
Monotone Circuits for Connectivity Have Depth (log n)2�o(1)

Mikael Goldmann�

M.I.T.
Johan H�astady

Royal Institute of Technology

Abstract

We prove that a monotone circuit of size nd recognizing connectivity must have
depth
((log n)2= log d). For formulas this implies depth
((logn)2= log logn). For
polynomial-size circuits the bound becomes
((log n)2) which is optimal up to a con-
stant.

Warning: Essentially this paper has been published in SIAM Journal on Com-

puting is hence subject to copyright restrictions. It is for personal use only.

1 Introduction

Connectivity is the problem of determining if an undirected graph G is connected or not.
This is a natural and fundamental problem which has been studied in numerous contexts.
We refer the reader to Wigderson's survey of connectivity and its importance in complexity
theory [7]. We consider the complexity of computing connectivity using monotone circuits
with AND-gates and OR-gates of fan-in two. Typically, an n-node graph is encoded by�
n
2

�
variables xi;j that indicate whether fi; jg is an edge in the G or not. In [4] Karchmer

and Wigderson proved that monotone circuits for the related problem (s; t)-connectivity
(determining if there is an s; t-path in G) must have depth
((log n)2).1 This is well known
to be optimal. In spite of the two problems being very similar in nature, attempts to prove
non-trivial bounds for connectivity were fruitless until Yao recently proved a lower bound
of
((logn)3=2= log logn) [8].

While Karchmer and Wigderson used a top-down approach exploiting an equivalence
between circuit depth and communication complexity (see [3]), Yao uses a bottom-up ap-
proach. We modify his method to prove a lower bound of
((logn)2= log log n) and in the
case of polynomial-size circuits the bound improves to optimal
((log n)2).

The tool in [8] is a modi�cation of the method of approximation, originally designed by
Razborov [6, 5] to prove lower bounds on the size of monotone circuits (also used in [1, 2]).
The method is roughly as follows. One considers some subset of the inputs, called test

inputs. Given some monotone circuit C one replaces each gate g by an approximator ~g
yielding a function ~C that approximates the function that C computes. In order to prove
a lower bound on the size of C one needs to show two things:

�Research funded by post-doctoral fellowship from Swedish Research Council for Engineering Sciences.
yResearch done while visiting Laboratory for Computer Science, M.I.T.
1All logarithms in this paper are to the base 2.

1

1. g and ~g agree on all but a tiny fraction of the test inputs,

2. C and ~C disagree on a large fraction of the test inputs.

Since local errors are small but the total error is large, there must be many local errors,
that is, C must have many gates.

Yao adapted the method of approximation to proving lower bounds on circuit depth.
The key is to allow more and more powerful functions as approximators as one goes up the
circuit. This way one can get good approximating functions at each level of the circuit. On
the other hand, if there are not too many levels in the circuit, then the approximator one
gets is still not powerful enough to agree with connectivity on most inputs.

2 Test inputs and our approximating functions

As in Yao's paper we concentrate on two types of inputs.

1. Hamiltonian paths

2. Two disjoint cliques

We use the abbreviation HP for the �rst type and 2C for the second. The goal is to show
that an approximator for a shallow circuit either outputs 0 for a large fraction of HP, or
outputs 1 for a large fraction of 2C. We are interested in random instances of the two types
and for HP we take the uniform distribution. A random instance of 2C is obtained by
randomly and independently giving the labels 0 and 1 (each with probability 1/2) to each
node. We then connect nodes with the same label. Thus, a random instance of HP is always
connected while the probability that a random instance of 2C is connected is 21�n which
for all practical purposes can be approximated with 0.

As mentioned in the introduction, we use approximations that are similar to Yao's.
In other words, our method is bottom-up and starts with the inputs. We let the circuit
do computation for � logn levels and then we replace the functions computed by a nearby
function. The information we concentrate on is the fact that certain subsets of vertices are
known to be close to each other. The simplest case of this is an edge which is just saying
that two vertices are at distance 1. To be able to formulate the general concept we need a
little bit of notation.

De�nition 2.1 A partitioned subset of V = f1; : : : ; ng is a setA = fA1; : : : ; Akg of disjoint
subsets of V .

Let e (A) = A1 [� � � [Ak, and let the size of A be je (A) j.
Let s(A) be the number of sets in A, i.e. s(A) = k in the given notation.

