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ABSTRACT
We study the class of languages, denoted by MIP1[k, 1−ε, s],
which have k-prover games where each prover just sends a
single bit, with completeness 1−ε and soundness error s. For
the case that k = 1 (i.e., for the case of interactive proofs),
Goldreich, Vadhan and Wigderson (Computational Com-
plexity’02) demonstrate that SZK exactly characterizes lan-
guages having 1-bit proof systems with“non-trivial” sound-
ness (i.e., 1/2 < s ≤ 1 − 2ε). We demonstrate that for the
case that k ≥ 2, 1-bit k-prover games exhibit a significantly
richer structure:

• (Folklore) When s ≤ 1
2k − ε, MIP1[k, 1− ε, s] = BPP;

• When 1
2k + ε ≤ s < 2

2k − ε, MIP1[k, 1− ε, s] = SZK;

• When s ≥ 2
2k + ε, AM ⊆ MIP1[k, 1− ε, s];

• For s ≤ 0.62k/2k and sufficiently large k, MIP1[k, 1−
ε, s] ⊆ EXP;

• For s ≥ 2k/2k, MIP1[k, 1, 1− ε, s] = NEXP.

As such, 1-bit k-prover games yield a natural “quantitative”
approach to relating complexity classes such as BPP,SZK,AM,
EXP, and NEXP. We leave open the question of whether a
more fine-grained hierarchy (between AM and NEXP) can
be established for the case when s ≥ 2

2k + ε.
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1. INTRODUCTION
We study the expressiveness of k-prover games (intro-

duced by Ben-Or et al. [BOGKW88]), where each prover
sends a single bit. Let MIP1[k, 1 − ε, s] denote the class of
languages having a k-prover game where each prover sends
a single bit, completeness 1 − ε, and soundness error s.
Throughout the paper, we think of k as a constant and ε
as an arbitrarily small constant. Clearly, for a fixed k, as
s increases the corresponding complexity class can only be-
come larger. We are interested in understanding to what
extent the complexity class grows, and whether the growth
is “smooth” or if threshold phenomena occur.

When the soundness error is “too small”, only trivial lan-
guages can have such games. In particular, provers sending
random bits succeed with probability at least (1 − ε)2−k,
placing the language of any protocol with smaller soundness
in BPP.

Theorem 1.1 (Folklore, implicit in [BGS98]). For
every k ≥ 1, ε > 0, we have

MIP1[k, 1− ε, 1/2k − ε] = BPP

An interesting result by Goldreich, Vadhan and Wigder-
son [GVW02] shows that when k = 1 (i.e., for interactive
proofs [GMR89, BM88]), whenever the soundness is “non-
trivial”, then MIP1[1, 1− ε, s] characterizes SZK, the class of
languages having statistical zero-knowledge proofs. We here
focus on the case when k ≥ 2. As we shall see, in this setting,
1-bit k-prover games contains a richer variety of complexity
classes. We take a first step towards characterizing these
classes.

Our first result is a simple generalization of the result of
[GVW02]: we show that when 1

2k + ε ≤ s < 2
2k − ε, then

MIP1[k, 1− ε, s] characterizes SZK.

Theorem 1.2. For every k ≥ 2, ε > 0, and 1/2k + ε <
s < 2/2k − ε, we have

MIP1[k, 1− ε, s] = SZK.



Our main result next shows that when the soundness be-
comes just slightly higher than 2/2k, MIP1s appear to be-
come significantly more powerful; in particular, they contain
all of AM.

Theorem 1.3 (Main Theorem). For every k ≥ 2 and
ε > 0

AM ⊆ MIP1[k, 1− ε, 2/2k + ε]

For instance, when k = 2, our MIP1 has soundness error
1
2

+ε. This result should be compared to H̊astad’s 3-bit PCP
[H̊as01] that achieves the same soundness error. Since every
1-bit k-prover game yields a k-bit PCP, our MIP1 yields a 2-
bit PCP for AM with soundness error 1/2+ε; in contrast, the
PCP resulting from our MIP1 is exponentially long, whereas
H̊astad’s PCP is polynomially long. Nonetheless, as we shall
see shortly, our MIP1 construction heavily relies on H̊astad’s
PCP.

We leave open the question of whether MIP1[k, 1−ε, 2/2k+
ε] contains even richer complexity classes than AM. As a first
step towards this question, we note that EXP is an upper
bound on this class.

Theorem 1.4. For all sufficiently large k, ε > 0, s ≤
0.62k

2k (1− ε) we have

MIP1[k, 1− ε, s] ⊆ EXP.

This holds also for k = 3 and s ≤ 1/2− ε.

