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Abstract. In this paper we study small depth circuits that contain
threshold gates (with or without weights) and parity gates. All cir-
cuits we consider are of polynomial size. We prove several results which
complete the work on characterizing possible inclusions between many
classes de�ned by small depth circuits. These results are the following:

1. A single threshold gate with weights cannot in general be replaced
by a polynomial fan-in unweighted threshold gate of parity gates.

2. On the other hand it can be replaced by a depth 2 unweighted
threshold circuit of polynomial size. An extension of this construc-
tion is used to prove that whatever can be computed by a depth d
polynomial size threshold circuit with weights can be computed by
a depth d+ 1 polynomial size unweighted threshold circuit, where
d is an arbitrary �xed integer.

3. A polynomial fan-in threshold gate (with weights) of parity gates
cannot in general be replaced by a depth 2 unweighted threshold
circuit of polynomial size.

Key words. circuit complexity; majority circuits; threshold circuits;
lower bounds.

Subject classi�cations. 68Q15.

1. Introduction

In this paper we study small depth circuits that contain threshold gates. We
will be working in the discrete model of computation, i.e., all variables and
values of intermediate results will take Boolean values and, in particular, we
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will not deal with real numbers. A threshold gate with m inputs is determined
by m weights (w1; w2 : : : wm) and a threshold T . On inputs y1; y2 : : : ym it takes
value 1 if

Pm
i=1wiyi � T and 0 otherwise. It is easy to see that a Boolean

function can be computed by a threshold gate with integer coe�cients (that
is with integer weights and threshold) if and only if it can be computed by
a threshold gate with arbitrary real coe�cients, so in what follows we will
consider only threshold gates with integer coe�cients.

A model of computation that is more realistic than general threshold gates
(at least from a physical point of view) is obtained by requiring that the absolute
values of the (integer) weights are bounded by a polynomial in the length of
the input. If we do not care whether the number of wires is increased by a
polynomial factor, this model is equivalent to eliminating the weights totally.
In this case a gate will output 1 if and only if the number of inputs that take
the value 1 exceeds T , for a given threshold T . It is not hard to see that in
this case we only need majority gates, and thus we get very simple circuits.
However, for notational convenience, most of the time we will not eliminate
the weights and thus we will call this type of circuit a small weight threshold

circuit.

In this paper all circuits we consider will be of polynomial size. This will
sometimes in
uence our language. In particular we will say \Depth 2 small
weight threshold circuits cannot compute the inner product" when we actu-
ally mean \Polynomial size, depth 2 threshold circuits where all weights are
bounded by a polynomial cannot compute the inner product".

There are two reasons for studying threshold circuits. The �rst reason is
that threshold circuits are very closely connected to neural nets which is one
of the most active areas in computer science. The basic element of a neural
net is very similar to a threshold gate. However, in many instances one prefers
to have a continuous model where variables and intermediate results take real
values. This change does not increase the computational power signi�cantly
as proved by Maass, Schnitger and Sontag [12]. Another perhaps more funda-
mental di�erence is that neural nets frequently contain feedback edges; i.e., the
underlying graph is not acyclic. On the other hand a strong point of similarity
is the restriction to small depth. Many neural nets considered have depth 2
or 3. The computational capacity of neural nets is far from clear, and thus any
information about their power would be very interesting. Even if we do not
consider exactly the same model, we think that our results will be useful to
this end. For more information about neural nets, see [8].

The second reason is that the small depth threshold circuit is one of the
simplest natural type of circuit for which no superpolynomial lower bounds are
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known for an explicit function. Thus in particular it is not known whether all
functions inNP can be computed by depth 3 threshold circuits without weights
(or by depth 2 threshold circuits with weights). All lower bounds known so far
are for very limited classes. In particular there are good lower bounds for depth
2 circuits with small weights by Hajnal et al. [6] and more recently by Krause
[10] and Krause & Waack [11].

The techniques of Hajnal et al. were extended by H�astad and Goldmann
[7] to deal with depth 3 circuits with small weights and small bottom fanin.
These lower bounds agree very well with our intuition, as do the results about
monotone threshold circuits by Yao [21] (extended in [7]).

The �rst surprise was presented by Allender [1] who, inspired by the re-
sults of Toda [18], proved that depth 3 threshold circuits of subexponential
size could do all of AC0. Yao [22] extended this to ACC0 which consists of
all functions computable by polynomial size constant depth circuits over the
basis f^;_;:;mod mg for an arbitrary �xed m (note that this last class could
actually contain all of NP !). Siu and Bruck [16] showed that even as simple
a circuit as an unweighted threshold of parity gates could do much more than
expected. Our results follow the same pattern, by establishing some not very
surprising lower bounds and proving that the lower bounds are in fact optimal
by showing a surprising construction.

