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Abstract: We prove that given a point Z outside a given lattice L then there is a dual
vector which gives a fairly good estimate for how far from the lattice the vector is. To
be more precise, there is a set of translated hyperplanes H; such that L C J, H; and

d(Z,U; Hi) > gag7d(Z,L).

Warning: Essentially this paper has been published in Combinatorica and is

hence subject to copyright restrictions. It is for personal use only.

1. Introduction

Let {0} denote the fractional part of a real number 6 defined in such a way that |{6}|
is the distance to the closest integer. A classical theorem by Kronecker says that if 6 is
an irrational number and x any real number, then for every ¢ > 0 there is an integer a
such that [{af — z}| < e. Furthermore it is possible to estimate the size of the smallest
a satisfying the inequality in terms of € and how well # can be approximated by rational
numbers.

Khinchin [Kh] studied the following generalization of the problem. Given real numbers
(0ij)732 1, ()72, and a positive number €, when is it possible to solve [{Y i, 0iai—a;}| <
€,j = 1,...,m with integers a;. If there is a solution for any € > 0, then if ¢; are integers
such that {377 ¢;0;;} = 0 for all i then 377" | cjor; must necessarily be an integer. When
this condition is satisfied Khinchin bounds the size of the numbers a; in terms of € using the
two quantities max; [{d°7" ) ;01| and [{3°7, cja;}[. This question and related questions
can be phrased very nicely using the concept of a lattice and its dual.

A lattice is defined to be a set of vectors in R™ defined as {¢ | § = Zle azbi,a; € Z}
where the vectors B; are linearly independent over R. We will denote a typical lattice by
L and (l;z)f:l is called a basis for the lattice. The dual lattice L* is defined to be the set
of vectors in the linear span of L which have an integer inner product with all elements of

L. L* is also a lattice and to every basis (b;)%_, of L there is a dual basis (b*)k_, of L*
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satisfying (b;, E;‘) = 0;;. Here 6;; =1 if i = j and 0 otherwise.

The idea to use lattices is the following. Suppose we are given a lattice L and a point
# which is not in L. Suppose further that ¥ is a vector in L* such that (#, ) is not an
integer. This will give a lower bound for the distance from # to L as follows. We know
that for any vector ¢ € L, (¥, ¥) is an integer. Hence |(Z — ¥, V)| > |{(¥, Z)}| for any i € L.
From this it follows that d(Z, L) > @0} - Khinchin’s result follows from establishing a

71l
weaker converse of the above inequality, namely maxgcy, |{([’|”1’77|’|)}| > ¢, d(#,L). To see why

this is the case consider the lattice L;, defined by the following basis.

51: (911,9127913'",glmv%ao,o 70)
b2 — (021,0227923- . -,02m707 %70. . .70)
b3 — (031,0327933- . -,03m707 0,% -70)

gn — (9n179n279n3- .. 79nm7 07 07 0... )

o=
N—r

l

bn+l:glalézém
where ¢ is a parameter which should be thought of as a large number. We can

view the approximation problem as finding a vector ¥ € L; which is close to @ =

(1,2, ..., 0y, 0,...,0). The dual lattice of L; has basis:

bt = (0,0,0,...,0, t, 0, O, ...,0)
b5 = (0,0,0,...,0, 0, t, 0, ..., 0)
bt = (0,0,0,...,0, 0, 0, ¢ ..., 0)
b* =(0,0,0,...,0, 0, 0, O, 1)
b:—}-l (1, 0, 0, .. ,0, —t911, —t921, —t931 cey —t9n1)
b;_i_z — (0, 1, 0, .. ,0, _te]_z, _t922, _t932 sy —tenz)
0% g = (0,0,1,...,0, —t013, —tbag, —t033 ..., —t03)
bF o = (0,0,0,. .., 1,— 101,002,030, —t0rm)

Thus for a vector 7 = Z;L;L{n cjl;;f we have that (7, @) = 37" | ¢jina; and clearly ||7]

t(Z?:l{Z}”:l ajeij}2)%. The results by Khinchin now follows from maxgcy- 7|{(|‘|%’71|7|)}|

2



cnd(d, L).

In this paper we are interested in the best possible value of the constant ¢,,. Khinchin

did not explicitly calculate his lower bound for ¢,, Cassels [C] got the bound ¢, > (n!)=2
Wlﬂ. Examples show that

cn < . The question whether ¢, could be chosen to be of the form Wln) for a polynomial

which was improved by Babai to ¢”. We prove that ¢, >

p(n) was posed as an open problem by Lovész [L].