Finally, we prove that for k ≥ 3 and sufficiently high
soundness error, k-prover 1-bit MIP1s capture all of NEXP.
This follows by using the PCP analogue of the classic MIP =
NEXP result [BFL91]. We sharpen the parameters by using
more modern PCP machinery and then observing that the
PCPs we use can be turned in to MIP1 at no cost. In par-
ticular using the recent results by Chan [?], we get

Theorem 1.5. For every ε > 0 and s = 2dlog (k+1)e/2k +
ε ≤ 2k/2k + ε,

MIP1[k, 1− ε, s] = NEXP.

Taken together, these results demonstrate that k-prover
games provide a natural “quantitative” way to relate com-
plexity classes such as BPP, SZK,AM,EXP and NEXP.

We leave open the question of whether MIP1[k, 1 − ε, s]
contains an even more fine grained hierarchy of complexity
classes in the regime where s ≥ 2/2k + ε.

1.1 Related work
The work most closely related to our is the work by Gol-

dreich, Vadhan and Wigderson [GVW02] mentioned above
which in turn builds on a work by Goldreich and H̊astad
[GH98]; just as we do, both these works investigate the com-
plexity of interactive proofs with “laconic” provers. We have
taken the question to an extreme in one direction (namely
we focus only on provers that send a single bit); on the other
hand, we have generalized the question by considering multi-
prover interactive proofs, rather than just a single prover (as
is the main focus in the above-mentioned works).

The large literature on PCP characterizations of NP (e.g.,
[AS98, ALM+98, BGLR94, BGS98, GLST98, ST00] and
many others) is clearly also very related. As mentioned, a k-
prover MIP1 yields a k-query PCP with the same soundness
error, but of exponential length; typically, the PCP litera-
ture focuses on polynomial-length proofs. Nonetheless, we

rely on both PCPs and techniques from this literature (most
notably Fourier analysis) to analyze our proof system.

We also mention the recent work by Drucker [Dru11] that
provides a PCP-type characterization of AM; his result is in-
comparable to our main theorem as he focuses on polynomial-
length PCP proofs.

1.2 Outline
In Section 2 we present some definitions and background

material that we use. In Section 3 we prove Theorem 1.2 for
the SZK range. Our main result Theorem 1.3 is proved in
Section 4. The Theorems 1.4 and 1.5 are proved in Section 5.
Finally, we end with discussing some avenues for future work
in Section 6.

2. PRELIMINARIES

2.1 Laconic Proof systems
We assume familiarity with multi-prover interactive proofs

and probabilistically checkable proofs.

Definition 2.1. IP[k, c, s] denotes the class of problems
having an two message protocol where the first message is
sent by the Verifier and where the prover sends at most k
bits and where the proof has soundness s and completeness
c.

Definition 2.2. MIP1[k, c, s] denotes the set of languages
having a Multi-prover Interactive Proof System with k pro-
vers, each sending a single bit, soundness s, completeness c.
The questions to the k provers are asked simultaneously. In
other words, all questions are formulated before any answer
is recieved.

Fact 2.3. For every k ≥ 1, 0 ≤ s < c ≤ 1, we have

IP[k, c, s] ⊆ MIP1[k, c, s].

When constructing MIP1 it is convenient to rely on ef-
ficient PCPs. There are general translations from PCPs to
MIP1s (one is given in [BGS98]) if one accepts a slight loss in
the parameters. In the cases we are interested in, however,
by a slight extension of the analysis we can turn the PCP
directly into a MIP1 without any loss in parameters.

2.2 Statistical Zero Knowledge
For our characterization of the SZK range, we only need

to rely on the following result of [GVW02] relating SZK to
laconic IP systems.

Theorem 2.4 ([GVW02], Theorem 3.1). For every c,
s such that 1 > c2 > s > c/2 > 0, it holds that IP[1, c, s] =
SZK.

2.3 Fourier Analysis of Boolean Functions
For two vectors x, y ∈ {0, 1}n we write x ⊕ y for their

pointwise sum modulo 2. Given a ∈ {0, 1}n we write χa :
{0, 1}n → R for the character (which is in fact a linear

function) χa(x) = (−1)
∑n

i=1 aixi .
Any Boolean function f : {0, 1}n → R can be uniquely

decomposed as a linear combination of characters

f(x) =
∑

a∈{0,1}n
f̂(a)χa(x),



where f̂(a) = Ex[f(x)χa(x)] are the Fourier coefficients of
f .

We recall Plancherel’s equality: for any f : {0, 1}n → R,
we have ∑

a

f̂(a)2 = E
x
[f(x)2].