It is not di�cult to see that there are functions computed by a general
threshold gate that cannot be computed by a threshold with small (or no)
weights [14]. Siu and Bruck in [16] show that such functions can be computed
by depth 3 unweighted threshold circuits, and in general a depth d weighted
threshold circuit can be simulated by a depth 2d + 1 unweighted threshold
circuit. They conjecture that depth d+2 unweighted threshold circuits would be
su�cient and pose the question whether depth 3 unweighted threshold circuits
are required to simulate a single threshold gate with arbitrary weights. What we
�rst thought was a stepping stone to answering this question in the a�rmative,
is our result that there is an explicit threshold gate which cannot be replaced
by an unweighted threshold of parity gates. This is a weaker statement since it
is easy to see that any function that is an unweighted threshold of parity gates
is also an unweighted threshold of unweighted thresholds [2].

Using a similar proof we prove that there is a function which can be written
as a general threshold gate of parity gates, but which cannot be computed
by depth 2 majority circuits. Both these facts seem to favor an a�rmative
solution of the question of Bruck and Siu, but that intuition is wrong and we
prove that the answer is negative. In fact anything that can be computed by an
arbitrary threshold gate can be computed in polynomial size and depth 2 with
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unweighted threshold gates. This construction extends to prove that whatever
can be computed by depth d general threshold circuits can be computed in
depth d + 1 with unweighted threshold gates. This in particular proves the
above mentioned conjecture of Siu and Bruck.

An outline of the paper is as follows. Sections 2 and 3 introduce the notation
and recall some basic facts. In Section 3 we also establish a connection between
threshold circuits and communication complexity used in later sections.

Sections 4 through 7 contain the results of this article, and they are fairly
independent of each other. In Section 4 we prove the lower bounds. The basic
tool for proving these lower bounds is a communication analogue of the corre-

lation lemma from [6] which says that if f(x; y) is a small threshold of \simple"
functions then there is an e�cient probabilistic one-way communication proto-
col which predicts the value f(x; y) with considerable advantage. In Section 5
we prove a converse of the correlation lemma. In Section 6 we establish an up-
per bound on the one-way communication complexity of an arbitrary function
computable by a single threshold gate.

In Section 7 we show how to simulate large weights by small weights with-
out losing much in depth. The bulk of this section is devoted to showing how a
certain function, Un;m(x), which is universal for the class of all functions com-
putable by a single threshold gate with weights, can be computed by a depth 2
polynomial size unweighted threshold circuit. This result is then extended to
show that a polynomial size depth d threshold circuit with arbitrary weights
can be simulated by a polynomial size depth d+1 unweighted threshold circuit.

In Section 8 we sum up the relations between the considered complexity
classes. In the �nal section we mention some recent results related to this
work.

2. Notation

We will consider Boolean functions but for notational simplicity we will be
working over f�1; 1g rather than f0; 1g where we let �1 correspond to 1 and
1 to 0. Thus variables will take the values f�1; 1g and a typical function will
be from f�1; 1gn to f�1; 1g. In this notation the parity of a set of variables
will be equal to their product and thus we will speak of monomials rather than
the parity of a set of variables. If we have a vector x of variables (indexed
as xi or xij) then a monomial will be written x� where � is a 0; 1-vector of
the same type. Observe that using f�1; 1g rather than f0; 1g does not change
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anything when considering threshold gates. This allows us to write the function
computed by a threshold gate as the sign of a linear form. Since we are dealing
with functions that take the values f�1; 1g, we require the argument of the
sign function to be nonzero.

In our circuits we allow no multiple edges and we de�ne the size to be the
number of gates. We will be interested in the following classes:

� LTd, the set of functions computable by circuits consisting of general
threshold gates which have polynomial size and depth d;

� cLT d, the set of functions computable by circuits consisting of small weight
threshold gates which have polynomial size and depth d;

� PT1[2], the set of functions that can be represented as the sign of a sparse
polynomial. This corresponds to a general threshold gate with monomials
at the inputs;

� dPT 1[2], the set of functions that can be represented as the sign of a sparse
polynomial with integer coe�cients that have absolute value bounded by
a polynomial. This corresponds to a small weight threshold gate with
monomials at the inputs;

� PL1[3], the set of functions whose Fourier transform has L1-norm boun-
ded from above by a polynomial;

� PL1 [3], the set of functions whose Fourier transform has L1-norm that
is at least an inverse polynomial.

We will not discuss relations between these classes here but defer this to
the discussion at the end of the paper.

3. Preliminaries

We will frequently use the following well known fact:

Lemma 1. Any threshold gate with n inputs can be represented as a threshold

gate with integer weights wi and threshold T such that jwij ; jT j � 2�n(n +
1)(n+1)=2.
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The proof can be found e.g., in [13].
We will be interested in functions that can be written as a small threshold of

members of some set of functions. LetH be a class of functions h : f�1; 1gn �!
f�1; 1g, e.g., the class of monomials, the class of all functions representable by
a threshold gate of weight � b, etc. Assume for the sake of simplicity that H
is closed under negation.

Definition 2. Let TH(f) be the minimal possible w for which f allows a

representation

f(x) = sign

 
sX

i=1

aihi(x)

!
where hi 2 H and w =

Ps
i=1 jaij, ai 2 Z.

The parameter w will be called the total weight of the corresponding threshold
gate.

Let the correlation DR
H(f) of the family H and the function f with respect

to a distribution R on f�1; 1gn be the value

max
h2H

ER [f(x)h(x)] :

This leads to the following de�nition:

Definition 3. The correlation of f with respect to a family of functions H is

DH(f) = minRD
R
H(f) where the minimum is taken over all distributions R.