Taking the view of complexity theory we are studying the following computational
problem. Given a lattice L C Q™ and a point ¥ € Q™ what is the distance from & to L
(i.e. mingey, || — ¢]|). This problem is NP-complete [E]. To make it be in NP we have to
make it into a decision problem by asking: Is d(#, L) < K?

A “yes” answer to this question can easily be verified by giving a vector y € L such
that ||# — 7]| < K. The only nontrivial part to check, before concluding that the problem
is in NP, is that € L can be checked in polynomial time. This is however not hard. A
“no” answer to the above question can probably not be verified in polynomial time since
a NP-complete problem is not in co-NP unless co-NP=NP. However by our result (and
previous results) the problem is in an approximate version of co-NP. By this we mean that
if d(#, L) = K then it is possible to prove that d(Z, L) > GTLQLH by displaying a suitable
vector v € L*. The best known solution to this approximate lower bounds was given by
Lagarias, Lenstra and Schnorr [LLS]|. By showing the existence of a nice basis for any
lattice L they show by using this basis it is possible to produce a vector § € L and a
certificate that d(Z, L) > cn™2 |7 — 7.

Our existential proof is nonconstructive and we know of no subexponential time al-
gorithm that finds the vector ¥. We would like to point out that Babai [B] using Lovéasz’
lattice reduction algorithm (from [LLL]) has given a polynomial time algorithm that finds

a vector ¢’ that satisfies % > 97 "d(%, L).

2. Preliminaries and Notation

Let L be a lattice with basis (b;)™,. In general we will work with several different
bases for the same lattice. We will in general not change notation. Let L* be the dual
lattice of I with basis (b¥)™_, satisfying (b;, I;;‘) = 0i;.

For « = 1,2,...,n, let the ith successive minima \; be the radius of the smallest

sphere around the origin containing ¢ linearly independent points of L. We let A} be the
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corresponding numbers for the dual lattice. We will let ||Z|| denote the euclidean length of
a vector 7.
For a basis (gz)7:1 let ﬁ: be the projection of B; onto the space orthogonal to 51, .. -gi—l-

A Korkine-Zolotarev (in future KZ) basis is defined recursively as follows.

(1)
(2)

I;l is one of the shortest vectors in L.
b; is one of the vectors giving a minimal ||3;]].

Ties are resolved in any arbitrary way. Interesting to note is that such a basis can be
found in exponential time by an algorithm by Kannan [Ka]. This type of basis has some

useful properties.

Lemma 1: For any vector Z in the linear span of of L there is a vector if € L such that
12 =3l < 5=, 1B:)17)=
Proof: The B; are clearly mutually orthogonal and I;Z can be written in the form I;, =
Z;;ll ,u,-jﬁj + ;. Write 7 = S ~: 3 and we will now find a 7 = Sy i3 = Sy a;b;
such that |¢; — ;| < % This can be done be making the unique choice for a; starting with
¢ = n and going towards lower indices. This clearly proves Lemma 1. =

Observe that the procedure is completely effective once the basis is given. By applying
the above procedure to the basis vectors we can assume that |p;;| < % and thus we have

the following lemma.

Lemma 2: We can find a K Z-basis such that ||b;||? < 23;11 L1Gi 11 + 161>

3. Main Theorem

Having done away with the preliminaries we can now state and prove our main theo-

rem.
Theorem: Given a lattice L in R™. For every Z € R™ there is a vector v € L* such that

L) [

17|  ~6n2+1 7

Loosely speaking for every vector which is far from the lattice there is a reasonable

onedimensional reason for this.

Proof: Suppose that |{(Z,7)}| < €||7|| for all ¥ € L*. We have to prove that 2 is close to
L. We will quite explicitly construct a vector in the lattice that is close to Z. For all short

vectors ' € L* it is true that (7, 2) is very close to an integer. The idea of the proof is to

4



pick the vector in the lattice which has the same inner products rounded to integers with
all short vectors. We have to prove that this vector is well defined. Let l;;“,z =1,2,...n be

a KZ basis of L* which are as short as described by Lemma 2. Let r be the largest integer

such that [|GF < 121 — for i =1,2...r. We will keep this value of r fixed from now on.
€n 2
Observe that this in particular implies that [|b}|| < 55 fori=1,2...,r.
For a real number z let [z] denote the closest integer to x and let Z be a vector in L

satisfying

such a z always exist and is unique if » = n. We will now prove the following lemma:

Lemma 3: For any vector ¢ € L* in the linear span of b%,b3...b*, with ||7] < & it is

true that (Z,v) = [(Z, V)].
For the proof of Lemma 3 we will need some machinery.

