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Abstract. We study the complexity of approximating monotone Boolean
functions with disjunctive normal form (DNF) formulas, exploring two
main directions. First, we construct DNF approximators for arbitrary
monotone functions achieving one-sided error: we show that every mono-
tone f can be ε-approximated by a DNF g of size 2n−Ωε(

√
n) satisfying

g(x) ≤ f(x) for all x ∈ {0, 1}n. This is the first non-trivial universal
upper bound even for DNF approximators incurring two-sided error.
Next, we study the power of negations in DNF approximators for mono-
tone functions. We exhibit monotone functions for which non-monotone
DNFs perform better than monotone ones, giving separations with re-
spect to both DNF size and width. Our results, when taken together
with a classical theorem of Quine [1], highlight an interesting contrast
between approximation and exact computation in the DNF complexity
of monotone functions, and they add to a line of work on the surprising
role of negations in monotone complexity [2,3,4].

1 Introduction

Monotone Boolean functions constitute a rich and complex class of functions,
and their structural and combinatorial properties have been intensively studied
for decades; see e.g. the monograph [5] for an in-depth survey. In complexity
theory monotone functions play an especially important role in circuit com-
plexity, where Razborov’s celebrated result [2] has led to a significant body
of work centered around monotone functions and the circuits that compute
them [6,4,7,8,9,10,11,12,13,14,15,16,17].

In this paper we study the circuit complexity of approximating monotone
functions, focusing on DNF formulas, one of the simplest and most basic types of
circuits. We say that a DNF ε-approximates a function f : {0, 1}n → {0, 1} if the
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function g computed by the DNF satisfies f(x) = g(x) on at least a 1−ε fraction
of inputs x in {0, 1}n. Recent works [18,19] have highlighted interesting qualita-
tive and quantitative differences in the landscape of DNF complexity when the
formula is only required to approximate f rather than compute it exactly, and
while the DNF complexity of exact computation is fairly well-understood, these
papers have also pointed to significant gaps in our understanding of seemingly
basic questions regarding the DNF complexity of approximate computation.

We continue this study and explore two main directions. In the first direction
we seek a non-trivial upper bound on the DNF complexity of approximating an
arbitrary monotone function to high accuracy, in the spirit of the positive results
of [19]. In the second direction, in the spirit of Razborov’s theorem [2] we seek
a separation between the relative powers of monotone and non-monotone DNF
that approximate monotone functions. As we describe below, our results further
illustrate how different DNF complexity can be in the settings of exact versus
approximate computation.

Universal bounds on approximability. Recent work of [19] established the first
non-trivial universal upper bound on the DNF complexity of approximating an
arbitrary Boolean function, achieving logarithmic savings over the worst-case
cost of Ω(2n) necessary for exact computation:

Theorem 1 of [BT13]. Every Boolean function can be ε-approximated by a
DNF of size Oε(2

n/ log n).

We begin with the simple observation that this result does not say anything
meaningful about the approximation of monotone functions. Since the minimal
satisfying assignments of a monotone function form a Sperner family, Sperner’s
classical theorem readily translates into an upper bound on the DNF complexity
of exactly computing monotone functions that is polynomially stronger:

Fact 1 Every monotone function can be computed exactly by a DNF of size(
n
dn/2e

)
= Θ(2n/

√
n).

This bound is exactly tight by considering the n-variable majority function,
and in fact an elementary combinatorial argument establishes that a 1 − on(1)
fraction of monotone functions do actually require DNFs of size Ω(2n/

√
n) to

compute. Fact 1, taken together with the result of [19], raises a basic qualitative
question: are there monotone functions that require DNFs of size Ω(2n/

√
n) to

approximate, or can every monotone function be approximated by a DNF of
size o(2n/

√
n)? Despite the vast literature on monotone functions and Sperner

families, this question does not appear to have been explicitly studied before.
We answer this question in the first half of the paper, constructing DNF approx-
imators for arbitrary monotone functions that achieve exponential savings over
the size necessary for exact computation. Our DNF approximators only make
one-sided error, and our construction is based on a new structural decomposition
of monotone functions.