Lemma 3.3 from [6] can now be stated as follows:

Lemma 4. TH(f) � D�1
H (f).

For completeness let us give its proof.

Proof. We just have to prove that TH(f) �DR
H(f) � 1 for any distribution R.

Let f be any Boolean function with the representation

f(x) = sign

 
sX

i=1

aihi(x)

!
;

where this representation has minimum total weight, i.e.,

TH(f) =
sX

i=1

jaij:
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By the de�nition of DR
H(f) we now just need to show that for some h 2 H

we have
sX

i=1

jaij �ER [f(x)h(x)] � 1:

We will show that in fact such h can be chosen from the set f�hij1 � i � sg
(which is a subset of H since H is closed under negation). This readily follows
from

1 = ER [f(x)f(x)] � ER

"
f(x)

sX
i=1

aihi(x)

#
�

sX
i=1

jaij jER [f(x)hi(x)]j �
sX

i=1

jaij � max
1�i�s

jER [f(x)hi(x)]j

which completes the proof of the lemma. 2

It will be convenient for us to use an analogue of this lemma stated in terms
of communication complexity. Denote by C1=2��(g; 1! 2) the probabilistic one-
way communication complexity of g with error 1=2 � �, i.e., with advantage �
(see [19, 20]). For the purposes of this paper we consider the model in which
the probability of being correct is at least 1=2 + � for every pair of inputs, the
random string is shared by both parties and the complexity is measured as the
number of bits sent in the worst case (not the average). Let C(g; 1 ! 2) be
the corresponding deterministic measure. We have the following lemma.

Lemma 5. Let d = maxh2HC(h; 1! 2). Then

C1=2�1=(2TH(f))(f ; 1! 2) � d:

In other words, there exists a one-way probabilistic protocol of complexity � d
which guarantees advantage at least (2TH(f))�1 for every pair of inputs.

Proof. Let

f(x; y) = sign

 
sX

i=1

aihi(x; y)

!
(1)

where
Ps

i=1 jaij = w = TH(f). The players use the common random string to
choose hi and then they compute and answer sign(ai)hi(x; y). They choose hi
with probability jaij

w
. The communication complexity is clearly bounded by d.

To take care of the advantage, note that the output is correct if and only if
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f(x; y) = sign(ai)hi(x; y) or, in other words, f(x; y)sign(ai)hi(x; y) = 1. Hence
for each particular input (x; y) the advantage equals

1

2
E [f(x; y)sign(ai)hi(x; y)] =

1

2

sX
i=1

jaij
w
� f(x; y)sign(ai)hi(x; y) =

f(x; y)

2w

sX
i=1

aihi(x; y) =
1

2w

�����
sX

i=1

aihi(x; y)

����� � 1

2w
;

where the last equality follows from (1). 2

Several previous proofs of lower bounds are implicitly based on Lemma 5 or
similar statements. [6, 11] use the lower bound for the communication complex-
ity of \INNER PRODUCT MOD 2" (this bound holds even for the two-way
case), while [7] uses a straightforward generalization to a multi-party commu-
nication game.

Let us just remark here that if H is the set of all monomials then d = 1
and if H is the set of all threshold gates with total weight bounded by S then
d � dlog(2S + 1)e.

4. Lower bounds

In this section we will prove that there is a function which can be computed
by a threshold gate with large weights with variables as inputs but not by a
threshold gate with small weights and monomials as inputs. We will also prove
that there is a function which can be computed by a threshold gate with large
weights with monomials as inputs but not by a depth 2 threshold circuit with
small weights. Using the notation from the introduction this will show that
LT1 6�dPT 1 and PT1 6� cLT 2 respectively.

The proofs go as follows. First we de�ne a function p(x; y) in PT1 which
will be shown to be \hard". More precisely, Theorem 6 establishes a trade-
o� between the advantage � achieved, and the number of bits d sent by a
randomized one-way communication protocol for p(x; y). On the other hand,
Lemma 5, when applied to depth 2 small weight threshold circuits, shows that
any function f(x; y) in cLT 2 has a randomized one-way protocol that uses little
communication but still computes f(x; y) correctly with considerable advan-

tage. Combining this with Theorem 6 shows that p(x; y) 62 cLT 2.
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To show that LT1 6�dPT 1 we de�ne a function Un;m(x) in LT1 such that if

Un;m(x) 2dPT 1 then p(x; y) 2dPT 1. Since dPT 1 � cLT 2 we have p(x; y) 62dPT 1

and thus Un;m(x) 2 LT1 ndPT 1.
The function p(x; y) is de�ned as follows:

p(x; y) = sign(2P (x; y) + 1)

where

P (x; y) =
n�1X
i=0

2n�1X
j=0

2iyj(xi;2j + xi;2j+1):

We will now show the following theorem.

Theorem 6. For any � > 0 possibly depending on n we have

2d � 


�
� � 2n=2p

n

�
where d = C1=2��(p; 1! 2).

Before we prove the theorem, let us apply it to circuits. First we show that
PT1 6� cLT 2 by establishing that p(x; y) 2 PT1 n cLT 2. Clearly p(x; y) is in PT1.

