itself.

For any vertex set V in any layered graph G, we can always find a set hiding V that has “minimal
cardinality at each level” in the sense of Definition 8.31.

Lemma 8.33 (Lemma 3.5 in [43]). For any vertex set V we can find a hiding set V ∗ such that∣∣V ∗{�j}
∣∣ ≤ L�j(V) for all j, and either V ∗ = V or |V ∗| < |V |.

Proof. If |V {�j}| ≤ L�j(V) for all j, we can choose V ∗ = V . Suppose this is not the case, and let
k be minimal such that |V {�k}| > L�k(V). Let V ′ be a minimum-size hiding set for V {�k} with
V ′ = V ′{�k} and

∣∣V ′∣∣ = |L�k(V)| and set V ∗ = V {≺k}
.
∪ V ′. Since V {≺k} hides itself (any set

does), we have that V ∗ hides V = V {≺k}
.
∪ V {�k} and that∣∣V ∗∣∣ = |V {≺k}|+ |V ′| < |V {≺k}|+ |V {�k}| = |V | . (8.9)

Combining (8.9) with part 1 of Observation 8.32, we see that the minimal index found above must be
k = 0. Going through the same argument as above again, we see that

∣∣V ∗{�j}
∣∣ ≤ L�j(V) for all

j, since otherwise (8.9) would yield a contradiction to the fact that V ′ = V ′{�0} was chosen as a
minimum-size hiding set for V .

51

TOWARDS AN OPTIMAL SEPARATION

We noted above that L�0(X) is the cardinality of a minimum-size hiding set of X . For j > 0, the
quantity L�j(X) is large if one needs many vertices on level ≥ j to hide X{�j}, i.e., if X{�j} is
“spread out” in some sense. Let us consider a pyramid graph and suppose that X is a tight and hiding-
connected set in which the level-difference maxlevel(X) −minlevel(X) is large. Then it seems that
|X| should also have to be large, since the pyramid “fans out” so quickly. This intuition might be
helpful when looking at the next, crucial definition of Klawe.

Definition 8.34 (Spreading graph). We say that the layered DAG G is a spreading graph if for every
(non-empty) hiding-connected set X in G and every level j = 1, . . . ,maxlevel(VXW), the spreading
inequality

|X| ≥ L�j(VXW) + j −minlevel(X) (8.10)

holds.

Let us try to give some more intuition for Definition 8.34 by considering two extreme cases in a
pyramid graph:

• For j ≤ minlevel(X), we have that the term j − minlevel(X) is non-positive, X{�j} = X ,
and VX{�j}W = VXW. In this case, (8.10) is just the trivial fact that no set that hides VXW
need be larger than X itself.

• Consider j = maxlevel(VXW), and suppose that VX{�j}W is a single vertex v with XTxU = X .
Then (8.10) requires that |X| ≥ 1 + level(x)−minlevel(X), and this can be proven to hold by
the “converging paths” argument of Theorem 8.3 and Observation 8.5.

Very loosely, Definition 8.34 says that if X contains vertices at low levels that help to hide other
vertices at high levels, then X must be a large set. Just as we tried to argue above, the spreading
inequality (8.10) does indeed hold for pyramids.

Theorem 8.35 ([43]). Pyramids are spreading graphs.

Unfortunately, the proof of Theorem 8.35 in [43] is rather involved. The analysis is divided into
two parts, by first showing that a class of so-called nice graphs are spreading, and then demonstrating
that pyramid graphs are nice. In Section 8.4, we give a simplified, direct proof of the fact that pyramids
are spreading that might be of independent interest.

Accepting Theorem 8.35 on faith for now, we are ready for the decisive lemma: If our layered
DAG is a spreading graph and if U ∪ W is a hiding-connected set hiding B such that U is too large
for the conditions in the Local limited hiding-cardinality property 8.27 to hold, then replacing U by
the minimum-size hiding set in Lemma 8.33 we get a hiding set in accordance with the Local LHC
property.

Lemma 8.36 (Lemma 3.6 in [43]). Suppose that B,W,U are vertex sets in a layered spreading
graph G such that U ∪ W hides B and is tight and hiding-connected. Then there is a vertex set U∗

such that U∗ ∪ W hides B, U∗ -m U , and either U∗ = B or |U∗| < |B|+ |W |.

Postponing the proof of Lemma 8.36 for a moment, let us note that if we combine this lemma with
Lemma 8.30 and Theorem 8.35, the Local limited hiding-cardinality property for pyramids follows.

Corollary 8.37. Pyramid graphs have the Local limited hiding-cardinality property 8.27.

Proof of Corollary 8.37. This is more or less immediate, but we write down the details for complete-
ness. Since pyramids are spreading by Theorem 8.35, Lemma 8.36 says that U∗ is a hiding set for
(B,W) and that U∗ -m U . Lemma 8.30 then yields that m(Y ∪ U∗) ≤ m(Y ∪ U) for all Y with
Y ∩ U = ∅. Finally, Lemma 8.36 also tells us that U∗ ⊆ B or |U∗| < |B| + |W |, and thus all
conditions in Property 8.27 are satisfied.

52

8 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Continuing by plugging Corollary 8.37 into Lemma 8.28, we get the global LHC property in
Theorem 8.25 on page 49. So all that is needed to conclude Klawe’s proof of the lower bound for
the black-white pebbling price of pyramids is to prove Theorem 8.35 and Lemma 8.36. We attend to
Lemma 8.36 right away, deferring a proof of Theorem 8.35 to the next subsection.

Proof of Lemma 8.36. If |U | < |B| + |W | we can pick U∗ = U and be done, so suppose that |U | ≥
|B|+ |W |. Intuitively, this should mean that U is unnecessarily large, so it ought to be possible to do
better. In fact, U is so large that we can just ignore W and pick a better U∗ that hides B all on its own.

Namely, let U∗ be a minimum-size hiding set for B as in Lemma 8.33. Then either U∗ = B or∣∣U∗∣∣ < |B| ≤ |B| + |W |. To prove the lemma, we also need to show that U∗ -m U , which will
guarantee that U∗ behaves well under union with other sets with respect to measure.

Before we do the the formal calculations, let us try to provide some intuition for why it should
be the case that U∗ -m U holds, i.e., that for every j we can find an i ≤ j such that mj

(
U∗) ≤

mi(U). Perhaps it will be helpful at this point for the reader to look at Example 8.19 again, where
the replacement of U1 = {v1, u2, u3, v3} in Figure 10(a) by U∗

1 = {x1, y1} in Figure 10(b) shows
Lemmas 8.33 and 8.36 in action.

Suppose first that j ≤ minlevel(U ∪W) ≤ minlevel(U). Then the measure inequality mj(U∗) ≤
mj(U) is obvious, since U{�j} = U is so large that it can easily pay for all of U∗, let alone
U∗{�j} ⊆ U∗.

For j > minlevel(U ∪ W), however, we can worry that although our hiding set U∗ does indeed
have small size, the vertices in U∗ might be located on high levels in the graph and be very expensive
since they were chosen without regard to measure. Just throwing away all white pebbles and picking
a new set U∗ that hides B on its own is quite a drastic move, and it is not hard to construct examples
where this is very bad in terms of potential (say, exchanging s5 for v5 in the hiding set of Exam-
ple 8.19). The reason that this nevertheless works is that |U | is so large, that, in addition, U ∪ W is
hiding-connected, and that, finally, the graph under consideration is spreading. Thanks to this, if there
are a lot of expensive vertices in U∗{�j} on or above some high level j resulting in a large partial
measure mj

(
U∗), the number of vertices on or above level L = minlevel(U ∪W) in U = U{�L} is

large enough to yield at least as large a partial measure mL
(
U

)
.

Let us do the formal proof, divided into the two cases above.

1. j ≤ minlevel(U ∪ W): Using the lower bound on the size of U and that level j is no higher
than the minimal level of U , we get

mj
(
U∗) = j + 2 ·

∣∣U∗{�j}
∣∣ [

by definition of mj(·)
]

≤ j + 2 ·
∣∣U∗∣∣ [

since V {�j} ⊆ V for any V
]

≤ j + 2 · |B|
[

by construction of U∗ in Lemma 8.33
]

≤ j + 2 · |U |
[

by assumption |U | ≥ |B|+ |W | ≥ |B|
]

= j + 2 ·
∣∣U{�j}

∣∣ [
U{�j} = U since j ≤ minlevel(U)

]
= mj(U)

[
by definition of mj(·)

]
and we can choose i = j in Definition 8.29.

2. j > minlevel(U ∪ W): Let L = minlevel(U ∪ W). The black pebbles in B are hidden by
U ∪ W , or in formal notation B ⊆ VU ∪ WW, so

L�j(B) ≤ L�j

(
VU ∪ WW

)
(8.11)

holds by part 2 of Observation 8.32. Moreover, U ∪ W is a hiding-connected set of vertices
in a spreading graph G, so the spreading inequality in Definition 8.34 says that |U ∪ W | ≥
L�j

(
VU ∪ WW

)
+ j − L, or

j + L�j

(
VU ∪ WW

)
≤ L + |U ∪ W | (8.12)

53

TOWARDS AN OPTIMAL SEPARATION

after reordering. Combining (8.11) and (8.12) we have that

j + L�j(B) ≤ L + |U ∪ W | (8.13)

and it follows that

mj(U∗) = j + 2 ·
∣∣U∗{�j}

∣∣ [
by definition of mj(·)

]
≤ j +

∣∣U∗{�j}
∣∣ +

∣∣U∗∣∣ [
since V {�j} ⊆ V for any V

]
≤ j + L�j(B) + |B|

[
by construction of U∗ in Lemma 8.33

]
≤ L + |U ∪ W |+ |B|

[
by the inequality (8.13)

]
≤ L + 2 · |U |

[
by assumption |U | ≥ |B|+ |W |

]
= L + 2 · |U{�L}|

[
U{�L} = U since L ≤ minlevel(U)

]
= mL(U)

[
by definition of mL(·)

]
Thus, the partial measure of U at the minimum level L is always larger than the partial measure
of U∗ at levels j above this minimum level, and we can choose i = L in Definition 8.29.

Consequently, U∗ -m U , and the lemma follows.

Concluding this subsection, we want to make a comment about Lemmas 8.33 and 8.36 and try to
rephrase what they say about hiding sets. Given a tight set U ∪ W such that B ⊆ VU ∪ WW, we
can always pick a U∗ as in Lemma 8.33 with U∗ = B or

∣∣U∗∣∣ < |B| and with
∣∣U∗{�j}

∣∣ ≤ L�j(B)
for all j. This will sometimes be a good idea, and sometimes not. Just as in Lemma 8.36, for j >
minlevel(U ∪ W) we can always prove that

mj(U∗) ≤ minlevel(U ∪ W) + |U |+ (|B|+ |W |) . (8.14)

The key message of Lemma 8.36 is that replacing U by U∗ is a good idea if U is sufficiently large,
namely if |U | ≥ |B| + |W |, in which case we are guaranteed to get mj(U∗) ≤ mL(U) for L =
minlevel(U ∪ W).

8.4 Pyramids Are Spreading Graphs

The fact that pyramids are spreading graphs, that is, that they satisfy the inequality (8.10), is a conse-
quence of the following lemma.

Lemma 8.38 (Ice-Cream Cone Lemma). If X is a tight vertex set in a pyramid Π such that H(X) is
a connected graph with vertex set V = VXW, then there is a unique vertex x ∈ V such that X = XTxU

and V = VXTxUW ⊆ Πx
M.

What the lemma says it that for any tight vertex set X , the connected components V1, . . . , Vk look
like ragged ice-cream cones turned upside down. Moreover, for each “ice-cream cone” Vi, all vertices
in X ∩ Vi are needed to hide the top vertex. The two connected components in Figure 11 are both
examples of such “ice-cream cones.”

Before proving Lemma 8.38, we show how this lemma can be used to establish that pyramid graphs
are spreading by a converging-paths argument as in Observation 8.5.

Proof of Theorem 8.35. Suppose that X is a tight and hiding-connected set, i.e., such that H(X) is
a single connected component with set of vertices V = VXW. Let x ∈ V be the vertex given by
Lemma 8.38 such that X = XTxU and V = VXTxUW ⊆ Πx

M, and let M = level(x).
For any j ≤ M we have

L�j(VXW) ≤ M − j + 1 . (8.15)

54

8 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

This is so since there are only so many vertices on level j in Πx
M and the set of all these vertices must

hide everything in VXW above level j since VXW ⊆ Πx
M.

By assumption X is tight and all of X is needed to hide x, i.e., X = XTxU. Pick a vertex v ∈ X on
bottom level L = minlevel(X). Since v ∈ XTxU there is a path P : v x such that P ∩ X = {v}.
Consider the set of converging source paths for P in Observation 8.5. All these converging paths
P1, P2, . . . , PM−L must be blocked by distinct vertices in X \ {v}, since Pi ∩ Pj ⊆ P \ {v} and
P \ {v} does not intersect X . From this the inequality

|X| ≥ M − L + 1 (8.16)

follows. By combining (8.15) and (8.16), we get that

|X| − L�j(VXW) ≥ M − L + 1− (M − j + 1) = j − L (8.17)

which is the required spreading inequality (8.10).

The rest of this subsection is devoted to proving the Ice-Cream Cone Lemma. We will use that fact
that pyramids are planar graphs where we can talk about left and right. More precisely, the following
(immediate) observation will be central in our proof.

Observation 8.39. Suppose for a planar DAG G that we have a source path P to a vertex w and two
vertices u, v ∈ G

\w
M on opposite sides of P . Then any path Q : u v must intersect P .

Given a vertex v in a pyramid Π, there is a unique path that passes through v and in every vertex
u moves to the right-hand successor of u. We will refer to this path as the north-east path through v,
or just the NE-path through v for short, and denote it by PNE(v). The path through v always moving
to the left is the north-west path or NW-path through v, and is denoted PNW(v). For instance, for
the vertex v4 in our running example pyramid in Figure 7 we have PNE(v4) = {s4, u4, v4, w4} and
PNW(v4) = {s6, u5, v4, w3, x2, y1}. To simplify the proofs in what follows, we make a couple of
observations.

