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Abstract

We prove optimal, up to an arbitrary � > 0, inapproximability results

for Max-Ek-Sat for k � 3, maximizing the number of satis�ed linear equa-

tions in an over-determined system of linear equations modulo a prime p

and Set Splitting. As a consequence of these results we get improved lower

bounds for the eÆcient approximability of many optimization problems

studied previously. In particular, for Max-E2-Sat, Max-Cut, Max-di-Cut,

and Vertex cover.
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1 Introduction

Many natural optimization problems are NP-hard which implies that they are
probably hard to solve exactly in the worst case. In practice, however, it is
many times suÆcient to get reasonably good solutions for all (or even most) in-
stances. In this paper we study the existence of polynomial time approximation
algorithms for some of the basic NP-complete problems. For a maximization
problem we say that an algorithm is a C-approximation algorithm if it, for
each instance, produces an solution whose objective value is at least OPT=C
where OPT is the global optimum. A similar de�nition applies to minimization
problems.

A fundamental question is, for a given NP-complete problem, for what value
of C can we hope for a polynomial time C-approximation algorithm. Posed
in this generality this is a large research area with many positive and negative
results. In this paper we concentrate on negative results, i.e., results of the
form that for some C > 1 a certain problem cannot be approximated within C
in polynomial time. These results are invariably based on plausible complexity
theoretic assumptions, the weakest possible being NP 6=P since if NP=P, all
considered problems can be solved exactly in polynomial time.
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The most basic NP-complete problem is satis�ability of CNF-formulas and
probably the most used variant of this is 3-SAT where each clause contains at
most 3 variables. For simplicity, let us assume that each clause contains exactly
3 variables. The optimization variant of this problem is to satisfy as many
clauses as possible. It is not hard to see that a random assignment satis�es
each clause with probability 7/8 and hence if there are m clauses it is not hard
(even deterministically) to �nd an assignment that satis�es 7m=8 clauses. Since
we can never satisfy more than all the clauses this gives a 8=7-approximation
algorithm. This was one of the �rst approximation algorithms considered [25]
and one of the main results of this paper is that this is optimal to within an
arbitrary additive constant � > 0.

A problem that in many respects is as basic as satis�ability is that of solv-
ing a system of linear equations over a �eld. If all equations can be satis�ed
simultaneously then a satisfying assignment can be found in polynomial time
by Gaussian elimination. Gaussian elimination is, however, very sensitive to
incorrect equations. In particular, if we are given an over-determined system
of equations it is not clear how to eÆciently �nd the \best solution", where we
interpret \best" as satisfying the maximal number of equations. This problem is
NP-complete over the �eld of two elements since already the special case of hav-
ing equations only of the form xi+xj = 1 is equivalent to Max-Cut. We believe
that as an optimization problem this problem will play a natural and impor-
tant role. As with 3-SAT there is an obvious approximation algorithm that just
does as well as assigning random values to the variables. In this case a random
assignment satis�es half the equations and thus this yields a 2-approximation
algorithm. One of the main results of this paper is to prove that this is, again
upto an arbitrary � > 0 and based on NP 6=P, the best possible for a polynomial
time approximation algorithm. This is true even if each equation only contains
exactly three variables.

Other results included in this paper are similar results for linear equations
over an arbitrary Abelian group � and set splitting of sets of size 4. By re-
ductions we get improved constants for Max-2-Sat, Max-Cut and Max-di-Cut
and Vertex Cover. These reductions are all from the problem of satisfying the
maximal number of equations in system of linear equations over the �eld of two
elements.

1.1 Short history and our contribution

The question of proving NP-hardness of approximation problems was discussed
at length already in the book by Garey and Johnson [19], but really strong re-
sults were not obtained until the connection with multiprover interactive proofs
was discovered in the seminal paper of Feige et al. [16]. There are a number of
variants of multiprover interactive proofs and the two proof models that we use
in this paper are that of two-prover interactive proofs and that of probabilisti-
cally checkable proofs.

The �rst model was introduced by Ben-Or et al. [12] and here the veri�er
interacts with two provers who cannot communicate with each other. Probabilis-
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tically checkable proofs, which we from here on abbreviate PCPs, correspond to
oracle proof systems studied by Fortnow et al. [18], and it was given its current
name in the paper by Arora and Safra [4]. In a PCP the veri�er does (few)
random spot-checks in a (large) written proof. Note that a two-prover inter-
active proof can be turned into a PCP simply by writing down the answers of
both provers to all possible questions. The veri�er would then simply check the
answers to the questions it intended to pose. For a complete account of history
of the entire area we refer to [9], but let us here give a short account of the path
leading to the current results.

The surprising power of multiprover interactive proofs was �rst established
by Babai, Fortnow and Lund [5] by showing that multiprover proofs with a
polynomial time veri�er could recognize all of NEXPTIME. This was scaled
down to give very eÆcient veri�ers for simpler predicates by Babai et al. [6] and
the connection to approximability was discovered by Feige et al. [16] in 1990.

To obtain stronger bounds, to weaken assumptions, and to widen the range
of problems for which the methods applied, more eÆcient proofs were sought.
Arora and Safra [4] discovered proof composition and were the �rst to construct
PCPs for NP-hard problems with a veri�er that used logarithmic randomness
and sub-logarithmic query complexity.

The �rst result proving hardness for the problems we are discussing here
was obtained in the fundamental paper by Arora et al. [3] which establishes
the celebrated PCP-theorem that states that each language in NP has a PCP
where the veri�er reads only a constant number of bits and uses a logarithmic
number of random coins. This result implies that there is some constant C > 1
such that Max-3-Sat cannot be approximated within C unless NP=P. The �rst
explicit constant was given by Bellare et al. [10] and based on a slightly stronger
hypothesis they achieved the constant 94/93. Bellare and Sudan [11] improved
this to 66/65 and the strongest result prior to our results here is by Bellare,
Goldreich and Sudan [9] obtaining the bound 80=77� � for any � > 0.

The last two papers, [11, 9], use a similar approach to ours and let us describe
this approach. The starting point is an eÆcient multiprover protocol, which in
our case and in [9] comes naturally from a combination of the basic PCP by
Arora et al. mentioned above and the wonderful parallel repetition theorem of
Raz [32]. Bellare and Sudan [11] used a di�erent protocol since the theorem by
Raz was not known at that point in time.

The multiprover protocol is turned into a PCP by writing down the answers
of the provers in coded form. The main source of the improvements of Bellare et
al. [9] was the invention of a new code, the marvelous long code. The long code
of an input x 2 f0; 1gu is a string of length 22

u

. The coordinates correspond to
all possible functions f : f0; 1gu 7! f0; 1g and the coordinate corresponding to
f takes the value f(x). It is a very wasteful encoding but if u is a constant it is
of constant size and it is hence, at least in theory, a�ordable.

When a multiprover protocol is transformed to a PCP by writing down
coded versions of the prover's answers the veri�er can, if the coding is suitable,
perform its veri�cation in the multiprover protocol much more eÆciently. The
freedom to code the answers might, however, also help a cheating prover in that

3



it can write down a string that is not a correct codeword and the veri�er has to
make sure that such behavior does not destroy the soundness of the new PCP.
This forced previous veri�ers under these circumstances to perform two tasks,
to check to original conditions of the multiprover protocol and to check that the
coding is correct.

We use the same written proof as did Bellare et al. [9] and our improvement
comes from the ability to completely integrate the two tasks of checking accep-
tance in the two-prover protocol with checking that we have a correct coding
of the prover's answers. We do not really check that the coding is correct in
that all we need is that it is possible, given a written proof for the PCP that
convinces the veri�er to accept with high probability, to extract a strategy for
the provers in the two-prover game. Before such strategies were extracted by
looking at the legitimate codewords that were close, (i.e., agreed for more than
half the inputs) to the codewords presented by the prover. In our case we in-
stead extract the strategies by looking at discrete Fourier transform of these
given codewords.

The written proof is the same in most of our tests yielding inapproximability
result for the various problems we study. The acceptance criteria are however,
specially designed to suit the targeted optimization problem. For example, for
the result for linear equations the veri�er decides whether to accept based solely
on the exclusive-or of three bits. This philosophy of designing special purpose
PCPs for each optimization problem was �rst done on a major scale by Bellare
et al. [9]. It seems like this is required to obtain tight result for the problems
discussed in this paper. This special design might make some of our tests seem
awkward but this is probably inevitable.

For some other problems, most notably clique [23] (and almost for its relative
chromatic number [17]), the optimal results are established by looking at natural
parameters of the PCP and in particular by studying the number of free bits
read by the veri�er. Informally, assuming that a veri�er always accepts a correct
proof of a correct statement, this number is de�ned as follows. A bit read in a
PCP is not free if, at the time of reading, the veri�er will always reject unless
it has a prespeci�ed value. If this is not the case the bit is free.

The only problem in our paper that relates in a straightforward way to such
natural parameters of a PCP is vertex cover. A PCP that uses f free bits, has
completeness c and soundness s gives an inapproximability factor of

2f � s

2f � c

for vertex cover. Our proof system giving the result for linear equations has
f = 2, c = 1� � and s = 1=2+ � yielding an inapproximability factor arbitrarily
close to 7=6. As this is our only use of free bits we do not de�ne it explicitly
but rather refer to [9] for its formal de�nition as well as a thorough discussion
of the free bit concept and its applications to inapproximability results and to
the theory of PCPs in general.

4



1.2 Summary of results

For easy reference we here state most of our results in tabular form. We also
compare to the best previous lower bounds as well as the performance ratio of the
best polynomial time approximation algorithms. In most cases, the previously
best result was obtained by Bellare et al. [9] and for a detailed account of the
earlier history of each problem we refer to this paper. For formal de�nitions of
the stated problems we refer to Section 2.2.

The number Æ below has the meaning \a positive but unspeci�ed constant"
while � can be replaced by any positive constant. The assumption used in all
the lower bounds is P6= NP.

Upper Prev. best lower Our lower

Constant Source Constant Source

E3-LIN-2 2 folklore 8
7 � � [9] 2� �

E3-LIN-p p folklore pÆ [1] p� �

E3-LIN-� j�j folklore - j�j � �

E2-LIN-2 1:1383 [20] - 12
11 � �

E3-SAT 8
7 [25] 80

77 � � [9] 8
7 � �

E2-SAT 1:0741 [15] 220
217 � � [9] 22

21 � �

E4-Set Splitting 8
7 folklore 1 + Æ [27] 8

7 � �

Max-Cut 1:1383 [20] 72
71 � � [9] 17

16 � �

Max-di-Cut 1:164 [20] 72
71 � � [9] 12

11 � �

Vertex cover 2 [19, 7, 22] 233
218 � � [9] 7

6 � �

Our lower bounds using gadgets (E2-SAT, E2-LIN-2, Max-Cut, Max-di-Cut)
rely on the gadgets produced by Trevisan et al. [35] and since the prior published
work in some cases depended on worse gadgets the improvement are not only
due to our results.

The 2-approximation algorithm for vertex cover is an unpublished result
due to Gavril that is given in [19]. The case of weighted graphs was treated by
Bar-Yehuda and Even [7] and Hochbaum [22].

The inapproximability result for linear systems of equations mod p of Amaldi
and Kann [1] needed arbitrary systems of linear equations mod p and hence did
not, strictly speaking, apply to Max-E3-Lin-p.

An outline of the paper is as follows. In Section 2 we introduce notation,
give de�nitions and state some needed results from earlier papers. Most of
our PCPs use the same written proof and in Section 3 we describe this proof.
In Section 4 we describe tests for being a correct long code. These tests are
presented for pedagogical reasons but are in Section 5 naturally extended to
give the results for linear equations. In Section 6 we give the results on Max-k-
Sat and in Section 7 we give corresponding results for Set Splitting. We obtain
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some results for other problems in Section 8. We �nally briey discuss how to
make our arbitrary constants be functions of the input-length in Section 9 and
end by some concluding remarks.

This is the complete version of the results announced in [24].

2 Notation and some essential previous results

In this section we give basic notation and collect the needed results from earlier
papers.

2.1 Basic notation

All logarithms in this paper are to the base 2. We use vertical bars j � j to denote
the size of an object. For a real or complex number it is the absolute value, for
strings it is the length and for sets the size. We use the notation ��� for two
sets � and � to denote the symmetric di�erence, i.e., the elements that appear
in exactly one of the sets � and �. The notation � n � denotes the elements in
� but not in �.

In sums and products we always indicate the variable over which the sum/product
is taken. Sometimes, however, we do not explicitly give the range. This hap-
pens when this range is considered obvious and it is usually the case that we
are summing over all objects of the given kind. An empty sum is taken to be
0 and an empty product takes the value 1. The expected value of a variable X
is denoted by Ef [X ] assuming we are taking the expected value over a random
f . We do not give the distribution of this f which is supposed to be clear from
the context.

For most of the paper we work with binary valued objects, but for a number
of reasons it is more convenient for us to work over f�1; 1g rather than the
standard f0; 1g. We let �1 correspond to true and our most important Boolean
operation is exclusive-or which is in our notation the same as multiplication.
We also need other Boolean operations like ^ which is de�ned in the usual way
using true and false and the fact that �1 is short for \true" and 1 is short for
\false". Thus in particular �1 ^ 1 = 1 and �1 ^ �1 = �1.

We do not distinguish a set of variables and the set of indices of these
variables. For a set U of variables we let f�1; 1gU be the set of all possible
assignments to these variables and we use f�1; 1gn instead of f�1; 1g[n]. Sup-
pose U � W , then for x 2 f�1; 1gW we denote its restriction to the variables
occurring in U by xjU . For a set � � f�1; 1gW we de�ne �U (�) by letting
x 2 f�1; 1gU belong to �U (�) if x = yjU for some y 2 �. We also need a mod
2-projection and we let x 2 �U2 (�) i� � contains and odd number of elements y
such that yjU = x. When the identity of the set U is evident from the context
the superscript of � is omitted.

For a set U we let FU be the set of all functions f : f�1; 1gU 7! f�1; 1g.
A central point in this paper is to study functions A : FU 7! f�1; 1g. One
particular type of such functions is given by the long codes of assignments.
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De�nition 2.1 [9] The long code of an assignment x 2 f�1; 1gU is the map-
ping Ax : FU 7! f�1; 1g where Ax(f) = f(x).

We identify a function with its truth-table and thus a long code is a string

of length 22
jUj

where we use an arbitrary, but �xed convention to order the
elements of FU .

A CNF-formula is a formula ' of n Boolean variables (xi)
n
i=1 given by m

clauses (Cj)
m
j=1. A clause contains a number of literals, i.e., variables or their

negations, and it is true if at least one of the literals is true. The number of
literals in a clause is the length of the clause.

De�nition 2.2 Let e 2 [0; 1] be a real number. A CNF-formula ' with m
clauses is e-satis�able, i� some assignment satis�es em clauses and no assign-
ment satis�es more than em clauses.

Using the natural extension of this we say that ' is at most e-satis�able if
it is d-satis�able for some d � e.

2.2 Problems considered

Let us give formal de�nitions of the problems we consider in this paper.

De�nition 2.3 Let k be an integer. A CNF-formula is a Ek-CNF-formula i�
each clause is of length exactly k.

For a CNF-formula ' and an assignment x let N('; x) be the number of
clauses of ' satis�ed by x.

De�nition 2.4 Max-Ek-Sat is the optimization problem of, given a Ek-CNF
formula ', to �nd x that maximizes N('; x).

We are also interested in the problem of solving systems of linear equations
over the �nite �eld with 2 elements. Let us denote a typical system of linear
equations L and, similarly to above, for an assignment x let N(L; x) be the
number of equations of L satis�ed by x.

De�nition 2.5 Max-Ek-Lin-2 is the problem of, given a system L of linear
equations over Z2, with exactly k variables in each equation, to �nd x that
maximizes N(L; x).

De�nition 2.6 Max-Cut is the problem of given an undirected graph G with
vertices V to �nd a partition V1; V2 of V such that the number of edges fu; vg
such that fu; vg \ V1 and fu; vg \ V2 are both nonempty is maximized.

De�nition 2.7 Max-di-Cut is the problem of, given a directed graph G with
vertices V , to �nd a partition V1; V2 of V such that the number of directed edges
(u; v) such that u 2 V1 and v 2 V2 is maximized.
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De�nition 2.8 Vertex Cover is the problem of, given an undirected graph G
with edges E and vertices V , to �nd a V1 � V with jV1j minimal such that V1
intersects each edge.

De�nition 2.9 Ek-Set Splitting. Given a ground set V and a number of sets
Si � V each of size exactly k. Find a partition V1; V2 of V to maximize the
number of i with both Si \ V1 and Si \ V2 nonempty.

Note that E2-Set Splitting is exactly Max-Cut and that E3-Set Splitting is
very related to E2-Set Splitting in that the set (x; y; z) is split exactly when
two of the three pairs (x; y), (x; z) and (y; z) are split. Thus the �rst really new
problem is E4-Set Splitting.

Several of the above problems are special cases of a general class of problems
called constraint satisfaction problems, from now on abbreviated CSP.

Let k be an integer and let P be a predicate f�1; 1gk 7! f�1; 1g. An
instance of CSP-P is given by a collection (Ci)

m
i=1 of k-tuples of literals. For an

assignment to the variables, a particular k-tuple is satis�ed if P , when applied
to values of the literals, returns �1. For an instance I and an assignment x
we let N(I; x; P ) be the number of constraints of I satis�ed by x under the
predicate P .

De�nition 2.10 Max-CSP-P is the problem of, given an instance I, to �nd
the assignment x that maximizes N(I; x; P ).

It is straightforward to check that Max-Ek-Sat, Max-Ek-Lin, Max-Cut, and
Max-di-Cut are all CPSs for particular predicates P . We are also interested
in cases when negation is not allowed. We call such monotone CSP and one
particular case is given by Ek-Set Splitting.

A key parameter for a CSP is the number of assignments that satisfy the
de�ning predicate P .

De�nition 2.11 The weight, w(P; k), of a CSP problem given by a predicate P
on k Boolean variables is de�ned as p2�k where p is the number of assignments
in f�1; 1gk that satis�es P .

The weight of Ek-Max-Lin-2 is 1/2 for any k, it is 1� 2�k for Ek-Max-Sat,
1=2 for Max-Cut, 1=4 for Max-di-Cut and 1 � 21�k for Ek-Set Splitting. We
note that the concept extends in the obvious way to non-Boolean domains.

For each of the above problems we could think of both �nding the numerical
answer (e.g. the size of a certain cut) or the object that gives this answer (e.g.
the partition giving the numerical answer). The lower bounds we prove apply to
the simpler variant, i.e., the variant where the algorithm is supposed to supply
the numerical answer. Since we are proving inapproximability results, this only
makes our results stronger.

Finally we de�ne what it means to C-approximate an optimization problem.
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De�nition 2.12 Let O be a maximization problem and let C � 1 be a real
number. For an instance x of O let OPT (x) be the optimal value. A C-
approximation algorithm is an algorithm that on each input x outputs a number
V such that OPT (x)=C � V � OPT (x).

De�nition 2.13 Let O be a minimization problem and let C � 1 be a real
number. For an instance x of O let OPT (x) be the optimal value. A C-
approximation algorithm is an algorithm that on each input x outputs a number
V such that OPT (x) � V � C � OPT (x).