The following corollary to Theorem 6 shows that p(x; y) 62 cLT 2:

Corollary 7. If p(x; y) is computed by a depth 2 threshold circuit with

weights bounded by w and size s then

sw2 � 


�
2n=2

n5=2

�
:

Proof. The gates at the bottom level all have one-way complexity at most
dlog(4wn2+ 1)e since player 1 just sends the weight contributed by his inputs.
This weight is an integer in the range [�2wn2; 2wn2]. Now Lemma 5 gives us

C1=2�1=(2sw)(p; 1! 2) � dlog(4wn2 + 1)e:

The corollary now follows from Theorem 6. 2

Since dPT 1 � cLT 2 [2], we clearly have that p(x; y) 62dPT 1. Using the fact
that the one-way complexity of a monomial is constant, an argument analogous
to the proof of Corollary 7 shows the following.
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Corollary 8. If p(x; y) is computed by a threshold gate of monomials then

the total weight w of this gate satis�es

w � 


�
2n=2p
n

�
:

Next we show that LT1 6�dPT 1.

Let rn;m(x) =
n�1X
i=0

m�1X
j=0

2ixij and let Un;m(x) = sign(2rn;m(x) + 1).

Clearly, Un;m(x) 2 LT1. Assume that Un;4n(x) 2 dPT 1. Let C be the dPT 1{
circuit computing Un;4n(x). Make the following variable substitutions:

xi;2k  xi;2kyk; xi;2k+1  xi;2k+1yk:

We then get a circuit C 0 with the following properties: C 0 has the same weights
and the same number of monomials as C. Thus C 0 computes a function indPT 1.
On the other hand it is easy to see that the substitution transforms Un;4n(x)

into p(x; y), and since p(x; y) 62dPT 1 we have a contradiction. This argument
actually shows that the bound established in Corollary 8 holds for Un;4n(x) as
well.

Corollary 9. If Un;4n(x) is computed by a threshold gate of monomials then

the total weight w of this gate satis�es

w � 


�
2n=2p
n

�
:

In general, Theorem 6 shows that p(x; y) cannot be written as a small depth
2 circuit with a bounded weight threshold gate at the top and simple gates
at the inputs, where \simple" means \having small one-way communication
complexity" (i.e., majority, mod m for constant m etc.).

In the remainder of this section we will prove the theorem.

Proof of Theorem 6. Take a probabilistic protocol for p. If we take some
distribution R on inputs, then by a standard argument there is a deterministic
protocol where player 1 sends d bits which is �{biased with respect to p on the
distribution R. That is to say

jER [p(x; y)k(x; y)]j � 2�; (2)
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where k(x; y) is the output of the protocol. Let us de�ne the distribution
on inputs that will allow us to derive the lower bound on d. Let B(M) be
the distribution that is obtained as the sum of 2M Bernoulli variables, where
each variable takes the value 1=2 and �1=2, each with probability 1=2. Let
Aj =

1
2

Pn�1
i=0 2

i(xi;2j + xi;2j+1). It is easy to see that Aj can take any integer
value in [�2n + 1; 2n � 1].

Let Rx be a distribution on x that makes the Aj independent and
B (2n � 1){distributed. Let U be the uniform distribution on y.

We choose a pair (x; y) by picking y according to U and x according to Rx

under the condition that jP (x; y)j = 2. We call this distribution R.
Now let us look at a protocol k(x; y) that is �{biased with respect to R.

Player 1, who has x, sends a d{bit message, m = m(x), to player 2 after which
player 2 gives the output of the protocol. What player 2 says can only depend
onm and y. We can write the output as km(y), that is to say k(x; y) = km(x)(y).

By assumption we have that (2) holds for k(x; y). We will now give the
following upper bound for the left hand side of (2):

jER [p(x; y)k(x; y)]j � O

�
2d
p
n

2n=2

�
: (3)

This along with (2) will give us the statement of the theorem.

Let q(x; y) be the following function:

q(x; y) =

�
P (x; y)=2 if jP (x; y)j = 2
0 otherwise.

This means that if (x; y) is chosen according to Rx � U then q(x; y) = p(x; y)
on the domain of R, and q(x; y) = 0 otherwise.

Now, PRx;U [jP (x; y)j = 2] � 

�

1p
n2n=2

�
. This is true since for any �xed

y, if we take x according to Rx then P (x; y)=2 is B(2n(2n � 1)){distrubuted.
Hence

jER [p(x; y)k(x; y)]j � jERx;U [q(x; y)k(x; y)]j �O
�p

n2n=2
�
:

It therefore su�ces to show that

jERx;U [q(x; y)k(x; y)]j � O
�
2d�n

�
: (4)

It is useful to make the following observation: There are 2d possible messages
that player 1 might send. We can enumerate them as m1; : : : ; m2d. So for every
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x there is an l such that EU [q(x; y)k(x; y)] = EU [q(x; y)kml
(y)]. This gives us

jEU [q(x; y)k(x; y)]j �
2dX
l=1

jEU [q(x; y)kml
(y)]j (5)

for any �xed x. Let us now show that (4) holds. First we use (5) to get

jERx;U [q(x; y)k(x; y)]j � ERx [jEU [q(x; y)k(x; y)]j] �X
l

ERx [jEU [q(x; y)kml
(y)]j]:

Then we use the Cauchy-Schwartz inequality and simple manipulation.X
l

ERx [jEU [q(x; y)kml
(y)]j] �

X
l

ERx

�
EU [q(x; y)kml

(y)]2
�1=2

=X
l

EU;U [kml
(y)kml

(y0)ERx [q(x; y)q(x; y
0)]]1=2 �

2dEU;U [jERx [q(x; y)q(x; y
0)]j]1=2 �

2d
�
21�2n + jERx [q(x; y)q(x; y

0) j y 6= �y0]j�1=2 :
Thus in order to complete the proof it is su�cient to show that for all y

and y0 such that y 6= �y0 we have
jERx [q(x; y)q(x; y

0)]j � O
�
2�2n

�
: (6)

Let W =
X

fjjyj=y0jg
Ajyj and Z =

X
fjjyj=�y0jg

Ajyj.

Then W is B(k(2n� 1)){distributed and Z is B((2n� k)(2n� 1)){distributed
for some k where 0 < k < 2n. Moreover, W and Z are independent. We have
P (x; y) = 2(W + Z) and P (x; y0) = 2(W � Z). This gives us the following:

jERx [q(x; y)q(x; y
0)]j =

jP [P (x; y)P (x; y0) = 4]�P [P (x; y)P (x; y0) = �4]j =��P �W 2 � Z2 = 1
��P �W 2 � Z2 = �1��� =

jP [jW j = 1]P [Z = 0]�P [W = 0]P [jZj = 1]j � O
�
2�2n

�
:

The last inequality follows from the fact that

jP [jW j = 1]� 2 �P [W = 0]j � O(2�3n=2);
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jP [jZj = 1]� 2 �P [Z = 0]j � O(2�3n=2)

and that
P [Z = 0] � O(2�n=2);

P [W = 0] � O(2�n=2):

We have proved (6) and thereby (4) and (3). This completes the proof of
the theorem. 2

5. Su�ciency of the correlation lemma

We saw in the last section that Lemma 4 and its communication analogue
Lemma 5 are very useful. In this section we will explain this by proving that
Lemma 4 can be partially reversed. Namely, the condition that for every distri-
bution on inputs there is a function in H which is polynomially correlated with
a function f implies that f can be written as a small threshold of functions in
H.

This result implicitly follows from a general statement proved by Freund [4,
Theorem 1]. Since our proof is simpler we include it here. We have:

Theorem 10. TH(f) � 2nD�2
H (f).

Proof. Consider a two person game where player 1 chooses an input x and
player 2 chooses a function h which belongs to H. The result of the game is
that player 2 wins h(x)f(x) from player 1. By de�nition, DR

H(f) is the expected
gain of player 2 when player 1 plays with the mixed strategy de�ned by R and
player 2 plays optimally and knows player 1's strategy. Thus for any mixed
strategy of player 1, player 2 can always win DH(f) on the average. By the
minmax theorem for zero-sum two person games [15], there is a mixed strategy
for player 2 which guarantees him this gain. In our case this means that there
is a probability distribution E on elements of H such that for any x

EE [f(x)h(x)] � DH(f): (7)

Now let r = 2nD�2
H (f). Consider r independent copies h1; : : : ; hr of the distri-

bution E and denote their sum by H. By Cherno�'s bound we have from (7):

P [f(x)H(x) � 0] < exp
��rD2

H(f)=2
�
< 2�n:
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Hence for at least one possible tuple h1; : : : ; hr we have H(x)f(x) > 0 for all x
which means f(x) = sign (H(x)). This completes the proof of Theorem 10. 2

Unfortunately, we cannot hope to reverse Lemma 5 in a similar way. The
reason is that a probabilistic communication protocol might \use" arbitrary
functions h for which C(h; 1! 2) � d, not only those from H. The conversion
becomes possible only if H consists of all such functions, but this class is not
particularly interesting for applications.

6. An upper bound on the communication complexity of

threshold functions

In the next section we will show the surprising result LT1 � cLT 2. By Lemma 5
this implies that for any fn 2 LT1 there exists k > 0 such that C1=2�n�k(fn; 1!
2) � O(logn). However we can prove much better upper bound using the
spectral norm technique from [3]. This easy result, interesting in its own right,

explains at least why the \expected" separation LT1 6� cLT 2 cannot be proved
via Lemma 5 and serves as a prelude to the next section.

For a Boolean function f : f�1; 1gn �! f�1; 1g, its L1-norm is de�ned by
L1(f) =

P
�2f0;1gn ja�j where f(x) =

P
�2f0;1gn a�x

� is the uniquely determined
polynomial representation of f . We have the following general result.