A partitioned set A is a subset of another partitioned set B (written A � B) if one can get

A by removing elements from the parts of B. Another way to say this is that (by possibly

renumber the elements of either A or B) if A = fA1; : : : ; Akg and B = fB1; : : : ; Blg and

A � B then k � l and Ai � Bi for i = 1; 2; : : : k.

A partitioned set A is �ner then a partitioned set B if for each Ai 2 A there is a Bj 2 B

so that Ai � Bj . Conversely, we say that B is coarser than A.

2

It will be useful to have an estimate of the number of small partitioned subsets.

Lemma 2.2 Let V = f1; : : : ; ng and k be an integer. Then there are at most (en)k

partitioned subsets of V of size at most k.

Proof. We count by �rst picking a subset of V and then partition it. A set of size s can
clearly be partitioned in at most ss � kk ways. Therefore, kk

Pk
s=0

�n
s

�
is an upper bound

on the number of partitioned subsets of V . However,

kX
s=0

�
n

s

�
�
�n
k

�k nX
s=0

�
n

s

��
k

n

�s

=
�n
k

�k �
1 +

k

n

�n

�
�n
k

�k
ek;

which completes the proof. 2

We will always have jAij � 2 and hence je(A)j � 2s(A).
The partitioned sets will play the role of minterms in our approximating functions. For

A and integer r de�ne the following function on graphs:

f rA(G) = 1,
s(A)^
i=1

0
@ ^

a;b2Ai

dG(a; b) � r

1
A

where dG(a; b) is the length of the shortest path in G between the nodes a and b. If a and
b are not connected we de�ne dG(a; b) =1.

Our general approximating functions will be disjunctions of f r
A
for various A and r. Let

A = fA1; : : : ;Atg be a collection of partitioned sets. Then we de�ne

f rA =

t_
i=1

f r
Ai :

Also, for ? we de�ne
f r
?
� 1:

Boolean operations on functions f rA can almost be performed in the natural way. f rA_f rB
is of course f rA[B so that is no problem. However, f rA ^ f rB is a little bit more complicated.
By using the distributive law we need only to consider f r

Ai ^ f r
Bj . If e(Ai) and e(Bj) are

disjoint this is just f r
Ai[Bj while if the two partitioned sets are not disjoint the resulting

function might not be exactly representable and we can only �nd an approximation in our
set of functions. Essentially we use f r0

C
where e(C) = e(Ai) [e(Bj) and the partition of C

is the �nest partition which is coarser than both Ai and Bj and r0 is a suitable multiple
of r. The fact that we are forced to increase r is one of the key reasons that we need to
consider � log n levels at the time.

We start with an easy observation.

Lemma 2.3 f r
A
(G) = f1

A
(G) for all A and all r � 1 and all graphs from 2C.

This is obvious since any two connected nodes are at distance 1.
In our arguments we want to keep our collections of partitioned sets small. One mecha-

nism for doing this is to throw away any large partitioned set and we the following lemma:

3

Lemma 2.4 The probability that f r
A
(G) = 1 for a random graph G from HP is at most

�
2r

n� je(A)j
�je(A)j=2

Proof. Let A = fA1; : : : ; Akg and ai = jAij. De�ne the notation A(i) = fA1; : : : ; Aig (this
means that A(0) = ?). We have

Pr[f rA(G) = 1] =

kY
i=1

Pr[f rfAig
(G) = 1 j f r

A(i�1)(G) = 1]:

To estimate Pr[f rfAig
(G) = 1 j f r

A(i�1)(G) = 1] let us assume that a random HP is found
by randomly picking the places of all vertices one by one. We can pick the place for the
�rst vertex in Ai in an arbitrary way, but for every other element of Ai there are at most
2r possible places which will satisfy the requirement. Since there are at least n � e(A)
remaining slots we get the bound

Pr[f rA(G) = 1] �
kY

i=1

�
2r

n� je(A)j
�ai�1

=

�
2r

n� je(A)j
�Pk

i=1(ai�1)

�
�

2r

n� je(A)j
�je(A)j=2

The last inequality follows because je(A)j � 2k. 2

We will need a slightly more general statement of the lemma and let us state this
explicitly.