Observation 8.40. Suppose that X is a tight set of vertices in a pyramid Π and that v ∈ VXW. Then
VXTvUW ⊆ Πv

M.

Proof. Since all vertices in XTvU have a path to v by definition, it holds that XTvU ⊆ Πv
M. Any vertex

u ∈ Π \ Πv
M must lie either to the left of PNE(v) or to the right of PNW(v) (or both). In the first case,

PNE(u) is a path via u that does not intersect XTvU, so u /∈ VXTvUW. In the second case, we can draw
the same conclusion by looking at PNW(u). Thus,

(
Π \Πv

M

)
∩ VXTvUW = ∅.

Observation 8.41. Suppose that X is a tight set of vertices in a DAG G and that v ∈ VXW. Then there
is a source path P to v such that |P ∩ X| = 1.

Proof. Let P1 be any source path to v and note that P1 intersects X since v ∈ VXW. Let y be the last
vertex on P1 in P1 ∩ X , i.e., the vertex on the highest level in this intersection. Since X is tight, there
is a source path P2 to y that does not intersect X \ {y}. Let P be the path that starts like P2 and then
switches to P1 in y. Then |P ∩ X| = |{y}| = 1.

Using Observations 8.40 and 8.41, we can simplify the definition of the hiding set graph. Note that
Observation 8.40 is not true for arbitrary layered DAGs, however, or even for arbitrary layered planar
DAGs, so the simplification below does not work in general.

Proposition 8.42. Let H = H(Π, X) be the hiding set graph for a tight set of vertices X in a pyra-
mid Π, and suppose that u, v ∈ VXW. Then the following conditions are equivalent:

1. (u, v) is an edge in H, i.e., Πu
M ∩ VXTuUW ∩ Πv

M ∩ VXTvUW 6= ∅.

55

TOWARDS AN OPTIMAL SEPARATION

z

x

u

v

w

si s∗ sj

P ∗

PNW(x)

PNE(x)

X

Figure 12: Illustration of proof of Lemma 8.43 that H is not connected if x /∈ VXW.

2. VXTuUW ∩ VXTvUW 6= ∅.

3. XTuU ∩ XTvU 6= ∅.

Proof. The directions (1) ⇒ (2) and (3) ⇒ (2) are immediate. The implication (2) ⇒ (1) also follows
easily, since VXTuUW ⊆ Πu

M and VXTvUW ⊆ Πv
M by Observation 8.40. To prove (2) ⇒ (3), fix some

vertex w ∈ VXTuUW ∩ VXTvUW and let P be a source path to w as in Observation 8.41 with P ∩ X =
{y} for some vertex y. Since P ∩XTuU 6= ∅ 6= P ∩XTuU by assumption, we have y ∈ XTuU∩XTvU 6=
∅.

As the first part of the proof of Lemma 8.38, we show that all vertices hidden by a hiding-connected
set X are contained in a subpyramid, the top vertex of which is also hidden by X . This gives the ice-
cream cone shape alluded to by the name of the lemma.

Lemma 8.43. Let H = H(Π, X) be the hiding set graph of a hiding-connected vertex set X in a
pyramid Π. Then there is a unique vertex x ∈ VXW such that VXW ⊆ Πx

M.

Proof. It is clear that at most one vertex x ∈ VXW can have the properties stated in the lemma. We
show that such a vertex exists. As a quick preview of the proof, we note that it is easy to find a unique
vertex x on minimal level such that VXW ⊆ Πx

M. The crucial part of the lemma is that x is hidden
by X . The reason that this holds is that the graph H is connected. If x /∈ VXW, we can find a source
path P to the top vertex z of the pyramid such that P does not intersect X but there are vertices in H
both to the left and to the right of P . But there is no way we can have an edge crossing P in H, so the
hiding set graph cannot be connected after all. Contradiction.

The above paragraph really is the whole proof, but let us also provide the (somewhat tedious)
formal details for completeness. To follow the formalization of the argument, the reader might be
helped by looking at Figure 12. Suppose that Π has height h and let s1, s2, . . . , sh+1 be the sources
enumerated from left to right. Look at the north-east paths PNE(s1), PNE(s2), . . . and let si be the first
vertex such that PNE(si) ∩ VXW 6= ∅. Similarly, consider PNW(sh+1), PNW(sh), . . . and let sj be the
first vertex such that PNW(sj) ∩ VXW 6= ∅. It clearly holds that i ≤ j.

56

8 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Let x be the unique vertex where PNE(si) and PNW(sj) intersect. By construction, we have VXW ⊆
Πx

M, since no NE-path to the left of PNE(si) = PNE(x) intersects VXW and neither does any NW-path
to the right of PNW(sj) = PNW(x). We need to show that it also holds that x ∈ VXW.

To derive a contradiction, suppose instead that x /∈ VXW. By definition, there is a path P from
some source s∗ to x such that P ∩ VXW = ∅. P cannot coincide with PNE(x) or PNW(x) since the
latter two paths both intersect VXW by construction. Since ΠO

\x ∩ VXW = ∅, we can extend P to a path
P ∗ : s∗ z via x having the property that P ∗ ∩ VXW = ∅ but there are vertices in H(X) both to the
left and to the right of P ∗, namely, the non-empty sets PNE(x) ∩ VXW ∩Πx

M and PNW(x) ∩ VXW ∩Πx
M.

We claim that this implies that H is not connected. This is a contradiction to the assumptions in the
statement of the lemma and it follows that x ∈ VXW must hold.

To establish the claim, note that if H is connected, there must exist some edge (u, v) between a
vertex u to the left of P ∗ and a vertex v to the right of P ∗. Then Proposition 8.42 says that VXTuUW ∩
VXTvUW 6= ∅. Pick any vertex w ∈ VXTuUW ∩ VXTvUW and assume without loss of generality that w
is on the right-hand side of P ∗. We prove that such a vertex w cannot exist. See the example vertices
labelled u, v and w in Figure 12, which illustrate the fact that w /∈ VXTuUW if w ∈ VXTvUW.

Since w is assumed to be hidden by VXTuUW, the NW-path through w must intersect XTuU some-
where before w or in w. Fix any y ∈ PNW(w) ∩ XTuU ∩ Πw

M and note that y must also be located
to the right of P ∗. By Definition 8.16, there is a source path P ′ via y to u such that P ′ ∩ X = {y}.
But P ′ must intersect P ∗ somewhere above y, since y is to the right and u is to the left of P ∗. (Here
we use Observation 8.39.) Consider the source path that starts like P ∗ and then switches to P ′ at some
intersection point in P ′ ∩ P ∗ ∩ ΠO

\y . This path reaches u but does not intersect X , contradicting the
assumption u ∈ VXW. It follows that VXTuUW ∩ VXTvUW = ∅ for all u and v on different sides of P ∗,
so there are no edges across P ∗ in H. This proves the claim.

The second part needed to prove Lemma 8.38 is that all vertices in X are required to hide the top
vertex x ∈ VXW found in Lemma 8.43.

Lemma 8.44. Let H = H(Π, X) be the hiding set graph of a hiding-connected vertex set X in a
pyramid Π and let x ∈ VXW be the unique vertex such that VXW ⊆ Πx

M. Then X = XTxU.

Proof. By definition, XTxU ⊆ X . We want to show that XTxU = X . Again, let us first try to convey
some intuition why the lemma is true. If X \XTxU 6= ∅, since X is hiding-connected there must exist
some vertex hidden by all of X but not by just XTxU or X \ XTxU (otherwise there can be no edge
between the components ofH containing XTxU and X \XTxU, respectively). But if so, it can be shown
that the extra vertices in X \XTxU help XTxU to hide one of its own vertices. This contradicts the fact
that X is tight, so we must have XTxU = X which proves the lemma.

Let us fill in the formal details in this proof sketch. Assume, to derive a contradiction, that XTxU 6=
X . Since X is tight, it holds that (X\XTxU)∩ VXTxUW = ∅, soH contains vertices outside of VXTxUW.
SinceH is connected, there must exist some edge

(
u, u′

)
between a pair of vertices u ∈ VXW\VXTxUW

and u′ ∈ VXTxUW. Lemma 8.17 says that XTu′U ⊆ XTxU and Proposition 8.42 then tells us that
XTuU ∩ XTxU 6= ∅. Also, XTuU \ XTxU 6= ∅ since u /∈ XTxU. For the rest of this proof, fix some
arbitrary vertices r ∈ XTuU ∩ XTxU and s ∈ XTuU \XTxU. We refer to Figure 13 for an illustration of
the proof from here onwards.

By Definition 8.16, there are source paths Pr via r to u and Ps via s to u that intersect X only in
r and s, respectively. Also, there is a source path P to x such that P ∩ X = {r} since r ∈ XTxU.
Suppose without loss of generality that s is to the right of P . The paths Ps and P cannot intersect
between s and u. To see this, observe that if Ps crosses P after s but before r, then by starting with P
and switching to Ps at the intersection point we get a source path to u that is not blocked by X . And
if the crossing is after r, we can start with Ps and then switch to P when the paths intersect, which
implies that s ∈ XTxU contrary to assumption. Thus u is located to the right of P as well.

Extend Ps by going north-west from u until hitting P , which must happen somewhere in between
r and x, and then following P to x. Denote this extended path by PE

s and let w be the vertex starting

57

TOWARDS AN OPTIMAL SEPARATION

x

w

v

u

r

s

VXTxUW

XTxU

XTuU \XTxU

P

PE
s

Pr

Figure 13: Illustration of proof of Lemma 8.44 that all of X is needed to hide x.

from which PE
s and P coincide. The path PE

s must intersect X in some more vertex after s since
s /∈ XTxU. Pick any v ∈ PE

s ∩ (X \ {s}). By construction, v must be located strictly between u
and w. We claim that X \ {v} hides v. This contradicts the tightness of X and the lemma follows.

To prove the claim, consider any source path Pv to v and assume that Pv ∩ (X \ {v}) = ∅. Then,
in particular, r /∈ Pv. Suppose that Pv passes to the left of r. By planarity, Pv must intersect P
somewhere above r. But if so, we can construct a source path P ′ to x that starts like Pv and switches
to P at this intersection point. We get P ′ ∩ X = ∅, which contradicts x ∈ XTxU. If instead Pv passes
r on the right, then Pv must cross Pr in order to get to v. This implies that there is a source path P ′′

to u such that P ′′ ∩ X = ∅, namely the path obtained by starting to go along Pv and then changing
to Pr when the two paths intersect above r. Thus we get a contradiction in this case as well. Hence,
X \ {v} blocks any source path to v as claimed.

The Ice-Cream Cone Lemma 8.38 now follows. Thereby, the proof of the lower bound on the
black-white pebbling price of pyramid graphs in Theorem 8.14 on page 45 is complete.

9 A Tight Bound for Blob-Pebbling the Pyramid

Inspired by Klawe’s ideas in Section 8, we want to do something similar for the blob-pebble game
in Definition 5.8 on page 22. In this section, we study blob-pebblable DAGs (Definition 5.6) that
are also layered. We show that for all such DAGs Gh of height h that are spreading in the sense of
Definition 8.34, it holds that Blob-Peb(Gh) = Θ(h). In particular, this bound holds for pyramids Πh

since they are spreading by Theorem 8.35.
The constant factor that we get in our lower bound is moderately small and explicit. In fact, we

believe that it should hold that Blob-Peb(Gh) ≥ h/2 + O(1) for layered spreading graphs Gh of
height h, just as in the standard black-white pebble game. As we have not made any real attempt to
get optimal constants, the factor in our lower bound can be improved with a minor effort, but some
additional idea seems to be needed to push the constant all the way up to 1

2 .

58

9 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

9.1 Definitions and Notation for the Blob-Pebbling Price Lower Bound

Recall that a vertex set U hides a black pebble on b if it blocks all source paths visiting v. For a blob B,
which is a chain by Definition 5.7, it appears natural to extend this definition by requiring that U should
block all paths going through all of B. We recall the terminology and notation from Definition 5.5 that
a black blob B and a path P agree with each other, or that P is a path via B, if B ⊆ P , and that
Pvia(B) denotes the set of all source paths agreeing with B.

Definition 9.1 (Blocked black blob). A vertex set U blocks a blob B if U blocks all P ∈ Pvia(B).

A terminological aside: Recalling the discussion in the beginning of Section 8.2, it seems natural
to say that U blocks a black blob B rather than hides it, since standing at the sources we might “see”
the beginning of B, but if we try to walk any path via B we will fail before reaching the top of B
since U blocks the path. This distinction between hiding and blocking turns out to be a very important
one in our lower bound proof for blob-pebbling price. Of course, if B is an atomic black pebble, i.e.,
|B| = 1, the hiding and blocking relations coincide.

Let us next define what it means to block a blob-pebbling configuration.

Definition 9.2 (Unblocked paths). For [B]〈W 〉 an blob subconfiguration, the set of unblocked paths
for [B]〈W 〉 is

unblocked([B]〈W 〉) = {P ∈ Pvia(B) | W does not block P}
and we say that U blocks [B]〈W 〉 if U blocks all paths in unblocked([B]〈W 〉). We say that U blocks
the blob-pebbling configuration S if U blocks all [B]〈W 〉 ∈ S. If so, we say that U is a blocker of
[B]〈W 〉 or S, respectively, or a blocking set for [B]〈W 〉 or S.

Comparing to Section 8.2, note that when blocking a path P ∈ Pvia(B), U can only use the white
pebbles W that are associated with B in [B]〈W〉. Although there might be white pebbles from other
subconfigurations [B′]〈W ′〉 6= [B]〈W〉 that would be really helpful, U cannot enlist the help of the
white pebbles in W ′ when blocking B. The reason for defining the blocking relation in this way is
that these white pebbles can suddenly disappear due to pebbling moves performed on such subcon-
figurations [B′]〈W ′〉.

Reusing the definition of measure in Definition 8.8 on page 42, we generalize the concept of
potential to blob-pebbling configurations as follows.

Definition 9.3 (Blob-pebbling potential). The potential of an a blob-pebbling configuration S is

pot(S) = min{m(U) : U blocks S} .

If U is such that U blocks S and U has minimal measure m(U) among all blocking sets for S, we say
that U is a minimum-measure blocking set for S.