De�nition 2.14 An eÆcient C-approximation algorithm is a C-approximation
algorithm that runs in worst case polynomial time.

The formulation \having performance ratio C" is sometimes used as an al-
ternative to saying \being a C-approximation algorithm".

Any Max-CSP-problem has an approximation algorithm with constant per-
formance.

Theorem 2.15 A Max-CSP given by predicate P on k variables admits a poly-
nomial time approximation algorithm with performance ratio w(P; k)�1.

Proof: A random assignment satis�es a given k-tuple with probability w(P; k).
It is not diÆcult to �nd an assignment that satis�es this fraction of the given k-
tuples by the method of conditional expected values. We omit the details.

The main point of this paper is to establish that for many CPSs, Theo-
rem 2.15 is in fact the best possible for a polynomial time approximation algo-
rithm.

De�nition 2.16 A Max-CSP given by predicate P on k variables is non-approximable
beyond the random assignment threshold i�, provided that NP6= P, for any
� > 0, it does not allow a polynomial time approximation algorithm with perfor-
mance ratio w(P; k)�1 � �.

Some CSP become easier if you only consider satis�able instances but some
do not. We formalize also this notion.

De�nition 2.17 A Max-CSP given by predicate P on k variables is non-approximable
beyond the random assignment threshold on satis�able instances i�, for any
� > 0 it is NP-hard to distinguish instances where all constraints can be simul-
taneously satis�ed from those where only a fraction w(P; k)+� of the constraints
can be simultaneously satis�ed.

2.3 Proof systems

We de�ne proofs systems by the properties of the veri�er.
The veri�er needs help to verify a statement and we allow a veri�er to have

access to one or more oracles. In di�erent variants of proof systems, the notions
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of provers and written proofs are discussed. Written proofs are in fact identical
with proofs using oracles where reading the i'th bit corresponds to asking the
oracle the question \i ?". Provers, in general, are more powerful than oracles
in that they are allowed to be randomized and history dependent. We discuss
these complications in connection with the de�nition of two-prover protocols
below.

De�nition 2.18 An oracle is a function �� 7! f0; 1g.

A typical veri�er V �(x; r) is a probabilistic Turing machines where � is the
oracle, x the input and r the (internal) random coins of V . We say that the
veri�er accepts if it outputs 1 (written as V �(x; r) = 1) and otherwise it rejects.

De�nition 2.19 Let c and s be real numbers such that 1 � c > s � 0. A prob-
abilistic polynomial time Turing machine V is a veri�er in a Probabilistically
Checkable Proof (PCP) with soundness s and completeness c for a language L
i�

� For x 2 L there exists an oracle � such that Prr[V
�(x; r) = 1] � c.

� For x 62 L, for all � Prr[V
�(x; r) = 1] � s.

We are interested in a number of properties of the veri�er and one property
that is crucial to us is that V does not use too much randomness.

De�nition 2.20 The veri�er V uses logarithmic randomness if there is an
absolute constant c such that on each input x and proof �, the length of the
random string r used by V � is bounded by c log jxj.

Using logarithmic randomness makes the total number of possible sets of
coin ips for V polynomial in jxj and hence all such sets can be enumerated in
polynomial time.

We also care about the number of bits V reads from the proof.

De�nition 2.21 The veri�er V reads c bits in a PCP if, for each outcome of
its random coins and each proof �, V � asks at most c questions to the oracle.

The surprising power of interactive proofs was �rst established in the case
of one prover by Lund et al. [29], and Shamir, [33] and then for many provers
by Babai et al. [5]. After the fundamental connection with approximation was
discovered by Feige et al. [16] the parameters of the proofs improved culminating
in the following result [4, 3].

Theorem 2.22 [3] There is a universal integer c such that any language in NP
has a PCP with soundness 1=2 and completeness 1 where V uses logarithmic
randomness and reads at most c bits of the proof.

10



Remark 2.23 Although the number of bits read is independent of which lan-
guage in NP we are considering, this is not true for the amount of randomness.
The number of random bits is d log n for any language L, but the constant d
depends on L.

The soundness can be improved by repeating the protocol a constant number
of times. The number of bits can be reduced to 3 but this pushes the soundness
towards 1, although it remains a constant below one. Properties described
by reading 3 bits of the proof can be coded by a 3-CNF formula where the
variables correspond to bits of the proof. The acceptance probability of a proof
is then closely related to the number of clauses satis�ed by the corresponding
assignment and we obtain an inapproximability result for Max-3Sat. There is
an approximation-preserving reduction [30] reducing general 3-CNF formulas to
3-CNF formulas in which each variable appears a bounded number of times. It
has later been established [14] that we can make each variable appear exactly 5
times even if we require each clause to be of length exactly 3. These properties
ensure that choosing a clause uniformly at random and a variable, uniformly at
random, in this clause is the same as choosing a variable uniformly at random
variable and then, uniformly at random, a clause containing this variable.

Theorem 2.24 [3] Let L be a language in NP and x be a string. There is a
universal constant c < 1 such that, we can in time polynomial in jxj construct a
E3-CNF formula 'x;L such that if x 2 L then 'x;L is satis�able while if x 62 L,
'x;L is at most c-satis�able. Furthermore, each variable appears exactly 5 times.

We next describe a two-prover one-round interactive proof. The veri�er in
such a proof has access to two oracles but has the limitation that it can only ask
one question to each oracle and that both questions have to be produced before
either of them is answered. We do not limit the answer size of the oracles but
since the veri�er runs in polynomial time it will not read more than a polynomial
number of bits. We call the two oracles P1 and P2 and the two questions q1 and
q2. Since the oracles are only accessed through these questions we refer to the
fact that V accepts as V (x; r; P1(q1); P2(q2)) = 1.

De�nition 2.25 Let c and s be real numbers such that 1 � c > s � 0. A
probabilistic polynomial time Turing machine V with two oracles is a veri�er in
a two-prover one-round proof system with soundness s and completeness c for
a language L if on input x it produces, without interacting with its oracles, two
strings q1 and q2, such that

� For x 2 L there are two oracles P1 and P2 such that Prr[V (x; r; P1(q1); P2(q2)) =
1] � c.

� For x 62 L, for any two oracles P1 and P2, Prr[V (x; r; P1(q1); P2(q2)) =
1] � s.

11



The questions q1 and q2 are in both cases the only questions V asks the oracles.
P1(q1) depends on x, but may not depend on q2 and similarly P2 is independent
of q1.

It is many times convenient to think of P1 and P2 as two actual dynamic
provers rather than written proofs. They are in�nitely powerful and are coop-
erating. They can make any agreement before the interaction with V starts but
then they cannot communicate during the run of the protocol. Thus it makes
sense to ask P1 and P2 for the same information in di�erent contexts.

Provers are in general allowed to be both history dependent and randomized.
Since we are here only considering one-round protocols, there is no history
and hence the question whether the provers are history dependent plays no
role. As with randomization, it is easy1 to see that for any x, the provers P1
and P2 maximizing Prr[V (x; r; P1(q1); P2(q2)) = 1] can be made deterministic
without decreasing the acceptance probability. When proving the existence
of good strategies for the provers we will, however, allow ourselves to design
probabilistic strategies, which then can be converted to deterministic strategies
yielding ordinary oracles.

In the case of two-prover protocols we only consider the case of perfect com-
pleteness, i.e., c = 1 in the above de�nition. Given such a one-round protocol
with soundness s we can repeat it twice in sequence improving the soundness
to s2. Similarly repeating the protocol u times in sequence gives soundness
su. This creates many round protocols and we need our protocols to remain
one-round. This can be done by what has become known as parallel repetition
where V repeats his random choices to choose u independent pairs of questions

(q
(i)
1 ; q

(i)
2 )ui=1 and sends (q

(i)
1 )ui=1 to P1 and (q

(i)
2 )ui=1 to P2, all at once. V then

receives u answers from each prover and accepts if it would have accepted in
all u protocols given each individual answer. The soundness of such a protocol
can be greater than su, but when the answer size is small, Raz [32] proved that
soundness is exponentially decreasing with u.

Theorem 2.26 [32] For all integers d and s < 1, there exists cd;s < 1 such
that given a two-prover one-round proof system with soundness s and answer
sizes bounded by d, then for all integers u, the soundness of u protocols run in
parallel is bounded by cud;s.

Since we do not limit the answer size of the provers they can of course
misbehave by sending long answers which always cause V to reject. Thus,
by answer size, we mean the maximal answer size in any interaction where V
accepts.

1Fix an optimal strategy, which might be randomized, of P1. Now, for each q2, P2 can

consider all possible r of V producing q2, compute q1 and then, since the strategy of P1 is

�xed, exactly calculate the probability that V would accept for each possible answer. P2
then answers with the lexicographically �rst string achieving the maximum. This gives an

optimal deterministic strategy for P2. We can then proceed to make P1 deterministic by the

symmetric approach.
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2.4 Fourier Transforms

Our proofs depend heavily on Fourier analysis of functions A : FU 7! R where R
is the set of real numbers. We recall some basic facts. For notational convenience
let u denote jU j. The set of basis functions used to de�ne the Fourier transforms
are ��(f) =

Q
x2� f(x) where � � f�1; 1gU . The inner product of two functions

A and B is given by

(A;B) = 2�2u
X
f2FU

A(f)B(f):

Under this inner product the basis functions form a complete orthonormal sys-
tem and the Fourier coeÆcients of A are de�ned as the inner products with the
basis functions ��. In other words, for each � � f�1; 1gU ,

Â� = (A;��) = 2�2u
X
f

A(f)
Y
x2�

f(x):

We also have the Fourier inversion formula

A(f) =
X

��f�1;1gU

Â���(f) =
X

��f�1;1gU

Â�

Y
x2�

f(x): (1)

The Fourier coeÆcients are real numbers and we have Parseval's identityX
�

Â2
� = 2�2u

X
f

A2(f):

This sum is, in this paper, usually 1 since we mostly study A with range f�1; 1g.
The reader might be more familiar with the Fourier transform of ordinary

functions and hence with the formulas

F̂� = 2�n
X
x

F (x)
Y
i2�

xi

and
F (x) =

X
��[n]

F̂�
Y
i2�

xi:

Pattern matching tells us that the di�erence is that f�1; 1gU takes the place of
[n]. The inputs to \ordinary" functions are n bit strings which can be thought
of as mappings from [n] to f�1; 1g. The inputs to our functions are mappings
from f�1; 1gU to f�1; 1g and this explains the change from [n] to f�1; 1gU .

Suppose A is the long code of an input x0. By de�nition, the basis function
�fx0g is exactly this long code. Thus, the Fourier transform satis�es Âfx0g = 1
while all the other Fourier coeÆcients are 0.

A signi�cant part of this paper consists of manipulations of Fourier expan-
sions and let us state a couple of basic facts for future reference. The proofs of
the �rst two are straightforward and are left to the reader.
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Lemma 2.27 For any f; g 2 FU and � � f�1; 1gU we have ��(fg) = ��(f)��(g).

Lemma 2.28 For any f 2 FU and �; � � f�1; 1gU we have ��(f)��(f) =
����(f).

Lemma 2.29 Let k be an integer and suppose that for each 1 � i � k we have
a random variable fi whose range is FUi and that we are given �i � f�1; 1gUi.
Suppose that there is an i0 and x0 2 f�1; 1gUi0 such that x0 2 �i0 and that
fi0(x0) is random with the uniform distribution and independent of fi(x) for all
(i; x) 6= (i0; x0) with x 2 �i. Then

E[

kY
i=1

��i(fi)] = 0;

where the expectation is taken over a random selection of (fi)
k
i=1. In particular,

E[��(f)] = 0 when f is chosen randomly with the uniform probability and � 6= ;.

Proof: By the independence condition we have, with �0i = �i for i 6= i0 and
�0i0 = �i0�fx0g,

E[

kY
i=1

��i(fi)] = E[fi0(x0)]E[

kY
i=1

��0i(fi)] = 0

since the �rst factor is 0.

In many cases we have U �W and we have f 2 FU that we want to interpret
as a function on f�1; 1gW . We do this by ignoring the coordinates not belonging
to U . We use the same symbol f , but we write f(yjU ) to make the restriction
of the domain explicit. We have the following basic fact.

Lemma 2.30 Assume U � W and f 2 FU . The for any � � f�1; 1gW we
have ��(f) = ��U

2
(�)(f).

Proof: We use the de�nition

��(f) =
Y
y2�

f(yjU ):

The number of times a value x appears in this product is exactly the number
of y 2 � such that �U (y) = x. Since we only care whether the sum is even or
odd the product equals Y

x2�U
2
(�)

f(x)

and this is exactly ��U
2
(�)(f).
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2.5 Folding and conditioning of long codes

It is many times convenient to make sure that A(f) = �A(�f) is true for all
f . The mechanism to achieve this was introduced by Bellare et al. [9] and was
called \folding over 1" since 1 was used to denote true. Here we are folding over
�1 but to emphasize that we are using the same notion we call it \folding over
true".

De�nition 2.31 Given a function A : FU 7! f�1; 1g. The function Atrue,
folding A over true is de�ned by for each pair (f;�f) selecting one of the two
functions. If f is selected then Atrue(f) = A(f) and Atrue(�f) = �A(f). If
�f is selected then Atrue(f) = �A(�f) and Atrue(�f) = A(�f).

Note that the de�nition implies that Atrue(f) = �Atrue(�f) is always true.
The function Atrue depends on the selection function but since this dependence
is of no importance we leave it implicit.

Lemma 2.32 If B = Atrue then for all � with B̂� 6= 0 we have that j�j is odd
and in particular � is not empty.

Proof: By de�nition:

B̂� = 2�2u
X
f

B(f)
Y
x2�

f(x):

Since B(f) = �B(�f) while
Q

x2� f(x) =
Q

x2�(�f(x)) when j�j is even the
two terms corresponding to f and �f cancel each other and hence the sum is
0.

We sometimes know that the input x for which a given table A is supposed
to be the long code should satisfy h(x) = �1 (i.e., h is true) for some function
h. This was also needed in the paper by Bellare et al. [9] where they de�ned
\folding over h" analogously to folding over 1. We need a stronger property
which we call \conditioning upon h".

De�nition 2.33 For functions A : FU 7! f�1; 1g and h 2 FU , we de�ne the
function Ah : FU 7! f�1; 1g, that we call A conditioned upon h by setting, for
each f , Ah(f) = A(f ^ h).

We have the following lemma

Lemma 2.34 Let B = Ah where A : FU 7! f�1; 1g and h 2 FU are arbitrary.
Then for any � such that there exists x 2 � with h(x) = 1 we have B̂� = 0.

Proof: Let us �rst note that the conclusion is natural since B(f), by de�nition,
only depends on the value of f at points such that h(x) = �1 and hence these
are the only inputs that should appear in the Fourier expansion. Formally, we
use the de�nition

B̂� = 2�2u
X
f

B(f)
Y
x2�

f(x):
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Now suppose there is x0 2 � such that h(x0) = 1. Then for any f consider f 0

where f 0(x0) = �f(x0) while f 0(x) = f(x) for x 6= x0. The set of all functions

is divided into 22
u�1

pairs (f; f 0) and since B(f) = B(f 0) while
Q

x2� f(x) =
�
Q

x2� f
0(x) the elements of a pair cancel each other in the above sum and

thus the sum evaluates to 0.

We can apply folding over true and conditioning upon h simultaneously by
de�ning a pairing of all functions of the type (g ^ h). Note that unless h is
identically true not both f and �f can be of this form and we pair (g ^h) with
((�g) ^ h) and de�ne Ah;true(f) as A(f ^ h) if f ^ h is chosen in its pair and
as �A((�f) ^ h) if (�f) ^ h is chosen. It is easy to verify that Ah;true(f) =
�Ah;true(�f) and that Ah;true(f) only depends on f ^ h.

2.6 Extensions to arbitrary Abelian groups

We extend some results to arbitrary Abelian groups and hence we extend the
de�nitions in the previous section, which applied to the group with 2 elements,
to general Abelian groups.

Let � be an Abelian group. By the structure theorem [26] of Abelian groups
� can be represented as a direct product of cyclic groups, � = Ci1 � Ci2 �

Ci3 : : : Cik . The number of elements, j�j, of � is
Qk

l=1 il. We represent a cyclic
group Ci as the i'th roots of unity and an element  of � is thus a k-tuple of
complex numbers and the group operation is coordinate-wise multiplication.

We also need the dual group �� of � which is the group of homomorphisms of
� into the complex numbers. We need very few properties of the dual group and
we refer to [26] for a general discussion. For Abelian groups, �� is isomorphic
to � but we choose to represent it as elements of Zi1 � Zi1 : : :Zik where the
group operation is component-wise addition. With  = (1; 2 : : : ; k) 2 � and
� = (�1 ; 

�
2 : : : ; 

�
k) 2 �� we let 

�

be the complex number

kY
i=1


�i
i :

We are here using slightly nonstandard terminology. As de�ned above the dual
group should really be functions mapping � to the complex numbers C . An
element of the dual group is given by � and the associated function, in our
notation, is  7! 

�

. We do not here make the distinction between � and the
function it represents.

We let F�
U be the set of functions f : f�1; 1gU 7! � and we have a general-

ization of the long code.

De�nition 2.35 The long �-code of an assignment x 2 f�1; 1gU is the map-
ping Ax : F�

U 7! � where Ax(f) = f(x).

We next de�ne the Fourier transform. We study function A : F�
U 7! C

where C are the complex numbers. The basis functions are given by functions
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� : f�1; 1gU 7! �� and are de�ned by

��(f) =
Y

x2f�1;1gU

f(x)�(x):

We have the inner product de�ned by

(A;B) = j�j�2u
X
f

A(f)B(f);

where B(f) denotes complex conjugation. The basis functions form a complete
orthonormal system and we de�ne the Fourier coeÆcients by

Â� = (A;��);

which is inverted by

A(f) =
X
�

Â���(f): (2)

The numbers Â� are complex numbers and Parseval's identity gives,X
�

jÂ�j
2 = j�j�2u

X
f

jA(f)j2 = 1;

if we are working with a function satisfying jA(f)j = 1 for all f .
We have 3 lemmas extending Lemma 2.27, Lemma 2.28, and Lemma 2.29.

The �rst two follow in a straightforward way from the de�nitions.

Lemma 2.36 For any f; g 2 F�
U and � : f�1; 1gU 7! �� we have ��(fg) =

��(f)��(g).

Lemma 2.37 For any f 2 F�
U and �; � : f�1; 1gU 7! �� we have ��(f)��(f) =

��+�(f).

Lemma 2.38 Let k be an integer and suppose that for 1 � i � k we have a
random variable fi whose range is F�

Ui
and we are given �i : f�1; 1gUi 7! ��.

Suppose that there is an i0 and x0 2 f�1; 1gUi0 such that �i0 (x0) 6= 0k and that
fi0(x0) is random with the uniform distribution and independent of fi(x) for all
(i; x) 6= (i0; x0) with �i(x) 6= 0k. Then

E[

kY
i=1

��i(fi)] = 0:

In particular for any � which is not identically 0k we have E[��(f)] = 0 when
f is chosen uniformly at random.