Power of negations in approximating monotone functions. In the second half
of the paper we turn our attention to the role of negations in the DNF com-
plexity of approximating monotone functions. Recall that a circuit is said to be
monotone if it does not contain any NOT gates, and non-monotone otherwise.
While every monotone function can be computed by a monotone circuit, there
is a body of results showing the remarkable fact that for various circuit classes,
the optimal circuit computing a monotone function must be non-monotone. The
most prominent example is perhaps Razborov’s celebrated lower bound [2]:

Razborov’s Theorem. There is a polynomial-time computable monotone func-
tion that requires monotone circuits of quasi-polynomial size.

This separation of monotone NP from monotone P/poly was subsequently
improved from quasi-polynomial to exponential by E. Tardos [8]. An analogue
of Razborov’s result in the setting of bounded-depth circuits was established by
Okol’nishnikova, Ajtai, and Gurevich [3,4]:

Okol’nishnikova–Ajtai–Gurevich Theorem. There is a monotone function
in AC0 that is not in monotone AC0.

For the class of DNFs, however, it is well-known (and straightforward to
verify) that the analogue these separations does not hold [1]:

Quine’s Theorem. The optimal DNF, with respect to both size and width, com-
puting a monotone function is monotone as well.

In the second half of this paper we investigate the question: does Quine’s
theorem hold for approximation by DNFs? In other words, is the optimal DNF
approximator for a monotone function monotone as well, or do negations buy
us power in the setting of approximation? We show that the answer is the lat-
ter, giving separations with respect to both DNF size and width. Our results,
taken in contrast with Quine’s theorem, highlight an interesting qualitative dif-
ference between the DNF complexity of exact and approximate computation.
More broadly, we believe that the role of negations in the circuit complexity of
approximating monotone functions is a topic of intrinsic interest, and we view
our separations as the first steps in its systematic study.

1.1 Our results

Universal bounds on approximability. Our first result is the construction of DNF
approximators for arbitrary monotone Boolean functions that achieve one-sided
error:

Theorem 1. Every monotone function f : {0, 1}n → {0, 1} can be ε-approximated
by a monotone function g of DNF size 2n−Ωε(

√
n), satisfying g(x) ≤ f(x) for all

x ∈ {0, 1}n.



Prior to our work the only known universal upper bound, even for approx-
imators incurring two-sided error, was the trivial one of

(
n
dn/2e

)
= Θ(2n/

√
n),

the size sufficient for exact computation. A standard information-theoretic argu-
ment (see [19] for proof) shows that any ε-approximator for a random Boolean
function has DNF size Ωε(2

n/n); Theorem 1 therefore shows that the structure
of monotonicity can be leveraged to obtain DNF approximators with complex-
ity exponentially smaller than that required for almost all other functions. Our
construction relies on a new structural fact about monotone functions which we
believe may be of independent interest:

Lemma 1. Let f : {0, 1}n → {0, 1} be a monotone function and ε > 0. There
is a function g = g1 ∨ · · · ∨ gt that ε-approximates f , where t = Oε(1) and each
gi is a monotone DNF with terms of width exactly ki and size at least (ε/2)

(
n
ki

)
.

Furthermore, g(x) ≤ f(x) for all x ∈ {0, 1}n.

Since g(x) ≤ f(x) for all x ∈ {0, 1}n, we say that g is a lower ε-approximator
for f . We prove Lemma 1 in Section 2, and with this structural fact in hand,
the task of constructing lower approximators for an arbitrary monotone function
reduces to that of constructing lower approximators for the gi’s. Since g com-
prises only a constant number of these gi’s, taking a naive union bound incurs
no more than a constant factor in terms of error and DNF size of the overall
approximator. Our lower approximators for the gi’s, presented in Section 3, are
obtained via a randomized algorithm that constructs an approximating DNF.
We complement our positive result with a lower bound showing that Theorem 1
is essentially optimal:

Theorem 2. Let g : {0, 1}n → {0, 1} be a 1
10 -approximator for the majority

function MAJn satisfying g(x) ≤ MAJn(x) for all x ∈ {0, 1}n. Then g has DNF
size 2n−O(

√
n logn).

