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Abstract

We give a simple proof that a monotone circuit
for the k-clique problem in an n-vertex graph

requires depth 

�p

k
�
, when k �

�
3

p
n=2

�2
.

The proof is based on an equivalence between
the depth of a Boolean circuit for a function
and the number of rounds required to solve a
related communication problem. This equiv-
alence was shown by Karchmer and Wigder-
son.

Warning: Essentially this paper has
been published in Information Process-
ing Letters and is hence subject to copy-
right restrictions. It is for personal use
only.
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1 Introduction

In complexity theory we are interested in the
amount of resources that are required to com-
pute a certain function. For a Turing machine
the resources would typically be the number
of transitions (time) and the number of tape

squares used (space). For a Boolean circuit we
would be interested in the number of gates (its
size) and the maximal distance from an input
to the output gate (its depth). These measures
correspond to work and parallel time respec-
tively.
Since it has been di�cult to show non-trivial

lower bounds for general Boolean circuits, one
has chosen to study various restricted cir-
cuit models. A number of lower bounds have
been shown for the size of Boolean circuits of
constant depth [Ajt83, FSS84, H�as86, Raz87,
Smo87, Yao85].
Another case studied is monotone circuits,

i.e. we only allow ^-gates and _-gates, but no
:-gates . Several interesting results for mono-
tone circuits can be found in [And85, Raz85,
AB87, KW88, RW89, RW90].
In what follows we will be looking at mono-

tone circuits where each gate has fanin at most
2. In [KW88] Karchmer and Wigderson show
that a monotone circuit for st-connectivity in
an n-vertex graph has depth �

�
log2 n

�
. As

part of their proof they show that computing a
function f with a Boolean circuit is connected
to the following communication game:
We have two players, player 1 and player 2,
and they are each given an n-bit string, x
and y respectively, where x 2 f�1(1) and
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y 2 f�1(0). The game proceeds in rounds.
In each round player 1 can send player 2 a one
bit message or vice versa. Their task is to �nd
an index i so that xi 6= yi.

There is also a monotone version of the game
where i should satisfy xi = 1 and yi = 0. Note
that for a monotone f there is always such an
i.

Karchmer and Wigderson [KW88] showed
the following equivalence between circuit
depth and the number of rounds needed in the
game:

Theorem 1 (Karchmer and Wigderson)
For a function f and an input length n, the
number of rounds needed in the communica-
tion game equals the required depth of a circuit
computing f .

This is true both in the monotone and the gen-
eral case.

Our main result is a simple proof that
a circuit for the k-clique problem in an n-

vertex graph requires depth 

�p

k
�
when k ��

3

p
n=2

�2
. We use the above equivalence be-

tween circuit depth and communication com-
plexity.

Raz and Wigderson have recently showed
by a much more complicated method that the
clique problem requires depth 
(n) [RW90].

2 Notation

As mentioned in the introduction, we will be
concerned with clique problem.

De�nition 1 We call the set of graphs on n
vertices containing a k-clique CLIQUE(n, k).

We need to express subset size in the following
way:

De�nition 2 For an arbitrary set B and A �
B we de�ne

�(A) =
jAj
jBj :

Remark 1 This de�nition is useful when we
want to describe how much is known about
some element x. Suppose that, but we know
that x 2 A � B: Suppose further that we
know the structure of B, but that the structure
of A is unknown, or very complicated. Then
the amount of information we have about x is
given by the structure of B and �(A). The
smaller �(A) is, the more we know about x.

For notational convenience we introduce the
following shorthand:

De�nition 3 For an arbitrary set B and an
integer k�

B

k

�
= fA � B j jAj = kg :

3 Proof outline

We will show a lower bound on the depth of
a circuit for CLIQUE(n, k). The idea behind
the proof is quite simple. By [KW88], what we
need to do is to show that a protocol for the
related monotone communication game must
use many rounds.
The communication version of the clique

problem would be as follows: Player 1 is given

a graph, G1 containing a k-clique and player
2 is given a graph, G2, that does not have a
k-clique. Their task is to �nd an edge that is
present in G1 but not in G2.

