
Statistical Zero-Knowledge Languages Can Be Recognized in Two Rounds

William Aiello* Johan Hastad**

Applied Math Department and Laboratory of

Computer Science, MIT

Abstract: Recently, a hierarchy of probabilistic complexity classes generalizing NP has emerged

in the work of Babai [B], and Goldwasser, Micali, and Racko� [GMR1], and Goldwasser and Sipser

[GS]. The class IP is de�ned through the computational model of an interactive prover-veri�er

pair. Both Turing machines in a pair receive a common input and exchange messages. Every move

of the veri�er as well as its �nal determination of whether to accept or reject w are the result of

random polynomial time computations on the input and all messages sent so far. The prover has

no resource bounds. A language, L, is in IP if there is a prover-veri�er pair such that: 1.) when

w 2 L, the veri�er accepts with probability at least 1 � 2�jwj and, 2.) when w 62 L, the veri�er

interacting with any prover accepts with probability at most 2�jwj. Such a prover-veri�er pair is

called an interactive proof for L.

In addition to de�ning interactive proofs, Goldwasser, Micali, and Racko� [GMR1] further

de�ned zero-knowledge interactive proofs. Informally, an interacting pair is a zero-knowledge proof

for a language, L, if it is an interactive proof for L with the additional constraint that the prover

reveals \nothing" (except language membership) to any veri�er that the veri�er could not have

computed itself. There are three formal de�nitions for \nothing" which lead to three types of

zero-knowledge: perfect, statistical, and computational, each more restrictive than the next.

We show that the �rst and second de�nitions are very restrictive. Speci�cally, any language, L,

that has a statistical zero-knowledge interactive proof with an unbounded number of interactions

has an interactive proof with two interactions. This complements a result by Fortnow [F] who

showed that under the same hypothesis, the complement of L has an interactive proof with two

interactions.

Warning: Essentially this paper has been published in Journal of Computer and Sys-

tem Sciences and is hence subject to copyright restrictions. It is for personal use

only.

1. Introduction

The class NP has traditionally been recognized to capture the notion of e�cient provability,

containing those languages for which there exist polynomial length proofs of membership which

can be veri�ed in polynomial time. Recently, a hierarchy of probabilistic complexity classes gener-

alizing this notion of e�cient provability has emerged in the work of Babai [B], and Goldwasser,

Micali, and Racko� [GMR1], and Goldwasser and Sipser [GS]. The class IP is de�ned through the

* Supported by an ONR fellowship and partially supported by NSF grant DCR-8509905.
** Supported by an IBM Post Doctoral Fellowship and partially supported by Air Force Contract

AFOSR-86-0078. Currently at the Royal Institute of Technology.

1

computational model of an interactive prover-veri�er pair. Both Turing machines in a pair receive

a common input, w, and exchange up to a polynomial in jwj number of messages, each of which

has length at most a polynomial in jwj. The veri�er's moves and its �nal determination of whether

to accept or reject w result from random polynomial time computations on w and all messages

sent so far. The prover has no resource bounds. A language, L, is in IP [f(n)] if there exists an

interactive prover-veri�er pair that on input w exchanges at most f(jwj) messages such that: 1.)

when w 2 L, the veri�er interacting with the prover accepts with probability at least 1�2�jwj and,
2.) when w 62 L, the veri�er interacting with any prover accepts with probability at most 2�jwj.
Such a prover-veri�er pair is called an interactive proof for L. Let IP = [kIP [nk]. Just as in the

case when L 2 NP , when L 2 IP , membership in L is e�ciently veri�able since the veri�er runs in

polynomial time and determines membership correctly with probability very close to one. However,

IP is thought to strictly contain NP since several languages which have resisted all attempts to be

placed in NP have been shown to be in IP , for example, Graph Non-Isomorphism [GMW], Matrix

Group Non-Membership, and Matrix Group Order [B].

In addition to de�ning interactive proofs, Goldwasser, Micali, and Racko� [GMR1] further

de�ned zero-knowledge interactive proofs. The zero-knowledge de�nition was motivated by crypto-

graphic considerations. (For motivation and applications of zero-knowledge see for example [GMR2]

and [GMW].) Informally, a prover is zero-knowledge for a language if the prover reveals no useful

information (other than language membership) when interacting with any veri�er. Slightly more

formally, a prover is zero-knowledge for L if for any veri�er there is a probabilistic polynomial

time simulator that, on inputs in L, produces conversations with the \same" probability distribu-

tion as the prover interacting with that veri�er. Actually, three interpretations of \same" lead to

three types of zero-knowledge, each more restrictive than the next. When \same" is informally

interpreted as: 1.) identical, 2.) almost identical, or 3.) equivalent with respect to probabilistic

polynomial time, then the prover is said to be perfect zero-knowledge, statistical zero-knowledge,

or computational zero-knowledge for L, respectively. A language, L, is in PZK (SZK, CZK) if

there is an interacting prover-veri�er pair which is a interactive proof for L with the additional

property that the prover is perfect (statistical, computational) zero-knowledge for L.