Power of negations in approximating monotone functions. The proof of Quine’s
classical theorem mentioned in the introduction is simple: given a DNF g that
computes a monotone function f , if g contains a term T with a negated variable
x̄i, it is easy to check that g still computes the same monotone function f if x̄i
is removed from T . Therefore, by removing all occurrences of negated variables
in g, we obtain a monotone DNF h computing the same function f , where the
size and width of h are at most those of g.

It is natural to suspect that the same would be true for DNF approximators,
that the optimal DNF approximator for a monotone function is always monotone
as well; indeed, we note that the universal DNF approximators we construct
in Theorem 1 are in fact monotone. To be precise, we consider the following
question:

Question 1 Let f be a monotone function that is ε-approximated by a DNF g
of size s (resp. width w). Can f be ε-approximated by a monotone DNF h of
size s (resp. width w)?



The simple proof of Quine’s theorem does not extend to answer this question
in the affirmative. In fact, for all three natural ways of “locally monotonizing”
the DNF approximator g — removing x̄i in T (as is done in the proof of Quine’s
theorem); replacing x̄i with xi in T ; and removing T from f entirely — it is pos-
sible to construct examples showing that these operations increase the distance
of g from f (i.e. worsens the quality of approximation).

In the second half of the paper we resolve Question 1 by showing, perhaps
somewhat surprisingly, that the answer is “No” for both complexity measures of
DNF size and DNF width. In Section 4 we prove the following two theorems:

Theorem 3 (Separation for DNF size). For all sufficiently large n, there
exists an n-variable monotone function f and a value ε = ε(n) > 0 such that f
can be ε-approximated by a DNF of size O(n), but any monotone function that
ε-approximates f has DNF size Ω(n2).

Theorem 4 (Separation for DNF width). For all sufficiently large n, and
for all k = o(n), there exists an n-variable monotone function f and a value ε =
ε(n) > 0 such that f can be ε-approximated by a DNF of width k+log k, but any
monotone function that ε-approximates f has DNF width at least 2k−1−on(1).

We view these separations as the first steps in quantifying just how powerful
negations can be in the approximation of monotone functions, a question that
does not appear to have been explicitly studied before (despite a significant body
of results on the power of negations in the computation of monotone functions,
as discussed above). We conclude the paper by listing a few interesting questions
for future work in this direction.

1.2 Previous work

The explicit study of the DNF complexity of approximating Boolean functions
was initiated by O’Donnell and Wimmer [18]. They showed that DNF size
2Oε(

√
n) is both necessary and sufficient for ε-approximating the n-variable ma-

jority function, and constructed an explicit n-variable monotone function for
which any 0.01-approximating DNF must have size 2Ω(n/ logn). As mentioned
above, Blais and Tan [19] gave universal upper bounds on DNF size for ap-
proximating arbitrary Boolean functions, but [19] does not consider monotone
functions.

We also note that the earlier work of Bshouty and Tamon [20], which es-
tablished Fourier concentration bounds for monotone Boolean functions, implies
that every n-variable monotone function is ε-close to a depth-2 circuit of size
2O(
√
n log(n)/ε) in which the bottom-level gates are parity gates and the top gate is

a threshold gate (with unbounded weights). Recall that while threshold-of-parity
circuits can simulate DNF formulas with only a polynomial size increase [21,22],
the converse is not true (indeed, even a single parity gate requires exponential
DNF size). Thus the results of [20] do not imply the existence of nontrivial DNF
approximators for monotone functions.



1.3 Preliminaries

Throughout this paper all probabilities and expectations are with respect to the
uniform distribution unless otherwise stated; we will use boldface (e.g. x and X)
to denote random variables. For strings x, y ∈ {0, 1}n we write ‖x‖ to denote
the Hamming weight #{i ∈ [n] : xi = 1} of x, and x � y if xi ≤ yi for all i ∈ [n],

and x ≺ y if x � y and x 6= y. For 0 ≤ k ≤ n, we write Vol(n, k) :=
∑k
i=0

(
n
i

)
to

denote the volume of the n-dimensional Hamming ball of radius k.
A monotone Boolean function f : {0, 1}n → {0, 1} is one that satisfies f(x) ≤