17



Proof: By de�nition

kY
i=1

��i(fi) =

kY
i=1

Y
x2f�1;1gUi

fi(x)
�i(x):

Now fi0(x0)
�i0 (x0) appears in this product and is by assumption independent of

all other factors. We need just observe that E [
�] = 0 for  chosen uniformly in

� and � 6= 0k. This follows since � ranges over a full set of roots of unity.

We have a natural extension of �U2 .

De�nition 2.39 Let U � W and � : f�1; 1gW 7! ��. Then �U� (�) = � where
�(x) =

P
y:yjU=x

�(y).

We next have the analogue of Lemma 2.30. Also the proof is analogous to
and we omit it.

Lemma 2.40 Assume U � W and f 2 F�
U . Then for any � : f�1; 1gW 7! ��

we have ��(f) = ��U
�
(�)(f).

When working with long �-codes we need to fold over �.

De�nition 2.41 Given a function A : F�
U 7! �. The function A�, folding A

over � is de�ned by for each set of functions (f)2� selecting one function. If
0f is selected then A�(f) = �1

0 A(0f) for all  2 �.

A long �-code A has range � and since we want to study functions with
a range in C , typically we study A� for some � 2 ��. Multiplying such a
function by the group element  should multiply the result by 

�

and thus the
below de�nition is natural.

De�nition 2.42 Given a function A : F�
U 7! C and � 2 ��. The function A

is �-homogeneous if for each f 2 F�
U and  2 � we have A(f) = 

�

A(f).

We have the following consequence of the de�nitions.

Lemma 2.43 Given a function A : F�
U 7! �, and � 2 ��. Then if B = A� we

have that B� is �-homogeneous.

Proof: From the de�nition of folding it follows that B(f) = B(f). The
lemma is now immediate.

We need the consequence for the Fourier transform.

Lemma 2.44 Given A : F�
U 7! C , and � 2 �� and assume that A is �-

homogeneous. Then for all � with Â� 6= 0 we have
P

x �(x) = �. In particular
if � is nonzero, there is some x with �(x) 6= 0k.
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Proof: Assume that
P

x �(x) 6= � and take some  2 G with 
��
P

x �(x) 6= 1.
We have

Â� =
X
f

A(f)��(f) =
X
f

A(f)��(f) (3)

Now using

��(f) = ��(f)
Y
x

�(x) = 
P

x �(x)��(f)

and the assumption of being �-homogeneous we see that the right hand side
of (3) equals X

f


�

A(f)�
P

x �(x)��(f) = 
��
P

x �(x)Â�:

We conclude that Â� = 0.

The notion of conditioning extends without virtually any changes.

De�nition 2.45 From a function A : F�
U 7! R for any range R and h 2 FU we

construct a function Ah, called A conditioned upon h by for each f , Ah(f) =
A(f ^ h). Here f ^ h is de�ned by f ^ h(x) = f(x) when h(x) = �1 and
f ^ h(x) = 1k otherwise.

We state the corresponding lemma without a proof.

Lemma 2.46 Let A : F�
U 7! C and h 2 FU be arbitrary and set B = Ah. Then

for any � such that there exists x with �(x) 6= 0k and h(x) = 1 we have B̂� = 0.

The computational problem we study is given by systems of linear equations
in the group �. If L is such a system we let N(L; x) be the number of equations
satis�ed by x.

De�nition 2.47 Max-Ek-Lin-� is the problem of given a system L of linear
equations over an Abelian group �, with exactly k variables in each equation,
�nd x that maximizes N(L; x).

3 The basic two-prover protocol and the corre-

sponding PCP

To get our inapproximability results we construct a range of di�erent PCPs.
Most of these PCPs have the same written proof and only the method to check
this proof is customized to �t the combinatorial problem in mind. In this section
we show how to construct this written proof by going through a two-prover
protocol.

We start with a 3-CNF formula ' given by Theorem 2.24. Thus, either
' is satis�able or it is at most c-satis�able for some c < 1 and it is NP-hard
to distinguish the two cases. We also have the property that each clause is of
length exactly 3 and each variable appears in exactly 5 clauses.
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Basic two-prover protocol

Input. A 3-CNF formula , ' = C1 ^C2 : : : Cm where Cj contains the variables
xaj , xbj and xcj .

Veri�er.

1. Choose j 2 [m] and k 2 faj ; bj ; cjg both uniformly at random and send j
to P1 and k to P2.

2. Receive values for xaj ; xbj and xcj from P1 and for xk from P2. Accept i�
the two values for xk agree and Cj is satis�ed.

We have:

Lemma 3.1 If ' is c-satis�able then for any P1 and P2, V accepts in the basic
two-prover protocol with probability at most (2 + c)=3.

Proof: The answers by P2 de�ne an assignment �0 to all variables. Whenever
V chooses a clause not satis�ed by �0, either P1 answers with an unsatisfying
assignment, causing V to reject outright or has at least probability 1/3 of being
caught for not being consistent with P2. Since �0 satis�es at most a fraction c
of the clauses the probability of V rejecting is at least (1� c)=3.

The basic two-prover protocol is good in that V only asks for the value of
four bits but it is bad in that the acceptance probability is rather close to 1.
We improve this second parameter by running the protocol in parallel.

u parallel two-prover protocol

Input. A 3-CNF formula , ' = C1 ^C2 : : : Cm where Cj contains the variables
xaj , xbj and xcj .
Veri�er.

1. For i = 1; 2 : : : u, choose ji 2 [m] and ki 2 faji ; bji ; cjig all uniformly at
random and independently and send (ji)

u
i=1 to P1 and (ki)

u
i=1 to P2.

2. Receive values for xaji ; xbji and xcji from P1 and for xki from P2 for
i = 1; 2 : : : u. Accept i� the two values for xki agree and Cji is satis�ed
for all 1 � i � u.

By applying Theorem 2.26 and Lemma 3.1 and using the honest strategy
when ' is satis�able we get:

Lemma 3.2 If ' is c-satis�able where c < 1 then there is a constant cc < 1
such that for any integer u, the optimal strategy for P1 and P2 causes V to
accept in the u-parallel two-prover protocol with probability at most cuc . If ' is
satis�able then V can be made to always accept.
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To simplify notation we denote a set of variables (ki)
u
i=1 sent to P2 by U

and a set (xaji ; xbji ; xcji )
u
i=1 sent to P1 by W . Thus typically a set U is of size

u and a set W is of size 3u.
Now we want to convert this u-parallel two-prover protocol into a PCP. We

write down, for each possible question, the long code of the answer. We call
this proof SWP for Standard Written Proof.

De�nition 3.3 A Standard Written Proof with parameter u or SWP(u), con-

tains for each set V � [n] of size at most 3u a string of length 22
jV j

which we
interpret as the table of a function AV : FV 7! f�1; 1g.

De�nition 3.4 A SWP(u) is a correct proof for a formula ' of n variables if
there is an assignment x which satis�es ' such that AV is the long code of xjV
for any V of size at most 3u.

The size of a SWP(u) is about n3u22
3u

and thus as long as u is a constant
it is of polynomial size.

When accessing a long code on a set of inputs for which we have some
information (like a set of clauses on these inputs being true) we use conditioning.
We use the notation AV;h rather than (AV )h for the table AV conditioned upon
h. We often fold the tables over true yielding a function called AV;h;true.

The general strategy for proving inapproximability for an optimization prob-
lem is to design a test of SWP(u) that closely mimics the optimization problem.

The standard proof strategy for establishing that such a PCP has small
soundness is to prove that if a speci�c SWP(u) passes a particular test with
high probability then we can use this proof to create strategies for P1 and P2
to convince the veri�er in u-parallel two-prover protocol to accept with high
probability.

Finally, we generalize the notation to deal with long-�-codes.

De�nition 3.5 A Standard Written �-Proof with parameter u or SW�P(u)

contains for each set V � [n] of size at most 3u a string of length j�j2
jV j

which
we interpret as the table of a function AV : F�

V 7! �. The symbols of the proof
represent elements of �.

De�nition 3.6 A SW�P(u) is a correct proof for a formula ' of n variables
if there is an assignment x which satis�es ' such that AV is the long �-code of
xjV for any V of size at most 3u.

4 Testing a long code

Having collected all the important tools we are now ready to describe the �rst
interesting test, namely to test whether a given function A : FU 7! f�1; 1g is a
long code of some input x. This test has no consequences for the optimization
problems we want to study and we present it for pedagogical reasons. It is easy
to analyze given the correct tools but still gives a nontrivial conclusion.
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In most previous code-testing situations [3, 4, 9] the key parameter that
has been analyzed is the distance from a given word to di�erent code words.
This is a natural parameter but considering only distances turns out to be too
restrictive. We follow the path of [23] and use a strategy not only based on
distances but on the complete Fourier transform that, for any A that passes
the test with high probability, associate a small set of inputs. These inputs can
later be used as strategies in the underlying two-prover interactive proof.

Long code test, �rst attempt

Written proof. A string of length 22
u

, to be thought of as a function A :
FU 7! f�1; 1g.
Desired property. The function A should be a long code, i.e., there exists an
x 2 f�1; 1gU such that for all f , A(f) = f(x).
Veri�er.

1. Choose f0 and f1 from FU with the uniform probability.

2. Set f2 = f0f1, i.e., de�ne f2 by for each x 2 f�1; 1gU , f2(x) = f0(x)f1(x).

3. Accept i� A(f0)A(f1)A(f2) = 1.

First note that V always accepts a correct proof since if A is the correct long
code for x0 then

A(f0)A(f1)A(f2) = f0(x0)f1(x0)f2(x0) = f20 (x0)f1(x0)
2 = 1;

and we need to analyze the acceptance probability when A is not a correct long
code. A random A is accepted with probability 1=2 and thus this acceptance
probability does not have any implications on the structure of A. We will
establish, however, that any A that is accepted with probability (1 + Æ)=2 for
Æ > 0 must have some special structure.

By de�nition, A(f0)A(f1)A(f2) is one when the test accepts and negative
one when it fails and thus under the above assumption

Ef0;f1 [A(f0)A(f1)A(f2)] = Æ: (4)

We replace A(fi) by its Fourier expansion, i.e. using (1) and see that (4) equals

Ef0;f1

" X
�0;�1;�2

Â�0Â�1Â�2��0(f0)��1(f1)��2(f2)

#
: (5)

Using the linearity of expectation (5) equalsX
�0;�1;�2

Â�0Â�1Â�2Ef0;f1 [��0(f0)��1(f1)��2(f2)] : (6)
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By the de�nition of f2, Lemma 2.27, and Lemma 2.28 we have

��0(f0)��1(f1)��2(f2) = ��0(f0)��1(f1)��2(f0f1) =

��0(f0)��1(f1)��2(f0)��2(f1) = ��0��2(f0)��1��2(f1):

Since f0 and f1 are independent (6) equalsX
�0;�1;�2

Â�0Â�1Â�2Ef0 [��0��2(f0)]Ef1 [��1��2(f1)] : (7)

By Lemma 2.29 we to see that unless �0 = �2, we have Ef0 [��0��2(f0)] = 0.
Similarly, unless �1 = �2, Ef1 [��1��2(f1)] = 0. Using these two facts we see
that (7) simpli�es to X

�

Â3
�:

Now since
P

� Â
2
� = 1 we have thatX

�

Â3
� � max

�
Â�

X
�

Â2
� = max

�
Â�:

We conclude that this maximum is at least Æ. Thus we have proved that there
is at least one � such that Â� � Æ and by Parseval's equality there can be at
most Æ�2 such �. Thus with any A that causes the test to accept with high
probability we can associate a small number of sets but since each set might be
large we have failed to �nd a small set of inputs.

Since the test accepts with probability one if A = �� we cannot do much
better with the current test. In fact what we have presented is the linearity test
of Blum et al. [13] and one part of the analysis given in the paper by Bellare et
al. [8].

To make the test closer to a test of the long code we give up perfect com-
pleteness and allow for a small probability of rejecting a correct long code.

Long code test, second attempt, parameterized by �

Written proof. A string of length 22
u

, to be thought of as a function A :
FU 7! f�1; 1g.
Desired property. The function A should be a long code, i.e. A(f) = f(x)
for some x 2 f�1; 1gU .
Veri�er.

1. Choose f0 and f1 from FU with the uniform probability.

2. Choose a function � 2 FU by setting �(x) = 1 with probability 1� � and
�(x) = �1 otherwise, independently for each x 2 f�1; 1gU .

3. Set f2 = f0f1�, i.e., de�ne f2 by for each x 2 f�1; 1g
U , f2(x) = f0(x)f1(x)�(x).

4. Accept i� A(f0)A(f1)A(f2) = 1.
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This time V accepts a correct long code for an input x0 exactly i� �(x0) = 1
which, by de�nition, happens with probability 1 � �. Now, let us analyze the
general case. We again want to calculate Ef0;f1;�[A(f0)A(f1)A(f2)] and the
expansion upto (6) is still valid and we need to consider

Ef0;f1;� [��0(f0)��1(f1)��2(f2)] =

Ef0;f1;� [��0��2(f0)��1��2(f1)��2(�)] ; (8)

where we used the de�nition of f2, Lemma 2.27, and Lemma 2.28.
Since f0, f1 and � are independent we can use Lemma 2.29 to see that unless

�0 = �1 = �2 the above expected value is 0. Since E�[�(x)] = 1 � 2� for each
x and �(x) are independent for di�erent x we have

E� [��2(�)] = (1� 2�)j�2j

and thus

Ef0;f1;� [A(f0)A(f1)A(f2)] =
X
�

Â3
�(1� 2�)j�j � max

�
Â�(1� 2�)j�j;

where the inequality follows from Parseval's identity.
This time, we can conclude that for some � we have Â�(1� �)j�j � Æ. Since

this inequality implies that j�j � ��1 log Æ�1 we have identi�ed large Fourier
coeÆcients that correspond to sets of limited size. This implies that we get
the small set of inputs we were aiming for. These inputs can then be used as
strategies in the two-prover protocol.

5 Linear equations

We �rst study the optimization problem Max-E3-Lin-2 and for natural rea-
sons we want to design a test for SWP(u) that accepts depending only on the
exclusive-or of three bits of the proof. It turns out that we can take the second
long code test on W and simply move one of the three questions to the smaller
set U . This allows us to test consistency at the same time as we are testing that
the tables are correct long codes. The existence of the clauses are handled by
using conditioning when accessing the long code on the set W .

Test L�2(u)

Written proof. A SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formula
' = C1 ^ C2 : : : Cm.
Veri�er.

1. Choose u random clauses (Cji )
u
i=1 with uniform probability and for each

i choose, uniformly at random, a variable xki occurring in Cji . Set U =
fxk1 ; xk2 : : : xkug, W to be the set of all variables occurring in the chosen
clauses, and h = ^ui=1Cji .
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2. Choose f 2 FU with the uniform probability.

3. Choose g1 2 FW with the uniform probability.

4. Choose a function � 2 FW by setting �(y) = 1 with probability 1� � and
�(y) = �1 otherwise, independently for each y 2 f�1; 1gW .

5. Set g2 = fg1�, i.e., de�ne g2 by for each y 2 f�1; 1gW , g2(y) = f(yjU )g1(y)�(y).

6. Accept i� AU;true(f)AW;h;true(g1)AW;h;true(g2) = 1.

We need to analyze this test and it is not diÆcult to establish a good bound
for the completeness.

Lemma 5.1 The completeness of Test L�2(u) is at least 1� �.

Proof: Fix a correct SWP(u) obtained from an assignment x satisfying '
We claim that V accepts unless �(xjW ) = �1. This follows since for a cor-
rect SWP(u) encoding x, folding over true and conditioning upon h is of no
consequence and hence AU;true(f) = f(xjU ), AW;h;true(g1) = g1(xjW ) and
AW;h;true(g2) = g2(xjW ) = f(xjU )g1(xjW )�(xjW ) and the claim follows. The
probability that �(xjW ) = �1 is, by de�nition, � and the lemma follows.

The main problem is therefore to establish the soundness and to this end we
have.

Lemma 5.2 For any � > 0, Æ > 0, suppose that the probability that the veri�er
of Test L�2(u) accepts is (1 + Æ)=2. Then there is a strategy for P1 and P2 in
the u-parallel two-prover protocol that makes the veri�er of that protocol accept
with probability at least 4�Æ2.

Proof:

Let us �rst �x U , W , and h and for notational convenience we denote the
function AU;true by A and the function AW;h;true by B. As in the tests for the
long code we want to consider

Ef;g1;�[A(f)B(g1)B(g2)] (9)

since, by the assumption of the lemma,

EU;W;h;f;g1;�[AU;true(f)AW;h;true(g1)AW;h;true(g2)] = Æ: (10)

We replace each function by its Fourier expansion transforming (9) to

Ef;g1;�

2
4 X
�;�1;�2

Â�B̂�1B̂�2��(f)��1(g1)��2(g2)

3
5 =

X
�;�1;�2

Â�B̂�1B̂�2Ef;g1;� [��(f)��1(g1)��2(fg1�)] =

X
�;�1;�2

Â�B̂�1B̂�2Ef;g1;�

�
��(f)��2(�2)(f)��1(g1)��2(g1)��2(�)

�
=

X
�;�1;�2

Â�B̂�1B̂�2Ef

�
����2(�2)(f)

�
Eg1 [��1��2(g1)]E� [��2(�)] ; (11)
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where we used Lemma 2.27, Lemma 2.28, Lemma 2.30, and the fact that f , g1
and � are chosen independently. By Lemma 2.29 unless �1 = �2 and � = �U2 (�)
the corresponding term in (11) equals 0. Finally, since

E�[��(�)] = (1� 2�)j�j

we have reduced (9) to X
�

Â�U
2
(�)B̂

2
�(1� 2�)j�j: (12)

We want to design strategies for P1 and P2 in the two-prover game. Before
doing this let us just summarize the work upto this point by the equality

EU;W;h

2
4X

�

Â�2(�)B̂
2
�(1� 2�)j�j

3
5 = Æ; (13)

where we for, readability reasons, have dropped the superscript of �.
We de�ne randomized strategies for P1 and P2. These can, as discussed

earlier, be converted to optimal deterministic strategies that do at least as well.

� P2, upon receiving the set U , selects a random � with probability Â2
� and

then returns a random x 2 � chosen with the uniform probability.

� P1, upon receiving h and W , selects a random � with probability B̂2
� and

then returns a random y 2 �.

Note that, by Lemma 2.32 any set selected by either prover is nonempty. Fur-
thermore, by Lemma 2.34 every y sent by P1 satis�es the selected clauses. Thus
to analyze the probability that the veri�er in the two-prover protocol accepts
we need only estimate the probability that the answers are consistent, i.e., that
yjU = x.

We claim that this probability is at least j�j�1 times the probability that
for the selected � and � we have � = �2(�). This follows since in this case for
each x 2 � there is at least one y 2 � such that yjU = x. The probability of
selecting a speci�c pair � and � is Â2

�B̂
2
� and thus the overall success-rate for a

�xed choice of U , W and h is at leastX
�

Â2
�2(�)

B̂2
� j�j

�1: (14)

and the overall success-probability is the expected value of this expression with
respect to random U , W and h. To compare this sum to (13) the following
lemma is useful.