We will modify this by only looking at cer-
tain graphs. We then bound the number of
rounds needed for this restricted set of inputs.
In particular, player 1, the clique player, re-
ceives a set q of k vertices, which corresponds
to the graph that has a k-clique on the ver-
tices in q, and no edges other than those in
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the clique. Player 2, the color player, receives
a k�1 coloring, c, of the vertices, correspond-
ing to a complete k�1-partite graph. The task
of �nding the \faulty" edge in the clique now
translates into �nding two vertices u; v 2 q
that have the same color. We call fu; vg a
monochromatic edge.
In a round the players are allowed to send

one bit each rather than only one of them
sending a bit. Since we are interested in the
number of rounds rather than the number of
bits transferred, this can only make life eas-
ier for them. Each bit that the clique/color
player sends decreases the set of possible
cliques/colorings. The adversary strategy that
we will use is to makes sure that an edge that
appears in some remaining clique is bichro-
matic in most remaining colorings, and the re-
maining colorings are 1�1 on the vertices that
appear in all remaining cliques.
When a vertex appears in many of the re-

maining cliques we \�x" it i.e. we restrict the
set of remaining cliques to those that contain
this vertex. We then restrict the remaining
colorings to those that are 1�1 on the \�xed"
vertices.
If an edge fu; vg is monochromatic in many

of the remaining colorings, we restrict the set
of remaining colorings to those colorings c that
have c(u) = c(v). Since fu; vg was monochro-
matic, u and v cannot both be �xed vertices
since all remaining colorings are 1 � 1 on the
�xed vertices. Assume that u is not �xed. We
now restrict the cliques to those that do not
contain u, so an edge that appears in some re-
maining clique is not monochromatic in many
of the remaining colorings.
We continue this process for

p
k=4 rounds.

From the remaining cliques and colorings we
choose q and c. Since any edge, fu; vg, in q
is not monochromatic for some of the possible
choices for c, the clique player cannot know of
an edge in q that must be monochromatic in
c. Thus a protocol requires more than

p
k=4

rounds.

In section 4 we formally describe the adver-
sary strategy that, given a protocol, �nds a
clique-coloring pair, (q; c), that requires many
rounds. In section 5 we will prove that the
pair (q; c) does indeed require many rounds.

4 An adversary strategy

for a protocol

In the next section we give a lower bound for
the depth of a monotone circuit for recognizing
CLIQUE(n, k). In this section we show how
the pair of inputs that require the players to
communicate for \many" rounds is chosen.

In our communication game the clique
player is given a set q of k vertices which cor-
respond to a clique. The color player is given
a k�1-partition of the graph in the shape of a
k � 1 coloring c of the graph. Their task is to
agree on a monochromatic edge , i.e. an edge
fu; vg � q such that c(u) = c(v).

As the protocol proceeds we will look at the
following sets:

V = f1; 2; : : : ng is the set of vertices in a
graph,

Qt is the set of cliques that remain after round
t,

Ct is the set of colorings remaining after round
t,

Mt � V is a set of vertices that occur in every
clique after round t,

mt = jMtj,

Lt � V is a set of vertices that occur in no
clique after round t,

lt = jLtj.
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At the beginning we have

Q0 =

�
V

k

�
;

C0 = fc : V ! [k � 1]g ;
M0 = �;

L0 = �:

We now describe how to handle the proto-
col. Recalling Remark 1, we consider Q and
C to be subsets of the following sets:

Q �
�
q 2

�
V

k

�
jM � q

�
;

C � fc : V n L! [k � 1]g :

Thus mt together with �(Qt) tells us how
much the color player knows about the clique
players k-set after round t.
Similarly, lt and �(Ct) measure what the

clique player knows about the color players
coloring.
The protocol is handled in the following

fashion. In each round we allow both play-
ers to send one bit each instead of just one of
them sending a bit.
At round t the following happens:

1. The clique player sends bit b1.

Q0  fq 2 Qt�1jb1 = 0g
Q1  fq 2 Qt�1jb1 = 1g
Q the larger of Q0 and Q1

M  Mt�1

2. Find v 2 V nM so that

�(fq 2 Q j v 2 qg) �
2(k �m)�(Q)=(n�m)

i.e. at least twice as often as the av-
erage vertex.

If such v exists

M  M [ fvg
Q fq 2 Q j v 2 qg
Remark 2 Thus, �(Q) increases by
at least a factor two since Q is now
a subset of a smaller set.

We repeat this step until no such vertex
v can be found.

3. Q0
t  Q

C 0
t  fc 2 Ct�1 j c is 1� 1 on Mg

Mt  M .

