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Abstract

We consider the following NP optimization prob-
lem: Given a set of polynomials Pi(x), i = 1 : : : s
of degree at most 2 over GF [p] in n variables,
�nd a root common to as many as possible of
the polynomials Pi(x). We prove that in the
case when the polynomials do not contain any
squares as monomials, it is always possible to

approximate this problem within a factor of p2

p�1
in polynomial time for �xed p. This follows from
the stronger statement that one can, in polyno-
mial time, �nd an assignment that satis�es at
least p�1

p2
of the nontrivial equations.

More interestingly, we prove that approxi-
mating the maximal number of polynomials with
a common root to within a factor of p� � is NP-
hard. This implies that the ratio between the
performance of the approximation algorithm and
the impossibility result is essentially p

p�1 which
can be made arbitrarily close to 1 by choosing p
large.

We also prove that for any constant � < 1, it
is NP-hard to approximate the solution of quadratic
equations over the rational numbers, or over the
reals, within n�.
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1 Introduction

Recently, there has been substantial progress [9,
2, 4, 3, 13, 11, 6] in showing that the approxi-
mation of various NP optimization problems is
NP-hard. At the heart of these results stands a
new characterization of the class NP as all lan-
guages whose membership proofs can be veri�ed
probabilistically, reading only a few bits of the
membership proof, and using a small number of
random bits. The proof of that characterization
uses quite powerful techniques and is rather com-
plicated. As yet we do not know of a simple proof
for that characterization, or of a di�erent proof
for the hardness of these approximation prob-
lems. Finding a simpler proof for that charac-
terization would be meaningful progress, possi-
bly yielding other results, such as closing the gap
between the factors of approximation known to
be tractable and those known to be NP-hard.

This note studies an optimization problem,
related to problems studied in the above-mentioned
work, whose approximability can be determined
using fairly simple techniques. The problem is:
given a set of degree 2 equations over a �nite �eld
of size p, where p is a small prime, determine the
maximal number of equations that can be satis-
�ed by a single setting of the variables. For the
case where the polynomials contain no squares
we �rst prove that this number can be approxi-

mated to within a factor p2

p�1 in polynomial time.
This is established by showing that for any set of
nontrivial equations it is always possible to �nd
in polynomial time an assignment that satis�es
a fraction at least 1

p
� 1

p2
of the equations.

On the other hand, we show that approxi-
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mating the maximal number of polynomials sat-
is�able concurrently to within a factor of p� � is
NP-hard. In fact we prove slightly more, namely
that it is NP-hard to determine whether it is pos-
sible to satisfy all equations simultaneously or
only a fraction 1

p
+ �.

The bounds imply that the gap between the
factor to which our problem can be approximated
and the factor for which it is NP-hard to approx-
imate is essentially p

p�1 which can be made as
close to 1 as desired by choosing p large.

Nonapproximability results for sets of poly-
nomial equations over the rational numbers have
been obtained by Bellare and Petrank [12], and
more general nonlinear optimization has been
studied by Bellare and Rogaway [7]. However,
in both these cases, the nonapproximability re-
sults use the complicated techniques originating
from interactive proofs. We strengthen the re-
sults of Bellare and Petrank and show, without
using any complicated techniques, that when the
�eld in question is the rational numbers or the
real numbers, then our problem cannot be ap-
proximated within n� in polynomial time, for any
constant � < 1.

An outline of the paper is the following: In
Section 2 we state our problem formally. We
prove our positive results in Section 3 and the
negative results in Sections 4 and 5, and end with
some remarks.

2 The problem

Let p be a �xed prime. We consider the problem
in which we are given a set of polynomial equa-
tions of degree at most 2 in n unknowns over
GF [p],

Pi(x) = 0; i = 1; 2 : : : s:

We assume that none of the polynomials contains
any monomial x2i and that none of the polynomi-
als is a constant. We want to �nd an assignment
to the variables which satisfy as many as possible
of the equations. Let us call the problem QSp,
where QS stands for quadratic solvability.

Remark: Disallowing constant polynomials is
just a matter of de�nition, while not allowing
any square terms is a restriction.

3 The approximation algorithm

In this section we prove

Theorem 3.1 Given an instance of QSp with s
equations we can in polynomial time �nd an x
which satis�es at least

(p�1)s
p2

of the equations.