Lemma 5.3 For x; s > 0, x�s � e�sx.
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Proof: Since the inequality for a general s is the s'th power of the inequality
for s = 1 we only need to establish the lemma for s = 1. Since xe�x = elnx�x

we need to prove that lnx � x � 0 for each x > 0. This is certainly true for
x � 1 since neither term is positive and, as can be seen from di�erentiation,
lnx� x is decreasing for x > 1.

Returning to the main path we see, using Cauchy-Schwartz' inequality, that

X
�

Â�2(�)B̂
2
� j�j

�1=2 �

0
@X

�

Â2
�2(�)

B̂2
� j�j

�1

1
A

1=20
@X

�

B̂2
�

1
A

1=2

�

0
@X

�

Â2
�2(�)

B̂2
� j�j

�1

1
A

1=2

:

This implies

EU;W;h

2
4X

�

Â2
�2(�)

B̂2
� j�j

�1

3
5 � EU;W;h

2
4(X

�

Â�2(�)B̂
2
� j�j

�1=2)2

3
5 �

0
@EU;W;h

2
4X

�

Â�U
2
(�)B̂

2
� j�j

�1=2

3
5
1
A

2

; (15)

where we have used that E[X2] � E[X ]2.
Now by Lemma 5.3 with s = 1=2,

(4�j�j)�1=2 � e�2�j�j � (1� 2�)j�j; (16)

where we used e�x � 1 � x which is true for all x � 0. We conclude that
j�j�1=2 � (4�)1=2(1� 2�)j�j and combining this with (15) and (13) we see that

EU;W;h

2
4X

�

Â2
�U
2
(�)B̂

2
� j�j

�1

3
5 � 4�

0
@EU;W;h

2
4X

�

Â�U
2
(�)B̂

2
�(1� 2�)j�j

3
5
1
A

2

� 4�Æ2:

As established above this is a lower bound for the probability that the veri�er
accepts in the u-parallel two-prover protocol and hence the proof of Lemma 5.2
is complete.

Armed with the PCP given by Test L�2(u) we can now establish the main
theorem of this section.

Theorem 5.4 For any � > 0 it is NP-hard to approximate Max-E3-Lin-2 within
a factor 2� �. Said equivalently Max-E3-Lin-2 is non-approximable beyond the
random assignment threshold.
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Proof: Set Æ to a negative power of two such that

1� Æ

(1 + Æ)=2
� 2� �:

Remember also that since we are working of f�1; 1g a linear equation mod 2
has a left hand side which is a product of variables and right hand side which
is either 1 or �1.

Let L be an arbitrary language in NP and suppose we are given an input x
and we are trying to decide whether x 2 L. By Theorem 2.24 we can, in poly-
nomial time, create a E3-CNF formula ' with each variable occurring exactly
5 times such that if x 2 L then ' is satis�able and if x 62 L then ' is at most
c-satis�able where c is some de�nite constant less than 1. Now choose a u such
that 4Æ3 > cuc where cc is the constant from Lemma 3.2 and consider applying
test LÆ2(u) to '.

For each bit b in a SWP(u) introduce a variable xb. To accept in the test
LÆ2(u) is equivalent to the condition

bU;f bW;h;g1bW;h;g2 = b0

where bU;f , bW;h;g1 and bW;h;g2 are the bits in the proof corresponding toAU;true(f),
AW;h;true(g1) and AW;h;true(g2), respectively and b0 is a constant. One might
think that the right hand side would always be 1, but because of folding over true
the bit corresponding to AU;true(f) in the proof might actually give the value of
AU;true(�f). Thus the value of b0 depends on our mechanism for folding and,
of course, the identities of f , g1 and g2.

Let us now write down a set of linear equations with weights. Write down
the equation

xbU;fxbW;h;g1
xbW;h;g2

= b0

where b0 is de�ned as above. The weight of this equation is the probability that
the veri�er in test LÆ2(u) chooses the tuple (U;W; h; f; g1; g2). Now each proof
corresponds to an assignment to the variables xb and the total weight of all
satis�ed equations is exactly the probability that this proof is accepted. This
implies that if x 2 L the maximal weight of simultaneously satis�able equations
is at least 1� Æ while if x 62 L, it is in view of Lemma 5.2 and the choice of u,
at most (1 + Æ)=2. The number of di�erent equations is limited by the number
of di�erent choices of the veri�er V . There are at most mu choices for W and
once W is chosen, at most 3u choices for U . Given U and W the number of
choices for f is at most 22

u

and for g1 and g2 2
23u each. Thus the total number

of choices is at most
mu22u+2u+23u+1

which is polynomial since u is a constant. For each choice it is not diÆcult to
compute the corresponding weight (given as a rational number). Thus we can
produce this set of equations in polynomial time.
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It follows that any algorithm that can determine the maximal total weight
of simultaneously satis�able equation within a factor smaller than

1� Æ

(1 + Æ)=2

can be used to determine whether x 2 L and hence this task must be NP-hard.
This proves the theorem if we allow weighted equations.

As is standard, the weights can be eliminated by duplicating each equation
a suitable number of times. We leave the details to the interested reader.

Note that there is a meta reason that we have to introduce the error func-
tion � and make our test have non-perfect completeness. If we had perfect
completeness then the equations produced in the proof of Theorem 5.4 could
all be satis�ed simultaneously. However, to decide whether a set of linear equa-
tions have a common solution can be done in polynomial time by Gaussian
elimination and thus perfect completeness would have implied P=NP.

It is not hard to extend the result to more variables in each equation.

Theorem 5.5 For any � > 0, k � 3 it is NP-hard to approximate Max-Ek-Lin-
2 within a factor 2 � �. Said equivalently, Max-Ek-Lin-2 is non-approximable
beyond the random assignment threshold.

Proof: We have a straightforward reduction from the case k = 3 to arbitrary
k. Given a system of equations with 3 variables in each equation in the variables
(xi)

n
i=1. Add the same k � 3 new variables (yi)

k�3
i=1 in every equation to make

them all have k variables. Consider any assignment of the variables of this larger
system and consider the same assignment to (xi)

n
i=1 in the smaller system. IfQk�3

i=1 yi = 1 then it satis�es exactly the same equations while if
Qk�3

i=1 yi = �1
it satis�es exactly the equations not satis�ed in the larger system. Changing
every xi to its negation, however, now satis�es the equations satis�ed in the
larger system.

From the above argument we see that the maximal number of equations
satis�ed by the system is preserved and that it is easy to translate a solution of
the larger system to an equally good solution of the smaller system. Thus we
have a correct reduction from the case k = 3 to the case with k > 3.

Sometimes it is useful to have systems of equations of a special type. Our
systems are very uniform and the only part of the equations we do not control
explicitly is the right hand side since it is determined by the folding convention.
We next establish that if we have four variables in each equation then we can
have the right hand side �1 in all equations. Note that we cannot have right
hand side 1 in all equations since in this case we can satisfy all equations by
giving the value 1 to all variables. Similarly we cannot hope to have an odd
number of variables in all equations since in this case giving �1 to all variables
satis�es all equations.
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Theorem 5.6 For any � > 0, it is NP-hard to approximate Max-E4-Lin-2
within a factor 2� � even in the case when all right hand sides are equal to �1.
Said equivalently, Max-E4-Lin-2 with right hand side �1 is non-approximable
beyond the random assignment threshold.

Proof: We construct a special purpose PCP. Since we want to control the right
hand side of the obtained equations we do not use folding over true.

Test L�2;�1(u)

Written proof. A SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formula
' = C1 ^ C2 : : : Cm.
Veri�er.

1. Choose u random clauses (Cji )
u
i=1 with uniform probability and for each

i choose, uniformly at random, a variable xki occurring in Cji . Set U =
fxk1 ; xk2 : : : xkug, W to be the set of all variables occurring in the chosen
clauses, and h = ^ui=1Cji .

2. Choose f1 2 FU and f2 2 FU independently with the uniform probability.

3. Choose g1 2 FW with the uniform probability.

4. Choose a function � 2 FW by setting �(y) = 1 with probability 1� � and
�(y) = �1 otherwise, independently for each y 2 f�1; 1gW .

5. Set g2 = �f1f2g1�, i.e., de�ne g2 by for each y 2 f�1; 1gW , g2(y) =
�f1(yjU )f2(yjU )g1(y)�(y).

6. Accept i� AU (f1)AU (f2)AW;h(g1)AW;h(g2) = �1.

We have

Lemma 5.7 The completeness of Test L�2;�1(u) is at least 1� �.

Proof: It is not diÆcult to see that the veri�er accepts a correct SWP unless
�(yjW ) = �1 where y is the satisfying assignment de�ning the proof.

We turn to establishing the soundness of L�2;�1.

Lemma 5.8 For any � > 0, Æ > 0, suppose that the probability that the veri�er
of Test L�2;�1(u) accepts is (1 + Æ)=2. Then there is a strategy for P1 and P2 in
the u-parallel two-prover protocol that makes the veri�er of that protocol accept
with probability at least 2�Æ.

Proof: Fix U ,W and h and let A = AU and B = AW;h. Since�A(f1)A(f2)B(g1)B(g2)
is one if the test accepts and negative one if it rejects we want to analyze

Ef1;f2;g1;�[�A(f1)A(f2)B(g1)B(g2)]: (17)
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We replace each term by its Fourier expansion and using the linearity of expec-
tation and the de�nition of g2 we arrive at

�
X

�1;�2;�1;�2

Â�1Â�2B̂�1B̂�2Ef1;f2;g1;� [��1(f1)��2(f2)��1(g1)��2(�f1f2g1�)] : (18)

By Lemma 2.27, Lemma 2.28, and Lemma 2.30 we see that

��1(f1)��2(f2)��1(g1)��2(�f1f2g1�) =

��1��2(�2)(f1)��2��2(�2)(f2)��1��2(g1)��2(��):

Since f1, f2, g1 and � are chosen independently we can calculate the expected
value of each factor separately. By Lemma 2.29 we see that unless �1 = �2 = �
and �1 = �2 = �U2 (�) the expected value is 0. Finally, since

E�[��(�)] = (1� 2�)j�j

we have reduced (17) toX
�

Â2
�2(�)

B̂2
�(�1)

j�j+1(1� 2�)j�j: (19)

The expected value of (19) over random U , W , and h is, by the assumption
of the lemma, Æ. Since we are not folding over true it might be that the term
corresponding to � = ; is nonzero. It is, however, non-positive and hence
dropping this term only increases the sum and hence by the assumption of the
lemma we conclude thatX

� 6=;

EU;W;h

h
Â2
�2(�)

B̂2
�(1� 2�)j�j

i
� Æ: (20)

Now we de�ne a strategy for P1 and P2. Given U , P2 chooses � with prob-
ability Â2

� and returns a random x 2 � while P1 when asked W and h chooses
a � with probability B̂2

� and returns a random y 2 �. If either � or � is empty
the corresponding prover gives up. Note that by Lemma 2.34 any y returned
by P1 satis�es the chosen clauses and reasoning as in the proof of Lemma 5.2
we see that the success probability of the strategy of the provers is at least

EU;W;h

2
4X
� 6=;

Â2
�2(�)

B̂2
� j�j

�1

3
5 : (21)

By Lemma 5.3 with s = 1,

(2�j�j)�1 � e�2�j�j � (1� 2�)j�j:

Comparing with (20) we conclude that the success probability is at least 2Æ�
and the proof is complete.
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Now, Theorem 5.6 follows from Lemma 5.7 and Lemma 5.8 very much as
Theorem 5.4 followed from Lemma 5.1 and Lemma 5.2. Essentially the only
di�erence is that since we are not folding over true all right hand sides are �1.
We leave the details to the reader.

Theorem 5.6 extends to the case of having exactly 2k variables in each equa-
tion for any k � 2. If we allow the same variable twice in the same equation
there is an obvious reduction. If this is not allowed one can prove the result by
modifying Test L�2;�1(u) by choosing 2(k � 1) random functions fi 2 FU and
then making the obvious changes.

We next turn to the question of linear equations in a general Abelian group.
Note that a particularly interesting case is that of linear equations mod p, but
since the proof in this special case is essentially identical to the case for general
Abelian groups we only give the general case. It might be constructive to think
of � as Zp at the �rst reading of the proof below.

Theorem 5.9 For any � > 0 and any Abelian group �, it is NP-hard to approx-
imate Max-E3-Lin-� within a factor j�j � �. Said equivalently, Max-E3-Lin-�
is non-approximable beyond the random assignment threshold.

Proof: We use the notation given in Section 2.6. Remember that � is written
multiplicatively and each element is a k-tuple of complex numbers. The identity
is denoted by 1k.

Test L��(u)

Written proof. A SW�P(u).
Desired property. To check that it is a correct SW�P(u) for a given formula
' = C1 ^ C2 : : : Cm.
Veri�er.

1. Choose u random clauses (Cji )
u
i=1 with uniform probability and for each

i choose, uniformly at random, a variable xki occurring in Cji . Set U =
fxk1 ; xk2 : : : xkug, W to be the set of all variables occurring in the chosen
clauses, and h = ^ui=1Cji .

2. Choose f 2 F�
U with the uniform probability.

3. Choose g1 2 F�
W with the uniform probability.

4. Choose a function � 2 F�
W by setting �(y) = 1k with probability 1 � �

and otherwise �(y) =  where  is chosen randomly and uniformly in �.
This is done independently for each y 2 f�1; 1gW .

5. Set g2 = (fg1�)
�1, i.e., de�ne g2 by for each y 2 f�1; 1gW , g2(y) =

(f(yjU )g1(y)�(y))�1.

6. Accept i� AU;�(f)AW;h;�(g1)AW;h;�(g2) = 1k.
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We leave to the reader to verify that the veri�er accepts a correct SWP when
� takes the value 1k on the satisfying assignment. From this we conclude:

Lemma 5.10 The completeness of Test L��(u) is at least 1� �.

Lemma 5.11 below analyzes the soundness of Test L��(u). Theorem 5.9
follows from Lemma 5.10 and Lemma 5.11 in the same way as Theorem 5.4
followed from Lemma 5.1 and Lemma 5.2. We omit the details.

Lemma 5.11 For any � > 0, Æ > 0, suppose that the probability that the veri�er
of Test L��(u) accepts is (1 + Æ)=j�j. Then there is a strategy for P1 and P2 in
the u-parallel two-prover protocol that makes the veri�er of that protocol accept
with probability at least 2Æ2�j�j�2.

Proof: The test succeeds if AU;�(f)AW;h;�(g1)AW;h;�(g2) is 1
k and fails other-

wise. To evaluate the general performance we want to convert this to a rational
number and we considerX

�:�2��;� 6=0k

(AU;�(f)AW;h;�(g1)AW;h;�(g2))
� ;

where �� is the dual group of � written additively.
The reason to study this number is given by the following lemma.

Lemma 5.12 Suppose  2 G, and considerX
�:�2��;� 6=0k


�

:

This is sum is j�j � 1 if  = 1k and otherwise it is �1.

Proof: The statement of the lemma is equivalent to the statement that if we
sum over all � in ��, then the sum is j�j and 0 in the two cases, respectively.

The �rst part of the lemma follows from the fact that each term is 1 and
there are j�j terms. For the other part take any j, 1 � j � k such that j 6= 1.

Then, as we vary �j over all its possible values 
�j
j varies over a complete set of

roots of unity. It follows that
P

� 
� = 0, which, as observed above, implies

the lemma.

By Lemma 5.12 and the assumption of Lemma 5.11, we have

EU;W;h;f;g1 ;�

2
4 X
� 6=0k

(AU;�(f)AW;h;�(g1)AW;h;�(g2))
�

3
5 = Æ: (22)

Now, �x U , W , h and � and set A = A�

U;� and B = A�

W;h;�. Let us
analyze the corresponding term in (22) by replacing each function by the Fourier
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expansion.

Ef;g1;�

h
AU;�(f)AW;h;�(g1)AW;h;�(g2))

�
i
=

Ef;g1;�

2
4 X
�;�1;�2

Â�B̂�1B̂�2��(f)��1(g1)��2(g2)

3
5 =

X
�;�1;�2

Â�B̂�1B̂�2Ef;g1;�

�
��(f)��1(g1)��2((fg1�)

�1)
�
=

X
�;�1;�2

Â�B̂�1B̂�2Ef

�
�����(�2)(f)

�
Eg1 [��1��2(g1)]E�

�
��2((�)

�1)
�
:

The �rst equality is obtained from the Fourier expansion while the second equal-
ity follows from the de�nition of g2 and the linearity of expectation. The third
inequality follows by Lemma 2.36, Lemma 2.37, and Lemma 2.40 and the fact
that f , g1 and � are independent.

By Lemma 2.38 one the �rst two expected values is 0 unless � = ��(�2) and
�1 = �2. Finally, if we let s(�) denote the number of y such that �(y) 6= 0k

then

E

"Y
y

�(y)��(y)

#
= (1� �)s(�):

Summing up, the term corresponding to � in (22) equals

EU;W;h

2
4X

�

Â��(�)B̂
2
�(1� �)s(�)

3
5 : (23)

We conclude that the there is a �0 such that the absolute value of (23) is at
least Æj�j�1. Fix the value of this �0 . We are now ready to de�ne the strategies
of the provers.

On receiving W and h, P1 considers the table B = A
�0
W;h;�, selects a � with

probability jB̂� j2 and returns a random y subject to �(y) 6= 0k.

On receiving U , P2 considers the table A = A
�0
U;� and selects an � with

probability jÂ�j2 and returns a random x subject to �(x) 6= 0k.
Note that by Lemma 2.44 the set of candidates for x and y are always

nonempty and by Lemma 2.46 any y returned by P1 always satis�es the selected
clauses. Thus we need only analyze the probability that yjU = x. This happens
with probability at least

EU;W;h

2
4X

�

jÂ2
��(�)

B̂2
� js(�)

�1

3
5 :

Using (15) we see that this is bounded from below by0
@EU;W;h

2
4X

�

���Â��(�)B̂
2
�

��� s(�)�1=2

3
5
1
A

2

;
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and by Lemma 5.3 with s = 1=2,

(2�s(�))�1=2 � e��s(�) � (1� �)s(�): (24)

These facts combine with the fact that (23) is at least Æj�j�1 to show that
the probability of the veri�er accepting the given prover strategy is at least
2�Æ2j�j�2 and Lemma 5.11 follows.

Theorem 5.9 can be extended to more variables in each equation yielding
similar results as Theorem 5.5. We omit the details.

It remains to study the case of two variables in each equation. In the mod
2 case, this problem is a generalization of Max-Cut in that if we only allowed
equations of the form xixj = �1 then it is exactly Max-Cut. Adding equations
of the form xixj = 1makes the problemmore general, but it does not prevent the
use of semide�nite programming (as in [20]) to get an approximation algorithm
that performs as well as for Max-Cut. To get an improved lower bound we
give a reduction from Max-E3-Lin-2, by a construction usually referred to as a
gadget and we proceed as follows.