f(y) whenever x � y. A DNF formula is the logical OR of logical ANDs, where
we refer to each AND as a term. The size of a DNF is the number of terms
it contains, and the width of a DNF is the maximum width of any term. For a
term T , we write |T | to denote the width of T , the number of literals occurring
in it. For any x ∈ {0, 1}n, we write Tx to denote the monotone conjunction that
accepts all and only those y ∈ {0, 1}n such that y � x. That is, Tx(y) = 1 iff
yi = 1 for all i ∈ [n] such that xi = 1. We say that x defines a minterm in
a monotone function f if Tx is a minterm in the canonical DNF computing f ,
and we write minterm(x, f) to denote the indicator for this event. The canonical
DNF for f is the unique monotone DNF whose terms correspond precisely to
the minterms of f .

Let f, g : {0, 1}n → {0, 1} be Boolean functions and ε ∈ [0, 1]. We say that g
is an ε-approximator for f , or that f and g are ε-close, if Pr[f(x) 6= g(x)] ≤ ε.
We say that g is a lower approximator for f if g(x) ≤ f(x) for all x ∈ {0, 1}n,
and an upper approximator for f if f(x) ≤ g(x) for all x ∈ {0, 1}n.

Definition 1 (density). Let f : {0, 1}n → {0, 1} and k ∈ {0, 1, . . . , n}. The
density of f at level k is defined to be µk(f) := Pr‖x‖=k[f(x) = 1].

Fact 2 Let f be a monotone function. Then µk(f) ≥ µk−1(f) for all k ∈ [n].

Fact 3 (Chernoff bound) Let X ∼ Binomial(n, 1/2). Then for any 0 ≤ t ≤
√
n, we have Pr

[
X ≥ n

2 + t
√
n
2

]
≤ e−t2/2 and Pr

[
X ≤ n

2 − t
√
n
2

]
≤ e−t2/2.

Fact 4 (anti-concentration of the Binomial) For every ε ≥ 1/
√
n and in-

terval I ⊆ [0, n] of width at most ε
√
n, we have Prx∈{0,1}n [‖x‖ ∈ I] ≤ 2ε.

2 A Regularity Lemma for Monotone DNFs

We begin with a new structural fact about monotone functions, which states that
every monotone DNF f is lower approximated by the disjunction g of a constant
number of monotone DNFs that are “dense” and “regular.” Here a “regular”
DNF is one in which all terms have the same width k, and a “dense” regular
DNF is one that contains a constant fraction of the

(
n
k

)
many possible terms of

width k. This structural decomposition is useful as it reduces the task of (lower)
approximating an arbitrary monotone DNF f to that of (lower) approximating a
dense regular one. Since g is the disjunction of only a constant number of dense



regular DNFs, taking a naive union bound incurs only a constant factor in terms
of error and DNF size of the overall approximator.

Definition 2 (regular and dense DNFs). Let k ∈ [n]. We say that a mono-
tone DNF f is k-regular if all its terms have width exactly k, and regular if it
is k-regular for some k. Additionally, we say that f is (ε, k)-regular if it is a
k-regular DNF with at least ε

(
n
k

)
many terms.

Our structural result (the proof of which is deferred to the full version
due to space considerations) says that every monotone function is lower ε-
approximated by the disjunction of Oε(1) many (ε/2, ki)-regular DNFs, where
each ki = (n/2)±O(

√
n). More precisely:

Lemma 1. For any ε > 0,every monotone function f is ε-close to the disjunc-
tion g of monotone DNFs, g(x) = g1(x) ∨ · · · ∨ gt(x), where t ≤ 2/ε, each gi

is ki-regular for some ki ∈
[
(n/2)−

√
n ln(4/ε)/2, (n/2) +

√
n ln(4/ε)/2

]
, the

DNF size of gi is at least (ε/2)
(
n
ki

)
(i.e., µki(gi) ≥ ε/2), and g(x) ≤ f(x) for all

x ∈ {0, 1}n.

3 Lower Approximators for Regular DNFs

Given Lemma 1 it suffices to construct lower approximators for regular DNFs:

Proposition 1. Let f be a regular monotone function. For every ε > 0 there
exists a monotone DNF g of size 2n−Ω(ε

√
n−log(n)) that is a lower ε-approximator

for f .