Lemma 2.5 Let Ai, i = 1; : : : d, be a set of not necessarily disjoint partitioned sets and

let m = jS e(Ai)j. The probability that ^di=1f rAi(G) = 1 for a random graph G from HP is

at most �
2r

n�m

�m=2

Proof. The proof is almost identical to the proof of the previous lemma. Place the elements
of
S
e(Ai) on the HP in random places. In order to satisfy ^di=1f rAi(G) = 1 at least half

the elements will have at most 2r possible places to go. The lemma now follows. 2

To avoid having too many large partitioned sets we will replace some collections by
smaller collections and the concept of a sunower is of central importance. Please remember
that containment of partitioned sets respect the partition.

De�nition 2.6 Let A1; : : : ;At be distinct partitioned sets. They form a t-sunower with
core C = fC1; : : : ; Ckg if the following two conditions hold:

4

1. C � Ai for 1 � i � t,

2. e(Ai) \ e(Aj) = e(C) for 1 � i < j � t.

The petals of a sunower are the partitioned sets Ai nC =
�
A n e (C)

�� A 2 Ai
	
.

Given a collection of partitioned sets that contain a sunower with certain parameters
we will replace all the partitioned sets in the sunower by the core. First note that this
might create partitions with jCij = 1. These sets will simply be dropped when forming f r

C
.

We might also get an empty core and in such a case remember that f r
?
� 1.

Replacing a t-sunower by its core makes the corresponding function accept more inputs.
We will not care that more Hamiltonian paths are accepted (they are actually quite a
number). The reason is that we only worry about approximation errors that make the
circuit accept less HP-inputs or more 2C-inputs. Thus, we need to check how many 2C-
inputs get added by this procedure.

Lemma 2.7 Let A1; : : : ;At be partitioned sets which form a sunower with core C. Sup-

pose that maximum of je(Ai)j � je(C)j is bounded by u then the probability that that a

random element G of 2C satis�es f r
C
(G) while f r

Ai
(G) = 0 for all i is bounded by e�t2

�u
.

Proof. We want to estimate Pr[_ti=1f1Ai(G) = 0 j f1
C
(G) = 1] However, when G is drawn

randomly under the condition that f1
C
(G) = 1 then the events f1

Ai(G) = 1 are independent
since e(Ai) n e(C) is disjoint from e(Aj) n e(C) when i 6= j.

Pr[_ti=1f1Ai(G) = 0 j f1C(G) = 1] =
tY

i=1

Pr[f1
Ai(G) = 0 j f1C(G) = 1]

� (1� 2�u)t

� et2
�u
: 2

The process of replacing sunowers by their core will be denoted plucking.

We need some information on the existence of sunowers.

Lemma 2.8 Given A1; : : : ;Am that are distinct partitioned sets of size at most a, an

integer t, a partitioned set B of size b such that B � Ai for 1 � i � m. If m � ta�b(a �
b)!a!=b!, then there is a C � B such that there is a t-sunower with core C.

Proof. The proof is by induction on a � b. Since A1; : : : ;Am are distinct we know that
a� b � 1.

Base case (a � b = 1). The following greedy approach produces a t-sunower. Pick an
arbitrary partitioned set Ai and remove all sets Aj that intersect it outside B. At �rst it
might not seem like there can by any such Aj. It is possible, however that e(Aj) = e(Ai)
but the partitions are di�erent. Since the partitions induced on B are the same there may
only be � b = a� 1 such sets. Since the total number of sets was at least ta we can repeat
this an additional t� 1 times to get a t-sunower with core B.

Induction step (a� b = i).

5

Case 1. There is an element x 62 B appearing in at least ta�b�1(a � b � 1)!a!=b! of the
sets. There are at most (b + 1) ways to extend B by adding x to it, and there is at least
one of these extensions, B0, that is a subset of ta�b�1(a� b� 1)!a!=(b+1)! of the Ai. Since
a� je(B0)j = i� 1 one can use induction to �nd a t-sunower among them with some core
C, where B � B0 � C.

Case 2. No element appears in more than ta�b�1(a � b � 1)!a!=b! of the sets. Like in the
base case we can pick a t-sunower with B as its core in a greedy fashion. Each petal picked
reduces the number of sets by at most ta�b�1(a� b)!a!=b! and thus we can pick t sets. 2

Having established the basic preliminaries, let us repeat the outline of the proofs. We
approximate the gates computed at levels i� log n by a function fK

i

A where K will be a
suitable number and A is a collection of partitioned sets of size < K and which does not
contain any sunowers of certain parameters. For i = 0 there is no problem since the input
xi;j is just f

1
A where A is just one partitioned set which contains the only set fi; jg. Let us

now dive into the details and we start �rst with the case of when the circuits are of small
size.