Given an equation xyz = c we construct a constant number of equations in
two variables involving the variables x; y; z and some new auxiliary variables.
These constraints come with weights. It is an �-gadget, i� for any x; y; z that
satis�es xyz = c one can adjust the auxiliary variables to satisfy constraints of
total weight � while if xyz 6= c then the maximum obtainable is exactly �� 1.
For a more thorough discussion of gadgets we refer to the paper by Trevisan et
al. [35].

We have the following

Lemma 5.13 Suppose there is an �-gadget reducing Max-E3-Lin-2 to an opti-
mization problem O. Then, unless NP=P, for any �, O cannot be approximated
within 2�

2��1 � � in polynomial time.

Proof: This is Lemma 2.8 of [35] and we only sketch the proof.
We use the gadget to construct an instance of O. If the total weight of

the Max-E3-Lin-2 instance is 1 then for any solution that satis�es equations of
total weight w, the corresponding solution of the transformed problem satis�es
constraints of total weight w�+(1�w)(��1). Since it is NP-hard to distinguish
the two cases when w = 1�Æ and w = 1

2+Æ, if we could determine the optimum
of the transformed problem to a better accuracy than

(1� Æ)� + Æ(�� 1)

(1=2 + Æ)�+ (1=2� Æ)(� � 1)

we would solve an NP-hard problem. Since Æ was arbitrary, the lemma fol-
lows.

Using this we have

Theorem 5.14 For any � > 0 it is NP-hard to approximate Max-E2-Lin-2
within a factor 12=11� �.
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Proof: This follows from a reduction from Max-E3-Lin-2. We use a gadget
constructed by Sorkin [34] using the techniques of [35]. We start with an equa-
tion of the form x1x2x3 = 1. The set of equations we construct have variables
which are best imagined as sitting at the corners of a three-dimensional cube.
For each � 2 f0; 1g3 we have a variable y�. For each edge (�; �0) of the cube
we have the equation

y�y�0 = �1

and for each main diagonal (�; �00) we have the equation

y�y�00 = 1:

Since a cube has 12 edges and 4 main diagonals we get a total of 16 equations
each of which we give weight 1/2. We let x1 take the place of y011, x2 the place
of y101 and x3 the place of y110. The variable y000 is replaced by z which is the
same variable for all local reductions, while all the other variables are distinct
in the di�erent gadgets. Since negating all variables does not change a solution
to Max-E2-Lin-2 we can assume that z takes the value 1.

Let us consider an assignment that satis�es x1x2x3 = 1. Either the variables
all take the value 1 or exactly two take the value �1. In the former case we
assign y� the value (�1)�1+�2+�3 , while in the second case, assuming x1 = 1
the other cases being symmetric, we assign y� the value (�1)�2+�3 . In the �rst
case we satisfy all the \edge equations" while in the second case we satisfy 8
\edge equations" and all \diagonal equations" and thus in either case we satisfy
12 equations. When x1x2x3 = �1 an enumeration establishes that it is only
possibly to satisfy 10 equations. Thus we have constructed a 6-gadget and
Theorem 5.14 follows from Lemma 5.13.

5.1 Extensions to other CSPs

In this section we prove that any CSP where the predicate P is implied by the
predicate of linearity inherits non-approximability. Note that negating one of
the inputs to P does not change the corresponding CSP and hence exchanging
xyz = 1 to xyz = �1 below gives an equivalent theorem.

Theorem 5.15 Let P be a predicate on 3 bits such that P (x; y; z) = �1 for any
x; y; z satisfying xyz = 1, then the CSP given by P is non-approximable beyond
the random assignment threshold.

Proof: We establish this by using a slight modi�cation of L�2(u), in that we
change the acceptance criteria to requiring that (AU;true(f); AW;h;true(g1); AW;h;true(g2))
satis�es P . This condition is strictly more generous than that of L�2(u) and thus
completeness does not decrease and remains at least 1� �.

Let us look at the soundness. Consider the special case when P is the
predicate \not one", i.e. it accepts unless exactly one input is true. We later
show how to extend the result to other predicates. The multilinear expression

5� x� y � z + xy + xz + yz + 3xyz

8
(25)
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is one if P (x; y; z) is true and 0 otherwise. Thus we analyze the expected value
of (25) with x = AU;true(f), y = AW;h;true(g1) and z = AW;h;true(g2). Folding
over true implies that E[AU;true(f)] = 0 for a random function f and similarly
the other terms of degree one in (25) have expected value 0. The pairs (f; g1)
and (f; g2) are pairs of independent functions and thus

E[AU;true(f)AW;h;true(gi)] = 0

for i = 1; 2. Finally, since the triplets (f; g1; g2) and (�f; g1;�g2) are equally
likely to be selected by the test

E[AW;h;true(g1)AW;h;true(g2)] = 0:

This implies that if the test accepts with probability (5 + Æ)=8 then

E[AU;true(f)AW;h;true(g1)AW;h;true(g2)] = Æ=3

and we have obtained the basic relation (10) that we, in the proof of Lemma 5.2,
proved implied the existence of successful strategies for P1 and P2. Since any
predicate P can be written as a multilinear function the same analysis applies
to all the predicates mentioned in the lemma.

In our de�nition of CSP negating an input to P or permuting the inputs
does not change the problem. Thus, in fact Theorem 5.15 only applies to 3
essentially di�erent predicates accepting 5, 6 and 7 inputs respectively. For
these three predicates Zwick [36] established Theorem 5.15 by giving reductions
from the inapproximability result for linear equations given in Theorem 5.4.
It is curious to note that Zwick proved that these are the only predicates on
3 variables that give CSPs which are non-approximable beyond the random
assignment threshold.

Theorem 5.15 extends to predicates on an arbitrary number of bits.

Theorem 5.16 Let P be a predicate on k bits where k � 3 such that P (x1; x2; : : : xk) =

�1 for any (xi)
k
i=1 satisfying

Qk
i=1 xi = 1, then the CSP given by P is non-

approximable beyond the random assignment threshold.

Proof: The proof is very similar to the proof given above but since we proved
the inapproximability of linear equations with k variables in each equation by a
reduction we have to design a new PCP. In view of Theorem 5.15 we can clearly
assume that k � 4. The PCP is as follows.

Test LP;k;�2 (u)

Written proof. A SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formula
' = C1 ^ C2 : : : Cm.
Veri�er.
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1. Choose u random clauses (Cji )
u
i=1 with uniform probability and for each

i choose, uniformly at random, a variable xki occurring in Cji . Set U =
fxk1 ; xk2 : : : xkug, W to be the set of all variables occurring in the chosen
clauses, and h = ^ui=1Cji .

2. Choose (fi)
k�2
i=1 2 FU independently each with the uniform probability.

3. Choose g1 2 FW with the uniform probability.

4. Choose a function � 2 FW by setting �(y) = 1 with probability 1� � and
�(y) = �1 otherwise, independently for each y 2 f�1; 1gW .

5. Set g2 = g1�
Qk�2

i=1 fi.

6. Accept i� the vector (AU;true(fi))
k�2
i=1 concatenated with (AW;h;true(g1); AW;h;true(g2))

satis�es P .

Since P is true whenever the product of the input bits is 1, we conclude that
the veri�er always accepts the proof when �(yjW ) = 1 where y is the assignment

coding a correct SWP(u). Thus the completeness of LP;k;�2 (u) is at least 1� �.
To analyze the soundness we write P as a multilinear function. Using an

argument similar to that used in the proof of Theorem 5.15 we see that the only
term of a multilinear expansion that is not 0 is

E[B(g1)B(g2)

k�2Y
i=1

A(fi)]:

This is analyzed as in the proof of Lemma 5.2 by the Fourier expansion and the
result is

EU;W;h

2
4X

�

Âk�2
�(�)B̂

2
�(1� 2�)j�j

3
5 :

The same strategy of P1 and P2 as in the proof of Lemma 5.2 can now be seen
to make the veri�er in the two-prover protocol accept with probability at least
2Æ�. We omit the details.

6 Satis�ability problems

We start with a direct consequence of Theorem 5.4.

Theorem 6.1 For any � > 0 it is NP-hard to approximate Max-E3-Sat within
a factor 8=7� �. Said equivalently, Max-E3-Sat is non-approximable beyond the
random assignment threshold.

Proof: This is a special case of Theorem 5.15 but let us also give the immediate
reduction from Max-E3-Lin-2. An equation xyz = 1 for three literals x; y and
z is replaced by the clauses (x _ y _ �z), (x _ �y _ z), (�x _ y _ z), and (�x _ �y _ �z).
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An assignment that satis�es the linear equation satis�es all the clauses while an
assignment that does not satisfy the linear equation satis�es 3 of the 4 equations.
Thus we have constructed a 4-gadget and the result follows by Lemma 5.13.

We want to extend Theorem 6.1 to prove that Max-E3-Sat is non-approximable
beyond the random assignment threshold on satis�able instances. The proof of
this is rather complicated. To establish that Max-E4-Sat has the same prop-
erty is more straightforward and since it presents most of the ideas involved we
present this theorem �rst.

Theorem 6.2 For any � > 0 it is NP-hard to distinguish satis�able E4-Sat
formulas from (15=16 + �)-satis�able E4-Sat formulas. Said equivalently, Max-
4-Sat is non-approximable beyond the random assignment threshold on satis�able
instances.

Proof: We �rst de�ne the test.

Test 4S(u)

Written proof. A SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formula
' = C1 ^ C2 : : : Cm.
Veri�er.

1. Choose u random clauses (Cji )
u
i=1 with uniform probability and for each

i choose, uniformly at random, a variable xki occurring in Cji . Set U =
fxk1 ; xk2 : : : xkug, W to be the set of all variables occurring in the chosen
clauses, and h = ^ui=1Cji .

2. Choose f 2 FU with the uniform probability.

3. Choose g1; g2 2 FW independently with the uniform probability.

4. Choose function g3 2 FW by for each y 2 f�1; 1gW independently doing
the following. If g1(y) = �1 then set g3(y) randomly while if g1(y) = 1
set g3(y) = �f(yjU)g2(y).

5. Accept unlessAU;true(f) = AW;h;true(g1) = AW;h;true(g2) = AW;h;true(g3) =
1.

Before analyzing the test, let us intuitively discuss its design. Since we want
to obtain a result for E4-Sat we want to read 4 bits. The �rst choice is how
to divide these between AU and AW . How to do this is far from obvious and
is diÆcult to motivate at this point. It turns out that the complications in the
proof comes from the correlation that appears among the chosen functions in
FW and to make this as small as possible we choose to read 3 bits in AW . To
get a reduction to Max-E4-Sat we need that the acceptance criteria should be
AU;true(f)_AW;h;true(g1)_AW;h;true(g2)_AW;h;true(g3). Since we want perfect
completeness we need to make sure that f(yjU ) _ g1(y) _ g2(y) _ g3(y) is true
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for any y. Furthermore, to make a successful analysis by Fourier transforms it
is important that each function is chosen with the uniform distribution. The
reason for this is that the Fourier coeÆcients are averages and thus are most
informative when inputs are chosen with the uniform probability. Giving these
considerations, the goal of the design was to make the functions as independent
as possible.

It is not hard to see that we get perfect completeness and we omit the proof
of the lemma below.

Lemma 6.3 The completeness of test 4S(u) is 1.

The lemma analyzing the soundness is given below. Theorem 6.2 follows from
Lemma 6.3 and Lemma 6.4 in the same way as Theorem 5.4 followed from
Lemma 5.1 and Lemma 5.2. We omit the details.

Lemma 6.4 If Test 4S(u) accepts with probability (15 + �)=16, then there is
a strategy for P1 and P2 in the u-parallel two-prover protocol that makes the
veri�er of that protocol accept with probability at least �2=4.

Proof: We have that

1�
1

16
(1 +AU;true(f))(1 +AW;h;true(g1))(1 +AW;h;true(g2))(1 +AW;h;true(g3)) (26)

is 1 if the test accepts and 0 otherwise. This follows since each of AU;true(f),
AW;h;true(g1), AW;h;true(g2) and AW;h;true(g3) is either 1 or �1 and unless they
are all 1, one factor in the product is 0 and the expression evaluates to 1. If all
numbers are 1 the expression evaluates to 0.

We need to estimate the expected value of (26) which gives the probability of
success. Fix U ,W and h and let A = AU;true and B = AW;h;true. We expand the
product in (26) and estimate the expected value of each term separately. The
only terms that can have a nonzero expected value are terms containing both
B(g2) and B(g3). This follows since the collections (f; g1; g2) and (f; g1; g3) form
independent random variables and, because of folding over true, the expected
value of each single factor is 0. Thus the expected value of (26) equals

15

16
�

1

16
(E[B(g2)B(g3)] +E[A(f)B(g2)B(g3)]

+E[B(g1)B(g2)B(g3)] +E[A(f)B(g1)B(g2)B(g3)]): (27)

Test 4S(u) is equally likely to produce the set (f; g1; g2; g3) and (�f; g1; g2;�g3)
and since both A and B are folded over true this implies that E[B(g2)B(g3)] = 0
and E[B(g1)B(g2)B(g3)] = 0. Of the two remaining terms let us �rst consider
E[A(f)B(g1)B(g2)B(g3)] which is the most diÆcult to estimate. We substitute
the Fourier expansion and use linearity of expectation to obtainX

�;�1;�2�3

Â�B̂�1B̂�2B̂�3Ef;g1;g2;g3 [��(f)��1(g1)��2(g2)��3(g3)] : (28)
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Any term with �2 6= �3 has expected value 0. This follows by Lemma 2.29 since
if y 2 �2��3 then g2(y) (or g3(y) if y 2 �3) ful�lls the conditions of that lemma.
Thus we can assume that �2 = �3 = � when studying the remaining terms.

If y 2 �1 n � then g1(y) is independent of all other factors and thus we can
again apply Lemma 2.29. Since elements with di�erent projections onto U are
independent we need to estimate

Ef;g1;g2;g3

2
4Y
y2�1

g1(y)
Y
y2�

g2(y)g3(y)

3
5 (29)

and

Ef;g1;g2;g3

2
4f(x) Y

y2�1

g1(y)
Y
y2�

g2(y)g3(y)

3
5 (30)

where �1 � � and all elements of � project onto a �xed element, x, of U . We
consider di�erent cases depending on g1. If g1(y) = �1 for some y 2 � the
expected value over the rest is 0 and thus we can concentrate on the case when
g1(y) = 1 for all y 2 �. This happens with probability 2�j�j and then (29)
is equal to (�f(x))j�j while (30) equals f(x)(�f(x))j�j. This means that (29)
equals 2�j�j when j�j is even and 0 otherwise while (30) equals �2�j�j when j�j
is odd and 0 otherwise. Repeating this argument for all x in U we see that the
terms are nonzero only when �2(�) = � and hence (28) equalsX

�

A�2(�)B̂
2
�(�1)

j�j2�j�j
X
�1��

B̂�1 : (31)

The inner sum is, using Cauchy-Schwartz inequality, bounded by

j
X
�1��

B̂�1 j �

0
@X
�1��

1

1
A

1=20
@X
�1��

B̂2
�1

1
A

1=2

� 2j�j=2;

and substituting this into (31), we get the upper boundX
�

jA�2(�)jB̂
2
�2

�j�j=2

for the absolute value of (28).
Before continuing, let us consider E[A(f)B(g2)B(g3)]. We can repeat the

calculations performed above with the only di�erence that there is no sum of
�1. We get the equality

EU;W;h[A(f)B(g2)B(g3)] =
X
�

A�2(�)B̂
2
�(�1)

j�j2�j�j:
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Summing up, for �xed U , W and h the probability of acceptance is at most

15

16
+
1

8

X
�

jA�2(�)jB̂
2
�2

�j�j=2:

By the assumption of Lemma 6.4 we conclude that

EU;W;h

2
4X

�

jA�2(�)jB̂
2
�2

�j�j=2

3
5 � �=2: (32)

We are ready to de�ne the strategy of the provers.
On receiving W and h, P1 selects a random � with probability proportional

to B̂2
� and then a random y 2 �. Similarly P2 selects a random � with proba-

bility Â2
� and then a random x 2 �.

By Lemma 2.32 both � and � are always nonempty and by Lemma 2.34, y
always satis�es the selected clauses and thus we need only estimate the proba-
bility that yjU = x. This is true with probability at least

EU;W;h

2
4X

�

Â2
�2(�)

B̂2
� j�j

�1

3
5 :

By (15) this is at least

0
@EU;W;h

2
4X

�

jÂ��(�)jB
2
� j�j

�1=2

3
5
1
A

2

;

and since x�1=2 � 2�x=2 is true for all integers x we conclude, by (32), that
the veri�er in two-prover game accepts with probability at least (�=2)2 and
Lemma 6.4 follows.

We turn to the more diÆcult problem of establishing that Max-E3-Sat is non-
approximable beyond the random assignment threshold on satis�able instances.

Theorem 6.5 For any � > 0 it is NP-hard to distinguish satis�able E3-CNF
formulas from (7=8 + �)-satis�able E3-CNF formulas. Said equivalently, Max-
E3-Sat is non-approximable beyond the random assignment threshold on satis-
�able instances.

Proof: While the overall structure of the proof is similar to the previous cases
a number of complications arise. We �rst describe a test with a parameter
� < 1=2.

Test 3S�(u)
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Written proof. A SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formula
' = C1 ^ C2 : : : Cm.
Veri�er.

1. Choose u random clauses (Cji )
u
i=1 with uniform probability and for each

i choose, uniformly at random, a variable xki occurring in Cji . Set U =
fxk1 ; xk2 : : : xkug, W to be the set of all variables occurring in the chosen
clauses, and h = ^ui=1Cji .

2. Choose f 2 FU with the uniform probability.

3. Choose g1 2 FW with the uniform probability.

4. Choose function g2 2 FW by for each y 2 f�1; 1gW independently doing
the following. If f(yjU ) = 1 then set g2(y) = �g1(y) while if f(yjU ) = �1
set g2(y) = g1(y) with probability 1� � and otherwise g2(y) = �g1(y).

5. Accept unless AU;true(f) = AW;h;true(g1) = AW;h;true(g2) = 1.

The intuition of the construction is similar to the intuition for Test 4S.
It is easy to see that we get perfect completeness and we omit the proof of

the below lemma.

Lemma 6.6 The completeness of Test 3S�(u) is 1.

To estimate the soundness we �rst write the acceptance criteria as

1�
1

8
(1 +AU;true(f))(1 +AW;h;true(g1))(1 +AW;h;true(g2)): (33)

Fix U , W , and h and de�ne A = AU;true and B = AW;h;true. We expand the
product and estimate the expected value of each term separately. Since both
pairs (f; g1) and (f; g2) are pairs of random independent functions and the tables
are folded over true, the only expected values that might be nonzero are the
ones containing both B(g1) and B(g2). Thus the expected value of (33) equals

7

8
�
1

8
(E[B(g1)B(g2)] +E[A(f)B(g1)B(g2)]): (34)

We consider each term separately. Expanding E[B(g1)B(g2)] by the Fourier
expansion yields

X
�1;�2

B̂�1B̂�2E

2
4Y
y2�1

��1(g1)��2(g2)

3
5 : (35)

By Lemma 2.29, any term with �1 6= �2 has expected value 0. Furthermore, the
parts of the product with di�erent projections onto U are independent. Thus,
we need to study Y

y

g1(y)g2(y):
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where all y project onto the same element x. It is not hard to calculate this
expected value to be

1

2
((�1)s + (1� 2�)s):

where s is the number of elements the product. For even s this is a number
between 1=2 and 1 and decreasing as a function of s. For s small it is roughly
1� s� while if s is 
(��1) it is a constant tending to 1/2. For odd s it is always
between �1=2 and 0 and also here decreasing with s and taking a value around
�s� for small s.