To compare blob-pebbling potential with the black-white pebbling potential in Definition 8.9, con-
sider the following examples with vertex labels as in Figures 7 and 9–11.
Example 9.4. For the blob-pebbling configuration S =

{
[z]〈y1〉, [z]〈y2〉

}
, the minimum-measure

blocker is U = {z}. In comparison, the standard black-white pebble configuration P = (B,W) =
({z}, {y1, y2}) has U = ∅ as minimum-measure hiding set.
Example 9.5. For the blob-pebbling configuration S =

{
[z]〈∅〉, [y1]〈x1, x2〉

}
, the minimum-measure

blocker is again U = {z}. In comparison, for the standard black-white pebble configuration P =
(B,W) = ({z, y1}, {x1, x2}) we have the minimum-measure hiding set U = {x3}.
Remark 9.6. Perhaps it is also worth pointing out that Definition 9.3 is indeed a strict generalization of
Definition 8.9. Given a black-white pebble configuration P = (B,W) we can construct an equivalent
blob-pebbling configuration S(P) with respect to potential by setting

S(P) =
{[

b
]〈

W ∩ Gb
M

〉∣∣b ∈ B
}

(9.1)

but as the examples above show going in the other direction is not possible.

59

TOWARDS AN OPTIMAL SEPARATION

Since we have accumulated a number of different minimality criteria for blocking sets, let us pause
to clarify the terminology:

• The vertex set U is a subset-minimal, or just minimal, blocking set for the blob-pebbling config-
uration S if no strict subset U ′ $ U is a blocking set for S.

• U is a minimum-measure blocking set for S if it has minimal measure among all blocking sets
for S (and thus yields the potential of S).

• U is a minimum-size blocking set for S if it has minimal size among all blocking sets for S.

Note that we can assume without loss of generality that minimum-measure and minimum-size blockers
are both subset-minimal, since throwing away superfluous vertices can only decrease the measure and
size, respectively. However, minimum-measure blockers need not have minimal size and vice versa.
For a simple example of this, consider (with vertex labels as in Figures 7 and 9–11) the blob-pebbling
configuration S =

{
[z]〈w3, w4〉

}
and the two blocking sets U1 = {z} and U2 = {w1, w2}.

9.2 A Lower Bound Assuming a Generalized LHC Property

For the blob-pebble game, a useful generalization of Property 8.11 on page 43 turns out to be the
following.

Property 9.7 (Generalized limited hiding-cardinality property). We say that a blob-pebbling con-
figuration S on a layered blob-pebblable DAG G has the Generalized limited hiding-cardinality prop-
erty with parameter CK if there is a vertex set U such that

1. U blocks S,

2. pot(S) = m(U), i.e., U is a minimum-measure blocker of S,

3. |U | ≤ CK · cost(S).

For brevity, in what follows we will just refer to the Generalized LHC property.
We say that the graph G has the Generalized LHC property with parameter CK if all blob-pebbling

configurations S on G have the Generalized LHC property with parameter CK .

When the parameter CK is clear from context, we will just write that S or G has the Generalized
LHC property.

For all layered blob-pebblable DAGs Gh of height h that have the Generalized LHC property and
are spreading, it holds that Blob-Peb(Gh) = Θ(h). The proof of this fact is very much in the spirit of
the proofs of Lemma 8.12 and Theorem 8.14, although the details are slightly more complicated.

Theorem 9.8 (Analogue of Theorem 8.14). Suppose that Gh is a layered blob-pebblable DAG of
height h possessing the Generalized LHC property 9.7 with some fixed parameter CK . Then for any
unconditional blob-pebbling P =

{
S0 = ∅, S1, . . . , Sτ

}
of Gh it holds that

pot(St) ≤ (2CK + 1) ·max
s≤t

{cost(Ss)} . (9.2)

In particular, for any family of layered blob-pebblable DAGs Gh that are also spreading in the sense
of Definition 8.34, we have Blob-Peb(Gh) = Θ(h).

We make two separate observations before presenting the proof.

Observation 9.9. For any layered DAG Gh of height h it holds that Blob-Peb(Gh) = O(h).

Proof. Any layered DAG Gh can be black-pebbled with h+O(1) pebbles by Theorem 8.2 on page 39,
and it is easy to see that a blob-pebbling can mimic a black pebbling in the same cost.

60

9 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

Observation 9.10. If Gh is a layered blob-pebblable DAG of height h that is spreading in the sense of
Definition 8.34, then potGh

([z]〈∅〉) = h + 2.

Proof. The proof is fairly similar to the corresponding case for pyramids in Lemma 8.13. Note, though,
that in contrast to Lemma 8.13, here we cannot get the statement from the Generalized LHC property,
but instead have to prove it directly.

Since [z] is an atomic blob, the blocking and hiding relations coincide. The set U = {z} hides
itself and has measure h + 2. We show that any other blocking set must have strictly larger measure.

Suppose that z is hidden by some vertex set U ′ 6= {z}. This U ′ is minimal without loss of
generality. In particular, we can assume that U ′ is tight in the sense of Definition 8.15 and that U ′ =
U ′TzU. Then by Corollary 8.23 it holds that U ′ is hiding-connected. Letting L = minlevel

(
U ′)

and setting j = h in the spreading inequality (8.10), we get that
∣∣U ′∣∣ ≥ 1 + h − L and hence

m
(
U ′) ≥ mL

(
U ′) ≥ L + 2(1 + h− L) = 2h− L + 2 > h + 2 since L < h.

Proof of Theorem 9.8. The statement in the theorem follows from Observations 9.9 and 9.10 combined
with the inequality (9.2), so just as for Theorem 8.14 the crux of the matter is the induction proof
needed to get this inequality.

Suppose that Ut is such that it blocks St and pot(St) = m(Ut). By the inductive hypothesis, we
have that pot(St) ≤ (2CK + 1) · maxs≤t{cost(Ss)}. We want to show for St+1 that pot(St+1) ≤
(2CK + 1) ·maxs≤t+1{cost(Ss)}. Clearly, this follows if we can prove that

pot(St+1) ≤ max{pot(St), (2CK + 1) · cost(St)} . (9.3)

We also note that if Ut blocks St+1 we are done, since if so pot(St+1) ≤ m(Ut) = pot(St).
We make a case analysis depending on the type of move in Definition 5.8 made to get from St

to St+1. Analogously with the proof of Lemma 8.12, we want to show that we can use Ut to block
St+1 as long as the move is not an introduction on a source vertex and then use the Generalized LHC
property to take care of such black pebble placements on sources.

Erasure St+1 = St \
{
[B]〈W〉

}
for [B]〈W〉 ∈ St. Obviously, Ut blocks St+1 ⊆ St.

Inflation St+1 = St ∪
{
[B]〈W〉

}
for [B]〈W〉 inflated from some [B′]〈W ′〉 ∈ St such that

B′ ⊆ B , (9.4a)

W ′ ∩ lpp(B) ⊆ W , and (9.4b)

B ∩ W ′ = ∅ . (9.4c)

We claim that Ut blocks [B]〈W〉 and thus all of St+1. Let us first argue intuitively why. Suppose
that P is any source path agreeing with B. This path also agrees with B′, and so must be blocked
by Ut ∪ W ′ by assumption. If Ut blocks B we are done. We can worry, though, that Ut does
not block P , but that instead P was blocked by some w ∈ W ′ that disappeared as a result of the
inflation move. But if w ∈ W ′ is on a path via B, it cannot have disappeared, so this can never
happen.

We now write down the formal details. With the notation in Definition 9.2, fix any path P ∈
unblocked([B]〈W 〉). We need to show that P ∩ Ut 6= ∅. Let us assume without loss of
generality that P ends in top(B), for Ut blocks [B]〈W〉 precisely if it blocks the paths P ∩
G

top(B)
M for all P ∈ unblocked([B]〈W 〉). We note that by definition, the fact that P agrees with

a chain V and ends in top(V) implies that

P ⊆ V
.
∪ lpp(V) . (9.5)

61

TOWARDS AN OPTIMAL SEPARATION

Since P agrees with B, or in formal notation P ∈ Pvia(B), and since B′ ⊆ B by (9.4a), we have
P ∈ Pvia(B′). By assumption, Ut blocks [B′]〈W ′〉, which in particular means that Ut ∪ W ′

intersects the path P agreeing with B′. We get

∅ 6= P ∩
(
Ut ∪ W ′) [

by definition of blocking
]

= (P ∩ Ut)∪
(
(P \B) ∩ W ′) [

since B ∩ W ′ = ∅ by (9.4c)
]

= (P ∩ Ut) ∪
(
P ∩ lpp(B) ∩ W ′) [

since P ⊆ B
.
∪ lpp(B) by (9.5)

]
⊆ (P ∩ Ut) ∪ (P ∩ W)

[
since lpp(B) ∩ W ′ ⊆ W by (9.4b)

]
= P ∩ Ut

[
P ∩ W = ∅ if P ∈ unblocked([B]〈W〉)

]
so P ∩ Ut 6= ∅ and the desired conclusion that Ut blocks the path P follows.

Merger St+1 = St ∪
{
[B]〈W〉

}
for [B]〈W〉 derived by merger of [B1]〈W1〉, [B2]〈W2〉 ∈ St such

that

B1 ∩ W2 = ∅ , (9.6a)

B2 ∩ W1 = {v∗} , (9.6b)

B = (B1 ∪ B2) \ {v∗} , and (9.6c)

W =
(
(W1 ∪ W2) \ {v∗}

)
∩ lpp(B) . (9.6d)

Let us again first argue informally that if a set of vertices Ut blocks two subconfigurations
[B1]〈W1〉 and [B2]〈W2〉, it must also block their merger. Let P be any path via B, and sup-
pose in addition that P visits the merger vertex v∗. If so, P agrees with B2 and must be blocked
by Ut ∪ W2. If on the other hand P agrees with B but does not visit v∗, it is a path via B1 that
in addition does not pass through the white pebble in W1 eliminated in the merger. This means
that Ut ∪ W1 \ {v∗} must block P . Again, we have to argue that the blocking white vertices do
not disappear when we apply the intersection with lpp(B) in (9.6d), but this is straightforward
to verify.

So let us show formally that Ut blocks [B]〈W〉, i.e., that for any P ∈ unblocked([B]〈W〉) it
holds that P ∩ Ut 6= ∅. As above, without loss of generality we consider only paths P ending
in top(B) = top(B1 ∪ B2). Recall that

Bi ∩ Wi = ∅ (9.7)

holds for all subconfigurations by definition. We divide the analysis into two subcases.

1. P ∈ Pvia(B1 ∪ B2) = Pvia(B ∪ {v∗}). If so, in particular it holds that P ∈ Pvia(B2)
and since Ut blocks [B2]〈W2〉 we have

∅ 6= P ∩
(
Ut ∪ W2

) [
by definition of blocking

]
= (P ∩ Ut)∪

(
(P \ (B1 ∪ B2)) ∩ W2

) [
by (9.6a) and (9.7)

]
= (P ∩ Ut) ∪

(
P ∩ lpp(B1 ∪ B2) ∩ W2

) [
by (9.5)

]
= (P ∩ Ut)∪

(
P ∩ lpp(B ∪ v∗) ∩ W2

) [
just rewriting using (9.6c)

]
⊆ (P ∩ Ut)∪

(
P ∩ (W2 \ {v∗}) ∩ lpp(B)

[
lpp(B ∪ {v∗}) ⊆ lpp(B) \ {v∗}

]
⊆ (P ∩ Ut) ∪ (P ∩ W)

[
by (9.6d)

]
= P ∩ Ut

[
since P ∈ unblocked([B]〈W〉)

]
so Ut blocks the path P in this case.

62

9 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

2. P ∈ Pvia(B)\Pvia(B ∪ {v∗}). This means that B ⊆ P but B ∪ {v∗} * P , so the path P
does not pass through v∗. Since P agrees with B1 and Ut blocks [B1]〈W1〉 by assumption,
we get that

∅ 6= P ∩
(
Ut ∪ W1

) [
by definition of blocking

]
= (P ∩ Ut)∪

(
(P \B) ∩ W1

) [
by (9.6b) and (9.7)

]
= (P ∩ Ut) ∪

(
P ∩ lpp(B) ∩ W1

) [
P ⊆ B

.
∪ lpp(B) by (9.5)

]
= (P ∩ Ut) ∪

(
P ∩ (W1 \ {v∗}) ∩ lpp(B)

) [
since v∗ /∈ P by assumption

]
⊆ (P ∩ Ut) ∪ (P ∩ W)

[
by (9.6d)

]
= (P ∩ Ut)

[
P ∈ unblocked([B]〈W〉)

]
and Ut blocks the path P in this case as well.

Introduction St+1 = St ∪
{
[v]〈pred(v)〉

}
. Clearly, Ut blocks St+1 if v is a non-source vertex, i.e., if

pred(v) 6= ∅, since Ut blocks St and [v]〈pred(v)〉 blocks itself.

Suppose however that v is a source vertex, so that the subconfiguration introduced is [v]〈∅〉. As
in the proof of Lemma 8.12, Ut does not necessarily block St+1 any longer but Ut+1 = Ut ∪ {v}
clearly does. For j > 0, it holds that Ut+1{�j} = Ut{�j} and thus mj(Ut+1) = mj(Ut). On
the bottom level j = 0, using that |Ut| ≤ CK · cost(St) Generalized LHC property 9.7 we have

m0(Ut+1) = 2 · |Ut+1| = 2 · (|Ut|+ 1) ≤
2 ·

(
CK · cost(St) + 1

)
≤ 2 ·

(
CK · cost(St+1) + 1

)
≤

2 ·
(
CK · cost(St+1) + cost(St+1)

)
≤ 2(CK + 1) · cost(St+1) (9.8)

and we get that

pot(St+1) ≤ m(Ut+1) ≤ maxj

{
mj(Ut+1)

}
≤ max

{
m(Ut), (2CK + 1) · cost(St+1)

}
=

max
{
pot(St), (2CK + 1) · cost(St+1)

}
(9.9)

which is what is needed for the induction step to go through.

We see that regardless of the pebbling move made in the transition St St+1, the inequality (9.3)
holds. The theorem follows by the induction principle.