3 Polynomial size implies depth
((log n)2).

The purpose of this section is to prove the following theorem.

Theorem 3.1 Given a monotone circuit of size nd that computes connectivity. Then the

depth of this circuits is at least
c(log n)2

log d

for some universal constant c and su�ciently large n. Here d might be a function of n
provided it satis�es d 2 o((log n)1=2).

In particular, the theorem implies that if the circuit is of polynomial size, then the depth
is
((log n)2) and as is well known, this is tight.

To follow the general outline we just need to specify a couple of parameters. Set � < 1=40
such that � log n is an integer. The functions approximating the gates at level i� log n are
functions fK

i

A where:

1. K = 10d:

2. A only contains partitioned sets of size at most K and no sunower with at least
2K2K log n petals.

Note that by Lemma 2.8 this implies that no collection of partitioned sets contains more
than (2K2K logn)K(K!)2 � n� partitioned sets (for n su�ciently large).

Assume now that there is a circuit of size nd and depth at most �(logn)2=(4 logK) that
computes connectivity. As described before, we will derive a contradiction by successively
�nding functions f rA that approximates the functions computed by gates in the circuit. The
functions at the inputs (i = 0) are approximated perfectly and the key is to go from i to

6

i+ 1. Each gate at level (i+ 1)� log n is given by a circuit of depth � logn of gates at level
i� log n. There are at most nd such gates and we approximate each gate separately.

Let us �x a gate at level (i+1)� log n and consider its � logn depth de�ning circuit. The
jth input is given by fK

i

Aj . We can convert the circuit to a depth two circuit which is an _
of ^'s and such that the top fan-in is bounded by 2n

�
and bottom fan-in is bounded by n�.

Since each fK
i

Aj is conveniently represented as an _ of ^ we can just use the distributive
law and compute each ^. This will produce a disjunction of functions g� of the type
^(j;k)2�fKi

Aj;k where the Aj;k are partitioned sets which might not be disjoint and � is a set
of index pairs. We now proceed as follows:

1. Let S� =
S

(j;k)2� e(A
j;k)

2. Drop each g� where jS�j � K.

3. Let B� be the partitioned set with elements S� which is the �nest partition which is
coarser than Aj;k for all (j; k) 2 �.

4. Pluck the collection of B�'s to form fK
i+1

B .

Let us look more closely at the approximations made. Dropping g� with S� large
decreases the number of inputs that is accepted. We need to analyze the number of Hamil-
tonian paths dropped this way. This is done in Lemma 3.2.

When formingB� and increasing the value of allowable distances we accept more Hamil-
tonian paths. To see this, note that each set in B� is the the union of at most K � 1 sets
Aj;k. We must prove that any graph G that satis�es ^(j;k)2�fKi

Aj;k(G) = 1 also satis�es

fK
i+1

B�
(G) = 1. But for any pair fs; tg of elements which are in the same set of B� there are

elements v1 : : : vl with l � K � 1 such that if we set s = v0 and t = vl+1 then for i = 0; : : : i
vi and vi+1 are in the same set of Aj;k for some (j; k) 2 �. Since ^(j;k)2�fKi

Aj;k(G) = 1 we
have dG(vi; vi+1) � Ki and hence dG(s; t) � Ki+1. Since s and t were arbitrary we conclude
that fK

i+1

B�
(G) = 1. Because of Lemma 2.3 which inputs from 2C that are accepted is not

changed when forming B�.
Finally, plucking implies that we accept more inputs and how many more inputs that

are accepted from 2C is analyzed in Lemma 3.3.
We now turn to proving the relevant lemmas.

Lemma 3.2 The fraction of HP that satisfy any term dropped during the �rst part of the

construction is at most n�2d for su�ciently large n.

Proof. We �nd a small collection of functions h� similar to g� such that for any g� dropped
there is an h� that covers g�, that is, g�(G) = 1) h�(G) = 1 for some �.

