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Abstract: We prove that given a point ~z outside a given lattice L then there is a dual

vector which gives a fairly good estimate for how far from the lattice the vector is. To

be more precise, there is a set of translated hyperplanes Hi such that L �
S
iHi and

d(~z;
S
iHi) �

1
6n2+1

d(~z; L).

Warning: Essentially this paper has been published in Combinatorica and is

hence subject to copyright restrictions. It is for personal use only.

1. Introduction

Let f�g denote the fractional part of a real number � de�ned in such a way that jf�gj

is the distance to the closest integer. A classical theorem by Kronecker says that if � is

an irrational number and x any real number, then for every � > 0 there is an integer a

such that jfa� � xgj � �. Furthermore it is possible to estimate the size of the smallest

a satisfying the inequality in terms of � and how well � can be approximated by rational

numbers.

Khinchin [Kh] studied the following generalization of the problem. Given real numbers

(�ij)
m;n
j;i=1; (�j)

m
j=1 and a positive number �, when is it possible to solve jf

Pn
i=1 �ijai��jgj �

�; j = 1; : : : ;m with integers ai. If there is a solution for any � > 0, then if cj are integers

such that f
Pm

j=1 cj�ijg = 0 for all i then
Pm

j=1 cj�j must necessarily be an integer. When

this condition is satis�ed Khinchin bounds the size of the numbers ai in terms of � using the

two quantities maxi jf
Pm

j=1 cj�ijgj and jf
Pm

j=1 cj�jgj. This question and related questions

can be phrased very nicely using the concept of a lattice and its dual.

A lattice is de�ned to be a set of vectors in Rn de�ned as f~y j ~y =
Pk

i=1 ai
~bi; ai 2 Zg

where the vectors ~bi are linearly independent over R. We will denote a typical lattice by

L and (~bi)
k
i=1 is called a basis for the lattice. The dual lattice L� is de�ned to be the set

of vectors in the linear span of L which have an integer inner product with all elements of

L. L� is also a lattice and to every basis (~bi)
k
i=1 of L there is a dual basis (~b�i )

k
i=1 of L�

* Supported by an IBM fellowship.

1



satisfying (~bi;~b
�
j) = �ij . Here �ij = 1 if i = j and 0 otherwise.

The idea to use lattices is the following. Suppose we are given a lattice L and a point

~x which is not in L. Suppose further that ~v is a vector in L� such that (~x;~v) is not an

integer. This will give a lower bound for the distance from ~x to L as follows. We know

that for any vector ~y 2 L, (~y;~v) is an integer. Hence j(~x� ~y;~v)j � jf(~v; ~x)gj for any ~y 2 L.

From this it follows that d(~x; L) � jf(~x;~v)gj
k~vk . Khinchin's result follows from establishing a

weaker converse of the above inequality, namely max~v2L�
jf(~x;~v)gj

k~vk
� cnd(~x; L). To see why

this is the case consider the lattice Lt, de�ned by the following basis.

~b1 = (�11;�12;�13: : : ;�1m;
1
t
; 0; 0 : : : ; 0)

~b2 = (�21;�22;�23: : : ;�2m;0;
1
t
; 0 : : : ; 0)

~b3 = (�31;�32;�33: : : ;�3m;0; 0;
1
t
: : : ; 0)

.

.

~bn = (�n1;�n2;�n3: : : ;�nm;0; 0; 0: : : ;
1
t
)

~bn+i = ~ei; 1 � i � m

where t is a parameter which should be thought of as a large number. We can

view the approximation problem as �nding a vector ~y 2 Lt which is close to ~� =

(�1; �2; : : : ; �m; 0; : : : ; 0). The dual lattice of Lt has basis:

~b�1 = (0; 0; 0;: : : ;0; t; 0; 0; : : : ; 0)

~b�2 = (0; 0; 0;: : : ;0; 0; t; 0; : : : ; 0)

~b�3 = (0; 0; 0;: : : ;0; 0; 0; t; : : : ; 0)

.