Requiring that, for inputs in the language, the conversations between the prover and every

veri�er be accurately reproducible by some random polynomial time machine would seem to be a

severe constraint on the power of the prover and hence the power of the zero-knowledge model.

Surprisingly, for computational zero-knowledge this is probably not the case. Through the work

of [GMW], [BGGHKMR], [IY] it has been shown that, assuming secure encryption exists, any

interactive proof can be transformed into a computational zero-knowledge proof, i.e., CZK = IP .

Fortnow [F] was the �rst to provide evidence that the statistical zero-knowledge requirement

may restrict the power of the prover. He proved that if a language has a statistical zero-knowledge

proof, then the complement of the language has a bounded round interactive proof, i.e., SZK � co-

IP [2]. From this theorem we can deduce that it is unlikely that SZK contains all of NP since

if NP � SZK then co-NP � IP [2], which further implies that the polynomial time hierarchy

collapses to IP [2] by [BHZ]. This is especially interesting because it implies that membership in

SZK can be taken as evidence that a language is not NP complete. A particularly important

example of this is Graph Isomorphism, which was shown to be in SZK by [GMW].

While Fortnow's result did imply that SZK is probably weaker than IP (IP contains NP

whereas SZK probably does not), it still left open the possibility that SZK contained languages

2

in IP which required a polynomial number of interactions. In this paper we show that this cannot

be the case. We prove that any language which is recognized by an unbounded round statistical

zero-knowledge proof can also be recognized by a two round interactive proof, i.e., SZK � IP [2].

Hence, under the assumption that IP 6= IP [2], the statistical zero-knowledge condition on the

prover severely restricts the power of unbounded round interactive proofs. Our result does not

depend on any unproven cryptographic assumptions.

We should note that, due to the fact that our proof techniques relativize, it is undoubtedly not

possible to strengthen our result to get CZK � IP [2]. Such a result would imply that IP [2] = IP

if secure encryption functions exist (since CZK = IP under the same assumption, as stated above).

However, Aiello, Goldwasser, and Hastad [AGH] have separated IP [2] and IP with an oracle. We

strongly believe that their construction can be modi�ed to incorporate the existence of a one-

way permutation. Hence, relative to such an oracle, CZK 6� IP [2] implying that no proof of

containment can relativize.

The outline of the paper is as follows: In section 2 we give the basic de�nitions that are needed

in the paper. We give the intuition behind the proof in section 3. In section 4 we recall some facts

about estimating sizes of sets using interactive proofs and in section 5 we state and prove the main

theorem.

2. Notation and De�nitions

In this section we give the formal de�nitions needed for the paper. Let P denote a prover:

any probabilistic Turing machine which has a \communication" tape (for a formal de�nition of

a \communication" tape see [GMR1]). P has no resource bounds. Let V denote a veri�er: any

probabilistic polynomial time Turing machine with a communication tape. Let P $ V denote

an interacting prover-veri�er pair: any prover and veri�er which share the same input tape and

communication tape (initially empty) and interact in rounds in the following way.

(1) The veri�er, V , makes a probabilistic polynomial time computation based on the input, the

contents of its memory, and all messages thus far received over the communication tape from

the prover, P .

(2) V transmits the result of the computation over the communication tape to P . We will denote

the message sent by V in round i by x2i�1.

(3) P performs a probabilistic computation based on the input, and all messages thus far received

over the communication tape from V .

(4) P transmits the result of the computation over the communication tape to V . We will denote

the message sent by P in round i by y2i.

The number of rounds is at most a polynomial in the input length and the interaction is terminated

by the veri�er accepting or rejecting.

Let P$V (w) denote a transcript of the interaction between the prover and the veri�er. This

is of course a stochastic variable depending on P 's and V 's random choices.

De�nition: A given P$V is �-complete for a language, L, if for all w 2 L the probability that V

accepts on w is at least �.

3

De�nition: A veri�er, V is �-sound for a language, L, if for all P 0$V and all w =2 L the probability

that V rejects on w is at least �.

[GMR1] de�ned the class IP as follows. L is in IP [f(n)] if there exists an interacting prover-

veri�er pair, P$V , that exchanges at most f(n) messages (n being the length of the input) such

that:

1.) P$V is (1� 2�n)-complete for L, and

2.) V is (1� 2�n)-sound for L.

Call such a P$V an interactive proof for L. Note that membership in L is still e�ciently veri�able

since V runs in polynomial time and veri�es membership correctly with probability very close to

one. De�ne IP as the union over k of IP [nk].