Hence, in order to prove a lower bound on Blob-Peb(Gh) for layered spreading graphs Gh, it is
sufficient to find some constant CK such that these DAGs can be shown to possess the Generalized
LHC property 9.7 with parameter CK .

9.3 Some Structural Transformations

As we tried to indicate by presenting the small toy blob-pebbling configurations in Examples 9.4
and 9.5, the potential in the blob-pebble game behaves somewhat differently from the potential in the
standard pebble game. There are (at least) two important differences:

• Firstly, for the white pebbles we have to keep track of exactly which black pebbles they can help
to block. This can lead to slightly unexpected consequences such as the blocking set U and the
set of white pebbles overlapping.

63

TOWARDS AN OPTIMAL SEPARATION

• Secondly, for black blobs there is a much wider choice where to block the blob-pebbles than for
atomic pebbles. It seems that to minimize the potential, blocking black blobs on (reasonably)
low levels should still be a good idea. However, we cannot a priori exclude the possibility that
if a lot of black blobs intersect in some high-level vertex, adding this vertex to a blocking set U
might be a better idea.

In this subsection we address the first of these issues. The second issue, which turns out to be much
trickier, is dealt with in the next subsection.

One simplifying observation is that we do not have to prove Property 9.7 for arbitrary blob-
pebbling configurations. Below, we show that one can do some technical preprocessing of the blob-
pebbling configurations so that it suffices to prove the Generalized LHC property for the subclass of
configurations resulting from this preprocessing.9 Throughout this subsection, we assume that the
parameter CK is some fixed constant.

We start slowly by taking care of a pretty obvious redundancy. Let us say that the blob subconfigu-
ration [B]〈W〉 is self-blocking if W blocks B. The blob-pebbling configuration S is self-blocker-free
if there are no self-blocking subconfigurations in S. That is, if [B]〈W〉 is self-blocking, W needs no
extra help blocking B. Perhaps the simplest example of this is [B]〈W〉 = [v]〈pred(v)〉 for a non-source
vertex v. The following proposition is immediate.

Proposition 9.11. For S any blob-pebbling configuration, let S′ be the blob-pebbling configuration
with all self-blockers in S removed. Then cost(S′) ≤ cost(S), pot(S′) = pot(S) and any blocking set
U ′ for S′ is also a blocking set for S.

Corollary 9.12. Suppose that the Generalized LHC property holds for self-blocker-free blob-pebbling
configurations. Then the Generalized LHC property holds for all blob-pebbling configurations.

Proof. If S is not self-blocker-free, take the maximal S′ ⊆ S that is and the blocking set U ′ that the
Generalized LHC property provides for this S′. Then U ′ blocks S and since the two configurations S
and S′ have the same blocking sets their potentials are equal, so pot(S) = m(U ′). Finally, we have
that |U | ≤ CK · cost(S′) ≤ CK · cost(S). Thus the Generalized LHC property holds for S.

We now move on to a more interesting observation. Looking at S =
{
[z]〈y1〉, [z]〈y2〉

}
in Exam-

ple 9.4, it seems that the white pebbles really do not help at all. One might ask if we could not just
throw them away? Perhaps somewhat surprisingly, the answer is yes, and we can capture the intuitive
concept of necessary white pebbles and formalize it as follows.

Definition 9.13 (White sharpening). Given S =
{
[Bi]〈Wi〉

}
i∈[m]

, we say that S′ is a white sharpen-

ing of S if S′ =
{
[B′

i]〈W ′
i 〉

}
i∈[m]

for B′
i = Bi and W ′

i ⊆ Wi.

That is, a white sharpening removes white pebbles and thus makes the blob-pebbling configuration
stronger or “sharper” in the sense that the cost can only decrease and the potential can only increase.

Proposition 9.14. If S′ is a white sharpening of S it holds that cost(S′) ≤ cost(S) and pot(S′) ≥
pot(S). More precisely, any blocking set U ′ for S′ is also a blocking set for S.

Proof. The statement about cost is immediate from Definition 5.9. The statement about potential
clearly follows from Definition 9.3 since it holds that any blocking set U ′ for S′ is also a blocking set
for S.

In the next definition, we suppose that there is some fixed but arbitrary ordering of the vertices in
G, and that the vertices are considered in this order.

9Note that we did something similar in Section 8.3 after Lemma 8.18, when we argued that if U is a minimum-measure
hiding set for P = (B, W), we can assume without loss of generality that U ∪ W is tight. For if not, we just prove the
Limited hiding-cardinality property for some tight subset U ′ ∪ W ′ ⊆ U ∪ W instead. This is wholly analogous to the
reasoning here, but since matters become more complex we need to be a bit more careful.

64

9 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

Definition 9.15 (White elimination). For [B]〈W〉 a subconfiguration and U any blocking set for
[B]〈W〉, write W = {w1, . . . , ws}, set W 0 := W and iteratively perform the following for i =
1, . . . , s: If U ∪ (W i−1 \ {wi}) blocks B, set W i := W i−1 \ {wi}, otherwise set W i := W i−1. We
define the white elimination of [B]〈W〉 with respect to U to be W-elim([B]〈W〉, U) = [B]〈W s〉 for
W s the final set resulting from the procedure above.

For S a blob-pebbling configuration and U a blocking set for S, we define

W-elim(S, U) =
{
W-elim([B]〈W〉, U)

∣∣[B]〈W〉 ∈ S
}

. (9.10)

We say that the elimination is strict if S 6= W-elim(S, U). If S = W-elim(S, U) we say that S is
white-eliminated, or W-eliminated for short, with respect to U .

Clearly W-elim(S, U) is a white sharpening of S. And if we pick the right U , we simplify the
problem of proving the Generalized LHC property a bit more.

Lemma 9.16. If U is a minimum-measure blocking set for S, then S′ = W-elim(S, U) is a white
sharpening of S such that pot(S′) = pot(S) and U blocks S′.

Proof. Since S′ = W-elim(S, U) is a white sharpening of S (which is easily verified from Defini-
tions 9.13 and 9.15), it holds by Proposition 9.14 that pot(S′) ≥ pot(S). Looking at the construction
in Definition 9.15, we also see that the white pebbles are “sharpened away” with care so that U remains
a blocking set. Thus m(U) ≥ pot(S′) = pot(S) = m(U), and the lemma follows.

Corollary 9.17. Suppose that the Generalized LHC property holds for the set of all blob-pebbling
configurations S having the property that for all minimum-measure blocking sets U for S it holds that
S = W-elim(S, U). Then the Generalized LHC property holds for all blob-pebbling configurations.

Proof. This is essentially the same reasoning as in the proof of Corollary 9.12 plus induction. Let S be
any blob-pebbling configuration. Suppose that there exists a minimum-measure blocker U for S such
that S is not W-eliminated with respect to U . Let S1 = W-elim(S, U). Then cost(S1) ≤ cost(S) by
Proposition 9.14 and pot(S1) = pot(S) by Lemma 9.16.

If there is a minimum-measure blocker U1 for S1 such that S1 is not W-eliminated with re-
spect to U1, set S2 = W-elim(S1, U1). Continuing in this manner, we get a chain S1, S2, S3, . . .
of strict W-eliminations such that cost(S1) ≥ cost(S2) ≥ cost(S3) . . . and pot(S1) = pot(S2) =
pot(S3) = . . . This chain must terminate at some configuration Sk since the total number of white
pebbles (counted with repetitions) decreases in every round.

Let Uk be the blocker that the Generalized LHC property provides for Sk. Then Uk blocks S,
pot(S) = pot(Sk) = m(Uk), and |Uk| ≤ CK ·cost(Sk) ≤ CK ·cost(S). Thus the Generalized LHC
property holds for S.

We note that in particular, it follows from the construction in Definition 9.15 combined with Corol-
lary 9.17 that we can assume without loss of generality for any blocking set U and any blob-pebbling
configuration S that U does not intersect the set of white-pebbled vertices in S.

Proposition 9.18. If S = W-elim(S, U), then in particular it holds that U ∩ W(S) = ∅.

Proof. Any w ∈ W(S) ∩ U would have been removed in the W-elimination.

9.4 A Proof of the Generalized Limited Hiding-Cardinality Property

We are now ready to embark on the proof of the Generalized LHC property for layered spreading
DAGs.

Theorem 9.19. All layered blob-pebblable DAGs that are spreading possess the Generalized limited
hiding-cardinality property 9.7 with parameter CK = 13.

65

TOWARDS AN OPTIMAL SEPARATION

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Minimum-measure but non-tight blocking set.

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(b) Tight but non-connected blocker for blob.

Figure 14: Two blob-pebbling configurations with problematic blocking sets.

Since pyramids are spreading graphs by Theorem 8.35, this is all that we need to get the lower
bound on blob-pebbling price on pyramids from Theorem 9.8. We note that the parameter CK in
Theorem 9.19 can easily be improved. However, our main concern here is not optimality of constants
but clarity of exposition.

We prove Theorem 9.19 by applying the preprocessing in the previous subsection and then (almost)
reducing the problem to the standard black-white pebble game. However, some twists are added along
the way since our potential measure for blobs behave differently from Klawe’s potential measure for
black and white pebbles. Let us first exemplify two problems that arise if we try to do naive pattern
matching on Klawe’s proof for the standard black-white pebble game.

In the standard black-white pebble game, if U is a minimum-measure hiding set for P = (B,W),
Lemma 8.18 tells us that we can assume without loss of generality that U ∪ W is tight. This is not
true in the blob-pebble game, not even after the transformations in Section 9.3.

Example 9.20. Consider the configuration S = {[w1]〈u2, u3〉, [w4, x3]〈u4, u5〉, [x2, y2, z]〈∅〉} with
blocking set U = {x2, u1, u6} in Figure 14(a). It can be verified that U is a minimum-measure
blocking set and that the configuration S is W-eliminated with respect to U , but the set U ∪ W(S) =
{u1, u2, u3, u4, u5, u6, x2} is not tight (because of x2).

This can be handled, but a more serious problem is that even if the set U ∪ W blocking the chain
B is tight, there is no guarantee that the vertices in U ∪ W end up in the same connected component
of the hiding set graph H(U ∪ W) in Definition 8.20.

Example 9.21. Consider the single-blob configuration S = {[u5, z]〈∅〉} in Figure 14(b). It is easy to
verify that U = {v4, y2} is a subset-minimal blocker of S and also a tight vertex set. This highlights
the fact that blocking sets for blob-pebbling configurations can have rather different properties than
hiding sets for standard pebbles. In particular, a minimal blocking set for a single blob can have
several “isolated” vertices at large distances from one another. Among other problems, this leads to
difficulties in defining connected components of blocking sets for subconfigurations.

The naive attempt to generalize Definition 8.20 of connected components in a hiding set graph to
blocking sets would place the vertices v4 and y2 in different connected components {v4} and {y2},
none of which blocks S = {[u5, z]〈∅〉}. This is not what we want (compare Corollary 8.23 for hiding
sets for black-white pebble configurations). We remark that there really cannot be any other sensible
definition that places v4 and y2 in the same connected component either, at least not if we want to
appeal to the spreading properties in Definition 8.34. Since the level difference in U is 3 but the size
of the set is only 2, the spreading inequality (8.10) cannot hold for this set.

To get around this problem, we will instead use connected components defined in terms of hiding
the singleton black pebbles given by the bottom vertices of our blobs. For a start, recalling Defini-

66

9 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

tions 8.6 and 9.1, let us make an easy observation relating the hiding and blocking relations for a
blob.

Observation 9.22. If a vertex set V hides some vertex b ∈ B, then V blocks B.

Proof. If V blocks all paths visiting b, then in particular it blocks the subset of paths that not only
visits b but agree with all of B.

We will focus on the case when the bottom vertex of a blob is hidden.

Definition 9.23 (Hiding blob-pebbling configurations). We say that the vertex set U hides the sub-
configuration [B]〈W〉 if U ∪ W hides the vertex bot(B), and that U hides the blob-pebbling config-
uration S if U hides all [B]〈W〉 ∈ S.

If U does not hide [B]〈W 〉, then U blocks [B]〈W 〉 only if U ∩ GO
bot(B) does.

Proposition 9.24. Suppose that a vertex set U in a layered DAG G blocks but does not hide the subcon-
figuration [B]〈W 〉 and that [B]〈W 〉 does not block itself. Then U ∩ G

bot(B)
M does not block [B]〈W 〉,

but there is a subset U ′ ⊆ U ∩ GO
bot(B) that blocks [B]〈W 〉.

Proof. Suppose that U ∪ W blocks B but does not hide b = bot(B), and that W does not block B.
Then there is a source path P2 via B such that P2 ∩ W = ∅. Also, there is a source path P1 to b such
that P1 ∩ (U ∪ W) = ∅. Let P =

(
P1 ∩ Gb

M

)
∪

(
P2 ∩ GO

b

)
be the source path that starts like P1

and continues like P2 from b onwards. Clearly,

P ∩
((

U ∩ Gb
M

)
∪ W

)
=

(
P1 ∩ (U ∪ W)

)
∪

(
P2 ∩ W

)
= ∅ (9.11)

so U ∩ Gb
M does not block [B]〈W 〉.

Suppose that U ∩ GO
b does not block [B]〈W 〉. Since U ∪ W does not hide b, there is some source

path P1 to b with P1 ∩ (U ∪ W) = ∅. Also, since U ∪ W blocks B but
(
U ∩ GO

b

)
∪ W does not,

there is a source path P2 via B such that P2 ∩ (U ∪ W) 6= ∅ but P2 ∩ (U ∪ W) ∩ GO
b = ∅. But then

let P =
(
P1 ∩ Gb

M

)
∪

(
P2 ∩ GO

b

)
be the source path that starts like P1 and continues like P2 from b

onwards. We get that P agrees with B and that P ∩ (U ∪ W) = ∅, contradicting the assumption that
U blocks [B]〈W 〉.