.

~b�n = (0; 0; 0;: : : ;0; 0; 0; 0; : : : ; t)

~b�n+1 = (1; 0; 0;: : : ;0; �t�11; �t�21; �t�31 : : : ;�t�n1)

~b�n+2 = (0; 1; 0;: : : ;0; �t�12; �t�22; �t�32 : : : ;�t�n2)

~b�n+3 = (0; 0; 1;: : : ;0; �t�13; �t�23; �t�33 : : : ;�t�n3)

.

.

~b�n+m = (0; 0; 0;: : : ;1;�t�1m;�t�2m;�t�3m: : : ;�t�nm)

Thus for a vector ~v =
Pn+m

j=1 cj~b
�
j we have that (~v; ~�) =

Pm
j=1 cj+n�j and clearly k~vk �

t(
Pn

i=1f
Pm

j=1 �j�ijg
2)

1

2 . The results by Khinchin now follows from max~v2L�
jf(~�;~v)gj

k~vk �
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cnd(~�; L).

In this paper we are interested in the best possible value of the constant cn. Khinchin

did not explicitly calculate his lower bound for cn, Cassels [C] got the bound cn � (n!)�2

which was improved by Babai to cn. We prove that cn � 1
6n2+1 . Examples show that

cn �
c
n
. The question whether cn could be chosen to be of the form 1

p(n) for a polynomial

p(n) was posed as an open problem by Lov�asz [L].

Taking the view of complexity theory we are studying the following computational

problem. Given a lattice L � Qn and a point ~x 2 Qn what is the distance from ~x to L

(i.e. min~y2L k~x� ~yk). This problem is NP-complete [E]. To make it be in NP we have to

make it into a decision problem by asking: Is d(~x; L) � K?

A \yes" answer to this question can easily be veri�ed by giving a vector ~y 2 L such

that k~x� ~yk � K. The only nontrivial part to check, before concluding that the problem

is in NP, is that ~y 2 L can be checked in polynomial time. This is however not hard. A

\no" answer to the above question can probably not be veri�ed in polynomial time since

a NP-complete problem is not in co-NP unless co-NP=NP. However by our result (and

previous results) the problem is in an approximate version of co-NP. By this we mean that

if d(~x; L) = K then it is possible to prove that d(~x; L) � K
6n2+1 by displaying a suitable

vector ~v 2 L�. The best known solution to this approximate lower bounds was given by

Lagarias, Lenstra and Schnorr [LLS]. By showing the existence of a nice basis for any

lattice L they show by using this basis it is possible to produce a vector ~y 2 L and a

certi�cate that d(~x; L) � cn�
3

2 k~x� ~yk.

Our existential proof is nonconstructive and we know of no subexponential time al-

gorithm that �nds the vector ~v. We would like to point out that Babai [B] using Lov�asz'

lattice reduction algorithm (from [LLL]) has given a polynomial time algorithm that �nds

a vector ~v that satis�es jf(~x;~v)gj
k~vk � 9�nd(~x; L).

2. Preliminaries and Notation

Let L be a lattice with basis (~bi)
n
i=1. In general we will work with several di�erent

bases for the same lattice. We will in general not change notation. Let L� be the dual

lattice of L with basis (~b�i )
n
i=1 satisfying (~bi;~b

�
j ) = �ij .

For i = 1; 2; : : : ; n, let the ith successive minima �i be the radius of the smallest

sphere around the origin containing i linearly independent points of L. We let ��i be the
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corresponding numbers for the dual lattice. We will let k~xk denote the euclidean length of

a vector ~x.

For a basis (~bi)
n
i=1 let

~�i be the projection of~bi onto the space orthogonal to~b1; : : :~bi�1.

A Korkine-Zolotarev (in future KZ) basis is de�ned recursively as follows.