4. The color player sends bit b2.

C0  fc 2 C 0
tjb2 = 0g

C1  fc 2 C 0
tjb2 = 1g

C  the larger of C0 and C1

L Lt�1

5. Find u; v 2 V n L where u 6= v

such that �(fc 2 C j c(u) = c(v)g) �
2�(C)=(k � 1)

i.e. at least twice as often as average.

If such u and v are found

Since all c 2 C are 1 � 1 on Mt we
can without loss of generality assume
u =2Mt.

L L [ fug
C  fc 2 C j c(u) = c(v)g
Remark 3 When a c is restricted in
this way on L it can be seen as a
function c : V n L ! [k � 1]. Thus,
�(C) increases by at least a factor
two.

We repeat this step until no such vertices
u and v can be found.
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6. Qt  fq 2 Q j L \ q = �g
Ct  C

Lt  L

5 The lower bound

We are now ready to prove a lower bound
for the depth of a monotone circuit for
CLIQUE(n, k). If we handle the protocol as
described the following is true.

Proposition 2 Let t satisfy the following in-
equalities:

t �
p
k

4
; (1)

t � n

8k
: (2)

Then the following inequalities hold:

�(Qt) � 2mt�2t; (3)

�(Ct) � 2lt�2t: (4)

Assuming that this is correct, we get a lower
bound on circuit depth by

Theorem 3 For k �
�

3

p
n=2

�2
recognizing

k-cliques in a graph with n vertices requires

depth 

�p

k
�
.

Proof: For such values of k (2) will always
be satis�ed as long as (1) is. Run the proto-
col T =

p
k=4 rounds. We obtain QT , CT ,

MT and LT . Give the players some input pair
(q; c) 2 QT � CT . We have q \ LT = �.
If T rounds were su�cient the clique player

would now know an edge fx; yg � q that is
monochromatic edge in all c 2 CT . This im-
plies x 2 LT _ y 2 LT , i.e. q\LT 6= �, and we
have a contradiction.
The theorem now follows by the equiva-

lence between circuit depth and communica-
tion complexity stated in Theorem 1.

Remark 4 This shows that a monotone cir-
cuit for CLIQUE(n, (n=2)

2

3 ) must have depth

 ( 3
p
n). Alon and Boppana [AB87] have

proved a lower bound for the size of a mono-
tone circuit for CLIQUE(n, k) that implies a

( 3

p
n= logn) lower bound on the depth of such

a circuit. Apart from the minor improvement,
we feel that our proof is simpler.

We will prove Proposition 2 by induction
over t, the number of rounds used. Before we
do so we need relationships between �(C 0

t) and
�(Ct�1), and between �(Qt) and �(Q0

t).

Lemma 4 After step 3 we have

�(C 0
t) �

�
1� (mt + 1)2

k � 1

�
�(Ct�1):

Proof: Let us use the following shorthand:

C
(u;v)
t = fc 2 Ct j c(u) = c(v)g :

We observe that we always have for t > 0,
di�erent u; v 2 V n Lt�1

�
�
C
(u;v)
t�1

�
<

2�(Ct�1)

k � 1
:

This follows by our choice of C0 and from step
5 in round t� 1.

�(C 0
t) = � (fc 2 Ct�1 j c 1� 1 on Mtg)

= �(Ct�1)� �

0
BB@ [

u;v2Mt

u 6=v

C
(u;v)
t�1

1
CCA

� �(Ct�1)�
X

u;v2Mt

u 6=v

�
�
C
(u;v)
t�1

�

�
�
1�

�
mt

2

�
2

k � 1

�
�(Ct�1)

>

�
1� (mt + 1)2

k � 1

�
�(Ct�1):
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Lemma 5 After step 6 we have

�(Qt) �
�
1� 2klt

n

�
�(Q0

t):

Proof: After step 2 we have for all v 2 V nMt

� (fq 2 Q0
t j v 2 qg) <

2(k �mt)�(Q
0
t)

n�mt

Since Lt � V nMt we have the same bound
for v 2 Lt.

�(Qt) = �(Q0
t)� �

 [
v2Lt

fq 2 Q0
t j v 2 qg

!