Theorem 11. For each function f , we have that

C1=2�(2L1(f))�1(f ; 1! 2) � 1:

Proof. The following fact was used in [3, proof of Lemma 1]:

Lemma 12. ([3]) For any f(x) there exists a probability distribution � over

f0; 1gn such that for each x 2 f�1; 1gn,

E [sign (a�)x
�] =

f(x)

L1(f)
: (8)

Now, the two players pick � in accordance with this distribution and output
sign (a�) x

� using the fact that the one-way communication complexity of a
monomial is � 1. By (8), the advantage achieved by this protocol at each
input x is equal to (2L1(f))

�1. 2
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Let gn : [2
n]�[2n] �! f�1; 1g be the ordering function de�ned by gn(x; y) =

1 if and only if x � y. Siu and Bruck [16] showed that L1(gn) � O(n). Along
with Theorem 11 and obvious ampli�cation this gives the following result.

Theorem 13. C1=2�1=n(gn; 1! 2) � O(1).

This should be compared with the result of Yao [20] which states that
C1=2��(gn; 1! 2) � 
(n) for each �xed � > 0.

Theorem 13 is easily extended to arbitrary functions from LT1:

Theorem 14. For each fn(x; y) 2 LT1,

C1=2�(n log
2
n)�1(fn; 1! 2) � O(1):

Proof. By Lemma 1, fn(x; y) can be represented in the form

fn(x; y) = sign

 
nX
i=1

aixi +
nX

j=1

bjyj + c

!
(9)

where jaij; jbjj � exp(O(n logn)). Now the two parties wishing to compute
fn(x; y) proceed as follows. They compute �Pn

i=1 aixi and c +
Pn

j=1 bjyj re-
spectively and apply the protocol for the ordering function from Theorem 13 to

compute gn

�
�Pn

i=1 aixi; c+
Pn

j=1 bjyj

�
. This gives C1=2�(Cn log

2
n)�1(fn; 1!

2) � O(1) for some C > 0; again a straightforward ampli�cation allows us to
get rid of the constant C. 2

Remark 15. The proof of Theorem 14 reveals that the ordering function is

universal for LT1 in the sense of communication complexity.

7. Replacing large weights by small weights

In this section we will show how to simulate threshold circuits which have large
weights by threshold circuits with small weights. Let us start with the basic
construction. It will be convenient for us to slightly change the de�nition of
the sign function in this section by putting sign(0) = 1.

Recall the function Un;m de�ned in Section 4. As observed in that section,
Un;m can be computed by a threshold gate. On the other hand, it is universal
in a very strong sense. Namely, take any function that is computed by a
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threshold gate of n inputs; Lemma 1 implies that this function is a subfunction
of U 1

2
(n+1) log(n+1);2(n+1). Thus to achieve our goals it will be su�cient to compute

Un;m by a depth 2 polynomial size threshold circuit with small weights.
In what follows s > 0 will be considered a �xed integer and l will be a

parameter. To avoid confusion with other usage of n and m we will for the
next couple of paragraphs discuss how to compute Ua;b for some parameters
a and b which later will be chosen as functions of n and m. For notational
simplicity we will also assume that a and b are powers of 2.

One of the building blocks will be the following functionMl(y) of one integer
variable:

Ml(y) =
2bX

i=�2b
sign

�
y � i � 2l+s log a � 2l + a�s2l

�
�sign �y � i � 2l+s log a � 2l+1 � a�s2l

�
+sign

�
y � i � 2l+s log a + 2l � a�s2l

�
�sign �y � i � 2l+s log a + 2l+1 + a�s2l

�
where the summation extends over all four terms. Let us establish some prop-
erties of Ml.

Let y = j � 2l+s log a + � where j is an integer and j�j � 2l+s log a�1. Observe
that all i 6= j contribute 0 in the sum de�ning Ml(y) since the terms cancel in
pairs. It is straightforward to obtain:

Lemma 16. For jyj < 2b2l+s log a + 2l+1 + a�s2l we have the following:

If 2l+1 + a�s2l > j�j > 2l � a�s2l then Ml(y) = 2sign(�).

If j�j > 2l+1 + a�s2l or j�j < 2l � a�s2l then Ml(y) = 0.

If j�j = 2l+1 + a�s2l or j�j = 2l � a�s2l then jMl(y)j � 2.

We use the following shorthand: Let �t2
t1(x) =

Pt2
i=t1

Pb�1
j=0 2

ixij and let �ls(x) =

�
min(l+s log a; a�1)
max(l�s log a�log b; 0)(x) (0 � l � a + log b). Now consider Nl(x) = Ml(�ls(x)).

The total weight of each threshold gate in the de�nition of Nl(x) is � O(a2sb2)
since we can cancel the common factor 2l�s log a�log b. Observe that this is poly-
nomial in a and b. Observe also that j�ls(x)j < 2b2l+s log a and hence Lemma 16
applies. Furthermore

�ls(x) � ra;b(x)� �l�s log a�log b�1
0 (x) mod 2l+s log a:

Clearly j�l�s log a�log b�1
0 (x)j < a�s2l. Using this bound a straightforward appli-

cation of Lemma 16 yields
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Lemma 17. If 2l � jra;b(x)j < 2l+1 then Nl(x) = 2Ua;b(x)

and

Lemma 18. Let ql = jra;b(x) mod 2l+s log aj. If ql � (2+ 2
as
)2l or ql � (1� 2

as
)2l

then Nl(x) = 0.