(1) ~b1 is one of the shortest vectors in L.

(2) ~bi is one of the vectors giving a minimal k~�ik.

Ties are resolved in any arbitrary way. Interesting to note is that such a basis can be

found in exponential time by an algorithm by Kannan [Ka]. This type of basis has some

useful properties.

Lemma 1: For any vector ~z in the linear span of of L there is a vector ~y 2 L such that

k~z � ~yk � 1
2 (
Pn

i=1 k
~�ik

2)
1

2 .

Proof: The ~�i are clearly mutually orthogonal and ~bi can be written in the form ~bi =
Pi�1

j=1 �ij
~�j + ~�i. Write ~z =

Pn
i=1 
i

~�i and we will now �nd a ~y =
Pn

i=1 ci
~�i =

Pn
i=1 ai

~bi

such that jci� 
ij �
1
2 . This can be done be making the unique choice for ai starting with

i = n and going towards lower indices. This clearly proves Lemma 1.

Observe that the procedure is completely e�ective once the basis is given. By applying

the above procedure to the basis vectors we can assume that j�ij j �
1
2 and thus we have

the following lemma.

Lemma 2: We can �nd a KZ-basis such that k~bik
2 �
Pi�1

j=1
1
4k
~�jk

2 + k~�ik
2.

3. Main Theorem

Having done away with the preliminaries we can now state and prove our main theo-

rem.

Theorem: Given a lattice L in Rn. For every ~z 2 Rn there is a vector ~v 2 L� such that

jf(~v; ~z)gj

k~vk
�

1

6n2 + 1
d(~z; L)

Loosely speaking for every vector which is far from the lattice there is a reasonable

onedimensional reason for this.

Proof: Suppose that jf(~z;~v)gj � �k~vk for all ~v 2 L�. We have to prove that ~z is close to

L. We will quite explicitly construct a vector in the lattice that is close to ~z. For all short

vectors ~v 2 L� it is true that (~v; ~z) is very close to an integer. The idea of the proof is to
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pick the vector in the lattice which has the same inner products rounded to integers with

all short vectors. We have to prove that this vector is well de�ned. Let ~b�i ; i = 1; 2; : : :n be

a KZ basis of L� which are as short as described by Lemma 2. Let r be the largest integer

such that k~��i k �
1

12�n
1

2

for i = 1; 2 : : : r. We will keep this value of r �xed from now on.

Observe that this in particular implies that k~b�i k �
1
12� for i = 1; 2 : : : ; r.

For a real number x let [x] denote the closest integer to x and let ~z be a vector in L

satisfying

(~z;~b�i ) = [(~z;~b�i )] i = 1; : : : r

such a ~z always exist and is unique if r = n. We will now prove the following lemma:

Lemma 3: For any vector ~v 2 L� in the linear span of ~b�1;
~b�2 : : :

~b�r , with k~vk � 1
6� it is

true that (~z;~v) = [(~z;~v)].

For the proof of Lemma 3 we will need some machinery.

De�nition: A (~b�i )
r
i=1-walk be a sequence of points ~ui; i = 1; 2; : : : ; s such that for each i,

there exits a j(i) such that ~ui � ~ui�1 = �b�j(i).

Using this notation let us prove the following lemma.

Lemma 4: Given ~v 2 L� in the linear span of b�i , i = 1; 2; : : : ; r there exist a (~b�i )
r
i=1-walk

from 0 to ~v never leaving the ball of radius k~vk+ 3
2(
Pr

i=1 k�
�
i k

2)
1

2 .

Proof: We will de�ne the walk recursively from ~v to 0. Make ~u1 = ~v and suppose

~uj =
Pr

i=1 c
j
i
~�i. Find the smallest i such that jcji j � 1 and de�ne uj+1 = uj � sign(ci)~bi.