For x 2 �(�) let sx denote the number of elements of � that project onto x.
Then, by the above reasoning, (35) equals

X
�

B̂2
�

Y
x2�(�)

(
1

2
((�1)sx + (1� 2�)sx)): (36)

One could have hoped to estimate this sum as a function of � tending to
0 with �, but unfortunately this is not true in general. To help the reader's
intuition at this point let us sketch an example illustrating the problems.

Given any � > 0, we de�ne W and � such that there is a constant c > 0,
independent of � such that������EU

2
4 Y
x2�(�)

(
1

2
((�1)sx + (1� 2�)sx))

3
5
������ � c; (37)

where the expectation is over a random U � W selected with the induced
probability, i.e., each element in each clause is selected with probability 1/3.

Let W be de�ned by the triplets (3i�2; 3i�1; 3i) for i = 1; 2 : : : k+1 where
k = d��1e and let

� = 13k+3 [k+1
i=2 fe1;3i; e2;3ig;

where ei;j is the assignment giving the value �1 to xi and xj while giving the
value 1 to all other variables. Let us analyze (37).

If U contains 1 or 2 then there will be many (about k=3) x such that sx = 1
and thus the contribution to (37) is very small from these U .

On the other hand if U chooses 3 from the �rst triplet the elements pair up
since �U (e1;3i) = �U (e2;3i) for all i. We expect that around 2k=3 of these pairs
project onto the all 1 assignment while the other, roughly k=3, pairs project
onto distinct elements due to 3i being placed into U . Thus, in this case

Y
x2�(�)

(
1

2
((�1)sx + (1� 2�)sx))

is about
1=2(�1+ (1� 2�)1+4k=3)(1� 2�+ 2�2)k=3;

which is a negative value with absolute value bounded from below by an absolute
constant, and this completes our example.
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The set � in the above example is of size around ��1 and it turns out that
much larger and much smaller sets � are easy to control. This is useful since we
can later vary �.

Lemma 6.7 There is a constant c > 0 such that when g1 and g2 are chosen as
in Test 3S�(u) we have

jEU;f;g1;g2 [(B(g1)B(g2)] j � 3Æ +
X

� j Æ��1�j�j�(2Æ�2)1=c��1

B̂2
� :

The constant c is the constant from Lemma 6.9 below.

Proof: We split the sum (36) into three pieces depending on in which of the
intervals [1; Æ��1], [Æ��1; (2Æ�2)1=c��1], and [(2Æ�2)1=c��1;1], j�j belongs. The
sum over the middle interval need not be estimated since it appears on the right
hand of the estimate in the lemma. For the small sets we have

Lemma 6.8������
X

� j j�j�Æ��1

B̂2
�E

2
4 Y
x2�(�)

(
1

2
((�1)sx + (1� 2�)sx))

3
5
������ � Æ

Proof: As B is folded over true, we can assume that j�j is odd and hence some
x 2 �(�) must have an odd value of sx. For this x

0 �
1

2
((�1)sx + (1� 2�)sx) �

1

2
(�1 + (1� 2sx�)) = �sx� � �Æ:

The absolute value of the other factors is bounded from above by one and sinceP
� B̂

2
� � 1, the lemma follows.

The part

X
� j j�j�(2Æ�2)1=c��1

B̂2
�E

0
@ Y
x2�(�)

(
1

2
((�1)sx + (1� 2�)sx))

1
A (38)

requires some more work to estimate. In order to study this quantity let us
de�ne SU� (�) by

SU� (�) = �
X
x

min(sx; �
�1):

One cay view SU� (�) as a generalization of j�(�)j and the key connection to
the product above is given by (40) below. It is important to us to prove that
SU� (�) is likely to be large when � is large. The key lemma is given below. We
postpone the proof of this lemma to an appendix.
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Lemma 6.9 Suppose j�j � ��1. There is a constant c > 0 such that, if the
clauses de�ning W are disjoint,

EU [1=S
U
� (�)] � (�j�j)�c:

where the expected value is taken over a random set U constructed by selecting
one variable from each of the clauses of W . One acceptable value for c is 1

35 .

Since the clauses de�ning W are disjoint with probability 1�O( 1n ) we will
when applying Lemma 6.9, for notational simplicity, ignore this condition. The
way we use Lemma 6.9 is to apply Markovs inequality to it. Let us state this
variant for easy reference.

Corollary 6.10 Let c be the constant of Lemma 6.9. For a; b > 1 suppose j�j =
(ab)1=c��1. If the clauses de�ning W are disjoint, then except with probability
a�1 it is true that SU� (�) � b. The probility is taken over a random U .

Next we claim that

j
1

2
((�1)s + (1� 2�)s)j � e�min(1;s�)=2: (39)

To establish this we can assume 0 � s � ��1 and that s is even since other cases
follow from this. We have (1�2�)s � e�2�s and setting f(x) = 2e�x=2�(1+e�2x)
we need to prove that f(x) � 0 for x 2 [0; 1]. We have f 00(x) = 1

2e
�x=2 � 4e�2x

and hence f 00(x) � 0 in the interval in question and we only have to check the
inequality at the end points. We have f(0) = 0 and f(1) = 2e�1=2�(1+e�2) > 0.

From (39) it follows that

Y
x2�(�)

(
1

2
((�1)sx + (1� 2�)sx)) � e�S

U
� (�)=2: (40)

Thus (38) is bounded from above byX
� j j�j�(2Æ�2)1=c��1

B̂2
�E[e

�SU� (�)=2]:

From Corollary 6.10 it follows that except with probability at most Æ, it is
true that SU� (�) � 2Æ�1. This implies that the expected value of the term

corresponding to � in (38) is at most (Æ + e�Æ
�1

)B̂2
� � 2ÆB̂2

�, where we used

Lemma 5.3 with s = 1 and x = Æ�1. Summing over � �nishes the proof of
Lemma 6.7.

Let us now consider

EU;W;h;f;g1;g2 [A(f)B(g1)B(g2)] (41)

in more detail.
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Lemma 6.11 If
jEU;W;h;f;g1 ;g2 [A(f)B(g1)B(g2]j � Æ

then there is a strategy for P1 and P2 in the u-parallel two-prover protocol that
makes the veri�er of that protocol accept with probability at least �(Æ2=64)1+1=c.
Here c is the constant from Lemma 6.9.

Proof: Fix U , W , and h. We use the Fourier expansion to obtain

Ef;g1;g2 [A(f)B(g1)B(g2)] =
X

�;�1;�2

Â�B̂�1B̂�2Ef;g1;g2 [��(f)��1(g1)��2(g2)] :

If �1 6= �2 then we can apply Lemma 2.29 with y 2 �1��2 to see that the
expected value is 0 and thus we can assume �1 = �2 = �. Lemma 2.29 also
applies to the case � 6� �(�) and thus we assume � � �(�). A calculation shows
that

Ef;g1;g2 [��(f)��(g1g2)] =
Y

x2�\�(�)

(
1

2
((�1)sx�(1�2�)sx))

Y
x2�(�)n�

(
1

2
((�1)sx+(1�2�)sx));

where sx = j��1(x) \ �j. Let us denote this value by p(�; �). The assumption
of the lemma implies

jEU;W;h

X
�;���(�)

Â�B̂
2
�p(�; �)j � Æ: (42)

Before we continue let us just point out that the strategies of the two provers
are the standard strategies. i.e., P2 chooses an � with probability Â2

� and returns
a random x 2 �. Similarly P1 chooses a random � with probability B̂2

� and
returns a random y 2 �. By Lemma 2.32 both � and � are always nonempty
and by Lemma 2.34, y always satis�es the selected clauses and thus we need
only estimate the probability that yjU = x. This happens with probability at
least

EU;W;h

2
4 X
�;���(�)

Â2
�B̂

2
�j�j

�1

3
5 : (43)

We need to prove that this is large based on (42) and we proceed to establish
the connection.

The quantity that multiplies B̂2
� in (42) is

X
���(�)

Â�p(�; �) �

0
@ X
���(�)

Â2
�

1
A

1=20
@ X
���(�)

p2(�; �)

1
A

1=2

�

0
@ X
���(�)

p2(�; �)

1
A

1=2

� e�S
U
� (�)=4: (44)
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To see the last inequality in (44) note that the sum equals

Y
x2�(�)

((
1

2
((�1)sx � (1� 2�)sx))2 + (

1

2
((�1)sx + (1� 2�)sx))2): (45)

The factor corresponding to x in (45) is of the form a2+b2 where jaj+jbj = 1 and,
by (39), max(jaj; jbj) � e�min(1;sx�)=2, and hence it is bounded by e�min(1;sx�)=2.
Multiplying over x gives the last inequality in (44).

De�ne S to be (64Æ�2)1=c��1 and consider any term with j�j � S. By Corol-
lary 6.10, except with probability Æ=4 we have SU� (�) � 16Æ�1. We conclude
that for such terms in (42) are bounded from above by

Eh;W

h
B̂2
�EU [e

�SU� (�)=4]
i
� Eh;W

h
B̂2
�(Æ=4 + e�4Æ�1)

i
� Eh;W

h
B̂2
�Æ=2

i
:

This implies that if we discard all terms in (42) with j�j � S, the remaining
expected value is at least Æ=2. Returning to the analysis of (43) we see that it
is at least

S�1EU;W;h

2
4 X
�;���(�);j�j�S

B̂2
�Â

2
�

3
5 :

Now by the above reasoning we have

(Æ=2)2 �

0
@EU;W;h

2
4 X
�;���(�);j�j<S

B̂2
�Â�p(�; �)

3
5
1
A

2

�

EU;W;h

2
64
0
@ X
�;���(�);j�j<S

B̂2
�Â�p(�; �)

1
A

2
3
75 �

EU;W;h

2
4
0
@ X
�;���(�);j�j<S

B̂2
�Â

2
�

1
A
0
@ X
�;���(�);j�j<S

B̂2
�p

2(�; �)

1
A
3
5 �

EU;W;h

2
4 X
�;���(�);j�j<S

B̂2
�Â

2
�

3
5 ;

where the last inequality follows fromX
�

X
���

B̂2
�p

2(�; �) �
X
�

B̂2
� � 1:

where we again used the last inequality of (44). We conclude that the veri�er
in the two-prover protocol accepts with the given strategies with probability at
least

S�1(Æ=2)2 � �(Æ2=64)1+1=c;

and the proof is complete.
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We are now in position to prove Theorem 6.5. We describe the appropriate
test. Given a positive Æ < 1=2 we proceed as follows, where c is the constant of
Lemma 6.9.

Test F3SÆ(u)

1. Set t = dÆ�1e, �1 = Æ and �i = Æ1+2=c2�1=c�i�1 for i = 2; 3; : : : t.

2. Choose a random j, 1 � j � t with uniform distribution. Run test 3S�j (u).

From Lemma 6.6 we conclude that we have perfect completeness.

Lemma 6.12 The completeness of Test F3SÆ(u) is 1.

On the soundness side we have the crucial lemma below. Using Lemma 6.12
and Lemma 6.13 we complete the proof of Theorem 6.5 in a similar way that
Theorem 5.4 followed from Lemma 5.1 and Lemma 5.2. We omit the de-
tails.

Lemma 6.13 If the test F3SÆ(u) accepts with probability (7+ 5Æ)=8 then there
is a strategy for P1 and P2 in the u-parallel two-prover protocol that makes the
veri�er of that protocol accept with probability 2�O(Æ�1 log Æ�1).

Proof: As given by (34) the probability that the veri�er accepts is

7=8�
1

8
EU;W;h;f;g1;g2 [AW;h;true(g1)AW;h;true(g2)]�

1

8
EU;W;h;f;g1;g2 [AU;true(f)AW;h;true(g1)AW;h;true(g2)]

where f , g1 and g2 are chosen as described in the test. By Lemma 6.7 we have
for �xed W and h,

jEU;f;g1;g2 [AW;h;true(g1)AW;h;true(g2))j �
1

t

tX
i=1

(3Æ+
X

� j Æ��1i �j�j�(2Æ�2)1=c��1i

B̂2
�) �

3Æ +
1

t
� 4Æ

since the intervals of summations are disjoint. Thus, from the assumption of
the lemma there must be some j such that

EU;W;h;f;g1;g2 [AU;true(f)AW;h;true(g1)AW;h;true(g2)] � Æ

when f , g1 and g2 are chosen as in test 3S
�j (u). For this j we get by Lemma 6.11

a strategy for P1 and P2 with success probability �
O(1)
j ÆO(1). Now �j = ÆO(j)

and since j � t = dÆ�1e the lemma follows.
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It is not hard to extend Theorem 6.5 to longer clauses.

Theorem 6.14 For any � > 0 and any k � 4 it is NP-hard to distinguish
satis�able Ek-CNF formulas from at most 1� 2�k + � satis�able Ek-CNF for-
mulas. Said equivalently, Max-Ek-Sat is non-approximable beyond the random
assignment threshold on satis�able instances.

Proof: Follows by induction over k. Change a clause Ci to the two clauses
Ci _ z and Ci _ �z for a new variable z. If the number of clauses is N and the
optimal number of clauses that can be satis�ed is O for the original formula,
this creates an instance with 2N clauses and optimal value N + O. A small
calculation yields the desired result.

In fact, we can do a little bit better. By transforming clauses of length 3 to
clauses of di�erent sizes we get a slight extension stated below. We omit the
straightforward proof.

Theorem 6.15 Consider the CSP where each constraint is a disjunction of
literals of size at least 3. This problem is non-approximable beyond the random
assignment threshold on satis�able instances.

We also get a result for Max-E2-Sat, but we only know how to do this
through a reduction.

Theorem 6.16 For any � > 0 it is NP-hard to approximate Max-E2-Sat within
a factor 22=21� �.

Proof: This follows by a reduction from Max-E3-Lin-2. Just use the 11-gadget
of [9, 35] and Lemma 5.13.

6.1 Implied results for other CSPs

As in the case of Theorem 5.4, the constructed PCPs can be used, with only
minor modi�cations, to obtain results for other CSPs. This time we look at
constraints that are more restrictive than the originally intended constraints.
First we derive a consequence of the proof of Theorem 6.2.

Theorem 6.17 Let P be a predicate on 4 variables such that

P�1(1) � f(1; 1; 1; 1); (1; 1;�1;�1); (�1; 1; 1;�1); (�1; 1;�1; 1)g:

Then the CSP given by P on 4 variables is non-approximable beyond the random
assignment threshold on satis�able instances.

Proof: The test is given by 4S(u) except that the �nal test is replaced by re-
quiring that (AU;true(f); AW;h;true(g1); AW;h;true(g2); AW;h;true(g3)) satis�es the
predicate P . From the de�nition of g3 it follows that (f(yjU ); g1(y); g2(y); g3(y))
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never takes any of the values that falsi�es P and thus this modi�cation does not
cause the veri�er to reject a correct PCP and we still have perfect completeness.

To analyze the soundness we write the acceptance criteria as a multilinear
expression in AU;true(f) and AW;h;true(gi). We have already established that
each multilinear term has small expected value unless there is a good strategy
for P1 and P2 in the two prover multiprover game. We omit the details. This
is suÆcient to prove Theorem 6.17.

In the test 3S�(u) (and hence F3SÆ) we constructed functions f , g1 and
g2 such that the triples (f(yjU ); g1(y); g2(y)) never take the values (1; 1; 1) or
(1;�1;�1). In our original application to Max-E3-Sat we just needed that
(1; 1; 1) was avoided. If we replace the acceptance criteria by the predicate

OXR(x1; x2; x3) = x1 _ (x2 � x3):

we get, by a very similar proof, the following theorem. We omit the details.

Theorem 6.18 The CSP on 3 variables problem given by the predicate OXR
is non-approximable beyond the random assignment threshold on satis�able in-
stances.

7 Set splitting

The veri�er that gives a result for set splitting must be a bit di�erent from
previous veri�ers for some basic reasons. Firstly, there is no negation present
in set splitting and hence we cannot fold over true. Secondly, we cannot have
the bipartite situation when we ask some questions in AU and then some ques-
tions in AW;h. If this was the case a cheating prover could fool the veri�er by
setting AU (f) = 1 for all f and AW (g) = �1 for all g. We remedy this situa-
tion by taking two di�erent sets of type W . First we give the simpler version
just establishing that E4-Set splitting is non-approximable beyond the random
assignment threshold. As in the case for Max-E3-Sat it is more complicated to
get the result for satis�able instances.

Theorem 7.1 For any � > 0, it is NP-hard to approximate E4-Set splitting
within a factor 8=7� �. Said equivalently, E4-Set splitting is non-approximable
beyond the random assignment threshold.

Proof: We �rst give the test. Assume � < 1
2 .

Test SS�(u)

Written proof. A SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formula
' = C1 ^ C2 : : : Cm.
Veri�er.
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1. Choose u variables xki , uniformly at random and set U = fxk1 ; xk2 ; : : : ; xkug.
Form W 1 by, for each xki choosing a random clause Cj1i

that contains xki
and then letting W 1 be the set of variables appearing in these clauses and
h1 = ^ui=1Cj1i

. By a similar and independent procedure produce W 2 and

h2 by choosing clauses Cj2i
.

2. Choose f 2 FU with the uniform probability.

3. Choose g11 2 FW 1 and g21 2 FW 2 independently with the uniform proba-
bility.

4. For i = 1; 2, choose a function �i 2 FW i by setting �i(y) = 1 with
probability 1 � � and �i(y) = �1 otherwise, independently for each y 2

f�1; 1gW
i

and for i = 1 and i = 2.

5. Set g12 = fg11�
1, i.e., de�ne g12 by for each y 2 f�1; 1gW

1

, g12(y) =
f(yjU )g11(y)�

1(y).

6. Set g22 = �fg21�
2, i.e., de�ne g22 by for each y 2 f�1; 1gW

2

, g22(y) =
�f(yjU )g21(y)�

2(y).

7. Accept i� AW 1;h1(g
1
1), AW 1;h1(g

1
2), AW 2;h2(g

2
1), and AW 2;h2(g

2
2) are not

all equal.

We have the standard completeness lemma which we, since the situation has
changed somewhat, even prove.

Lemma 7.2 The completeness of Test SS�(u) is at least 1� �.

Proof: Assume we have a correct SWP(u). Then we have a global satisfying
assignment x and all subtables are long codes of restrictions of x. Assume that
f(xjU ) = 1, then unless �2(xjW 2) = �1 we have that g21(xjW 2 ) 6= g22(xjW 2 )
which is equivalent to saying that AW 2;h2(g

2
1) 6= AW 2;h2(g

2
2). Similarly if

f(xjU ) = �1, unless �1(xjW 1 ) = �1 we have AW 1;h1(g
1
1) 6= AW 1;h1(g

1
2). Thus

in either case we accept with probability 1� �.

