
Every 2-CSP allows nontrivial
approximation

Johan Håstad

Royal Institute of Technology

Stockholm, SWEDEN



Constraint satisfaction problems
(CSP)

Constraints, (Ci)
m
i=1, each acting on a con-

stant number of variables taking values in

[d] = 0,1 . . . d− 1.

3-Sat: (x1 ∨ x̄7 ∨ x26)

Equations mod p: 2x7 + 4x9 ≡ 4 mod 11.



Max-CSP problem

Given a set of constraints, find the assign-

ment that satisfies the maximum number of

constraints.

Almost always NP-hard. Want an efficient

C-approximation algorithm.

Find x0 such that

V alue(x0) ≥ C ·OPT



The “random” algorithm

The mindless approach:

Assign uniformly random values to the vari-

ables ignoring the constraints and see what

we get.

Repeat a few times and take best solution

(helps in practice, not in theory).



Approximation ratio of random
algorithm

OPT is at most m, i.e. all constraints satis-

fied. We get approximation ratios

7/8, for 3-Sat

3/4 for 2-Sat

1/p for linear equations mod p

Each constraint is satisfied with the given

probability.



Can we improve the
approximation ratio?

Gut instinct: We must be able to do better!

Yes: 2-Sat [GW], linear equations with two

variables in each equation [AEH].

No: (NP-hard to get additive ε > 0): 3-Sat,

linear equations with three variables in each

equation [H].



Approximation resistance

Problems for which it is NP-hard to do better

than random I call approximation resistant.

Efficient algorithms cannot do anything use-

ful.

Unless we are willing to spend exponential

time we might as well close our eyes as look-

ing at the formula does not help.



Our main result

Theorem: (informal) Constraints that de-

pend on only two variables are not approxi-

mation resistant.

Theorem: Suppose each Ci depends on two

variables with range [d] and rejects t out of

the d2 inputs. Then for some universal c >

0 we can, in randomized polynomial time,

approximate the CSP within a factor

1− t

d2

(
1− c

d2 log d

)
.



Rest of talk

Review history.

Describe ideas needed to prove theorem.



Boolean constraints of width 2

Classical problems:

Max-Cut: Given a graph G partition the ver-

tices into two sets to cut the maximum num-

ber of vertices.

Really CSP with d = 2, one variable xi for

each node, xi �= xj for each edge (i, j).

Max-2Sat: (xi ∨ x̄j).



Key technique

Semi-Definite Programming (SDP) introduced

by Goemans and Williamson. Relax the com-

binatorial problem to optimizing a linear func-

tion over matrices that are positive semi-

definite.

An SDP can be solved in polynomial time to

arbitrary accuracy [A].



Max-Cut by SDP

We want to find

max
x∈{−1,1}n

∑
(i,j)∈E

1− xixj
2

Relax to

max
Y

∑
(i,j)∈E

1− yij
2

matrix Y , PSD, symmetric, and yii = 1.

As Y = V TV this can be viewed as

max
∀i‖vi‖=1

∑
(i,j)∈E

1− (vi, vj)

2
.

A vector valued solution!



SDP vs Boolean Max-Cut

Boolean solution is a special case of SDP

with one-dimensional vectors.

[GW] round a SDP-solution to Boolean by

setting

xi = sign((r, vi))

for a random vector r. Each component in-

dependently picked from N(0,1).



Analysis Max-Cut

[GW] make an analysis term-wise

∀vi,vj
E[1− xixj]
1− (vi, vj)

≥ .87

giving the Goemans-Williamson constant α.



Max-2Sat by SDP

Again use ±1 for Boolean values.

xi ∨ x̄j ⇒
3 + xi − xj + xixj

4

Introduce x0 ≡ 1 and replace xi by x0xi to

make bilinear.

More terms and complications.

Basic rounding

xi = 1 if sign((r, vi)) = sign((r, v0)).



Algorithms for d > 2

Better than random for

Max-d-Cut [FJ].

Linear equations mod d [AEH].

Uniform constraints [EG].

Uniform: For each value of one variable equally

many accepted values of the other.



Techniques used

Semi-Definite Programming. Code one value

in [d] as one or more vectors. Engebretsen

and Guruswami and we use

xi ↔ v0i , v
1
i . . . v

d−1
i

Boolean to vector: If xi = a set vai = v0 and

va
′
i = 0, a �= a′.

Write objective function as sum of inner prod-

ucts.

Uniformity of constraints implies that we only

get natural bilinear terms, good for [EG] anal-

ysis.



The idea of rounding

Pick a random vector r with coordinates from

N(0,1) and set xi to value a with a probability
1
d + (r, vai − 1

dv0)/D.

Works poorly for linear terms but nicely for

bilinear terms as

E((r, vai )(r, v
b
j)) = (vai , v

b
j).



Analysis

Returning to Max-2Sat to avoid notation.

Two cases for formula:

• Balanced: xi and x̄i appears equally of-

ten.

• Unbalanced: For each i, xi has a pre-

ferred value.

Ignore intermediate cases.



Unbalanced case

Naively: Set xi to favorite value. Does not

work.

Better: Flip xi with a bias towards favorite

value. Works for suitable bias.



Balanced case

Drop all linear terms. They cancel anyway.

(xi ∨ x̄j) ⇔ 3− xixj
4

Do local analysis on these terms. Gives a

much better ratio!



Returning to range [d]

In the unbalanced case we can find a biased

rounding that gives an advantage over ran-

dom.

In the balanced case, as can be guessed from

[EG], essentially their rounding works to beat

random.

One of the two techniques always applies.



Always getting something

As stated the algorithm only finds something

better than random for almost satisfiable in-

stances.

As proposed by [HS] it makes sense to study

by how much we outperform random

value′(x0) = value(x0)− E[value(x)]



General theorem

Theorem Suppose each Ci, 1 ≤ i ≤ m de-

pends on two variables with range [d] and

rejects t out of the d2 inputs and that the

optimal solution satisfies

(
1− t

d2
+ ε

)
m

constraints. Then, for some universal c > 0,

we can, in randomized polynomial time, find

an assignment that satisfies

(
1− t

d2
+

cε

d2 log (d/ε)

)
m

constraints.



Summary

Semi-definite programming is universal for con-

straints depending on two variables for any

fixed range.

Key new idea: A global view of the the lin-

ear terms. Then more or less standard local

analysis.



Open question

For Max-2Sat: Is the balanced case the hard-

est?