For any dropped g� �nd a minimal subset � of � under the condition that jS(j;k)2� e(A
j;k)j �

K. Clearly there is such a � of size at most K. Let

h� =
^

(j;k)2�

fK
i

Aj;k :

Then it clearly satis�es the property outlined above. Now we claim that

7

1. There are at most 2
�
n2�

K

�
di�erent h� .

2. The probability that h�(G) = 1 for a random Hamiltonian path G is at most n�K=4

for su�ciently large n.

The �rst claim follows from that fact that each Aj contains at most n� partitioned sets
and we need to choose at most K partitioned sets total. The second claim follows from
Lemma 2.5 (note that r � Kj � K log n=(4 logK) � n1=4). The lemma now follows since

2

�
n2�

K

�
2�K=4 � n�2d

for the � < 1=40 and su�ciently large n. 2

Let us next estimate the number of inputs from 2C added under plucking.

Lemma 3.3 The fraction of 2C added in the above process is bounded by (e=n)�K .

Proof. By Lemma 2.7, each time we replace a sunower by its core we remove a fraction
add a fraction n�2K of 2C. This operation decreases the number of partitioned sets by at
least one, and by Lemma 2.2 there where at most (en)K to begin with. The lemma now
follows. 2

Let us now �nish the proof of the theorem. The output gate corresponds to i =
log n=(4 logK) and hence it is approximated by a function fn

1=4

A . We have two cases

Case 1. We have the identically 0 function. In order for this to happen we must have lost
all of HP. However, given that the circuit has size � nd and using Lemma 3.2, the fraction
of HP lost is at most nd � n�2d = n�d, which contradicts the assumption that all of HP has
been lost.

Case 2. We get some function f which is not identically 0. There is a partitioned set A
such that je(A)j � K and fn

1=4

A
implies f . However, it is easy to see that the fraction of

2C accepted by fn
1=4

A
, and thus by f is at least 2�K = 2�10d. However, the total fraction of

2C added by the approximations is at most nd(e=n)K = e10dn�9d. For n su�ciently large
e10dn�9d < 2�10d and we have a contradiction.

4 Formulas require depth
((log n)2= log log n)

The purpose of this section is to prove the following theorem.

Theorem 4.1 The depth of a monotone formula that computes connectivity is at least

�
(logn)2

log logn

�
:

The outline is the same as in the other proof but we need to be more careful. In the
sunowers we remove, the number of petals we need is dependent on their sizes.

8

De�nition 4.2 Let A1; : : : ;At be a sunower with core C, and say that the petal-size

(je(Ai) n e(C)j) is at most u. We say that this is a good sunower if t � 2u(log n)2.

Use the same � as before. This time we use functions fK
i

A where:

1. K = blog n=(18 log log n)c.
2. A only contains partitioned sets of size at most K and no good sunower.

Assume now that there is a circuit of depth at most �(log n)2=(4 logK) that computes
connectivity. We proceed exactly as in the previous proof. In particular, the process of
forming our approximations level by level is now the same, i.e.,

1. Let S� =
S

(j;k)2� e(A
j;k)

2. Drop each g� where jS�j � K.

3. Let B� be the partitioned set with elements S� which is the �nest partition which is
coarser than Aj;k for all (j; k) 2 �.

4. Pluck the collection of B�'s to form fK
i+1

B .

The crucial di�erence to the previous proof is that we need to work harder to estimate
the number of Hamiltonian paths dropped at the �rst step. The crucial lemma is:

Lemma 4.3 The fraction of HP dropped at a single gate is bounded by n�K=8 for su�-

ciently large n.

Proof. Again we form a small set of functions, H, that dominate the set of lost inputs.
Let � f1; : : : ; n�g, and jj = l � K. Let g = ^j2fKi

Aj and using the distributive law
we can write

g =
_
�

^
(j;k)2�

fK
i

Aj;k

where � ranges over all possible ways to pick Aj;k from Aj for each j 2 . Call the term
corresponding to � h� and let H be the set of terms in g . We say that the weight of
h� is j [(j;k)2� e(Aj;k)j. We call h� heavy if its weight is at least K and let Hh

 be the

set of heavy terms in H . Finally, let H = [jj�KHh
 . Now, H covers all sets dropped

in step 2 for the following reason. For any � with jS�j � K pick a subset � of size at
most K such that jS(j;k)2� e(A

j;k)j � K. The term that corresponds to � is covered by

the term h� = ^(j;k)2�fKi

Aj;k . Let be the projection of � on the �rst coordinate. Clearly,

h� 2 Hh
 � H.