We want to distinguish between subconfigurations that are hidden and subconfigurations that are
just blocked, but not hidden. To this end, let us introduce the notation

SH(S, U) =
{
[B]〈W〉 ∈ S

∣∣U hides [B]〈W〉
}

(9.12)

to denote the subconfigurations in S hidden by U and

SB(S, U) = S \ SH(S, U) (9.13)

to denote the subconfigurations that are just blocked. We write

BH(S, U) = {bot(B) | [B]〈W 〉 ∈ SH(S, U)} (9.14)

BB(S, U) = {bot(B) | [B]〈W 〉 ∈ SB(S, U)} (9.15)

to denote the black bottom vertices in these two subsets of subconfigurations and note that we can have
BH(S, U) ∩ BB(S, U) 6= ∅. The white pebbles in these subsets located below the bottom vertices of
the black blobs that they are supporting are denoted

WM
H(S, U) =

{
W ∩ Gb

M

∣∣[B]〈W 〉 ∈ SH(S, U), b = bot(B)
}

(9.16)

and

WM
B(S, U) =

{
W ∩ Gb

M

∣∣[B]〈W 〉 ∈ SB(S, U), b = bot(B)
}

. (9.17)

This notation will be used heavily in what follows, so we give a couple of simple but hopefully illumi-
nating examples before we continue.

67

TOWARDS AN OPTIMAL SEPARATION

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a)
˘
[s4, y1, z]〈v2〉, [u3, w3]〈s3〉, [w4, x3]〈v5〉

¯
.

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(b)
˘
[s4,v4,w3,x3,y2]〈∅〉, [w2,y1]〈s3,u3,x1〉, [w4]〈v5〉

¯
.

Figure 15: Examples of blob-pebbling configurations with hidden and just blocked blobs.

Example 9.25. Consider the blob-pebbling configurations and blocking sets in Figure 15. For the
blob-pebbling configuration S1 =

{
[s4, y1, z]〈v2〉, [u3, w3]〈s3〉, [w4, x3]〈v5〉

}
with blocking set U1 =

{v3, v4} in Figure 15(a), the vertex set {v4, v5} hides w4 = bot([w4, x3]) but [s4, y1, z] is blocked but
not hidden by {v2, v3, v4} and [u3, w3] is blocked but not hidden by {v3}. Thus, we have

SH(S1, U1) =
{
[w4, x3]〈v5〉

}
SB(S1, U1) =

{
[s4, y1, z]〈v2〉, [u3, w3]〈s3〉

}
BH(S1, U1) = {w4}
BB(S1, U1) = {s4, u3}
WM

H(S1, U1) = {v5}
WM

B(S1, U1) = {s3}

in this example. For the configuration S2 =
{
[s4, v4, w3, x3, y2]〈∅〉, [w2, y1]〈s3, u3, x1〉, [w4]〈v5〉

}
with blocker U2 = {s2, u4, u5} in Figure 15(b), it is straightforward to verify that

SH(S2, U2) =
{
[w2, y1]〈s3, u3, x1〉, [w4]〈v5〉

}
SB(S2, U2) =

{
[s4, v4, w3, x3, y2]〈∅〉

}
BH(S2, U2) = {w2, w4}
BB(S2, U2) = {s4}
WM

H(S2, U2) = {s3, u3, v5}
WM

B(S2, U2) = ∅

are the corresponding sets.
Let us also use the opportunity to illustrate Definition 9.15. The blob-pebbling configuration S1 is

not W-eliminated with respect to U1, since U1 also blocks this configuration with the white pebble on
s3 removed. However, a better idea measure-wise is to change the blocking set for S1 to U ′

1 = {s4, v4},
which has measure m(U ′

1) = 4 < 6 = m(U1). The vertex set U2 can be verified to be a minimum-
measure blocker for S2, but when S2 is W-eliminated with respect to U2 the white pebble on x1

disappears.
As a final remark in this example, we comment that although we have not indicated explicitly in

Figures 15(a) and 15(b) which white pebbles W are associated with which black blob B (as was done
in Figure 14(a)), this is uniquely determined by the requirement in Definition 5.7 that W ⊆ lpp(B).

For the rest of this section we will assume without loss of generality (in view of Proposition 9.11
and Corollary 9.17) that we are dealing with a blob-pebbling configuration S and a minimum-measure

68

9 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

blocker U of S such that S is free from self-blocking subconfigurations and is W-eliminated with
respect to U . As an aside, we note that it is not hard to show (using Definition 9.15 and Proposi-
tion 9.24) that this implies that WM

B(S, U) = ∅. We will tend to drop the arguments S and U for
SH , SB,BH ,BB,WM

H , and WM
B , since from now on the blob-pebbling configuration S and the blocker

U will be fixed. With this notation, Theorem 9.19 clearly follows if we can prove the following lemma.

Lemma 9.26. Let S be any blob-pebbling configuration on a layered spreading DAG and U be any
blocking set for S such that

1. pot(S) = m(U), i.e., U is a minimum-measure blocker of S,

2. S is free from self-blocking subconfigurations and is W-eliminated with respect to U , and

3. U has minimal size among all blocking sets U ′ for S such that pot(S) = m(U ′).

Then |U | ≤ 13 ·
∣∣BH ∪ BB ∪ WM

H

∣∣.
The proof is by contradiction, although we will have to work harder than for the corresponding

Theorem 8.25 for black-white pebbling and also use (the proof of) the latter theorem as a subroutine.
Thus, for the rest of this section, let us assume on the contrary that U has all the properties stated in
Lemma 9.26 but that |U | > 13 ·

∣∣BH ∪ BB ∪ WM
H

∣∣. We will show that this leads to a contradiction.
For the subconfiguration in SH that are hidden by U , one could argue that matters should be

reasonably similar to the case for standard black-white pebbling, and hopefully we could apply similar
reasoning as in Section 8.3 to prove something useful about the vertex set hiding these subconfigu-
rations. The subconfigurations in SB that are just blocked but not hidden, however, seem harder to get
a handle on (compare Example 9.21).

Let UH ⊆ U be a smallest vertex set hiding SH and let UB = U \ UH . The set UB consists of
vertices that are not involved in any hiding of subconfigurations in SH , but only in blocking subcon-
figurations in SB on levels above their bottom vertices. As a first step towards proving Lemma 9.26,
and thus Theorem 9.19, we want to argue that UB cannot be very large.

Consider the blobs in SB . By definition they are not hidden, but are blocked at some level above
level(bot(B)). Since the vertices in UB are located on high levels, a naive attempt to improve the
blocking set would be to pick some u ∈ UB and replace it by the vertices in BB corresponding
to the subconfigurations in SB that u is involved in blocking, i.e., by the set Bu =

{
bot(B)

∣∣U \
{u} does not block [B]〈W〉 ∈ SB

}
. Note that Bu is lower down in the graph than u, so (U \{u}) ∪ Bu

is obtained from U by moving vertices downwards and by construction (U \ {u}) ∪ Bu blocks S.
But by assumption, U has minimal potential and cardinality, so this new blocking set cannot be an
improvement measure- or cardinality-wise. The same holds if we extend the construction to subsets
U ′ ⊆ UB and the corresponding bottom vertices BU ′ ⊆ BB . By assumption we can never find any
subset such that (U \ {U ′}) ∪ BU ′

is a better blocker than U . It follows that the cost of the blobs that
UB helps to block must be larger than the size of UB , and in particular that |UB| ≤ |BB|. Let us write
this down as a lemma and prove it properly.

Lemma 9.27. Let S be any blob-pebbling configuration on a layered DAG and U be any blocking set
for S such that pot(S) = m(U), U has minimal size among all blocking sets U ′ for S with pot(S) =
m(U ′), and S is free from self-blocking subconfigurations and is W-eliminated with respect to U .
Then if UH ⊆ U is any smallest set hiding SH and UB = U \ UH , it holds that |UB| ≤ |BB|.

Before proving this lemma, we note the immediate corollary that if the whole blocking set U is
significantly larger than cost(S), the lion’s share of U by necessity consists not of vertices blocking
subconfigurations in SB , but of vertices hiding subconfigurations in SH . And recall that we are indeed
assuming, to get a contradiction, that U is large.

Corollary 9.28. Assume that S and U are as in Lemma 9.26 but with |U |>13 ·
∣∣BH ∪ BB ∪ WM

H

∣∣.
Let UH ⊆ U be a smallest set hiding SH . Then |UH | > 12 ·

∣∣BH ∪ BB ∪ WM
H

∣∣.
69

TOWARDS AN OPTIMAL SEPARATION

As was indicated in the informal discussion preceding Lemma 9.27, the proof of the lemma uses
the easy observation that moving vertices downwards can only decrease the measure.

Observation 9.29. Suppose that U , V1 and V2 are vertex sets in a layered DAG such that U ∩ V2 = ∅
and there is a one-to-one (but not necessarily onto) mapping f : V1 7→ V2 with the property that
level(v) ≤ level(f(v)). Then m(U ∪ V1) ≤ m(U ∪ V2).

Proof. This follows immediately from Definition 8.8 on page 42 since the mapping f tells us that

|(U ∪ V1){�j}| ≤ |U{�j}|+ |V1{�j}| ≤ |U{�j}|+ |f(V1{�j})|
≤ |U{�j}|+ |V2{�j}| ≤ |(U ∪ V2){�j}|

for all j.

Proof of Lemma 9.27. Note first that by Proposition 9.24, for every [B]〈W〉 ∈ SB with b = bot(B)
it holds that U ∩ GO

b = (UH
.
∪ UB) ∩ GO

b blocks [B]〈W〉. Therefore, all vertices in UB needed to
block [B]〈W〉 can be found in UB ∩ GO

b . Rephrasing this slightly, the blob-pebbling configuration S
is blocked by UH

.
∪

(
UB ∩

⋃
b∈BB

GO
b

)
, and since U is subset-minimal we get that

UB = UB ∩
⋃

b∈BB
GO

b . (9.18)

Consider the bipartite graph with BB and UB as the left- and right-hand vertices, where the neighbours
of each b ∈ BB are the vertices N(b) = UB ∩ GO

b in UB above b. We have that N(BB) = UB ∩⋃
b∈BB

GO
b = UB by (9.18). Let B′ ⊆ BB be a largest set such that

∣∣N(
B′

)∣∣ <
∣∣B′∣∣. If B′ = BB

we are done since this is the inequality |UB| < |BB|. Suppose therefore that B′ $ BB and |UB| =
|N(BB)| > |BB|.

For all B′′ ⊆ BB \B′ we must have
∣∣N(

B′′
)
\N

(
B′

)∣∣ ≥ ∣∣B′′∣∣, for otherwise B′′ could be added to
B′ to yield an even larger setB∗ = B′ ∪B′′ with

∣∣N(
B∗

)∣∣ < |B∗| contrary to the assumption thatB′ has
maximal size among all sets with this property. It follows by Hall’s marriage theorem that there must
exist a matching of BB \B′ into N

(
BB \B′

)
\N

(
B′

)
= UB \N

(
B′

)
. Thus,

∣∣BB \B′
∣∣ ≤ ∣∣UB \N

(
B′

)∣∣
and in addition it follows from the way our bipartite graph is constructed that every b ∈ BB \ B′ is
matched to some u ∈ UB \N

(
B′

)
with level(u) ≥ level(b).

Clearly, all subconfigurations in

S1
B =

{
[B]〈W〉 ∈ SB

∣∣ bot(B) ∈ BB \ B′
}

(9.19)

are blocked by BB \ B′ (even hidden by this set, to be precise). Also, as was argued in the beginning
of the proof, every [B]〈W〉 ∈ SB with b = bot(B) is blocked by UH ∪

(
UB ∩ GO

b

)
= UH ∪ N(b),

so all subconfigurations in
S2

B =
{
[B]〈W〉 ∈ SB

∣∣ bot(B) ∈ B′
}

(9.20)

are blocked by UH ∪ N
(
B′

)
where

∣∣N(
B′

)∣∣ <
∣∣B′∣∣. And we know that SH is blocked (even hidden)

by UH . It follows that if we let

U∗ = UH ∪ N
(
B′

)
∪

(
BB \ B′

)
(9.21)

we get a vertex set U∗ that blocks SH ∪ S1
B ∪ S2

B = S, has measure m
(
U∗) ≤ m(U) because of

Observation 9.29, and has size∣∣U∗∣∣ ≤ |UH |+
∣∣N(

B′
)∣∣ +

∣∣BB \ B′
∣∣ < |UH |+

∣∣B′∣∣ +
∣∣BB \ B′

∣∣ = |U | (9.22)

strictly less than the size of U . But this is a contradiction, since U was chosen to be of minimal size.
The lemma follows.

70

9 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

The idea in the remaining part of the proof is as follows: Fix some smallest subset UH ⊆ U that
hides SH , and let UB = U \ UH . Corollary 9.28 says that UH is the totally dominating part of U and
hence that UH is very large. But UH hides the blob subconfigurations in SH very much in a similar
way as for hiding sets in the standard black-white pebble game. And we know from Section 8.3 that
such sets need not be very large. Therefore we want to use Klawe-like ideas to derive a contradiction
by transforming UH locally into a (much) better blocking set for SH . The problem is that this might
leave some subconfigurations in SB not being blocked any longer (note that in general UB will not on
its own block SB). However, since we have chosen our parameter CK = 13 for the Generalized LHC
property 9.7 so generously and since the transformation in Section 8.3 works for the (non-generalized)
LHC property with parameter 1, we expect our locally transformed blocking set to be so much cheaper
that we can afford to take care of any subconfigurations in SB that are no longer blocked simply by
adding all bottom vertices for all black blobs in these subconfigurations to the blocking set.

We will not be able to pull this off by just making one local improvement of the hiding set as
was done in Section 8.3, though. The reason is that the local improvement to UH could potentially
be very small, but lead to very many subconfigurations in SB becoming unblocked. If so, we cannot
afford adding new vertices blocking these subconfigurations without risking to increase the size and/or
potential of our new blocking set too much. To make sure that this does not happen, we instead make
multiple local improvements of UH simultaneously. Our next lemma says that we can do this without
losing control of how the measure behaves.

Lemma 9.30 (Generalization of Lemma 8.30). Suppose that U1, . . . , Uk, V1, . . . , Vk, Y are vertex
sets in a layered graph such that for all i, j ∈ [k], i 6= j, it holds that Ui -m Vi, Vi ∩ Vj = ∅,
Ui ∩ Vj = ∅ and Y ∩ Vi = ∅. Then m

(
Y ∪

⋃k
i=1 Ui

)
≤ m

(
Y ∪

⋃k
i=1 Vi

)
.