2.4 Inapproximability of Linear Equations
Our proof system for AM is based on the optimal inap-

proximability result for linear equations mod 2 by H̊astad
[H̊as01], defined next.

Definition 2.5. An instance Ψ of Max 3-Lin-2 con-
sists of a set of equations in n variables x1, . . . , xn over
{0, 1}. Each equation is of the form χl(x) = b for some
l ∈ {0, 1}n of weight 3 and some b ∈ {−1, 1}. We denote by
Opt(Ψ) ∈ [0, 1] the maximum fraction of equations satisfied
by any assignment to x.

Theorem 2.6 ([Hås01]). For every ε > 0, given a Max
3-Lin-2 instance Ψ, it is NP-hard to determine whether
Opt(Ψ) ≤ 1− ε or whether Opt(Ψ) ≥ 1+ε

2
.

3. THE SZK RANGE

Theorem 3.1. For every k ≥ 1, ε > 0, we have

IP[k, 1− ε, 1/2k + ε] ⊇ SZK.

Proof. Follows by repetition of the protocol from Theo-
rem 2.4 and the fact that there is no problem with parallel
repetition for one-prover proof systems.

Proposition 3.2. For every k ≥ 1, 0 ≤ s ≤ c ≤ 1, we
have

MIP1[k, c, s] ⊆ IP[1, c, 2k−1s].

Proof. Given a MIP1 protocol (V, P1, . . . , Pk) for a lan-
guage L, we construct a single-prover protocol (V ′, P ′) as
follows. The verifier V ′ runs V to generate k messages
x1, . . . , xk, and sends x1 to the prover P ′. The prover P ′

acts as P1 and responds with an answer y1 ∈ {0, 1}. V ′

accepts iff there are bits y2, . . . , yk such that the original
verifier V accepts on the transcript (x1, . . . , xk, y1, . . . , yk).
Clearly, the completeness of (V ′, P ′) is at least that of the
original protocol. For the soundness, suppose that there is
a strategy for P ′ that makes the verifier accept with prob-
ability s′. Construct a strategy for the original protocol by
having P1 act as P ′ and P2, . . . , Pk return random answers.
Clearly, these provers make V accept with probability at
least s′/2k−1, implying s′ ≤ 2k−1s as desired.

Theorem 3.3. For every k ≥ 1, and every ε > 0 it holds
that

MIP1[k, 1− ε, 2/2k(1− 2ε)] ⊆ SZK

Proof. We have

MIP1[k, 1− ε, 2/2k(1− 2ε)] ⊆ IP[1, 1, 1− ε, 1− 2ε]

⊆ SZK,

where the first inclusion is by Proposition 3.2 and the second
is by Theorem 2.4.

4. PROOF SYSTEMS FOR AM

First we note that, at a cost of an arbitrarily small loss
in soundness and completeness, we may restrict ourselves to
proof systems for NP.

Lemma 4.1. If NP ⊆ MIP1[k, c, s] then for every ε > 0 it
holds that AM ⊆ MIP1[k, c− ε, s+ ε]

Proof. Let L ∈ AM. We remind the reader that this
is equivalent to the existence of a language L′ ∈ NP such
that x ∈ L iff (x, r) ∈ L′ with high probability for a random
string r (of an appropriate polynomial length). Without
loss of generality, we may assume that the protocol for L
has completeness 1 − ε and soundness ε. The MIP1 verifier
for L simply sends Arthur’s random string r to each of the
k provers and then executes the MIP1 protocol assumed to
exist for L′ ∈ NP.

If x ∈ L then with probability 1 − ε over r we have
(x, r) ∈ L′ in which case the provers convince the verifier
with probability ≥ c.

On the other hand x 6∈ L then the probability that the
provers accept is at most Prr[(x, r) ∈ L′] + Pr[(x, r) 6∈
L′] Pr[accept | (x, r) 6∈ L′] ≤ ε+ s.

4.1 Warm-up: the case of 2 provers
We start off with the case of only 2 provers, as this case

is somewhat simpler than the general case, and will be used
to obtain the general case.

Theorem 4.2. For every ε > 0

NP ⊆ MIP1[2, 1− ε, 1/2 + ε].

Proof. We reduce from the Max 3-Lin-2 problem. Given
is a Max 3-Lin-2 instance Ψ, on n variables x1, . . . , xn and
m linear equations {li(xi) = bi}i∈[m].

The provers are expected to provide oracle access to the
Hadamard encoding of a (1 − ε)-satisfying assignment x ∈
{0, 1}n. In other words, the verifier will give each prover a
vector a ∈ {0, 1}n and expects in response the value of the
linear function χa(x) ∈ {−1, 1}.