�
�
1� 2(k �mt)lt

n�mt

�
�(Q0

t)

�
�
1� 2klt

n

�
�(Q0

t):

Proof of Proposition 2: We wish to show
that equations (3) and (4) hold for all t that
satisfy (1) and (2).
Since we have �(Q0) = �(Col0) = 1 and

m0 = l0 = 0 the proposition is true for t = 0.
Now assume that the proposition holds for

the �rst t� 1 rounds. First we use the induc-
tion hypothesis to give lower bounds for �(Q0

t)
and �(C 0

t). By Remark 2 we get:

�(Q0
t) �

1

2
2mt�mt�1�(Qt�1)

by induction � 2mt�2t+1: (5)

Since �(Q0
t) � 1 we have that mt � 2t � 1.

When we apply this to Lemma 4 we obtain:

�(C 0
t) �

�
1� (mt + 1)2

k � 1

�
�(Ct�1)

�
�
1� 4t2

k � 1

�
�(Ct�1)

using (1) �
�
1� k

4(k � 1)

�
�(Ct�1)

� 1

2
�(Ct�1)

by induction � 2lt�1�2t+1: (6)

We now go on to the second part of round
t, where the color player sends one bit. The
bounds established for �(Q0

t) and �(C 0
t) allow

us to �nish the proof. We get by Remark 3:

�(Ct) � 1

2
2lt�lt�1�(C 0

t)

using (6) � 1

2
2lt�lt�12lt�1�2t+1

� 2lt�2t:

This shows that (4) holds. Since �(Ct) � 1 we
know that lt � 2t. We apply this to Lemma 5:

�(Qt) �
�
1� 2klt

n

�
�(Q0

t)

�
�
1� 4kt

n

�
�(Q0

t)

using (2) � 1

2
�(Q0

t)

using (5) � 1

2
2mt�2t+1

� 2mt�2t:

This completes the proof of the proposi-
tion.

6 Acknowledgment

We are grateful to Mauricio Karchmer for his
comments and suggestions on a draft of this
article. We also thank Noga Alon for helpful
discussions.

References

[AB87] N. Alon and R. B. Boppana.
The monotone circuit complexity of
boolean functions. Combinatorica,
7:1{22, 1987.

6



[Ajt83] M. Ajtai.
P1

1-formulae on �nite
structures. Annals of Pure and Ap-
plied Logic, 24:1{48, 1983.

[And85] A. E. Andreev. On a method
for obtaining lower bounds for the
complexity of individual monotone
functions. Dokl. Ak. Nauk. SSSR
282, pages 1033{1037, 1985. En-
glish translation in Sov. Math. Dokl.,
31:530{534, 1985.

[FSS84] M. Furst, J. Saxe, and M. Sipser.
Parity, circuits, and the polynomial
time hierarchy. Math. System The-
ory, 17:13{27, 1984.

[H�as86] J. H�astad. Computational Limita-
tions of Small-Depth Circuits. MIT
PRESS, 1986.

[KW88] M. Karchmer and A. Wigderson.
Monotone circuits for connectivity
require super-logarithmic depth. In
Proceedings of the 20th Annual ACM
Symposium on Theory of Computing,
1988.

[Raz85] A. A. Razborov. Lower bounds on
monotone network complexity of the
logical permanent. Matem. Zam.,
37(6):887{900, 1985. English transla-
tion in Math. Notes of the Academy
of Sciences of the USSR, 37:485{493,
1985.

[Raz87] A. A. Razborov. Lower bounds on
the size of bounded-depth networks
over a complete basis with logical ad-
dition. Mathematical Notes of the
Academy of Sciences of the USSR,
41(4):598{607, 1987. English trans-
lation in 41:4, pages 333-338.

[RW89] R. Raz and A. Wigderson. Proba-
bilistic communication complexity of

boolean relations. In Proceedings of
the 30th Annual IEEE Symposium
on Foundation of computer science,
pages 562{567, 1989.

[RW90] R. Raz and A. Wigderson. Mono-
tone circuits for matching require lin-
ear depth. 22nd annual ACM Sympo-
sium on Theory of Computing, pages
287{292, 1990.

[Smo87] R. Smolensky. Algebraic methods
in the theory of lower bounds for
boolean circuit complexity. Proceed-
ings of 19th Annual ACM Sympo-
sium on Theory of Computing, pages
77{82, 1987.

[Yao85] A. Yao. Separating the polynomial-
time hierarchy by oracles. Proceed-
ings 26th Annual IEEE Symposium
on Foundations of Computer Science,
pages 1{10, 1985.

7