Proof. By induction over k. The base case k = 1 is Lemma 8.30 on page 50.
For the induction step, let Y ′ = Y ∪

⋃k−1
i=1 Ui. Since Uk -m Vk and Y ′ ∩ Vk = ∅ by assumption,

we get from Lemma 8.30 that

m
(
Y ∪

⋃k
i=1 Ui

)
= m

(
Y ′ ∪ Uk

)
≤ m

(
Y ′ ∪ Vk

)
= m

(
Y ∪

⋃k−1
i=1 Ui ∪ Vk

)
. (9.23)

Letting Y ′′ = Y ∪ Vk, we see that (again by assumption) it holds for all i, j ∈ [k − 1], i 6= j, that
Ui -m Vi, Vi ∩ Vj = ∅, Ui ∩ Vj = ∅ and Y ′′ ∩ Vi = ∅. Hence, by the induction hypothesis we have

m
(
Y ∪

⋃k−1
i=1 Ui ∪ Vk

)
=m

(
Y ′′ ∪

⋃i−1
k=1 Ui

)
≤m

(
Y ′′ ∪

⋃i−1
k=1 Vi

)
=m

(
Y ∪

⋃k
i=1 Vi

)
(9.24)

and the lemma follows.

We also need an observation about the white pebbles in SH .

Observation 9.31. For any [B]〈W 〉 ∈ SH with b = bot(B) it holds that W = W ∩ Gb
M.

Proof. This is so since S is W-eliminated with respect to U . Since U ∪ W hides b = bot(B),
any vertices in W ∩ GO

b are superfluous and will be removed by the W-elimination procedure in
Definition 9.15.

Recalling from (9.16) that WM
H =

{
W ∩ Gb

M

∣∣[B]〈W 〉 ∈ SH , b = bot(B)
}

this leads to the next,
simple but crucial observation.

Observation 9.32. The vertex set UH ∪ WM
H hides the vertices in BH in the sense of Definition 8.6.

That is, we can consider
(
BH ,WM

H

)
to be (almost)10 a standard black-white pebble configuration.

This sets the stage for applying the machinery of Section 8.3.

10Not quite, since we might have BH ∩ WM
H 6= ∅. But at least we know that UH ∩ WM

H = ∅ by W-elimination and the
roles of U and W in U ∪ W are fairly indistinguishable in Klawe’s proof anyway, so this does not matter.

71

TOWARDS AN OPTIMAL SEPARATION

Appealing to Lemma 8.18 on page 46, let X ⊆ UH
.
∪ WM

H be the unique, minimal tight set such
that

VXW = VUH
.
∪WM

HW (9.25)

and define

WM
T = WM

H ∩ X (9.26a)

UT = UH ∩ X (9.26b)

to be the vertices in WM
H and UH that remains in X after having applied the bottom-up pruning proce-

dure of Lemma 8.18.
Let H = H(G, X) be the hiding set graph of Definition 8.20 for X = UT

.
∪ WM

T . Suppose that
V1, . . . , Vk are the connected components of H, and define for i = 1, . . . , k the vertex sets

Bi
H = BH ∩ Vi (9.27a)

W i
H = WM

H ∩ Vi (9.27b)

U i
H = UH ∩ Vi (9.27c)

to be the black, white and “hiding” vertices within component Vi, and

W i
T = WM

T ∩ Vi (9.27d)

U i
T = UT ∩ Vi (9.27e)

to be the vertices of WM
H and UH in component Vi that “survived” when moving to the tight subset X .

Note that we have the disjoint union equalities WM
H =

.⋃
k
i=1W i

H , UH =
.⋃

k
i=1U

i
H , et cetera for all of

these sets.
Let us also generalize Definition 8.8 of measure and partial measure to multi-sets of vertices in

the natural way, where we charge separately for each copy of every vertex. This is our way of doing
the bookkeeping for the extra vertices that might be needed later to block SB in the final step of our
construction.

This brings us to the key lemma stating how we will locally improve the blocking sets.

Lemma 9.33 (Generalization of Lemma 8.36). With the assumptions on the blob-pebbling configu-
ration S and the vertex set U as in Lemma 9.26 and with notation as above, suppose that U i

H ∪ W i
H

hides Bi
H , that H

(
U i

T ∪ W i
T

)
is a connected graph, and that∣∣U i

H

∣∣ ≥ 6 ·
∣∣Bi

H ∪ W i
H

∣∣ . (9.28)

Then we can find a multi-set U i
∗ ⊆ VU i

T ∪ W i
T W that hides the vertices in Bi

H , has
⌊
|U i

H |/3
⌋

extra
copies of some fixed but arbitrary vertex on level LU = maxlevel

(
U i

H

)
, and satisfies U i

∗ -m U i
H and∣∣U i

∗
∣∣ <

∣∣U i
H

∣∣ (where U i
∗ is measured and counted as a multi-set with repetitions).

Proof. Let U i
∗ be the set found in Lemma 8.33 on page 51, which certainly is in VU i

T ∪ W i
T W, to-

gether with the prescribed extra copies of some (fixed but arbitrary) vertex that we place on level
maxlevel

(
VU i

H ∪ W i
HW

)
≥ LU to be on the safe side. By Lemma 8.33, U i

∗ hides Bi
H , and the size of

U i
∗ counted as a multi-set with repetitions is∣∣U i

∗
∣∣ ≤ ∣∣Bi

H

∣∣ +
⌊
|U i

H |/3
⌋
≤

(
1
6 + 1

3

)
·
∣∣U i

H

∣∣ <
∣∣U i

H

∣∣ . (9.29)

It remains to show that U i
∗ -m U i

H .
The proof of this last measure inequality is very much as in Lemma 8.36, but with the distinction

that the connected graph that we are dealing with is defined over U i
T

.
∪W i

T , but we count the vertices in

72

9 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

U i
H

.
∪W i

H . Note, however, that by construction these two unions hide exactly the same set of vertices,
i.e.,

VU i
T

.
∪W i

T W = VU i
H

.
∪W i

HW . (9.30)

Recall that by Definition 8.29 on page 50, what we need to do in order to show that U i
∗ -m U i

H is to
find for each j an l ≤ j such that mj

(
U i
∗
)
≤ ml

(
U i

H

)
. As in Lemma 8.36, we divide the proof into

two cases.

1. If j ≤ minlevel
(
U i

T ∪ W i
T

)
= minlevel

(
U i

H ∪ W i
H

)
, we get

mj
(
U i
∗
)

= j + 2 ·
∣∣U i

∗{�j}
∣∣ [

by definition of mj(·)
]

≤ j + 2 ·
∣∣U i

∗
∣∣ [

since V {�j} ⊆ V for any V
]

≤ j + 2 ·
(
|Bi

H |+
⌊
|U i

H |/3
⌋) [

by Lemma 8.33 plus extra vertices
]

< j + 2 ·
∣∣U i

H

∣∣ [
by the assumption in (9.28)

]
= j + 2 ·

∣∣U i
H{�j}

∣∣ [
U i

H{�j} = U i
H since j ≤ minlevel(U i

H)
]

= mj(U i
H)

[
by definition of mj(·)

]
and we can choose l = j in Definition 8.29.

2. Consider instead j > minlevel
(
U i

T ∪ W i
T

)
and let L = minlevel

(
U i

T ∪ W i
T

)
. Since the black

pebbles in Bi
H are hidden by U i

T ∪W i
T , i.e., Bi

H ⊆ VU i
T ∪ W i

T W in formal notation, recollecting
Definition 8.31 and Observation 8.32, part 2, we see that

L�j

(
Bi

H

)
≤ L�j

(
VU i

T ∪ W i
T W

)
(9.31)

for all j. Also, since U i
T ∪ W i

T is a hiding-connected vertex set in a spreading graph G, com-
bining Definition 8.34 with the fact that U i

T ∪ W i
T ⊆ U i

H ∪ W i
H we can derive that

j + L�j

(
VU i

T ∪ W i
T W

)
≤ L +

∣∣U i
T ∪ W i

T

∣∣ ≤ L +
∣∣U i

H ∪ W i
H

∣∣ . (9.32)

Together, (9.31) and (9.32) say that

j + L�j

(
Bi

H

)
≤ L +

∣∣U i
H ∪ W i

H

∣∣ (9.33)

and using this inequality we can show that

mj(U i
∗) = j + 2 ·

∣∣U i
∗{�j}

∣∣ [
by definition of mj(·)

]
≤ j + L�j

(
Bi

H

)
+

∣∣Bi
H

∣∣ + 2 ·
⌊
|U i

H |/3
⌋ [

by Lemma 8.33 + extra vertices
]

≤ L +
∣∣U i

H ∪ W i
H

∣∣ +
∣∣Bi

H

∣∣ + 2 ·
⌊
|U i

H |/3
⌋ [

using the inequality (9.33)
]

≤ L + 5
3

∣∣U i
H

∣∣ +
∣∣Bi

H

∣∣ +
∣∣W i

H

∣∣ [
|A ∪ B| ≤ |A|+ |B|

]
≤ L + 5

3

∣∣U i
H

∣∣ + 2 ·
∣∣Bi

H ∪ W i
H

∣∣ [
|A|+ |B| ≤ 2 · |A ∪ B|

]
≤ L + 2 ·

∣∣U i
H

∣∣ [
by the assumption in (9.28)

]
= L + 2 · |U i

H{�L}|
[

since L ≤ minlevel(U i
H)

]
= mL(U i

H)
[

by definition of mL(·)
]

Thus, the partial measure of U i
H at the minimum level L is always at least as large as the partial

measure of U i
∗ at levels j above this minimum level, and we can choose l = L in Definition 8.29.

Consequently, U i
∗ -m U i

H and the lemma follows.

73

TOWARDS AN OPTIMAL SEPARATION

Now we want to determine in which connected components of the hiding set graph H we should
apply Lemma 9.33. Loosely put, we want to be sure that changing U i

H to U i
∗ is worthwhile, i.e., that

we gain enough from this transformation to compensate for the extra hassle of reblocking blobs in SB

that turn unblocked when we change U i
H . With this in mind, let us define the weight of a component

Vi in H as

w(Vi) =

{⌈
|U i

H |/6
⌉

if
∣∣U i

H

∣∣ ≥ 6 ·
∣∣Bi

H ∪ W i
H

∣∣,
0 otherwise.

(9.34)

The idea is that a component Vi has large weight if the hiding set U i
H in this component is large com-

pared to the number of bottom black vertices in Bi
H hidden and the white pebbles W i

H helping U i
H

to hide Bi
H . If we concentrate on changing the hiding sets in components with non-zero weight, we

hope to gain more from the transformation of U i
H into U i

∗ than we lose from then having to reblock-
ing SB . And since UH is large, the total weight of the non-zero-weight components is guaranteed to
be reasonably large.

Proposition 9.34. With notation as above, the total weight of all connected components V1, . . . ,Vk in
the hiding set graph H = H

(
G, UT ∪ WM

T

)
is

∑k
i=1 w(Vi) >

∣∣BH ∪ BB ∪ WM
H

∣∣.
Proof. The total size of the union of all subsets U i

H ⊆ UH with sizes
∣∣U i

H

∣∣ < 6 ·
∣∣Bi

H ∪ W i
H

∣∣ resulting
in zero-weight components Vi in H is clearly strictly less than

6 ·
k∑

i=1

∣∣Bi
H ∪ W i

H

∣∣ = 6 ·
∣∣BH ∪ WM

H

∣∣ ≤ 6 ·
∣∣BH ∪ BB ∪ WM

H

∣∣ . (9.35)

Since according to Corollary 9.28 we have that
∣∣UH

∣∣ ≥ 12 ·
∣∣BH ∪ BB ∪ WM

H

∣∣, it follows that the size
of the union

⋃
w(Vi)>0 U i

H of all subsets U i
H corresponding to non-zero-weight components Vi must

be strictly larger than 6 ·
∣∣BH ∪ BB ∪ WM

H

∣∣. But then

∑
w(Vi)>0

w(Vi) ≥
∑

w(Vi)>0

⌈
|U i

H |/6
⌉
≥ 1

6
·

∣∣∣∣∣ ⋃
w(Vi)>0

U i
H

∣∣∣∣∣ >
∣∣BH ∪ BB ∪ WM

H

∣∣ (9.36)

as claimed in the proposition.

We have now collected all tools needed to establish the Generalized limited hiding-cardinality
property for spreading graphs. Before we wrap up the proof, let us recapitulate what we have shown
so far.

We have divided the blocking set U into a disjoint union UH
.
∪ UB of the vertices UH not only

blocking but actually hiding the subconfigurations in SH ⊆ S, and the vertices UB just helping UH to
block the remaining subconfigurations in SB = S\SH . In Lemma 9.27 and Corollary 9.28, we proved
that if U is large (which we are assuming) then UB must be very small compared to UH , so we can
basically just ignore UB . If we want to do something interesting, it will have to be done with UH .

And indeed, Lemma 9.33 tells us that we can restructure UH to get a new vertex set hiding SH and
make considerable savings, but that this can lead to SB no longer being blocked. By Proposition 9.34,
there is a large fraction of UH that resides in the non-zero-weight components of the hiding set graphH
(as defined in Equation (9.34)). We would like to show that by judiciously performing the restructuring
of Lemma 9.33 in these components, we can also take care of SB .

More precisely, we claim that we can combine the hiding sets U i
∗ from Lemma 9.33 with some

subsets of UH ∪ UB and BB into a new blocking set U∗ for all of SH ∪ SB = S in such a way that
the measure m

(
U∗) does not exceed m(U) = pot(S) but so that

∣∣U∗∣∣ < |U |. But this contradicts
the assumptions in Lemma 9.26. It follows that the conclusion in Lemma 9.26, which we assumed to
be false in order to derive a contradiction, must instead be true. That is, any set U that is chosen as
in Lemma 9.26 must have size |U | ≤ 13 ·

∣∣BH ∪ BB ∪ WM
H

∣∣. This in turn implies Theorem 9.19,

74

9 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

i.e., that layered spreading graphs possess the Generalized limited hiding-cardinality property that we
assumed in order to get a lower bound on blob-pebbling price, and we are done.