We need to verify that we eventually get to 0 and that we stay within a relatively small

ball on the way. Let us �rst prove that we eventually reach 0. De�ne dj =
Pr

i=1 jc
j
i j2

i.

Fact: dj+1 � dj � 1.

Proof: If i is the chosen index in the de�nition of ~uj+1 then jcj+1i j = jcji j � 1 while

c
j+1
k = c

j
k for k > i and jcj+1k j � jcjkj+

1
2 for k < i.

Using this fact, to prove that we eventually get to 0 we only have to prove that if ~uj

is nonzero then there exist an i such that jcji j � 1. This follows from the observation that

for the largest i such that cji is nonzero c
j
i is an integer.

To get the estimate for how far from the origin ~uj can be we need only observe that

jcji j � max(32 ; c
1
i ). The proof of Lemma 4 is complete.

Let us return to the proof of Lemma 3. By Lemma 4 there exist a walk (~ui) from 0 to

~v by the vectors ~b�i which stays inside the ball of radius 1
3� . We prove that (~z; ~ui) = [(~z; ~ui)]
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by induction over i. Number the walk such that 0 = ~u1 and ~v = ~us Clearly the induction

hypothesis holds for i = 1. For the induction step use ~ui = ~ui�1 �~b�j giving

[(~z; ~ui)]� (~z; ~ui) = [(~z � ~z; ~ui�1 �~b�j )]

Using the induction hypothesis and k~ui�1k �
1
3�

we get j(~z� ~z; ~ui�1)j �
1
3
and j(~z� ~z;~b�j )j

is bounded by 1
12 since k~b�jk � 1

12� and [(~z � ~z;~b�j )] = 0 by the de�nition of ~z. Thus

[(~z � ~z; ~ui�1 +~b�j )] = 0 and this completes the proof of Lemma 3.

Remark: We feel that apart from being of use in the present proof Lemma 4 is of interest

of its own.

Finally we return to the proof of the theorem. De�ne Mr to be the r-dimensional

subspace spanned by ~b�1;
~b�2; : : : ;

~b�r. We are going to decompose ~z � ~z in two components

z(1) + z(2) where z(1) 2Mr and z(2) is orthogonal to Mr. We will prove that z(1) is short

and that z(2) can be approximated well by a vector in L orthogonal to Mr.

Lemma 5: kz(1)k � 2�.

Proof: For any ~v inMr

T
L� with k~vk � 1

6� we know that �k~vk � jf(~z�~z;~v)gj = j(z(1); ~v)j.

Suppose that kz(1)k � 2�, then for any such ~v, the (acute) angle between z(1) and ~v must

be at least 60�. Thus points of L� are excluded from the shaded region in Figure 1.

Figure 1: Ball of radius 1
6� in Mr

Observe that the region contains a ball of radius 1
18� and by Lemma 1 and the choice

of r there is always a point of L� in every ball of radius � 1
24� . This is a contradiction and

we have proved the lemma.

Next we proceed to �nd a lattice point which is close to z(2). Let L0 be the n � r

dimensional sublattice of L which is orthogonal to Mr. We have

Lemma 6: There is a ~z0 2 L0 such that kz(2) � z0k � 6n2�.
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Proof: Let the dual of L0 be L�0. Observe that L�0 is L� projected onto the orthogonal

complement of Mr. By the de�nition of r and of KZ basis there is no vector in L�0 which

is shorter than 1

12n
1

2 �
.

Let ~b1;~b2 : : :~bn�r be a KZ basis for L0. Then we know by [LLS] that

k~�ik �
n

�0�1
� 12n

3

2 �:

Thus by Lemma 1 any vector can be approximated within 6n2� and the proof is

complete.

Theorem 1 now clearly follows from Lemmas 5 and 6. Observe that if � is small enough

we do not get any component z(2) and hence we can drop the factor n�2 in the theorem.

Acknowledgment: I thank Je� Lagarias for many fruitful discussions about lattices.
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