Proof: We will assign the variables one by one.
In the process we will keep a potential of the left
hand side of the equations nondecreasing. The
potential of a nonconstant polynomial of degree
2 is (p � 1)p�2, the potential of a nonconstant
linear polynomial is p�1, while the potential of
the constant 0 is 1 and the potential of other
constants is 0. This potential corresponds to a
lower bound on the fraction of inputs that sat-
isfy the equation. Our algorithm tries to �nd an
assignment which satis�es as least the same num-
ber of equations as a random assignment does on
the average. The potential is used to guide this
search.

When assigning a variable xi we evaluate the
potential of the p possibilities (i.e. setting xi = a
for a 2 f0; 1; : : : p�1g) and make the assignment
which gives the largest potential. We need to
check that the potential will never decrease using
this procedure. We do this by proving that the
average of the potential of the p possibilities is at
least the potential before xi is assigned a value.

The only way the potential of an equation
can go down is when it transforms into a nonzero
constant. Suppose the assignment xi = 0 trans-
forms Pj to the constant 1. There are two cases,
either the original equation was of degree two
or of degree one. The second case is easy since
if Pj is nontrivial linear, some other assignment
of xi will give Pj = 0. This means that out of
p assignments, one will give potential 1 (and all
others will give 0) and thus the average potential
remains the same.

If Pj was of degree two then it must be of
the form xiL(x) + 1. Here L(x) is a nontrivial
linear polynomial which does not contain xi and
hence any other assignment than xi = 0 will give
a nontrivial linear function. Thus in this case we
get the potential p�1 in p�1 cases and thus also
in the average potential remains the same.

Because the average potential of the p alter-
natives is at least the original potential, picking
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the maximum will ensure that the potential is
always greater than or equal to its initial value.
The potential is initially at least s(p�1)p�2 and
hence the �nal assignment must satisfy at least
s(p� 1)p�2 equations.

Remark The problem with allowing square terms
is clear in this proof since equations of the form
x2i + c = 0 might not allow any solutions.

4 Impossibility of good approx-

imations

In this section we prove the following theorem:

Theorem 4.1 If QSp can be approximated within

a factor of p� � in polynomial time where � is at
least an inverse polynomial, then P = NP .

We will �rst prove that it is NP-complete to
determine if we can satisfy all equations.

Theorem 4.2 Given an instance of QSp it is

NP-complete to determine whether it is possible

to satisfy all equations simultaneously.

Proof: This problem (for GF [2]) appears as
AN9 on page 251 in Garey & Johnson [10]; the
variant we consider here is attributed to Valiant
as personal communication. For completeness,
we give the proof. We reduce from SAT. Given
an instance ' of SAT that contains the variables
x1; x2; : : : xn. First we make a straight line pro-
gram that computes '(x) leaving x1; x2; : : : xn as
free variables. We can assume that this program
uses the variables xn+1; xn+2 : : : xm and that each
instruction is of the form xi = xj ^ xk with
i > j > k or xi = :xj with i > j.

Now form a set of equations using xi�xjxk =
0 in the �rst case and xi+xj�1 = 0 in the second.
Finally add the equation xm�1 = 0. If p = 2, to
satisfy all these equations one must clearly �nd
an instance that satis�es '. When p > 2 there
is the added problem that xi might take values
that are not 0 or 1. This is dealt with by making
sure that xi(1� xi) = 0. We do not want to add
any equations not of the proper form and hence
we add variables zi and the equations zi = xi
and xi(1 � zi) = 0. Now clearly any assignment

that satis�es this system of equations contains a
subassignment that satis�es '.

The polynomials obtained are of a very spe-
cial form. For instance no equation contains more
than three variables. This does not, however,
matter for the proof of Theorem 4.1. We will
refer to the problem of satisfying all equations
considered in Theorem 4.2 as the exact problem.