We proceed to establish this final claim. Our plan is once again to do some bipartite match-
ing with the help of Hall’s theorem. Create a weighted bipartite graph with the vertices in BB ={
bot(B)

∣∣[B]〈W〉 ∈ SB

}
on the left-hand side and with the non-zero-weight connected components

among V1, . . . , Vk in H in the sense of (9.34) acting as “supervertices” on the right-hand side. Reorder
the indices among the connected components V1, . . . , Vk if needed so that the non-zero-weight compo-
nents are V1, . . . , Vk′ . All vertices in the weighted graphs are assigned weights so that each right-hand
side supervertex Vi gets its weight according to (9.34), and each left-hand vertex has weight 1.11 We
define the neighbours of each fixed vertex b ∈ BB to be

N(b) =
{
Vi

∣∣w(Vi) > 0 and maxlevel
(
U i

H

)
> level(b)

}
, (9.37)

i.e., all non-zero-weight components Vi that contain vertices in the hiding set UH that could possibly be
involved in blocking any subconfiguration [B]〈W〉 ∈ SB having bottom vertex bot(B) = b. This is so
since by Proposition 9.24, any vertex u ∈ UH helping to block such a subconfiguration [B]〈W〉 ∈ SB

must be strictly above b, so if the highest-level vertices in U i
H are on a level below b, no vertex in U i

H

can be responsible for blocking [B]〈W〉.
Let B′ ⊆ BB be a largest set such that w

(
N

(
B′

))
≤

∣∣B′∣∣. We must have

N
(
B′

)
6=

⋃k′

i=1 Vi (9.38)

since w
(⋃k′

i=1 Vi

)
>

∣∣BH ∪ BB ∪ WM
H

∣∣ ≥ ∣∣BB

∣∣ by Proposition 9.34. For all B′′ ⊆ BB \ B′ it holds
that

w
(
N

(
B′′

)
\N

(
B′

))
≥

∣∣B′′∣∣ (9.39)

since otherwise B′ would not be of largest size as assumed above. The inequality (9.39) plugged into
Hall’s marriage theorem tells us that there is a matching of the vertices in BB \ B′ to the components
in

⋃k′

i=1 Vi \ N
(
B′

)
6= ∅ with the property that no component Vi gets matched with more than w(Vi)

vertices from BB \ B′.
Reorder the components in the hiding set graph H so that the matched components in H are

V1, . . . , Vm and the rest of the components are Vm+1, . . . , Vk and so that U1
H , . . . , Um

H and Um+1
H , . . . , Uk

H

are the corresponding subsets of the hiding set UH . Then pick good local blockers U i
∗ ⊆ Vi as in

Lemma 9.33 for all components V1, . . . , Vm. Now the following holds:

1. By construction and assumption, respectively, the vertex set
⋃m

i=1 U i
∗ ∪

⋃k
i=m+1 U i

H blocks (and
even hides) SH .

2. All subconfigurations in

S1
B =

{
[B]〈W〉 ∈ SB

∣∣ bot(B) ∈ B′
}

(9.40)

are blocked by UB ∪ N
(
B′

)
= UB ∪

⋃k
i=m+1 U i

H , as we have not moved any elements in U
above B′.

3. With notation as in Lemma 9.30, let Y = UB ∪
⋃k

i=m+1 U i
H and consider U i

∗ and U i
H for

i = 1, . . . ,m. We have U i
∗ -m U i

H for i = 1, . . . ,m by Lemma 9.33. Also, since UH ∩ UB = ∅
and U i

∗ ⊆ Vi and U i
H ⊆ Vi for V1, . . . , Vk pairwise disjoint sets of vertices, it holds for all

i, j ∈ [m], i 6= j, that U i
∗ ∩ U j

∗ = ∅, U i
H ∩ U j

H = ∅, U i
∗ ∩ U j

H = ∅ and Y ∩ U j
H = ∅.

11Or, if we like, we can equivalently think of an unweighted graph, where each Vi is a cloud of w(Vi) unique and distinct
vertices, and where N(b) in (9.37) always containing either all or none of these vertices.

75

TOWARDS AN OPTIMAL SEPARATION

Therefore, the conditions in Lemma 9.30 are satisfied and we conclude that

m
(
UB ∪

⋃m
i=1 U i

∗ ∪
⋃k

i=m+1 U i
H

)
= m

(
Y ∪

⋃m
i=1 U i

∗
)

≤ m
(
Y ∪

⋃m
i=1 U i

H

)
= m

(
UB ∪

⋃m
i=1 U i

H ∪
⋃k

i=m+1 U i
H

)
= m(U) ,

(9.41)

where we note that UB ∪
⋃m

i=1 U i
∗ ∪

⋃k
i=m+1 U i

H is measured as a multi-set with repetitions.
Also, we have the strict inequality∣∣UB ∪

⋃m
i=1 U i

∗ ∪
⋃k

i=m+1 U i
H

∣∣ < |U | , (9.42)

where again the multi-set is counted with repetitions.

4. It remains to take care of the potentially unblocked subconfigurations in

S2
B =

{
[B]〈W〉 ∈ SB

∣∣ bot(B) ∈ BB \ B′
}

. (9.43)

But we derived above that there is a matching of BB \B′ to V1, . . . , Vm such that no Vi is chosen
by more than

w(Vi) =
⌈
|U i

H |/6
⌉
≤

⌊
|U i

H |/3
⌋

(9.44)

vertices from BB \ B′ (where we used that
∣∣U i

H

∣∣ ≥ 6 if w(Vi) > 0 to get the last inequality).
This means that there is a spare blocker vertex in U i

∗ for each b ∈ BB \ B′ that is matched to Vi.
Also, by the definition of neighbours in our weighted bipartite graph, each b is matched to a
component with maxlevel

(
U i

H

)
> level(b). By Observation 9.29, lowering these spare vertices

from maxlevel
(
U i

H

)
to level(b) can only decrease the measure.

Finally, throw away any remaining multiple copies in our new blocking set, and denote the resulting
set by U∗. We have that U∗ blocks S and that m

(
U∗) ≤ m(U) but

∣∣U∗∣∣ < |U |. This is a contradiction
since U was chosen to be of minimal size, and thus Lemma 9.26 must hold. But then Theorem 9.19
follows immediately as well, as was noted above.

9.5 Recapitulation of the Proof of Theorem 1.1 and Optimality of Result

Let us conclude this section by recalling why the tight bound on clause space for refuting pebbling
contradictions in Theorem 1.1 now follows and by showing that the current construction cannot be
pushed to give a better result.

Theorem 9.35 (rephrasing of Theorem 1.1). Suppose that Gh is a layered blob-pebblable DAG of
height h that is spreading. Then the clause space of refuting the pebbling contradiction Pebd

Gh
of

degree d > 1 by resolution is Sp(Pebd
Gh

` 0) = Θ(h).

Proof. The O(h) upper bound on clause space follows from the bound Peb(Gh) ≤ h + O(1) on
the black pebbling price in Lemma 8.2 on page 39 combined with the bound Sp(Pebd

G ` 0) ≤
Peb(G) + O(1) from Proposition 4.14 on page 16.

For the lower bound, we instead consider the pebbling formula *Pebd
Gh

without target axioms
x(z)1, . . . , x(z)d and use that by Lemma 6.1 on page 25 it holds that Sp

(
Pebd

Gh
` 0

)
= Sp

(
*Pebd

Gh
`∨d

i=1 x(z)i

)
. Fix any derivation π : *Pebd

Gh
`

∨d
i=1 x(z)i and let Pπ be the complete blob-pebbling of

the graph G associated to π in Theorem 6.3 on page 26 such that cost(Pπ) ≤ maxC∈π

{
cost(S(C))

}
+

O(1). On the one hand, Theorem 7.5 on page 36 says that cost(S(C)) ≤ |C| provided that d > 1, so in
particular it must hold that cost(Pπ) ≤ Sp(π)+O(1). On the other hand, cost(Pπ) ≥ Blob-Peb(Gh)
by definition, and by Theorems 9.8 and 9.19 it holds that Blob-Peb(Gh) = Ω(h). Thus Sp(π) =
Ω(h), and the theorem follows.

76

10 CONCLUSION AND OPEN PROBLEMS

Plugging in pyramid graphs Πh in Theorem 9.35, we get k-CNF formulas Fn of size Θ(n) with
refutation clause space Θ(

√
n). This is the best we can get from pebbling formulas over spreading

graphs.

Theorem 9.36. Let G be any layered spreading graph and suppose that Pebd
G has formula size and

number of clauses Θ(n). Then Sp
(
Pebd

G ` 0
)

= O(
√

n).

Proof. Suppose that G has height h. Then Sp
(
Pebd

G ` 0
)

= O(h) as was noted above. The size of
Pebd

G, as well as the number of clauses, is linear in the number of vertices |V (G)|. We claim that the
fact that G is spreading implies that |V (G)| = Ω

(
h2

)
, from which the theorem follows.

To prove the claim, let VL denote the vertices of G on level L. Then |V (G)| =
∑h

L=0|VL|.
Obviously, for any L the set VL hides the sink z of G. Fix for every L some arbitrary minimal subset
V ′

L ⊆ VL hiding z. Then V ′
L is tight, the graph H(V ′

L) is hiding-connected by Corollary 8.23, and
setting j = h in the spreading inequality (8.10) we get that

∣∣V ′
L

∣∣ ≥ 1 + h − L. Hence |V (G)| ≥∑h
L=0|V ′

L| = Ω
(
h2

)
.

The proof of Theorem 9.36 can also be extended to cover the original definition in [43] of spreading
graphs that are not necessarily layered, but we omit the details.

10 Conclusion and Open Problems

We have proven an asymptotically tight bound on the refutation clause space in resolution of pebbling
contradictions over pyramid graphs, improving on previously known separations of length and clause
space in resolution. Also, in contrast to previous polynomial lower bounds on clause space, our result
does not not follow from lower bounds on width for the same formulas. Instead, a corollary of our
result is an exponential improvement of the separation of width and space in [47]. In retrospect, the
current paper can be seen as an important step in settling the question of the relationship between
length and space discussed in, for instance, [14, 34, 60, 63], and recently resolved in [17].

More technically speaking, we have established that for all graphs G in the class of “layered spread-
ing DAGs” (including complete binary trees and pyramid graphs) the height h of G, which coincides
with the black-white pebbling price, is an asymptotical lower bound for the refutation clause space
Sp

(
Pebd

G ` 0
)

of pebbling contradictions Pebd
G provided that d ≥ 2. Plugging in pyramid graphs we

get an Ω(
√

n) bound on space, which is the best one can get for any spreading graph.
An obvious question is whether this lower bound on clause space in terms of black-white pebbling

price is true for arbitrary DAGs. In particular, does it hold for the family of DAGs {Gn}∞n=1 in [37]
of size O(n) that have maximal black-white pebbling price BW-Peb(Gn) = Ω(n/ log n) in terms of
size? We conjecture that this is indeed the case.

Conjecture 1. Let G be any DAG with constant fan-in and a single sink, and let Pebd
G denote the

pebbling contradiction of degree d > 1 defined over G. Then the clause space of refuting Pebd
G in

resolution is Sp(Pebd
G ` 0) ≥ BW-Peb(G).

If this conjecture can be shown to be true, then this would also reprove the asymptotically optimal
length-space separation in [17] with slightly better constant factors.

A natural approach towards proving Conjecture 1 would be to extend the lower bounds on pebbling
price in the blob-pebble game used in this paper. It should be pointed out that as defined here, the blob-
pebble game cannot be played directly on the graphs in [37] because these graphs do not have quite
the structural properties needed. However, this technical problem can be taken care of rather easily
by constructing a slightly different game similar to the one in [17] but with cost function as in the
present blob-pebble game. The main challenge would be to lift the lower bound argument in [37] from
standard black-white pebbling to blob-pebbling. It seems plausible that the same lower bound should
hold, but we have not been able to prove this.

77

TOWARDS AN OPTIMAL SEPARATION

If this line of attack could be made to work, it could also be a promising approach towards estab-
lishing the PSPACE-completeness of space requirements for k-CNF formulas in resolution, perhaps
building on the constructions in [36, 39].

Open Problem 2. Given a k-CNF formula F and a space bound s, is it PSPACE-complete to de-
termine whether F can be refuted in resolution in clause space s? And is it PSPACE-complete to
determine whether F can be refuted in variable space s?

Note that the variable space complexity results announced in [39] do not apply to this setting, since
the formulas there are satisfiable and also require clauses of growing size Ω(s).

Returning to the discussion in the introductory section, a third open question is as follows. We
know from [19] that short resolution refutations imply the existence of narrow refutations (see Theo-
rem 4.1 for the precise statement), and in view of this an appealing proof search heuristic is to search
exhaustively for refutations in minimal width. One serious drawback of this approach is that there
is no guarantee that the short and narrow refutations are the same one. On the contrary, the narrow
refutation π′ resulting from the proof in [19] is potentially exponentially longer than the short proof π
that we start with. However, we have no examples of formulas where the refutation in minimum width
is actually known to be substantially longer than the minimum-length refutation. Therefore, it would
be very interesting to know whether this increase in length is necessary. That is, is there a formula
family which exhibits a length-width trade-off in the sense that there are short refutations and narrow
refutations, but all narrow refutations have a length blow-up (polynomial or superpolynomial)? Or is
the exponential blow-up in [19] just an artifact of the proof?

Open Problem 3. If F is a k-CNF formula over n variables refutable in length L, can one always
find a refutation π of F in width W(π) = O

(√
n log L

)
with length no more than, say, L(π) = O(L)

or at most poly(L)? Or is there a formula family which necessarily exhibits a length-width trade-off
in the sense that there are short refutations and narrow refutations, but all narrow refutations have a
length blow-up (polynomial or superpolynomial)?

Similar questions can be posed for clause space and variable space. Suppose that we have a formula
that is refutable in both small space and short length. Is it then possible to refute the formula in small
space and short length simultaneously, possibly increasing the space by a constant factor or the length
by some polynomial factor? In a very recent joint work with Ben-Sasson [18], the first author gave
a strong negative answer to this question by proving superpolynomial or even exponential trade-offs
for length with respect to both variable space and clause space for space in almost the whole range
between constant and linear in the formula size. However, it still remains open what kind of trade-offs
are possible at the extremal points of the space interval, i.e., for constant and (super)linear space.