The verifier proceeds as follows:

1. Pick a random equation χl(x) = b in Ψ

2. Pick random y ∈ {0, 1}n

3. Check that P2(y) · P1(l ⊕ y) = b

It is easy to see that there is a strategy for the provers
which makes the verifier accept with probability at least
Opt(Ψ). More interestingly, we will now prove that, Opt(Ψ)
is exactly the maximum acceptance probability, over any
strategy for P1 and P2.

We can then write the acceptance probability of the veri-
fier as

Pr[Verifier accepts] = E
y∈{0,1}n
(l,b)∈Ψ

[
1 + bP1(l ⊕ y)P2(y)

2

]
. (1)

Replacing the two functions by their Fourier expansion we
need to analyze∑

a,a′

P̂1(a)P̂2(a′) E
y,(l,b)

[bχa(l ⊕ y)χa′(y)].



All terms with a 6= a′ have expectation 0 and furthermore
we have ∣∣∣∣ E(l,b)

[bχa(l)]

∣∣∣∣ ≤ 2 Opt(Ψ)− 1,

as the assignment given by a satisfies at most an Opt(Ψ)
fraction of the equations and at least a fraction 1−Opt(Ψ)
as its negation does not satisfy more than a Opt(Ψ) fraction.
We conclude that (1) is bounded by

1 +
∑
a |P̂1(a)P̂2(a)|(2 Opt(Ψ)− 1)

2
.

Finally note that, by Cauchy-Schwarz,

∑
a

|P̂1(a)P̂2(a)| ≤

(∑
a

P̂ 2
1 (a)

)1/2(∑
a

P̂ 2
2 (a)

)1/2

= 1

and this finishes the argument.

4.2 The general case
We have

Theorem 4.3. For every k ≥ 2, ε > 0, we have

NP ⊆ MIP1[k, 1− ε, 2/2k + ε].

Proof. As before, we design a MIP1 system for linear
equations. Given is a Max 3-Lin-2 instance Ψ, in which
either Opt(Ψ) ≥ 1− ε0, or Opt(Ψ) ≤ 1+ε0

2
, where ε0 will be

chosen small enough to get the completeness and soundness
bound that we want.

The verifier again expects all the k provers to provide
answers to the Hadamard coding of the good assignment,
and it then does the obvious generalization of the k = 2
case:

1. Pick k− 1 random equations lj(x) = bj , 1 ≤ j ≤ k− 1

2. Pick random y ∈ {0, 1}n

3. Check that Pj(lj⊕y)·Pk(y) = bj for every 1 ≤ j ≤ k−1

It is clear that the completeness is at least (1− ε0)k−1 ≥
1 − kε0. Thus, as long as ε0 ≤ ε/k, we have the desired
completeness.

Let us now study the soundness, i.e., the maximum possi-
ble acceptance probability of verifier, given that Opt(Ψ) ≤
1+ε0

2
.

We say that prover Pj succeeds if Pj(lj ⊕ y) · Pk(y) = bj .
From the analysis of the previous theorem, we know that the
probability that Pj succeeds is at most 1+ε0

2
. Thus, if the

events that the different provers succeed were independent,
we would obtain the desired soundness of ≈ 21−k. However,
a priori, it may be that the success events of the provers are
very correlated, e.g., it could be that if one succeeds then
they all succeed.

To cope with this, we need to obtain a more robust version

of the previous analysis. Let
1+δj(y)

2
be the probability that

Pj succeeds given that y is chosen. We have the following
lemma.

Lemma 4.4. Ey[δ2
j (y)] ≤ ε20.

Proof. We have δj(y) = E(l,b)[bPk(y)Pj(l⊕ y)] and thus

E
y
[δ2
j (y)] = E

(l,b),(l′,b′),y
[bb′Pj(l ⊕ y)Pj(l

′ ⊕ y)].

Similarly to the case k = 2 we replace the function by its
Fourier expansion and we are left to analyze∑

a,a′

P̂j(a)P̂j(a
′) E
y,(l,b),(l′,b′)

[bb′χa(l + y)χa′(l
′ + y)].

Again we only have nonzero terms when a = a′. For these
terms it easy to see that∣∣∣∣ E

(l,b),(l′,b′)
[bb′χa(l)χa(l′)]

∣∣∣∣ ≤ (2 Opt(Ψ)− 1)2 = ε20.

Using
∑
a P̂j(a)2 = 1, the lemma follows.