Let us now proceed to establish Theorem 4.1.
Suppose we have an instance of the exact prob-
lem given by Qi, i = 1; 2 : : : s. Now suppose we
have a set A of vectors in GF [p]s which have
the property that for any nonzero vector t in
GF [p]s the number of vectors a in A such thatPs

i=1 aiti = 0 is at most (1
p
+ �

p2
)jAj. The con-

struction of such a set A has been considered
in the case p = 2 by [14, 1] and the more gen-
eral case has been studied in [1, 5, 8]. Using
these constructions it is possible to choose an
explicit and easy to construct such set A of size
O(p4s2��2). Suppose this set contains the vec-
tors a(i), i = 1; 2 : : : r. Consider the system of
equations

sX

j=1

a
(i)
j Qj(x) = 0 i = 1; 2 : : : r

where the summation is in GF [p]. If the original
system was satis�able, it is possible to satisfy all
r equations using the same assignment. On the
other hand if the system was not satis�able, by
the above property for the set A, no assignment
will satisfy more than (1

p
+ �

p2
)r equations. This

implies that if there is an approximation algo-
rithm satisfying the assumption of Theorem 4.1,
then this can be used to solve an NP-complete
problem in polynomial time and thus the proof
is complete.

5 Approximating quadratic equa-

tions over the rationals and

reals

In this section we generalize the negative results
of Section 4 to the real �eld R and the rational
�eld Q.

Page 3



For a �eld F , let us denote by QSF the fol-
lowing problem: given a set of polynomial equa-
tions of degree 2 over F , determine the maximum
number of equations that can be simultaneously
satis�ed. Below we use n to denote the total
number of nonzero coe�cients in all the equa-
tions.

Theorem 5.1 Let F = R or F = Q. Then, for
any constant � < 1, it is NP -hard to approxi-

mate QSF within a factor of n�.

Proof: We �rst note that the proof of The-
orem 4.2 shows that the exact problem is NP -
hard, regardless of the �eld. Starting from the
system of quadratic equations over F used in
Theorem 4.2, we construct a new quadratic sys-
tem by taking many linear combinations of the
original quadratic equations. We could derive
nonapproximability within n� for � < 1=2 by de-
termining the coe�cients of the linear combina-
tions as in Theorem 4.1. (Indeed, nonapproxima-
bility within any constant factor smaller than 2
can be derived using the �eld GF (2)). However,
we obtain the stronger result by de�ning the co-
e�cients as follows.

Let S be the set of equations used in the proof
of Theorem 4.2, and let s = jSj. We start by
selecting a prime p so that p=s � (ps)�. Let B
be the p � s matrix over GF [p] whose (i; j)'th
entry bi;j satis�es bi;j = ij(mod p). B de�nes a
set of equations, where equation i is obtained by
multiplying each equation j from S by ij(mod p),
and summing. Note that for this set of equations,
we have n = O(ps).

Any assignment that does not satisfy all equa-
tions in S can only satisfy at most s of the new
equations, since for equation i to be satis�ed, i
needs to satisfy a nontrivial equation mod p of
degree at most s.

To complete the proof and show hardness of
approximating within p=s = 
(n�), we need to
show that for any non-zero real or rational vector
y 2 Rs, representing the value of the quadratic
system under some assignment to the variable
vector x, the vector By has at most s zero entries.

Let y 2 Fs, y 6= 0. Consider the following

linear system in variables z1; : : : ; zs:

sX

j=1

aijzj = 0 for i where
Ps

j=1 a
i
jyj = 0

sX

j=1

aijzj > 0 for i where
Ps

j=1 a
i
jyj > 0

sX

j=1

aijzj < 0 for i where
Ps

j=1 a
i
jyj < 0

Clearly, in case F = Q this system has a rational
solution, but this holds also for F = R (since a
solution in reals, to a linear system, implies one
in rationals). Let us denote the rational solution
by w. Let l be the lcm of the integers appearing
as denominators in w. Let w0 = lw, so w0 is
an integer vector which also satis�es the above
linear system. Let g be the gcd of the integers
appearing in w0, and set w00 = w0=g. Then, w00

is an integer vector that is not divisible by p.
Lastly reduce each entry of w00 modulo p, to get
a non-zero vector w000 2 GF [p]s, for which Bw000

(where operations are over GF [p]) has at least as
many zeroes as By, and hence By has at most s
zero entries.

6 Conclusions

We have studied a fairly natural approximation
problem and without any sophisticated techniques
we have proved that this problem can be approx-

imated within a factor of p2

p�1 but not within a
factor signi�cantly smaller than p.

It is not clear to us how this ties in with ex-
isting results. The problem does not seem to be
in MAXSNP. One might hope that the technique
used for the lower bound might be useful in ob-
taining strong results for more central problems.
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