Remark 19. Note that Lemmas 17 and 18 are still valid for x ranging over

f�1; 0; 1gab rather than f�1; 1gab.
De�ne Na;b(x) =

Pa+log b
l=0 Nl(x). For every non-zero value of ra;b(x) we

have that the premise of Lemma 17 holds for exactly one l. Intuitively it is
clear (we will prove something similar later) that for most x the condition of
Lemma 18 holds for all other l. This implies that for a random x we have
2Ua;b(x) = Na;b(x). Now observe that Na;b can be computed by a depth 2
threshold circuit with small weights and furthermore we only need a sum at
the top gate. It is, however, easy to see that this equation for Ua;b does not
hold for all x. To remedy this we use some randomization. Let us now return
to the question of computing Un;m. We assume that m and n are also powers
of 2. Let

z = fzijk; zk j 0 � i � n� 1; 0 � j � m� 1; 0 � k � 2n� 1g;
r(z) =

X
i;j;k

2i+k+1zijk +
X
k

2kzk;

U 0(z) = sign(r(z)):

Then U 0(z) can be obtained from U4n;2mn by substituting 0 for some of the
variables. Let N 0(z) be obtained from N4n;2mn by the same substitution.

Now let � be an integer in [1; 22n � 1] with binary representation

�2n�1�2n�2 : : : �1�0:

By substituting xij�k for zijk and �k for zk we transform U 0(z) to

sign (2�rn;m(x) + �) = Un;m(x)

since � is positive. Transform with the same substitution N 0(z) to some N�(x).
Observe that N�(x) can be written as a sum of threshold functions. For the
record let us note that the total weight of any gate at the bottom level is
O (m2n2s+2).
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Let r = 2rn;m(x)+1. By Remark 19 we know that N�(x) = 2Un;m(x) except
when �r for some l does not fall under the conditions prescribed by Lemmas 17
or 18 for a = 4n and b = 2mn. We will pick � at random from [1; 22n � 1] and
we need to analyze the probability of this event.

Fix the value of l; we then have the following bad events:

1. We have that
�
1� 2

(4n)s

�
2l � jr�j � 2l.

2. We have that 2l+1 � jr�j �
�
1 + 1

(4n)s

�
2l+1.

3. We have jr�j � 2l
�
(4n)s � 2� 2

(4n)s

�
and it does not satisfy the hypoth-

esis of Lemma 18 (with a = 4n and b = 2mn.)

Lemma 20. If m < 2n=2 then for a �xed l the probability of either of these bad

events happening is O(n�s).

Proof. The �rst bad event is equivalent to (1 � 2
(4n)s

)K � � � K for

K = 2l= jrj. For any K the probability of this event is clearly O(n�s). The
second bad event is handled in the same way. To analyze the probability of the
third bad event let us divide the analysis according to whether 2n is greater
than l+s logn. If 2n � l+s logn then, since r is odd, r� mod 2l+s log n is almost
uniformly distributed modulo 2l+s log n (0 is slightly underrepresented) and the
bound is then obvious since we are looking at a subset of density O(n�s). On
the other hand if 2n < l + s logn we argue as follows. The bad intervals for
r� are of length 
(2l) and jrj < 4m2n = O

�
23n=2

�
. Hence the length of the

corresponding intervals for � is 

�
2l=jrj� = 
(1). Now, since bad and good

intervals alternate, the length of each good interval is a factor 
(ns) longer than

the length of each bad interval and the �rst interval
h
0; 2l

�
(4n)s � 2� 2

(4n)s

�i
is good, the lemma follows also in this case. 2

Take n2s random independent �i and let V (x) =
Pn2s

i=1N�i(x). We will need
the following elementary inequality (see e.g. [9]).

Lemma 21. (Hoeffding's inequality) Let X1; :::; Xk be independent ran-

dom variables with values in the interval [0; 1] and S =
Pk

i=1Xi. Let � =
E [S=k]. Then

P [S � k� � kt] � exp
��
(kt2)� :

Now we have
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Lemma 22. If m < 2n=2 and n is su�ciently large, then for any �xed r
the probability that there exists x with r = 2rn;m(x) + 1 and such that

j2n2sUn;m(x)� V (x)j � ns+2 does not exceed exp (�
(n2)).
Proof. Denote by B the number of those pairs (l; i) (l � 4n+ log(2mn); i �
n2s) for which r�i falls into an interval which is bad with respect to l. Note
that j2n2sUn;m(x)� V (x)j � 2B for each x with r = 2rn;m(x) + 1. Hence we
only have to check that P [B � ns+2=2] � exp (�
(n2)).

Let Bi be the contribution of pairs (l; i) for a �xed i. Then B =
Pn2s

i=1Bi,
where the Bi are independent. Note also that 0 � Bi � O(n) and that E [Bi] �
O(n1�s). We now apply Hoe�ding's inequality with Xi =

Bi

Cn
; k = n2s and

t = n1�s

3C
(where C is a su�ciently large constant) to get the result. 2

This implies

Corollary 23. If m < 2n=2 and n is su�ciently large then there is a choice

of �i, i = 1; 2; : : : n2s such that j2n2sUn;m(x)� V (x)j < ns+2 for all x.