For the soundness we have the corresponding lemma below. Theorem 7.1
follows from Lemma 7.2 and Lemma 7.3 in similar way to which Theorem 5.4
followed from Lemma 5.1 and Lemma 5.2. We omit the details.

Lemma 7.3 If Test SS�(u) accepts with probability (7 + Æ)=8, then there is
a strategy for P1 and P2 in the u-parallel two-prover protocol that makes the
veri�er of that protocol accept with probability 2Æ�.

Proof: Fix U , W 1, h1, W 2, and h2 and set A = AW 1;h1 and B = AW 2;h2 .
The expression

1�
1

16
((1 +A(g11))(1 +A(g12))(1 +B(g21))(1 +B(g22)))

�
1

16
((1�A(g11))(1�A(g12))(1�B(g21))(1�B(g22))) (46)
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is 1 if the test accepts and 0 otherwise. Expanding (46) we get

7

8
�
A(g11)B(g

2
1) +A(g12)B(g

2
1) +A(g11)B(g

2
2) +A(g12)B(g

2
2)

8

�
A(g11)A(g

1
2) +B(g21)B(g

2
2) +A(g11)A(g

1
2)B(g

2
1)B(g

2
2)

8
: (47)

The expectation of (47) gives the probability that the veri�er accepts the proof
and we estimate the expectation of each term separately. All expected values
will not necessarily be small in absolute value, but we only have to worry about
each term taking a negative value of large magnitude and thus we bound the
terms from below. First we have

Lemma 7.4 For 1 � i; j � 2 we have

EW 1;W 2;h1;h2;g1
1
;g2
1
;�1;�2 [A(g

1
i )B(g

2
j )] � 0:

This is true for any �xed choices of U and f .

Proof: First note that gk1 and gk2 have the same distribution and hence we
only need to consider the case i = j = 1. Once U is �xed, g11 and g

2
1 are selected

independently with the same distribution and hence the two numbers A(g11) and
B(g21) are also independent and selected with the same distribution. It follows
that

EW 1;h1;g1
1
;W 2;h2;g2

1
[A(g11)B(g

2
1)] = EW 1;h1;g1

1
[A(g11)]

2 � 0:

We proceed to handle two more terms.

Lemma 7.5 We have Ef;g1
1
;�1 [A(g

1
1)A(g

1
2)] � 0 This is true for any �xed choice

of U , W 1, and h1. The similar statement is true for B(g21)B(g
2
2).

Proof: We replace A(g11) by the Fourier expansion and then using the linearity
of expectation, Lemma 2.27, Lemma 2.28, Lemma 2.30, and the fact that f , g11
and �1 are independent to obtain

Ef;gi
1
;�i [A(g

1
1)A(g

1
2)] =X

�1;�2

Â�1Â�2Ef;g1
1
;�1
�
��1(g

1
1)��2(g

1
2)
�

=

X
�1;�2

Â�1Â�2Ef;g1
1
;�1
�
��1(g

1
1)��2(fg

1
1�

1)
�

=

X
�1;�2

Â�1Â�2Eg1
1

�
��1��2(g

1
1)
�
Ef

�
��2(�2)(f)

�
E�

�
��2(�

1)
�
: (48)

By Lemma 2.29, if �1 6= �2 the �rst expected value is 0 and unless �2(�2) = 0
so is the second. The third expected value is easily seen to be equal to (1�2�)j�j

and thus we get the total resultX
�j�2(�)=0

Â2
�(1� 2�)j�j; (49)
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which is clearly positive. The proof of the other part of the lemma is identical
except for notation.

All that remains is to analyze the \interesting term", i.e.

Ef;g1
1
;�1;g2

1
;�2
�
A(g11)A(g

1
2)B(g

2
1)B(g

2
2)
�
:

We replace each factor by its Fourier expansion and use linearity of expectation,
Lemma 2.27, Lemma 2.28, and Lemma 2.30 to arrive atX

Â�1Â�2B̂�1B̂�2E
�
��1(g

1
1)��2(g

1
2)��1(g

2
1)��2(g

2
2)
�
=X

Â�1Â�2B̂�1B̂�2E
�
��1��2(g

1
1)��2(�2)��2(�2)(f)��2(�

1)��1��2(g
2
1)��2(��

2)
�
; (50)

where the sums are over �1, �2, �1, and �2 and the expectations are taken
over f , g11 , �

1, g21 , and �2. Using that f , g11 and g12 are independent we see, by
Lemma 2.29, that unless �1 = �2, �1 = �2 and �2(�2) = �2(�2) the expected
value is 0. Using this, and the fact that E�[��(�)] = (1�2�)j�j we see that (50)
equals X

�;�j�2(�)=�2(�)

Â2
�B̂

2
�(�1)

j�j(1� 2�)j�j+j�j: (51)

Note that �2(�) = �2(�) ensures that (�1)j�j = (�1)j�j and thus the result is,
as expected, symmetric in A and B. Since the terms corresponding to �(�) = ;
are positive we have established that, based on the hypothesis of the lemma,

EU;W 1;h1;W 2;h2

2
4
������

X
�;�:�2(�)=�2(�);�(�)6=;

Â2
�B̂

2
�(1� 2�)j�j+j�j

������
3
5 � Æ: (52)

The strategies of P1 and P2 in the two prover game are now as follows.
P1 on input W and h looks at AW;h and chooses a � with probability Â2

�

and returns a random x 2 �. The strategy for P2 is, given U , to choose a
random set of clauses giving W and h. This gives a random table B and P2
chooses a random � with probability B̂2

� and then returns a random x 2 �2(�).
If either of the two sets is empty the corresponding prover gives up. Note that,
by Lemma 2.34 each y satis�es the selected clauses and thus we only have to
estimate the probability that yjU = x. The probability of this is at least

EU;W 1;h1;W 2;h2 [
X

�;�j�2(�)=�2(�);�2(�)6=;

Â2
�B̂

2
�j�j

�1]:

By Lemma 5.3, with s = 1, j�j�1 � 2�(1� 2�)j�j and thus comparing the last
sum to (52) we get that the probability of accepting is at least 2Æ�. The proof
of Lemma 7.3 is complete.

We now turn to the case of satis�able instances for Set splitting and we want
to establish.

54



Theorem 7.6 For any � > 0, it is NP-hard to distinguish instances for E4-Set
splitting where all sets can be split from instances where the best partition splits
only a fraction 7=8 + � of the sets. Said equivalently, E4-Set splitting is non-
approximable beyond the random assignment threshold on satis�able instances.

Proof: The proof is, in many respects, very similar to the proof of the corre-
sponding result for Max-E3-Sat and in particular we need a parameterized test.
Assume � < 1=2.

Test PSS�(u)

Written proof. A SWP(u).
Desired property. To check that it is a correct SWP(u) for a given formula
' = C1 ^ C2 : : : Cm.
Veri�er.

1. Choose u variables xki , uniformly at random and set U = fxk1 ; xk2 ; : : : ; xkug.
Form W 1 by for each xki choosing a random clause Cj1i

that contains xki
and then lettingW 1 be the set of variables appearing in these clauses, and
h1 = ^ui=1Cj1i

. By a similar and independent procedure produce W 2 and

h2 by choosing clauses Cj2i
.

2. Choose f 2 FU with the uniform probability.

3. Choose g11 2 FW 1 and g21 2 FW 2 independently with the uniform proba-
bility.

4. De�ne g12 by the following procedure. If f(yjU ) = �1 then set g12(y) =
�g11(y) and otherwise set g12(y) = g11(y) with probability 1� � and other-
wise g12(y) = �g11(y).

5. De�ne g22 by the following procedure. If f(yjU ) = 1 then set g22(y) =
�g21(y) and otherwise set g22(y) = g21(y) with probability 1� � and other-
wise g22(y) = �g21(y).

6. Accept i� AW 1;h1(g
1
1), AW 1;h1(g

1
2), AW 2;h2(g

2
1), and AW 2;h2(g

2
2) are not

all equal.

Completeness is straightforward.

Lemma 7.7 The completeness of Test PSS�(u) is 1.

Proof: Assume we have a correct SWP(u). Then we have a global satisfying
assignment x and all subtables are long codes of restrictions of x. If f(xjU ) = 1,
then AW 2;h2(g

2
1) 6= AW 2;h2(g

2
2) and otherwise AW 1;h1(g

1
1) 6= AW 1;h1(g

1
2).

Next we need to analyze the soundness and hence estimate (47).

Lemma 7.8 For 1 � i; j � 2 we have

EW 1;W 2;h1;h2;g1
1
;g1
2
;g2
1
;g2
2
[A(g1i )B(g

2
j )] � 0:

This is true for any �xed choices of U and f .
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The proof is the same as that of Lemma 7.4 which just depended on the fact
that A(g1i ) and B(g2j ) are identically distributed and independent. We omit it.

Next observe that g11 and g
1
2 in test PSS

�(u) are taken with exactly the same
distribution as g1 and g2 in test 3S�(u). The lemma below should hence not
come as a surprise.

Lemma 7.9 When g11 and g12 are chosen as in test PSS�(u) we have

EU;f;g1
1
;g1
2
[A(g11)A(g

1
2)] � �3Æ �

X
� j Æ��1�j�j�(2Æ�2)1=c��1

Â2
�;

where c is the constant of Lemma 6.9. The similar statement is true for B(g21)B(g
2
2).

Proof: We again prove the statement about the A(g11)A(g
1
2), the other part

having an almost identical proof. As observed above, (U;W 1; f; g11; g
1
2) have

the same distribution as the corresponding objects in test 3S�(u) and the only
reason we cannot simply appeal to Lemma 6.7 is that we are not assuming that
A is folded over true. The only place in the proof of Lemma 6.7 this fact is
used is in the proof of Lemma 6.8 where we conclude that sx is odd for some
x. However, we need only observe that the terms in the expansion (36) with
all sx even are positive and hence can safely be disregarded with the present
statement of the lemma.

It remains to estimate the most complicated term

EU;W 1;h1;W 2;h2;f;g1
1
;g1
2
;g2
1
;g2
2

�
A(g11)A(g

1
2)B(g

2
1)B(g

2
2)
�
:

The expansion in the �rst half of (50) is still valid and terms where �1 6= �2 or
�1 6= �2 evaluate to 0 also in this case. Thus we need to study

Ef;g1
1
;g1
2
;g2
1
;g2
2

�
��(g

1
1g

1
2)��(g

2
1g

2
2)
�
: (53)

The pairs (g11 ; g
1
2) and (g21 ; g

2
2) are dependent through f . For each x let sx be

the number of y 2 � with yjU = x and tx the number of z 2 � with zjU = x. A
straightforward calculations shows that (53) equals

Y
x

(
1

2
((�1)sx(1� 2�)tx + (1� 2�)sx(�1)tx)): (54)

Thus we want to estimate

EU;W 1;h1;W 2;h2

2
4X
�;�

Â2
�B̂

2
�

Y
x

(
1

2
((�1)sx(1� 2�)tx + (1� 2�)sx(�1)tx))

3
5 : (55)

To estimate this we divide the sum into three pieces, depending on the sizes of
� and �.
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Lemma 7.10 If we restrict summation to terms where either � or � is of size
at least (2Æ�2)1=c��1, where c > 0 is the constant from Lemma 6.9, then������EU;W 1;h1;W 2;h2

2
4X
�;�

Â2
�B̂

2
�

Y
x

(
1

2
((�1)sx(1� 2�)tx + (1� 2�)sx(�1)tx))

3
5
������ � 4Æ: (56)

Proof: Let us analyze the terms with j�j � (2Æ�2)1=c��1. Note that, by (39),

j(
1

2
((�1)sx(1� 2�)tx + (1� 2�)sx(�1)tx))j � (

1

2
((1� 2�)tx + 1) � e�min(1;�tx)=2

and thus

j
Y
x

(
1

2
((�1)sx(1� 2�)tx + (1� 2�)sx(�1)tx))j � e�S

U
� (�)=2:

By Corollary 6.10, we know that the probability (over the choice of U) that
SU� (�) is smaller than 2Æ�1 is bounded by Æ. This implies that the total contri-
bution of all terms including � is

EU

h
B̂2
�e

�SU� (�)
i
� (Æ + e�Æ

�1

)B̂2
� � 2ÆB̂2

�

and the lemma follows by the linearity of expectation, that
P

�;� Â
2
�B̂

2
� = 1,

and a similar estimate when � is large.

Next we have

Lemma 7.11 If we restrict summation to terms where both � and � is of size
at most Æ��1 thenX

�;�

Â2
�B̂

2
�

Y
x

(
1

2
((�1)sx(1� 2�)tx + (1� 2�)sx(�1)tx)) �

�(Æ +
X

�;�j�(�)\�(�)6=;

Â2
�B̂

2
�); (57)

where the sum on the right hand side is also over � and � of size at most Æ��1.

Proof: Any term with all sx and tx even is positive and any term with sx and
tx both nonzero contributes to the sum on the right hand side of the inequality.
We hence only have to bound terms not satisfying either of these properties.
Assume without loss of generality that sx is odd and tx is 0. Then

1

2
((�1)sx(1� 2�)tx + (1� 2�)sx(�1)tx) =

1

2
((1� 2�)sx � 1);

which, since (1 � 2�)sx � 1 � 2sx�, is a number between 0 and �Æ. Thus the
terms we are interested in gets multiplied by a number of absolute value at most
Æ. Since

P
�;� Â

2
�B̂

2
� = 1 the lemma follows.
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Now consider the following strategies for P1 and P2. P2 chooses a random
� with probability Â2

� and answers with a random y 2 �. P1 chooses a random
W and h and then a random � with probability B̂2

� and then responds with a
random x 2 �(�). If either of the two sets is empty the corresponding prover
gives up. Note that, by Lemma 2.34 each y satis�es the selected clauses and
thus we only have to estimate the probability that yjU = x. This happens with
probability at least

Æ�2�2E[
X

�;�j�(�)\�(�)6=;

Â2
�B̂

2
� ]

where the sum is over sets � and � of size at most Æ��1. The work done so far
can be summarized as follows.

Lemma 7.12 Let Acc be the accept probability of V in the u-parallel two-prover
interactive proof with optimal P1 and P2 then

EU;W 1;W 2;h1;h2;f;g1
1
;g1
2
;g2
1
;g2
2

�
A(g11)A(g

1
2)B(g

2
1)B(g

2
2)
�
�

�

0
@5Æ + Æ2��2Acc+ 2EW 1;h1 [

X
�jÆ��1�j�j�(2Æ�2)1=c��1

Â2
�]

1
A : (58)

Proof: We have seen that the left hand side equals (55). The terms when the
size of both sets are bounded Æ��1 is bounded, by Lemma 7.11 and the prover
strategy given after the lemma, from below by �(Æ+Æ2��2Acc). The case when
either set is of size at least (2Æ�2)1=c��1 is bounded, by Lemma 7.10, in absolute
value by 4Æ. Finally, terms with Æ��1 � j�j � (2Æ�2)1=c��1, are bounded in
absolute value, using

P
� B̂

2
� = 1, by the sum on the right hand side of (58),

and the same bound applies to terms with Æ��1 � j�j � (2Æ�2)1=c��1.

We are now ready to give the test to prove Theorem 7.6.

Test FSSÆ(u)

1. Set t = dÆ�1e, �1 = Æ and �i = Æ1+2=c2�1=c�i�1 for i = 2; 3; : : : t.

2. Choose a random j, 1 � j � t with uniform distribution. Run test
PSS�j (u).

First we note that we have perfect completeness.

Lemma 7.13 The completeness of test FSSÆ(u) is 1.

For the soundness we have the crucial lemma below and this proves Theo-
rem 7.6 by the standard argument. We omit the details.
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Lemma 7.14 If the test FSSÆ(u) accepts with probability (7+112Æ)=8 then there
is a strategy for P1 and P2 in the u-parallel two-prover protocol that makes the
veri�er of that protocol accept with probability 2�O(Æ�1 log Æ�1).

Proof: We have by Lemma 7.9 that when g1 and g2 are taken as in test FSSÆ

then

E[AW;h(g
1
1)AW;h(g

1
2)] � �

1

t

tX
i=1

(3Æ +
X

� j Æ��1i �j�j�(2Æ�2)1=c��1i

Â2
�) �

�(3Æ +
1

t
) � �4Æ

since the summation intervals are disjoint. Using Lemma 7.12 and doing a
similar calculation we conclude that E[A(g11)A(g

1
2)B(g

2
1)B(g

2
2)] is at least

�(5Æ + Æ2��2
t Acc+

2

t
) � �(7Æ + Æ2��2

t Acc):

Since the probability of accept is given by the expectation of (47) and the four
remaining terms can be ignored due to Lemma 7.8, we conclude that

7 + 12Æ

8
�

7 + 4Æ + 7Æ + Æ2��2
t Acc

8
;

from which we conclude that Acc � �2t Æ
�1 and the lemma follows from �j �

Æ�O(Æ�1).

7.1 Implied results for other CSPs

We �rst derive some consequences from the proof of Theorem 7.1.

Theorem 7.15 Let P be a predicate on f�1; 1g4 such that

f(1; 1; 1; 1); (�1;�1;�1;�1)g � P�1(1)

and such that P (x; y; z; w) = �1 for any x; y; z; w satisfying xyzw = �1. Then
the monotone CSP de�ned by P is non-approximable beyond the random assign-
ment threshold.

Proof: By Theorem 7.1 we can assume that P is not the set-splitting predicate,
and we can, since reordering the inputs does not disturb the theorem, assume
that (1; 1;�1;�1) belongs to P�1(1). If P rejects at least 6 inputs it is easy
to check that we can reorder the inputs so that also (�1;�1; 1; 1) belongs to
P�1(1).

Now consider Test SS�(u) with the change that the acceptance criteria is
given by P . Then since

AW 1;h1(g
1
1)AW 1;h1(g

1
2)AW 2;h2(g

2
1)AW 2;h2(g

2
2) = �1
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unless �1 or �2 takes the value �1 on the satisfying assignment we see that the
completeness of the test is at least 1� 2�. We need to analyze the soundness.

As usual we write the acceptance criteria as a multilinear function. We need
some properties of the multilinear expansion of P summarized in the lemma
below. Let Q = 1�P

2 which is 1 if P accepts and 0 if P rejects.

Lemma 7.16 The multilinear expansion of Q(x; y; z; w) has the following prop-
erties:

1. The sum of the coeÆcients of all degree 1 terms is 0.

2. The sum of the coeÆcients of the terms xz, xw, yz and yw is nonpositive.

3. The sum of the coeÆcients of the terms xy and zw is nonpositive.

4. The sum of the coeÆcients of all degree 3 terms is 0.

5. The coeÆcient of xyzw is negative.

Proof: We have

Q(x; y; z; w) = 1�
1

16

X
�2P�1(1)

(1 + �1x)(1 + �2y)(1 + �3z)(1 + �4w):

Now 1. follows from the fact that

X
�2P�1(1)

4X
i=1

�i = 0

and similarly 4. follows from the fact that the sum of all products of triples also
is 0. For 2. we need to study the quadratic form

�(�1 + �2)(�3 + �4)

which takes the value -4 on (1; 1; 1; 1) and (�1;�1;�1;�1), 4 on (1; 1;�1;�1)
and (�1;�1; 1; 1) and 0 on the rest of the possible elements of P�1(1). Clearly
the sum over the actual elements of P�1(1) is nonpositive and 2. follows.