Proof (of Theorem 1 assuming Proposition 1). By Lemma 1 every monotone f
has a lower (ε/2)-approximator g(x) = g1(x) ∨ · · · ∨ gt(x) where t ≤ 4/ε and
each gi(x) is a regular monotone function. Next, by Proposition 1 each regular
gi(x) has a lower (ε/2t)-approximator hi(x) of size 2n−Ω((ε

√
n/t)−log(n)). Finally,

by the union bound and the triangle inequality, we conclude that h(x) = h1(x)∨
· · ·∨ht(x) is a lower ε-approximator for f of size at most t·2n−Ω((ε

√
n/t)−log(n)) =

2n−Ωε(
√
n). ut

Proof (of Proposition 1). We may assume that ε ≥ (C log n)/
√
n (for some con-

stant C > 0 which we will specify below), since otherwise the claimed bound on
monotone DNF size is trivial. Let f be a k-regular monotone function for some
k ∈ [n]. The minterms of our monotone approximator g will be conjunctions of
the form Ty where y ∈ f−1(1), which guarantees that g will be a lower approxi-

mator for f . Furthermore, since Prx∈{0,1}n
[
‖x‖ ≥ (n/2) +

√
n ln(3/ε)/2

]
≤ ε

3 ,

and Prx∈{0,1}n [‖x‖ ∈ [k, k + ε
√
n/6]] ≤ ε

3 , by the Chernoff bound and Fact 4
respectively, it suffices to ensure that the monotone DNF g we construct addi-
tionally satisfies:

Pr
x∈A

[g(x) 6= f(x)]] ≤ ε

3
,



A :=
{
x ∈ {0, 1}n : ‖x‖ ∈

[
k + ε

√
n/6, (n/2) +

√
n ln(3/ε)/2

]}
. (1)

Note that if k + ε
√
n/6 > (n/2) +

√
n ln(3/ε)/2 (i.e. the interval in the defi-

nition of A is empty) then f is (2ε/3)-close to the constant 0 function and the
proposition is trivially true.

For every ` ∈ {0, 1, . . . , n− k}, we write S` to denote the 1-inputs of f with
Hamming weight exactly k + `; that is, S` := {x ∈ {0, 1}n : f(x) = 1 and ‖x‖ =
k + `}. The remainder of this proof will be devoted to showing that for each
` ≥ ε

√
n/6, there exists a monotone DNF g` satisfying:

i. The minterms of g` are of the form Ty for some y ∈ S`/2 (and hence g` ≤ f),

ii. DNF-size[g`] = O(2n−`/2) ≤ 2n−Ω(ε
√
n),

iii. Prx∈S`
[g`(x) = 0] ≤ ε/3.

Indeed, taking g to be the disjunction of all g` where

k + ` ∈
[
k + ε

√
n/3, (n/2) +

√
n ln(3/ε)/2

]
,

we obtain a monotone DNF of size at most n · 2n−Ω(ε
√
n) ≤ 2n−Ω(ε

√
n−log(n))

satisfying (1), which completes the proof.
Consider a random monotone DNF g` sampled according to the following

distribution D: for each y ∈ S`/2, independently include Ty as a minterm of

g` with probability p := 2−`/2. By definition, every DNF in the support of
this distribution satisfies (i), and so it remains to argue that with positive
probability, both (ii) and (iii) are satisfied as well. For (ii), we observe that
ED [DNF-size[g`]] = p · |S`| < p · 2n = 2n−`/2, and so by Markov’s inequality,

Pr
D

[
DNF-size[g`] ≤ 3 · 2n−`/2

]
≥ 2

3
. (2)

For (iii), consider any fixed x ∈ S`. Since f is k-regular, there must exist some
z ∈ S0 such that z ≺ x, and therefore

(
`
`/2

)
= Θ(2`/

√
`) many y ∈ S`/2 such that

z ≺ y ≺ x. By the definition of D, for each such y the term Ty is independently
included as a minterm of g` with probability p = 2−`/2, and so

Pr
D

[g`(x) = 0] ≤ (1− p)Θ(2`/
√
`) = exp

(
−Ω(2`/2/

√
`)
)