Proof. There are only exp (O(n)) di�erent r's so for at least one choise of �i

the inequality in Lemma 22 is ful�lled for all r's and hence for all x's. 2

Please observe that sign(V (x)) can be computed by a depth 2 threshold
circuit with small weights. Using s = 2 in Corollary 23 together with the
universality of U we get

Theorem 24. Suppose f can be computed by a threshold gate with arbitrary

weights. Then f can be computed by a small weight threshold circuit of poly-

nomial size and depth 2.

In the standard terminology the above theorem says that LT1 � cLT 2. This
immediately generalizes to

LTd � cLT 2d: (10)

In fact, when the depth d is �xed, more can be said about the relationship
between these classes. The easiest way to prove this is to introduce a new
complexity class where we mix small and large weights.

Definition 25. Let fLT d be the set of functions that can be computed by

depth d threshold circuits of polynomial size, where the top gate has total

weight bounded by a polynomial while we have no restrictions on the weights

of the other gates.

Clearly both cLT d and LTd�1 are contained in fLT d. For the converse we
have the following striking theorem.
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Theorem 26. For any �xed d � 1, fLT d = cLT d.

Proof. For d = 1 there is nothing to prove. Let us �rst prove the theorem
for d = 2. Take any f 2 fLT 2 and a circuit which computes f . Suppose
the total weight at the top level is bounded by nt and assume for notational
simplicity that each of the bottom gates computes a subfunction of Un;n. We
can also assume that the sum in the top gate never evaluates to 0. The inputs
to the top gate are threshold gates with unbounded weights and n inputs. We
can assume (by introducing dummy gates) that there are no direct wires from
input variables to the top gate. Now for each gate Gi on the second layer pick
a corresponding function Vi(x) which satis�es Corollary 23 with s = t+2. Now
instead of inputting the value of Gi to the top gate, input Vi(x). Since the top
gate in the circuit de�ning Vi is a sum, the resulting circuit after replacing the
Gi can be converted into a depth 2 circuit. Suppose that the weights of the
original top gate were wi with

P jwij � nt. Then the output of this new circuit
is

sign
�X

wiVi(x)
�
:

But now we haveX
wiVi(x) = 2n2t+4

X
wiGi(x) +

X
wi(Vi(x)� 2n2t+4Gi(x))

and by Corollary 23���Xwi(Vi(x)� 2n2t+4Gi(x))
��� � nt+4

X
jwij � n2t+4

while jPwiGi(x)j � 1. This implies that

sign
�X

wiVi(x)
�
= sign

�X
wiGi(x)

�
= f(x):

Thus the converted circuit computes the correct function and we have proved
the theorem in the case of d = 2.

To prove the theorem for general d, we just need to replace the gates with
unbounded weights by gates with small weights one level at the time. 2

We get the following immediate corollary.

Corollary 27. For any �xed d � 2, LTd�1 � cLT d.

The construction in the proof of Theorem 26 gives an enormous blowup in
size. For instance if we start with a circuit of size n then the resulting circuit
will be of size O(nc(d)) where c(d) is exponential in the depth d. In particular,
we do not know whether Corollary 27 holds for the case of d growing with n or
not. Equation (10) however is true for arbitrary d and in fact we can do better:
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Theorem 28. For any �xed � > 0 and any d � 1=� possibly depending on n,

we have LTd � cLT (1+�)d.

Proof. Cut the LTd-circuit into b�dc slices, each slice being of constant depth,
and apply Corollary 27 to each slice separately. 2

8. Summary

Using our current results we can now establish all possible relations between
the most basic complexity classes de�ned by small depth threshold circuits.
These relations are summarized in the following picture:

PL1
cLT 1

dPT 1 LT1

PT1 cLT 2

PL1 LT2

H
H
H
H
H
H

H
H
H
H
H
H

�
�
�
�
�
�

�
�
�
�
�
�

2

4 5

3

8

6

1

7

10
9

Let us �rst comment on the inclusions: 2,3,4,5 and 10 are obvious. 6,8,9 were
proved in [2]. The inclusion 1 was proved in [3] and 7 is Theorem 24.

Let us point out that no inclusion relationships exist among these classes
that do not follow from the above diagram. The reasons are the following:

� PL1 6� LT1 { separated by \PARITY",

� cLT 2 6� PL1 { separated by \COMPLETE QUADRATIC" [2],

� LT1 6�dPT 1 { Corollary 9,

� PT1 6� cLT 2 { Corollary 7,
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� cLT 1 6� PL1 { separated by \MAJORITY",

� PL1 6� LT2 { seperated by counting arguments.

9. Related results

We conclude by mentioning some recent results related to this work that answer
open questions asked in a preliminary version of this paper.

Siu and Roychowdhury [17] have used Theorem 26 to get small depth poly-
nomial size majority circuits for several problems. In particular they show that
iterated addition can be done in depth 2 and multiplication in depth 3, which
answers two open questions asked by us. Both these results are optimal in
depth.

Also, Goldmann and Karpinski [5] improve on Theorem 26 in two respects.
They get an explicit construction that does not rely on randomized existence
arguments, and the blow-up in size is independent of the depth of the circuit.
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