It remains to analyze the fraction of HP that is accepted by any of the functions in H.
For any h 2 H let s be its weight. By de�nition s � K, and since we only consider jj � K
we have s � K2. First note that by Lemma 2.5 the fraction of HP that satis�es a term h�
of weight s is at most n�s=3 for n su�ciently large. Now we need the following lemma:

Lemma 4.4 Given , jj = l � K. The number of h in H of weight s is at most

F (s; l) = 2Ks+2s log log n+2s log s+l(s log s+s+1):

9

Before we prove Lemma 4.4, let us just see how to complete the proof of Lemma 4.3. For

a �xed we drop a most a fraction
PK2

s=K F (s;K)n�s=2 of HP. For n su�ciently large this
quantity is bounded by

K2 � 23K2 log log n�(K=3) log n = K2 � n�K=6:

There are less than n�K sets , and for n su�ciently large K2 � n(��1=6)K < n�K=8. 2

Let us now prove Lemma 4.4.

Proof. We need the following useful technical lemma.

Lemma 4.5 Given A1; : : : ;Am that are distinct partitioned sets, a set R of size r such

that jR [e(Ai)j � s for 1 � i � m, and an integer t.

If m � (r + 1)rts�r(s� r)!s!=r!, then there is a C such that there is a t-sunower with
core C, and for each Ai in the sunower, je(Ai) n e(C)j � s� r.

Proof. We will �nd a subset of R and partition it to get a partitioned set Q such that for
many of the sets Q � Ai and je(Ai) n e(Q)j � s� r, and then use Lemma 2.8.

Let Ri = R\Ai, and let Ri be the partitioned set that Ai induces on Ri. Since jRij � r,
(r + 1)r is an upper bound on the number of distinct Ri that can be obtained. Therefore
at least m0 = ts�r(s � r)!s!=r! of the Ai must give the same partitioned set. Call this
partitioned set Q and let q = je(Q)j.

Without loss of generalityA1; : : : ;Am0 all giveQ. Since for these, Q � Ai and je(Ai)j �
s� r + q, we can apply Lemma 2.8 with a = s� r + q, b = q, and B = Q. Provided that
m0 � ts�r(s� r)!(s� r + q)!=q! we are done. The right hand side of this expression grows
with q, so m0 � ts�r(s� r)!s!=r! su�ces, and the proof is complete. 2

Now we can establish Lemma 4.4 by induction on l. We want to show that the number
of terms of size s of H is bounded by F (s; l). The base case l = 1 follows from Lemma 2.8
with B being the empty set. Obviously there are no terms of weight s � K. For weight
s < K we just need to observe that

(2s(log n)2)ss! � 2Ks+2s log log n+s log s � F (s; 1):

For the induction step consider = f1; : : : ; lg, and let 0 = f1; : : : ; l�1g. To do the
induction we need to analyze how many terms of size s in H can be formed from a single
term of size r � s in H0 . Since Al does not contain any good sunowers, by Lemma 4.5
with parameter t = 2s�r(log n)2 we conclude that each term of size r in H0 can give at
most

(r + 1)r(2s�r(log n)2)s�r(s� r)!s!=r! � 2(s�r)
2+2(s�r) log log n+2(s�r) log s+r log r+r

di�erent terms of size s in H . Also, note that a term of size r cannot give any terms of
size s > r +K since all A 2 Al have size at most K.

10

To get the total number of terms of size s we just use the inductive hypothesis to bound
the number of terms of size r in H0 and sum over r � s�K. We get

sX
r=max(0;s�K)

F (r; l � 1) � 2(s�r)2+2(s�r) log log n+2(s�r) log s+r log r+r

�
sX

r=s�K

2Kr+2s log log n+2r log r+(l�1)(r log r+r+1) � 2K(s�r)+2(s�r) log logn+2s log s+r log r+r

�
sX

r=s�K

2Ks+2s log log n+2s log s+l(r log r+r)+l�1

� 2Ks+2s log log n+2s log s+l(s log s+s+1) = F (s; l)

The proof of Lemma 4.4 is complete. 2

The fraction of 2C lost by plucking is easy to estimate.