Lemma 4.4 implies that the fraction of y such that δj(y) ≥√
ε0 is bounded by ε0.
We conclude that the, for the y chosen, the probability

that δj(y) ≥
√
ε0 for any j is bounded by kε0. On the other

hand if δj(y) ≤
√
ε0 for all values of j the probability that the

verifier accepts is bounded by (
1+
√
εo

2
)k−1. We conclude that

the overall probability that the verifier accepts is bounded
by

kε0 +

(
1 +
√
εo

2

)k−1

,

and choosing ε0 sufficiently small, this is bounded by 21−k+
ε.

5. THE HIGH END – EXP AND NEXP RESULTS
In this section we prove Theorems 1.4 and 1.5. These are

essentially just “blow-ups” of corresponding approximation
algorithms and inapproximability results.

Theorem 5.1 (Theorem 1.4 restated). For all suf-
ficiently large k, ε > 0, s ≤ 0.62k

2k (1− ε) we have

MIP1[k, 1− ε, s] ⊆ EXP.

This holds also for k = 3 and s ≤ 1/2− ε.

Proof. Let L ∈ MIP1[k, 1 − ε, s] with s ≤ 0.62k
2k (1 − ε).

Given an instance, the task of determining whether x ∈ L
boils down to finding the best joint strategy for the k provers.
If the verifier uses r random bits she can send at most 2r

different queries to each prover, thus the optimal strategy
can be described by k · 2r = 2poly |x| bits. Further, for each
outcome of the verifier’s randomness, the acceptance crite-
rion is a constraint on some k bits of the strategy. In other
words, what we have is an exponentially large Max k-CSP
instance. The value of this instance can be approximated
in time polynomial in its size to within a factor 0.62k/2k

by the algorithm of Makarychev and Makarychev [MM12].
For the case k = 3 we use the 1/2-approximate Max 3-CSP
algorithm of Zwick [Zwi98].

Next we show that if the soundness is sufficiently large,
exponential-size k-query PCP systems can express every lan-
guage in NEXP.

Theorem 5.2. For t = 2dlog2(k+1)e (k + 1 rounded up to
the next power of 2) we have

MIP1[k, 1− ε, t/2k + ε] = NEXP.

This immediately implies Theorem 1.5.



Proof Sketch. The proof follows from a upscaling of
the recent PCP of Chan [?] that gives a predicate of arity k
which has t accepting configurations and which is approxi-
mation resistant.

In a standard PCP, the verifier runs in polynomial time,
uses a logarithmic number of random coins and reads a con-
stant number of bits in a polynomial size proof and verifies
an NP-statement. We are currently interested in the situa-
tion where the crucial parameters, except the running time
of the verifier, are exponentially larger.

To be more precise we are interested in a polynomial time
verifier, that uses a polynomial number of random coins and
gets one bit each from k different provers that respond to
questions of polynomial length.

As is convenient for us, Chan already analyzed his PCP in
the k-partite situation where each bit is read from a separate
table. This model is exactly the same as a k-prover model
and hence this difference is only syntactical.

It remains to address the question on how to make the
upscaled verifier run in polynomial time. This amounts to
saying that a verifier of an NEXP statement runs in polyno-
mial time. This was explicitly needed in [BFL91] but this
paper predates the PCP-Theorem. The fact that this is true
also for upscaled versions of the PCP-Theorem has been ex-
plicitly stated in [BGS98] and [BSGH+05]. The intuitive
reason that this is true is that the verifier only needs to
ensure that some bits in a suitable encoding of the inputs
are correct and this takes polynomial time in the size of the
input but not the other parameters of the proof.

6. CONCLUDING REMARKS
There are a number of interesting avenues for further

work. In this paper we focused solely on the case of al-
most perfect completeness and each prover sending exactly
1 bit. Obviously, understanding what happens with the ex-
pressiveness of these systems for other completeness values
(in particular perfect completeness) and slightly less laconic
provers would be very interesting. By simple extensions of
the methods used in this paper it is possible to get some
results but it would be interesting to see if perfect complete-
ness could lead to a significantly different situation in any
range of parameters.

There is also a specific question more directly related to
the current paper. There is a huge gap between our lower
bound AM and upper bound EXP for soundness s = 2/2k +
ε. It seems quite plausible that an upper bound for this
range of s should be PSPACE rather than EXP – proving this
essentially boils down to proving that there is a δ > 0 such
that bipartite instances of Max 2-CSP can be approximated
within a factor 1/2 + δ in polylog-space (and not necessarily
polynomial time). We hope that the recent algorithms for
Max Cut, in particular [KS11], can be adapted to achieve
this.

Even if this turns out to be true, whether the correct class
here is AM or PSPACE or something in between we have little
intuition about.
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