< exp
(
−Ω(2ε

√
n/12)/

√
n
)
<

ε

9
,

where we have used ε ≥ (C log n)/
√
n for the final inequality. Therefore

E
D

[
Pr
x∈S`

[g`(x) = 0]

]
≤ ε

9
, and Pr

D

[
Pr
x∈S`

[g`(x) = 0] ≤ ε

3

]
≥ 2

3
. (3)

Applying a union bound to the failure probabilities of (2) and (3), we conclude
that there is indeed a positive probability that g` ∼ D satisfies all three proper-
ties (i), (ii), and (iii), and this completes the proof. ut



Our next result, the proof of which we defer to the full version due to space
considerations, shows that our upper bound in Theorem 1 is essentially tight.

Theorem 2. Let ε ≤ 1
10 and g be an s-term DNF that is a lower ε-approximator

for the majority function MAJn. Then s ≥ 2n−O(
√
n logn).

4 Power of Negations in Monotone Approximation

In this section we present our constructions showing that non-monotone DNFs
can asympototically outperform monotone ones in the approximation of mono-
tone functions. Due to space considerations we only prove our separation for
DNF size (Theorem 3) in this section; the proof of our separation for DNF
width (Theorem 4) is deferred to the full version.

Upper bounds. Given these separations between monotone and non-monotone
DNFs, it is natural to explore bounds in the other direction which show that
the existence of (non-monotone) DNF approximators implies the existence of
monotone DNF approximators of related size, width, and accuracy. We present
two results in this direction in the full version.

Theorem 3 (Separation for DNF size). Let f : {0, 1}n × {0, 1}5n → {0, 1}
be the monotone function:

f(x, y) = (x1 ∨ . . . ∨ xn) ∧ (y1 ∨ . . . ∨ y5n) =
∨
i∈[n]
j∈[5n]

(xi ∧ yj),

and ε = (2n−1−1) ·2−6n. There exists a DNF of size 6n−1 that ε-approximates
f , but any monotone function that ε-approximates f has DNF size at least n2.

Proof. Consider the function g = g(x, y) defined as

g = (x1 ∧ (y1 ∨ . . . ∨ y5n)) ∨ (x1 ∧ (x2 ∨ . . . ∨ xn)) (4)

This is a non-monotone DNF with 6n − 1 terms that ε-approximates f , since
g(x, y) differs from f(x, y) exactly on the 2n−1 − 1 inputs satisfying x1 = 0,
y = 0, and x2 ∨ . . . ∨ xn = 1.

The rest of the proof will be devoted to showing that any monotone function
that ε-approximates f has to have more than n2 terms, asymptotically as many
as the canonical DNF for f which has 5n2 terms. We will prove the contraposi-
tive: any monotone DNF h with at most n2 terms differs from f on strictly more
than an ε-fraction of inputs.

We group the terms of h into three types: terms with only x-variables,
which we call “pure-x”; terms with only y-variables, which we call “pure-y”;
and terms with both x- and y-variables, which we call “mixed”. We first observe
that we may assume that all mixed terms have width exactly two, comprising
one x-variable and one y-variable. Indeed, replacing a mixed term

(∧
i∈S1

xi
)
∧



(∧
j∈S2

yj
)
, S1 ⊆ [n] and S2 ⊆ [5n], in h with (xi ∧ yj) for any i ∈ S1 and

j ∈ S2 yields a DNF h′ such that h′(x, y) 6= h(x, y) only on inputs (x, y) such
that h(x, y) = 0 and f(x, y) = 1.

Furthermore, we claim that we may assume all pure-y terms have width
greater than 2n. Indeed, if h contains a term T (y) =

∧
i∈S yi for some S ⊆ [5n]

where |S| ≤ 2n, then f(x, y) = 0 and h(x, y) = 1 on at least 23n > ε · 26n inputs
(x, y) satisfying x = 0 and T (y) = 1.