Given a formula refutable in constant space, we know that there must exist a refutation in polyno-
mial length as well. This follows by applying the upper bound on width in terms of clause space
from [6] (see Theorem 4.4), and then noting that narrow proofs are trivially short (for width w,
(2 · #variables)w is an upper bound on the total number of distinct clauses). But as in [19], the
refutation we end up with is not the same as the one with which we started. This leads to the following
question.

Open Problem 4. Given a family of polynomial-size k-CNF formulas {Fn}∞n=1 with refutation clause
space Sp(Fn ` 0) = O(1), are there refutations π : Fn ` 0 simultaneously in length L(π) = poly(n)
and clause space Sp(π) = O(1)? Or is it possible that restricting the space to constant can force the
length to be superpolynomial?

At the other end of the space interval, one can ask whether refutations of a formula in linear clause
space, which have to exist, might have to be longer than the shortest refutation of the same formula.
Notice that all bounds on clause space proven so far is in the regime where the clause space Sp(π) is
less than the number of clauses |F | in F . This is quite natural, since the size of the formula can be
shown to be an upper bound on the minimal clause space needed [33].

78

10 CONCLUSION AND OPEN PROBLEMS

It is unclear to what extent such lower bounds on space are relevant to state-of-the-art SAT solvers,
since such algorithms will presumably use at least a linear amount of memory to store the formula to
begin with. For this reason, it seems to be a highly interesting problem to determine what can be said
if we allow extra clause space. Assume that we have a CNF formula F of size roughly n refutable
in length L(F ` 0) = L for L suitably large (say, L = poly(n) or L = nlog n or so). Suppose
that we allow clause space more than the minimum n + O(1), but less than the trivial upper bound
L/ log L. Can we then find a resolution refutation using at most that much space and achieving at most
a polynomial increase in length compared to the minimum?

Open Problem 5 ([13]). Let F be any CNF formula with |F | = n clauses (or |Vars(F)| = n
variables). Suppose that L(F ` 0) = L. Does this imply that there is a resolution refutation π : F ` 0
in clause space Sp(π) = O(n) and length L(π) = poly(L)? Or are there formulas with trade-offs in
the range space ≥ formula size?

We conclude with a couple of comments on resolution space versus clause learning.
Firstly, we note that it is unclear whether one should expect any fast progress on Open Problem 5,

at least if if our experience from previous research is anything to go by. Even though there are now
known trade-off results in the “low-end regime” Sp(π) < |F |, establishing these results has proven to
be quite challenging, and the techniques used to obtain them are inherently unable to yield anything
for space in the range Sp(π) ≥ |F |. However, it certainly cannot be excluded that these problems
might be approached with different and more successful techniques.

Secondly, we would like to raise the question of whether, in spite of what was just said before
Open Problem 5, lower bounds on space can nevertheless give indications as to which formulas might
be hard for clause learning algorithms and why. Suppose that we know for some CNF formula that its
refutation space is large. What this tells us is that any algorithm, even a non-deterministic one making
optimal choices concerning which clauses to save or throw away at any given point in time, will have to
keep a fairly large number of “active” clauses in memory in order to carry out the refutation. Since this
is so, a real-life deterministic proof search algorithm, which has no sure-fire way of knowing which
clauses are the right ones to concentrate on at any given moment, might have to keep working on a
lot of extra clauses in order to be certain that the fairly large critical set of clauses needed to find a
refutation will be among the “active” clauses. We remark that indeed, resolution refutation space has
been proposed as a measure of hardness for SAT-solvers in, for instance, [5].

And intriguingly enough, pebbling contradictions over pyramids might in fact be an example of
the phenomenon discussed in the previous paragraph. We know that these formulas are very easy
with respect to length and width, having constant-width refutations that are essentially as short as the
formulas themselves. But in [58], it was shown that state-of-the-art clause learning algorithms can have
serious problems with even moderately large pebbling contradictions.12 Although we are certainly not
arguing that this is the whole story—it was also shown in [58] that the branching order is a critical
factor, and that given some extra structural information the algorithm can achieve an exponential speed-
up—we wonder whether the high lower bound on space can nevertheless be part of the explanation.
It should be pointed out that pebbling contradictions are the only formulas we know of that are really
easy with respect to length and width but hard for clause space. And if there is empirical data showing
that for these very formulas clause learning algorithms can have great difficulties finding refutations,
it might be worth investigating whether this is just a coincidence or a sign of some deeper connection.

Acknowledgements

We are grateful to Per Austrin and Mikael Goldmann for generous feedback during various stages of
this work, and to Gunnar Kreitz for quickly spotting some bugs in a preliminary version of the blob-
pebble game. Also, we would like to thank Paul Beame and Maria Klawe for valuable correspondence

12The “grid pebbling formulas” in [58] are exactly our pebbling contradictions of degree d = 2 over pyramid graphs.

79

TOWARDS AN OPTIMAL SEPARATION

concerning their work, Nathan Segerlind for comments and pointers regarding clause learning, and
Eli Ben-Sasson for stimulating discussions about proof complexity in general and the problems in
Section 10 in particular.

References

[1] Ron Aharoni and Nathan Linial. Minimal non-two-colorable hypergraphs and minimal unsatis-
fiable formulas. Journal of Combinatorial Theory, 43:196–204, 1986.

[2] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space com-
plexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211, 2002. Prelim-
inary version appeared in STOC ’00.

[3] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential
separation between regular and general resolution. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC ’02), pages 448–456, May 2002.

[4] Noga Alon and Michael Capalbo. Smaller explicit superconcentrators. Internet Mathematics,
1(2):151–163, 2003.

[5] Carlos Ansótegui, Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Measuring the hardness of
SAT instances. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI ’08),
pages 222–228, July 2008.

[6] Albert Atserias and Vı́ctor Dalmau. A combinatorical characterization of resolution width. Jour-
nal of Computer and System Sciences, 74(3):323–334, May 2008. Preliminary version appeared
in CCC ’03.

[7] Sven Baumer, Juan Luis Esteban, and Jacobo Torán. Minimally unsatisfiable CNF formulas.
Bulletin of the European Association for Theoretical Computer Science, 74:190–192, June 2001.

[8] Paul Beame. Proof complexity. In Steven Rudich and Avi Wigderson, editors, Computational
Complexity Theory, volume 10 of IAS/Park City Mathematics Series, pages 199–246. American
Mathematical Society, 2004.

[9] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of resolution and
Davis-Putnam procedures. SIAM Journal on Computing, 31(4):1048–1075, 2002.

[10] Paul Beame, Henry Kautz, and Ashish Sabharwal. Understanding the power of clause learning.
In Proceedings of the 18th International Joint Conference in Artificial Intelligence (IJCAI ’03),
pages 94–99, 2003.

[11] Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In Pro-
ceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’96),
pages 274–282, October 1996.

[12] Paul Beame and Toniann Pitassi. Propositional proof complexity: Past, present, and future.
Bulletin of the European Association for Theoretical Computer Science, 65:66–89, June 1998.

[13] Eli Ben-Sasson. Personal communication, 2007.

[14] Eli Ben-Sasson. Size space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, May 2009. Preliminary version appeared in STOC ’02.

80

REFERENCES

[15] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution. Ran-
dom Structures and Algorithms, 23(1):92–109, August 2003. Preliminary version appeared in
CCC ’01.

[16] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of treelike
and general resolution. Combinatorica, 24(4):585–603, September 2004.

[17] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separation of
space and length in resolution. In Proceedings of the 49th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS ’08), pages 709–718, October 2008.

[18] Eli Ben-Sasson and Jakob Nordström. Understanding Space in Resolution: Optimal Lower
Bounds and Exponential Trade-offs. Technical Report TR09-034, Electronic Colloquium on
Computational Complexity (ECCC), March 2009.

[19] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. Journal
of the ACM, 48(2):149–169, March 2001. Preliminary version appeared in STOC ’99.

[20] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago,
1937.

[21] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the relative com-
plexity of resolution refinements and cutting planes proof systems. SIAM Journal on Computing,
30(5):1462–1484, 2000.

[22] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resolution. Compu-
tational Complexity, 10(4):261–276, December 2001.

[23] Josh Buresh-Oppenheim and Toniann Pitassi. The complexity of resolution refinements. In Pro-
ceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS ’03), pages 138–147,
June 2003.

[24] Samuel R. Buss and Győrgy Turán. Resolution proofs of generalized pigeonhole principles.
Theoretical Computer Science, 62(3):311–317, December 1988.

[25] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the ACM,
35(4):759–768, October 1988.

[26] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing (STOC ’71), pages 151–158, 1971.

[27] Stephen A. Cook. An observation on time-storage trade off. Journal of Computer and System
Sciences, 9:308–316, 1974.

[28] Stephen A. Cook and Robert Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44(1):36–50, March 1979.

[29] Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic polynomial time recog-
nizable languages. Journal of Computer and System Sciences, 13(1):25–37, 1976.

[30] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem prov-
ing. Communications of the ACM, 5(7):394–397, July 1962.

[31] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of
the ACM, 7(3):201–215, 1960.

81

TOWARDS AN OPTIMAL SEPARATION

[32] Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity of resolution with
bounded conjunctions. Theoretical Computer Science, 321(2-3):347–370, August 2004. Prelim-
inary version appeared in ICALP ’02.

[33] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Computation,
171(1):84–97, 2001. Preliminary version appeared in STACS ’99.

[34] Juan Luis Esteban and Jacobo Torán. A combinatorial characterization of treelike resolution
space. Information Processing Letters, 87(6):295–300, 2003.

[35] Zvi Galil. On resolution with clauses of bounded size. SIAM Journal on Computing,
6(3):444–459, 1977.

[36] John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling problem is complete
in polynomial space. SIAM Journal on Computing, 9(3):513–524, August 1980.

[37] John R. Gilbert and Robert Endre Tarjan. Variations of a Pebble Game on
Graphs. Technical Report STAN-CS-78-661, Stanford University, 1978. Available at
http://infolab.stanford.edu/TR/CS-TR-78-661.html.

[38] Armin Haken. The intractability of resolution. Theoretical Computer Science, 39(2-3):297–308,
August 1985.

[39] Philipp Hertel and Toniann Pitassi. Exponential time/space speedups for resolution and the
PSPACE-completeness of black-white pebbling. In Proceedings of the 48th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS ’07), pages 137–149, October 2007.

[40] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal of the ACM,
24(2):332–337, April 1977.

[41] Balasubramanian Kalyanasundaram and George Schnitger. On the power of white pebbles. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC ’88), pages
258–266, 1988.

[42] Henry Kautz and Bart Selman. The state of SAT. Discrete Applied Mathematics,
155(12):1514–1524, June 2007.

[43] Maria M. Klawe. A tight bound for black and white pebbles on the pyramid. Journal of the ACM,
32(1):218–228, January 1985.

[44] Oliver Kullmann. An application of matroid theory to the SAT problem. In Proceedings of the
15th Annual IEEE Conference on Computational Complexity (CCC ’00), pages 116–124, July
2000.

[45] Thomas Lengauer and Robert Endre Tarjan. The space complexity of pebble games on trees.
Information Processing Letters, 10(4/5):184–188, July 1980.

[46] Friedhelm Meyer auf der Heide. A comparison of two variations of a pebble game on graphs.
Theoretical Computer Science, 13(3):315–322, 1981.

[47] Jakob Nordström. Narrow proofs may be spacious: Separating space and width in resolu-
tion. SIAM Journal on Computing, 39(1):59–121, May 2009. Preliminary version appeared
in STOC ’06.

[48] Jakob Nordström. New Wine into Old Wineskins: A Survey of Some Pebbling Classics with
Supplemental Results. Manuscript in preparation. Current draft version available at the webpage
http://people.csail.mit.edu/jakobn/research/, 2009.

82

REFERENCES

[49] Jakob Nordström and Johan Håstad. Towards an optimal separation of space and length in res-
olution (Extended abstract). In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing (STOC ’08), pages 701–710, May 2008.

[50] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on graphs.
Mathematical Systems Theory, 10:239–251, 1977.

[51] Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Watson Research Center, 1980.
Appeared in Proceedings of the 5th IBM Symposium on Mathematical Foundations of Computer
Science, Japan.

[52] Ran Raz. Resolution lower bounds for the weak pigeonhole principle. Journal of the ACM,
51(2):115–138, 2004.

[53] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,
19(3):403–435, March 1999.

[54] Alexander A. Razborov. Resolution lower bounds for the weak functional pigeonhole principle.
Theoretical Computer Science, 1(303):233–243, June 2003.

[55] Alexander A. Razborov. Resolution lower bounds for perfect matching principles. Journal of
Computer and System Sciences, 69(1):3––27, August 2004.

[56] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1):23–41, January 1965.

[57] Ashish Sabharwal. Algorithmic Applications of Propositional Proof Complexity. PhD thesis,
University of Washington, Seattle, 2005.

[58] Ashish Sabharwal, Paul Beame, and Henry Kautz. Using problem structure for efficient clause
learning. In 6th International Conference on Theory and Applications of Satisfiability Testing
(SAT ’03), Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science, pages
242–256. Springer, 2004.

[59] The international SAT Competitions web page. http://www.satcompetition.org.

[60] Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic,
13(4):482–537, December 2007.

[61] Gunnar Stålmarck. Short resolution proofs for a sequence of tricky formulas. Acta Informatica,
33(3):277–280, May 1996.

[62] Jacobo Torán. Lower bounds for space in resolution. In Proceedings of the 13th International
Workshop on Computer Science Logic (CSL ’99), volume 1683 of Lecture Notes in Computer
Science, pages 362–373. Springer, 1999.

[63] Jacobo Torán. Space and width in propositional resolution. Bulletin of the European Association
for Theoretical Computer Science, 83:86–104, June 2004.

[64] Grigori Tseitin. On the complexity of derivation in propositional calculus. In A. O. Silenko,
editor, Structures in Constructive Mathematics and Mathematical Logic, Part II, pages 115–125.
Consultants Bureau, New York-London, 1968.

[65] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219, January
1987.

83