To address 3. we need to study

�(�1�2 + �3�4)

which takes the value �2 on (1; 1; 1; 1), (�1;�1;�1;�1), (1; 1;�1;�1), and
(�1;�1; 1; 1) and 2 on (1;�1; 1;�1), (1;�1;�1; 1), (�1; 1; 1;�1), and (�1; 1;�1; 1).
By our assumption on P we have at least as many elements in P�1(1) of the
former kind as of the latter and hence this sum of coeÆcient is nonpositive.

Finally 5. follows from the fact that �1�2�3�4 = 1 for any element in
P�1(1).
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Let us now return to the analysis of the soundness of the test SS� when P
is used as the acceptance predicate. As discussed above we use the multilinear
extension of Q and we analyze terms collected into terms of the same types.
Since each AW i;hi(g

i
j) has the same distribution independent of i and j, by 1. of

Lemma 7.16 we see that the expected value of all degree one terms of Q give a
total contribution of 0. Similarly, from 4. of the same lemma we see that the
same is true for degree 3 terms.

From 2. of Lemma 7.16 and Lemma 7.4 we see that the mixed terms have
a total contribution that is non-positive and �nally by 3. of Lemma 7.16 and
Lemma 7.5 the same can be said about the other terms of degree 2.

To �nish the proof of Theorem 7.15 we just have to prove that a negative
expected value of large magnitude of the product of all four factors imply a good
strategy for P1 and P2 in the two prover protocol, but this was already done in
the proof of Lemma 7.3.

Note that Theorem 5.6 is a special case of Theorem 7.15 and that the con-
structed PCPs are in fact di�erent and thus we have an alternative proof for
this theorem.

Note also that the condition that both (�1;�1;�1;�1) and (1; 1; 1; 1) be-
long to P�1(1) is necessary since a monotone CSP which does not reject both
(1; 1; 1; 1) and (�1;�1;�1;�1) can trivially be satis�ed by a constant assign-
ment.

Next we turn to studying inapproximability for satis�able instances. Let us
�rst discuss monotone CSPs.

Theorem 7.17 Let P be a predicate on f�1; 1g4 such that

f(1; 1; 1; 1); (�1;�1;�1;�1)g � P�1(1) �

� f(1; 1; 1; 1); (1; 1;�1;�1); (�1;�1; 1; 1); (�1;�1;�1;�1)g:

Then the monotone CSP de�ned by P is non-approximable beyond the random
assignment threshold on satis�able instances.

Proof: The test we apply is FSSÆ(u) with the acceptance criteria that P should
hold for the quadruple (AW 1 ;h1(g

1
1); AW 1;h1(g

1
2); AW 2;h2(g

2
1); AW 2;h2(g

2
2)). It is

not diÆcult to see that the veri�er always accepts a correct proof.
For the soundness note that any P we study is covered by Lemma 7.16. The

analysis of each set of terms is done as in the proof of Theorem 7.15.

If we allow negation we can fold the tables over true and we obtain.

Theorem 7.18 Let P be a predicate on f�1; 1g4 such that

P�1(1) � f(1; 1; 1; 1); (1; 1;�1;�1); (�1;�1; 1; 1); (�1;�1;�1;�1)g:

Then the CSP de�ned by P is non-approximable beyond the random assignment
threshold on satis�able instances.
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Proof: Apply test FSSÆ(u) except that tables are folded over true and that
the �nal acceptance criteria is given by P . It is not diÆcult to check that we
have perfect completeness.

For the soundness we again study the multilinear expression evaluating P .
Folding over true lets us conclude that all terms except A(g11)A(g

1
2), B(g

2
1)B(g

2
2)

and A(g11)A(g
1
2)B(g

2
1)B(g

2
2) have expected value 0. We need just observe that

these three terms appear with negative sign for any of the above P and the rest
of the proof follows similarly to the proof of Theorem 7.6.

8 Results for other problems

We use a general method for converting eÆcient PCPs for NP-problems to lower
bounds for vertex cover and we get.

Theorem 8.1 For any Æ > 0 it is NP-hard to approximate vertex cover within
7=6� Æ.

Proof: This follows from Proposition 11.6 of [9] with f = 2, c = 1 � �, and
s = 1

2 + � and the fact that our PCP which gave the result for Max-E3-Lin-2
used 2 free bits, had completeness 1� � and soundness 1

2 + �. For completeness
we sketch the proof.

Start with test L�2(u). We create a graph (as �rst done in [16]) whose nodes
are given by accepting views of the veri�er. A view is determined by the random
coins ipped by V and the bits read in the proof. If V ips r coins the total
number of nodes is 2r+2 since the third bit read in the proof is determined by
the previous two and the fact that the veri�er should accept. Draw an edge
between two nodes if they are conicting in that the two views examine the
same bit but this bit takes di�erent values in the two nodes. An independent
set in this graph corresponds to a written proof and the size of this independent
set is 2r times the probability that the veri�er accepts this proof. Thus when the
formula ' is satis�able there is an independent set of size 2r(1� �) while when
it is not satis�able the size of any independent set is at most 2r( 12 + �). Since a
set of nodes is a vertex cover i� its complement is an independent set we have
vertex covers of sizes 2r(3+ �) and 2r( 72 � �) in the two cases respectively. This
implies that a (7=6� Æ)-approximation algorithm can, by choosing � suÆciently
small, be used to decide an NP-hard question.

By using the gadgets of [35], the optimal result for Max-E3-Lin-2 also give
improved inapproximability results for a number of other problems.

Theorem 8.2 For any � > 0 it is NP-hard to approximate undirected Max-Cut
within a factor 17=16� �.

Proof: Use the 8-gadget for abc = 1 and the 9-gadget for abc = �1. If there
are more equations of the second type we complement all the variables. The
result follows from a minor extension of Lemma 5.13.
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Theorem 8.3 For any � > 0 it is NP-hard to approximate Max-di-Cut within
13=12� �.

Proof: There is a 6.5-gadget [35] and we can apply Lemma 5.13.

9 Getting nonconstant �

There is nothing that prevents us from using � and Æ that are decreasing as
functions of n in our proofs. The acceptance probability of the constructed
strategy in the two-prover protocol would then also decrease with n. This, in
its turn, implies that to get a contradiction we would need a value of u that is
increasing with n and then the PCP would no longer be of polynomial size. If
we are willing to assume a stronger hypothesis than NP 6= P something can still
be achieved.

Theorem 9.1 Assume NP 6� DTIME(2O(log n log logn)). Then, there is a con-
stant c > 0 such for � = (logn)�c, Max-E3-Lin-2 cannot be approximated within
2� � in polynomial time.

Proof: Let c0 be a constant to be determined. We apply the proof of Theo-
rem 5.4 with � = Æ = (log n)�c

0

and u = dc0 log logn for some absolute constant
d chosen such that cuc < 2Æ3, where cc is the constant from Lemma 3.2. We get
that unless ' is satis�able, the maximal acceptance probability in the PCP is
(1 + Æ)=2 while if ' is satis�able this acceptance probability of a correct proof
is (1� �).

Translating this to a linear system of equations we get a system in

mu22
3u

+ nu22
u

variables with at most
mu22

3u+1

nu22
u

equations such that determining the number of simultaneously satis�able equa-
tions within a factor

2(1� �)

1 + Æ
= 2�O((logn)c

0

)

is NP-hard. Note that size of the system is, for a suitably small constant c0,
bounded by 2O(logn log logn).

Assume that there is an approximation algorithm running in polynomial time
and having performance ratio 2� (logn)c

0=2. Note that both performance ratio
and running time are with respect to the size of the linear system constructed
and not the original n used above. If N is the size of the system of linear
equations described above, logN 2 o(logn)2 the hence assumed approximation
algorithm would be able to tell whether the original formula is satis�able. The
running time would be

NO(1) = 2O(logn log log n):

The theorem follows.
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The proof of Theorem 6.2 has as good constants at that of Theorem 5.4 and
hence we have

Theorem 9.2 Assume NP6� DTIME(2O(logn log logn)). Then, there is a con-
stant c > 0 such for � = (log n)�c, satis�able E4-Sat formulas cannot be dis-
tinguished from those where only a fraction (15 + �)=16 of the clauses can be
satis�ed in polynomial time.

We omit the proof since the modi�cations needed over previous proofs are
the same as those described in the proof of Theorem 9.1.

The situation for Theorem 6.5 is di�erent in that the obtained acceptance
probability in the two-prover game is much smaller as a function of Æ.

Theorem 9.3 Assume NP 6� DTIME(2O(log n log logn)). There is a constant
c > 0 such for

� =
c log log logn

log logn
;

satis�able E3-CNF formulas cannot be distinguished from E3-CNF formulas
where only a fraction 7=8+ � of the clauses can be satis�ed in polynomial time.

Proof: Choose u = c log logn and

Æ =
c0 log log logn

log logn
;

in FSSÆ(u) for constants c and c0 to be determined. By Lemma 6.13 the success

probability of P1 and P2 by the de�ned strategy is 2�O(Æ�1 log Æ�1). The sound-
ness of the two-prover protocol is cuc and hence for any c there is a large enough
c0, that makes this smaller than the success-rate of the obtained strategy. Since
the size of the obtained 3SAT formula is, for small enough c, 2O(logn log logn)

a similar argument to that given in the proof of Theorem 9.1 establishes the
theorem.

Clearly we can study the extension to non-constant � for all the problems
we have encountered. Since the proofs are very similar this is a rather tedious
exercise and we only state the result.

Theorem 5.5, Theorem 5.6, Theorem 5.9, Theorem 5.14, Theorem 5.15, The-
orem 5.16, Theorem 6.1, Theorem 6.2, Theorem 6.14, Theorem 6.16, Theo-
rem 6.17, Theorem 7.1, Theorem 8.1, Theorem 8.2, and Theorem 8.3 extend
along the lines of Theorem 9.1 with � = (logn)�c

0

and the assumption that NP
6� DTIME(2O(logn log logn)).

Theorem 6.15, Theorem 6.18, Theorem 7.6, Theorem 7.17, and Theorem 7.18
extend along the lines of Theorem 9.3 with � = (c0 log log logn)(log logn)�1 and
the same assumption.
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10 Concluding remarks

The technique of using Fourier transforms to analyze PCPs based on the long
code seems very strong (see also [23]). It does not, however, seem universal
even limited to CSPs. In particular, an open question that remains is to the
decide whether the predicate 'not two' is non-approximable beyond the random
assignment threshold on satis�able instances. This question is a special case of
the more general program of trying to understand exactly which CSPs are non-
approximable beyond the random assignment threshold. For predicates on three
variables the situation is completely resolved by the paper of Zwick [36]. The
result is that all predicates implied by a linear constraint are non-approximable
beyond the random assignment threshold (as also proved in Theorem 5.15).

For predicates on four variables the situation is less clear and apart from the
information in this paper we refer to the paper by Guruswami et al. [21]. We
have, at this stage, not made an attempt to systematize the information, but
this would clearly be a worthwhile e�ort.

It seems like predicates on two variables are not non-approximable beyond
the random assignment threshold. In the Boolean case this follows from the
approximation results obtained by semide�nite programming [20]. Over other
ranges, less is known, but in the case of linear constrains, nontrivial approxima-
tion is obtained by Andersson et al. [2].
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A Proof of Lemma 6.9

Assume without loss of generality that W is generated by clauses (Ci)
u
i=1 where

Ci contains the variables x3i�2, x3i�1, and x3i. We think of selecting U as a
process where at stage j we decide which variable from Cj to include into U .
We denote the j'th chosen variable by kj and thus kj 2 f3j � 2; 3j � 1; 3jg.

The elements of � are during this process naturally divided into groups
de�ned by their values on the variables put into U at a given point. More
formally, we let Gj

x, where x 2 f�1; 1g
j, be the set of elements y 2 � such that

yki = xi for i = 1; 2; : : : j. Two elements in the same group Gj
x might eventually

turn out to have di�erent projections onto U due to the fact that they take
di�erent values on later coordinates being put into U .

For each Gj
x we have a weight W (Gj

x) de�ned as follows. As long as Gj
x

contains at least ��1 elements with di�erent projections onto the coordinates
that has not yet been decided whether they will be put into U we set W (Gj

x) =
(�djx)

c where djx is the number of such di�erent projections. If the number of
di�erent projections is smaller than ��1 we de�ne W (Gj

x) to be the minimum
of 1 and �sjx where s

j
x is the total number of elements (with or without di�erent

projections) in Gj
x. At times in our calculations when we are uncertain if a

certain group has ��1 distinct projections we use the latter de�nition of W (G).
This results in a lower weight since the �rst de�nition gives a value that is at
least 1 and the second a value is at most 1.

We study the quantity

F j =

0
@ X
x2f�1;1gj

W (Gj
x)

1
A
�1
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and we prove that

E[F j+1jF j ] � F j (59)

for each j. Since F 0 = (�j�j)�c and F u = SU� (�)
�1 the lemma follows from

(59).
Let Xj = (F j)�1. Our method to prove (59) is to introduce a random

variable Y j which is coupled with Xj , such that Y j � Xj is always true and
furthermore we establish that E[(Y j+1)�1jF j ] � F j .

For a string x of length j let x+ and x� be the two strings of length j + 1
obtained from concatenating x with 1 and �1 respectively. We want to analyze
W (Gj+1

x+ ) and W (Gj+1
x� ) in terms of W (Gj

x).
The elements of Gj

x naturally fall into 8 classes, Dj
x;�, where � 2 f�1; 1g3

gives the values of a particular element on the variables (x3j+1; x3j+2; x3j+3).

Once kj+1 is chosen it determines which classes formGj+1
x+ and which form Gj+1

x� .

As an example if x3j+2 is chosen thenG
j+1
x+ is the union ofDj

x;111,D
j
x;11�1,D

j
x;�111,

and Dj
x;�11�1, while G

j+1
x� is Gj

x n G
j+1
x+ . Let djx;� be the number distinct pro-

jections in Dj
x;�. We have

djx =
X
�

djx;�:

Obviously
dj+1
x+ � max

�
djx;�;

where the maximum ranges over all � used to form Gj+1
x+ and a similar inequality

holds for dj+1
x� .

The interesting case is when Gj
x has at least ��1 di�erent projections since

otherwise
W (Gj

x) �W (Gj+1
x+ ) +W (Gj+1

x� )

and such groups add at least as much to Xj+1 as to Xj . Since, by convexity,
E[ 1X ] � 1

a implies E[ 1
X+b ] �

1
a+b for a positive random variable X and positive

numbers a and b, we can simply ignore these terms.
Suppose, without loss of generality, that Dj

x;111 is the largest of the 8 groups.

We have two cases depending on whether djx;111 � ��1. Suppose �rst that

djx;111 � ��1. For notational simplicity let d denote �djx and let d0 be the size of
the second largest group multiplied by �.

We analyze what happens to the two largest groups. We say that these two
classes are separated i� one becomes part of Gj+1

x+ and the other becomes part

of Gj+1
x� . De�ne a random variable Y j+1

x by

� If the two largest classes are not separated, then Y j+1
x equals max(1; (d�

7d0)c) if d0 � d=8 and max(1; (d=8)c) otherwise.

� If the two largest classes are separated, then Y j+1
x equals max(1; (d �

7d0)c) + W (d0) if d0 � d=8, max(1; (d=8)c) + W (d=8) otherwise. Here
W (d0) = d0

c
for d0 � 1 and W (d0) = d0 otherwise.
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In the case when djx;111 < ��1 we de�ne d00 = min(d � 1; d0; 1) and de�ne

Y j+1
x as follows

� If the two largest classes are not separated, then Y j+1
x equals 1.

� If the two largest classes are separated, then Y j+1
x equals 1 + d00.

Finally we set Y j+1 =
P

x Y
j+1
x . We claim that Xj+1 � Y j+1 and this follows

from

Y j+1
x �W (Gj+1

x+ ) +W (Gj+1
x� ): (60)

To see (60) when djx;111 � ��1 note that the group to which Dj
x;111 joins has a

number of distinct elements which is at least the maximum of ��1, ��1(d� 7d0)
and ��1d0. Furthermore, in the case the two largest classes are separated, the
number of distinct element (and hence also the number of elements) in the group
in which the second largest class ends up is of size at least ��1d0.

When djx;111 < ��1, then since sj+1
x+ +sj+1

x� = d��1, if min(sj+1
x+ ; sj+1

x� ) = Æ��1

then W (Gj+1
x+ )+W (Gj+1

x� ) � 1+min(Æ; d� 1). Both cases follow from this fact.
In the �rst case we have Æ = 0 and in the second we use Æ � d0.

We now establish that E[1=Y j+1jFj ] � F j . Let wx be the value of Y j+1
x if

the two large groups are not separated and let wx + bx be the value if they are
separated. We have X

x

wx � Y j+1 �
X
x

(wx + bx); (61)

and since any two classes are separated with probability at least 1/3 we also
have

E[Y j+1] �
X
x

(wx +
1

3
bx): (62)

Since the function f(z) = 1=z is concave and decreasing the random variable Z
that satis�es (61) and (62) and which gives the largest value of E[1=Z] is the one
which takes the value

P
x wx which probability 2=3 and the value

P
x(wx + bx)

with probability 1=3. We conclude that

E[1=Y j+1jFj ] �
2

3

 X
x

wx

!�1

+
1

3

 X
x

(wx + bx)

!�1

:

Since
P

x bx �
P

xwx (in fact bx � wx for every x) and

2

3

1

w
+
1

3

1

w + b
�

1

w + b=5

for any 0 � b � w we conclude that

E[1=Y j+1jFj ] �

 X
x

(wx + bx=5)

!�1

: (63)
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Finally, we claim that wx + bx=5 � W (Gj
x), for any x. To establish this let us

go over all possible cases.
If dj111;x � ��1 and d0 < 1 then we need to establish

max(1; (d� 7d0)c) + d0=5 � dc:

Since the derivative of wc is bounded by c when w > 1 this is true provided
c � 1

35 .

If dj111;x � ��1 and d0 � 1 then we can assume that d0 � d=8 since d0 > d=8
is equivalent to d0 = d=8. We need to establish

max(1; (d� 7d0)c) + d0c=5 � dc:

To see this note that if f(x) = (d� 7x)c + xc=5� dc then, assuming 0 < c < 1,
f
00

(t) � 0 in the entire interval and hence to check that f is nonnegative in the
interval we only have to check this property at the end-points. Clearly f(0) = 0
and

f(d=8) =
6

5
(d=8)c � dc = dc(

6

5
2�3c � 1):

This last number is nonnegative for 0 < c � 1
3 log2(6=5) and hence for c � 1

35 .

Finally when dj111;x < ��1 then we need to establish that

1 + d00=5 � dc:

Now d0 � (d � 1)=7 and since the derivative of dc is bounded by c when d � 1
the inequality is true as long as c � 1

35 .
We conclude that (63) is bounded from above by

 X
x

W (Gj
x)

!�1

= Fj ;

and the proof of the lemma is complete.
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