Lemma 4.6 The fraction of 2C inputs added at a single gate is bounded by n� log n for

su�ciently large n.

Proof. By Lemma 2.7 and the de�nition of good sunowers we know that plucking a single
good sunower adds a fraction at most e�(log n)

2

of 2C. Each time we pick a sunower the
number of partitioned sets decreases, and by Lemma 2.2 there are at most (en)K partitioned
sets of size � K before plucking starts. Thus, the fraction of 2C that gets added at a single
gate is less than e�(log n)

2+K log n+O(K) which is less than n� log n for su�ciently large n. 2

The proof of Theorem 4.1 is now completed in exactly the same way as Theorem 3.1
by using Lemma 4.3 and Lemma 4.6 instead of Lemma 3.2 and Lemma 3.3, and the fact
that the size of the formula is at most n� log n=(4 logK). For n su�ciently large there are
less than nlog n=(150 log log n) gates, and at each gate the error on HP is at most n�K=8 �
n� log n=(145 log log n) and the error on 2C at each gate is at most n� log n.

5 Conclusion and open problems

Combining the results of the previous two sections shows that a monotone circuit of size
nd for connectivity must be of depth
((log n)2= log d). Of course one would like to get

((log n)2) lower bounds for the depth even for formulas. We do believe that this is the
correct answer, but we see real problem of extending the current methods. To get an
argument going it seems like we need partitioned sets2 of size
(log n). The reason is that
if we drop a single partitioned set of size K then the number of HP dropped is at least
n�K . Since we are discussing circuits of size nc log n we cannot a�ord this if K = o(log n).
Now suppose we are using some type of sunowers and plucking. Consider a program that
computes a predicate D(s; t; i) recursively where s and t are vertices and i is a parameter.
It sets D(s; t; 0) to true i� (s:t) is and edge. To compute D(s; t; i) set s = v0, t = vl and try

2Of course, we might use something di�erent than partitioned sets, for instance the same graphs as Yao

did. This however does not matter greatly for this argument.

11

n2 ways of picking v1 : : : vl�1 and set D(s; t; i) to true if for some attempt D(vi; vi+1; i) are
true for i = 0; 1; : : : i� 1. D(s; t; i) should be thought of a crude approximation that s and
t are within distance li. This is not really true since we do not try all the values of the l� 1
intermediate points. However, in an approximation scheme as ours D(s; t; i) is converted
into the function dG(s; t) � libyplucking. If we choose l =

p
log n then D(s; t; i) can be

computed in depth about O(i log n) and for i = i0 = 2 log n= log log n the approximation
of D(s; t; i) is whether s and t are connected and hence ^nt=2D(1; t; i0) is approximated by
connectivity.

The problem arises since our approximations are too crude in letting a function take the
value one on HP. In our opinion, a major idea, or a totally di�erent approach seems to be
needed to eliminate the log log n factor.

References

[1] N. Alon and R. B. Boppana. The monotone circuit complexity of boolean functions.
Combinatorica, 7:1{22, 1987.

[2] A. E. Andreev. On a method for obtaining lower bounds for the complexity of individual
monotone functions. Dokl. Akad. Nauk SSSR, 282(5):1033{1037, 1985. (In Russian);
English translation in Soviet Math. Dokl. 31(3):530{534, 1985.

[3] M. Karchmer. Communication Complexity: A New Approach to Circuit Depth. The
MIT Press, 1989.

[4] M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Disc. Math., 3(2):255{265, 1990.

[5] A. A. Razborov. Lower bounds on the monotone complexity of some boolean functions.
Dokl. Akad. Nauk SSSR, 281(4):798{801, 1985. (In Russian); English translation in
Soviet Math. Dokl. 31:354{357, 1985.

[6] A. A. Razborov. A lower bound on the monotone network complexity of the logical
permanent. Mat. Zametki, 37(6):887{900, 1985. (In Russian); English translation in
Math. Notes of the Academy of Sciences of the USSR 37(6):485{493, 1985.

[7] A. Wigderson. The complexity of graph connectivity. In 17th MFCS, pages 112{132,
1992.

[8] A. C. Yao. A lower bound for the monotone depth of connectivity. In Proc. 35th IEEE

Symposium on Foundations of Computer Science, 1994.

12