We proceed by considering two cases, depending on the number of xi’s that
occur as a singleton term in h. First suppose at least half of the xi’s occur as
a singleton term in h, so there is some S ⊆ [n] where |S| ≥ n/2 such that if
ORS(x) =

∨
i∈S xi = 1 then h(x, y) = 1. In this case f(x, y) = 0 and h(x, y) = 1

on at least 2n − 2n/2 > ε · 26n inputs satisfying y = 0 and ORS(x) = 1. Finally,
suppose less than half of the xi’s occur as singleton terms in h. By our first
assumption that all mixed terms have width two (in particular, no mixed term
contains more than one x-variable), there must be an xi that does not occur as
a singleton term and participates in at most 2n mixed terms (since otherwise h
would have more than n2 terms); without loss of generality suppose x1 is one
such variable. Let S ⊆ [5n] be the set of all j ∈ [5n] such that (x1 ∧ yj) is a
mixed term in h, and consider the set of inputs

E = {(x, y) : x1 = 1, xi = 0 for all i ≥ 2, yj = 0 for all j ∈ S, and ‖y‖ = (3n)/2}.

Note that f(x, y) = 1 for all (x, y) ∈ E, and we claim that h(x, y) = 0 on
these inputs. To see this, consider the restriction h∗ of h obtained by setting
x1 ← 1, xi ← 0 for all i ≥ 2, and yj ← 0 for all j ∈ S. Since x1 does not
occur as a singleton term in h, this partial assignment does not satisfy any
terms and the canonical DNF for h∗ comprises only of pure-y terms. Since the
pure-y terms of h have width greater than 2n (by our second assumption), the
same is true for h∗ and so h∗ cannot be satisfied by any assignment of weight
(3n)/2; hence h(x, y) = h∗(y) = 0 for all (x, y) ∈ E. Lastly, we check that
|E| ≥

(
3n

(3n)/2

)
= Θ

(
23n/
√

3n
)
> ε · 26n and this completes the proof. ut

Remark 5 We note that the non-monotone approximator g in (4) is actually
computed by a O(n)-size decision tree. Recall that every size-s decision tree is
a size-s DNF, but not vice versa: there are polynomial-size DNFs that require
exponential-size decision trees. Therefore the proof of Theorem 3 in fact estab-
lishes a stronger statement: f is a monotone function that can be ε-approximated
by a O(n)-size decision tree, and yet any monotone function that ε-approximates
f has DNF size Ω(n2).

5 Conclusion

Having obtained near-matching upper and lower bounds on the size of universal
lower approximators in this paper, the natural next step is to consider upper
approximators and approximators incurring error on both sides. The task of



constructing universal upper approximators appears to be qualitatively differ-
ent from that of lower approximators, and we are not aware of any construction
achieving size better than the trivial one of O(2n/

√
n) sufficient for exact compu-

tation. For approximators incurring two-sided error, our universal lower approx-
imators of size 2n−Ωε(

√
n) represent the current best upper bound. The strongest

known lower bound for two-sided approximators is the 2Ω(n/ logn) lower bound
of [18]; it would be interesting to find out whether this or the current 2n−Ωε(

√
n)

upper bound is closer to the truth.
As for the power of negations in the approximation of monotone functions,

we believe that our results in Section 4 suggest a number of interesting avenues
for further exploration. We suspect that the separations we presented can be
improved, perhaps even to super-polynomial for DNF size and super-constant for
DNF width. We remark that in addition to the complexity measures of DNF size
and width, the quantitative difference between the accuracy of monotone versus
general DNFs is also an aspect in which our separations can be strengthened.
In other words, we may view our separations as instantiations of the following
general template:

There exists a monotone function f and a value ε = ε(n) > 0 such
that f can be ε-approximated by a DNF of size s (resp. width w), but
any monotone function that ϕ(ε)-approximates f requires DNF size Ψ(s)
(resp. width Ψ(w)).

In Theorems 3 and 4, ϕ is simply the identity function, but one can consider the
possibility of stronger statements where ϕ(ε)� ε.

Beyond DNFs, one may ask quantitatively just how powerful negations can
be in the approximation of monotone functions for many other classes of circuits.
We conclude by restating an open problem, due to Kalai, on the possibility of
strengthening the Okol’nishnikova–Ajtai–Gurevich theorem:

Open Problem 1 ([26]) Is there a monotone function in AC0 that cannot be
approximated by monotone AC0?
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