Definition: A (l;;‘)’i":l—walk be a sequence of points u;,© = 1,2,...,s such that for each 1,

there exits a j(i) such that u; — @;i—y = £b7 ).

Using this notation let us prove the following lemma.

-

Lemma 4: Given ¥ € L* in the linear span of bf,i = 1,2,...,r there exist a (b})I_,-walk

from 0 to ¥ never leaving the ball of radius ||7]| + 3 (37 _, 165]12)=.

Proof: We will define the walk recursively from ¢ to 0. Make @; = ¢ and suppose
i; = S"_, ¢ B;. Find the smallest i such that || > 1 and define u; 41 = u; — sign(c;)b;.
We need to verify that we eventually get to 0 and that we stay within a relatively small
ball on the way. Let us first prove that we eventually reach 0. Define d; = S°7_, |¢]|2%.
Fact: dj 1 <d; — 1.
Proof: If i is the chosen index in the definition of ;41 then T = |e!| — 1 while
C‘,i“ = c,7c for £ > ¢ and |C‘,i+1| < |c§c| + 1 for k <.

Using this fact, to prove that we eventually get to 0 we only have to prove that if i;

is nonzero then there exist an ¢ such that |cf | > 1. This follows from the observation that

J

for the largest ¢ such that cg is nonzero c; is an integer.

To get the estimate for how far from the origin #; can be we need only observe that

|c]| < max(2,c}). The proof of Lemma 4 is complete. =

Let us return to the proof of Lemma 3. By Lemma 4 there exist a walk (i;) from 0 to

7 by the vectors b* which stays inside the ball of radius o—. We prove that (2, 4;) = (7, ;)]

€
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by induction over . Number the walk such that 0 = «; and ¢ = s Clearly the induction

hypothesis holds for ¢ = 1. For the induction step use u; = u;_1 + I;;‘ giving
(Z.)] = (2, @) = [(Z — 2, i1 £ 55)]

Using the induction hypothesis and [|@;_1[| < 5= we get |(Z— 2, %;—1)| < 3 and |(Z— Z, g;‘)|
is bounded by £ since ||I;;‘|| < o and [(7 - Z, l;;‘)] = 0 by the definition of z. Thus
[(Z = 2,1;—1 + b})] = 0 and this completes the proof of Lemma 3. =

Remark: We feel that apart from being of use in the present proof Lemma 4 is of interest

of its own.

Finally we return to the proof of the theorem. Define M, to be the r-dimensional
subspace spanned by l}{, _)3, cee gj We are going to decompose Z — Z in two components
2 4 2 where z(1) € M, and 2(? is orthogonal to M,. We will prove that z(!) is short

and that 2(?) can be approximated well by a vector in L orthogonal to M,..
Lemma 5: [[z(1|| < 2.

Proof: For any # in M, (| L* with ||| < & we know that €||7]| > [{(z—2,9)}| = (=1, 7)].
Suppose that [|2(1)|| > 2¢, then for any such #, the (acute) angle between z(!) and # must

be at least 60°. Thus points of L* are excluded from the shaded region in Figure 1.

Figure 1: Ball of radius é n M,

Observe that the region contains a ball of radius ﬁ and by Lemma 1 and the choice
of r there is always a point of L* in every ball of radius > 2%46. This is a contradiction and

we have proved the lemma. =

Next we proceed to find a lattice point which is close to z(2). Let L' be the n — r

dimensional sublattice of L which is orthogonal to M,. We have

Lemma 6: There is a 7 € L' such that ||z(?) — 2/|| < 6nZe.
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Proof: Let the dual of L' be L*. Observe that L* is L* projected onto the orthogonal

complement of M,.. By the definition of r and of KZ basis there is no vector in L* which

is shorter than —L—.

12n2e

Let by, by ...by_r be a KZ basis for L. Then we know by [LLS] that

18| < o S 12n2e
1

Thus by Lemma 1 any vector can be approximated within 6n%e and the proof is
complete. m
Theorem 1 now clearly follows from Lemmas 5 and 6. Observe that if € is small enough

we do not get any component z(?) and hence we can drop the factor n~2 in the theorem.

Acknowledgment: I thank Jeff Lagarias for many fruitful discussions about lattices.
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