We should make several remarks here. First, we can assume without loss of generality that all

messages sent by P and V are of the same length, l(n), and all conversations consist of the same

number of messages, d(n), where l and d are polynomials and n is the length of the input. Second,

any language, L, which has an interactive prover-veri�er pair, P$V , such that P$V is (1
2
+ �)-

complete for L and V is (12 + �)-sound for L also has an interactive proof, P 0$V 0, for L. P 0$V 0

just simulates P$V a polynomial number of times (depending on �) and V 0 accepts if V accepted

in a majority of the simulations. Third, it is easy to see that replacing the (1 � 2�n)-soundness
condition with a 1-soundness condition collapses IP down to NP . It is not as easy to see that

requiring 1-completeness does not a�ect the power of the model. The proof of this fact was given

by Goldreich, Mansour, and Sipser [GMS].

2.1 Zero-Knowledge

In this section we will give the formal de�nition of a zero-knowledge interactive proof for a

language. We will �rst need some properties of probability distributions on strings.

Let A(w) andB(w) be two parameterized discrete random variables. Let A[L] = fA(w)jw 2 Lg
and similarly de�ne B[L]. We de�ne three types of equivalence between A[L] and B[L].

1.) A[L] �P B[L] or A[L] is perfectly equivalent to B[L] if for all y, and all w 2 L,

Pr[A(w) = y] = Pr[B(w) = y]:

2.) A[L] �S(k;N) B[L] or A[L] is (k;N)-statistically equivalent to B[L] if for all w 2 L, jwj � N ,

X
y

jPr[A(w) = y]� Pr[B(w) = y]j � 1

jwjk :

3.) A[L] �C(k;N) B[L] or A[L] is (k;N)-computationally equivalent to B[L] if for all circuits, C,

of size at most jwjk, and all w 2 L, jwj � N ,

X
y

jPC
A(w); y � PC

B(w); yj �
1

jwjk

where PC
A(w); y denotes the probability that C outputs 1 on input y when y is chosen according

to A(w), and PC
B(w); y is de�ned similarly with respect to B(w).

4

We have already seen what it means for an interacting prover-veri�er pair to be an interactive

proof for a language. In a cryptographic setting, however, we may require more from our protocol

than just completeness and soundness. We may want the prover to give nothing to the veri�er that

the veri�er could not have computed itself. To formalize this [GMR1] introduced the important

de�nition of zero-knowledge. We need the weakest form of zero-knowledge so let us start by

introducing it.

The key concept for zero-knowledge is that of a simulator. A simulator,M , is a random Turing

machine that produces strings, i.e., \conversations," in expected polynomial time. Let M(w) be

the random variable associated with M on input w. Recall that P$V (w) is the random variable

associated with the conversations produced by P$V on input w. We will say that P is perfect

zero-knowledge for V on L if there exists a simulator, M , such that M [L] �P P$V [L]. De�ne the

class TV PZK, Trusted Veri�er Perfect Zero-Knowledge, to be those languages, L, for which there

exists an interactive prover-veri�er pair, P$V , such that:

1.) P$V is (1� 2�n)-complete on L,

2.) V is (1� 2�n)-sound on L, and

3.) P is perfect zero-knowledge for V on L.

Call such a P$V a trusted veri�er perfect zero-knowledge proof for L.

We can also de�ne Trusted Veri�er Statistical Zero-Knowledge, TV SZK, and Trusted Veri�er

Computational Zero-Knowledge, TV CZK. P is statistical (computational) zero-knowledge for V

on L if for all k there exists a simulator,M , and an integer, N , such thatM [L] is (k;N)-statistically

((k;N)-computationally) equivalent to P$V [L]. De�ne the class TV SZK (TV CZK) to be those

languages, L, for which there exists an interactive prover-veri�er pair, P$V , such that:

1.) P$V is (1� 2�n)-complete on L,

2.) V is (1� 2�n)-sound on L, and

3.) P is statistical (computational) zero-knowledge for V on L.

Call such a P$V a trusted veri�er statistical (computational) zero-knowledge proof for L. Al-

though we have no results for computation zero-knowledge, we give that de�nition for the sake of

completeness so the reader can compare the di�erent de�nitions.

Besides requiring that a pair, P$V , be a trusted veri�er zero-knowledge proof for a language,

in a cryptographic setting we may require even more. For example, P cannot be sure that it is

interacting with V , the veri�er of the interactive proof. P may be interacting with a another veri�er,

V 0, which by deviating from the protocol can extract additional \knowledge" from P . This leads to

the normal, more restrictive, de�nition of zero-knowledge where no veri�er should be able to gain

any additional \knowledge" from P . However since our proof already works for the less restrictive

notion of zero-knowledge we will not need the more restrictive de�nitions and hence we refer the

interested reader to [GMR1] and to [GMR2], [O] and [TW] for a discussion of the de�nitions.

Fortnow [F] proved that if L admits a polynomial round proof which is perfect or statistical

zero-knowledge for a trusted veri�er then the complement of L is in IP [2]. Our main result is that

under the same assumption, L itself is in IP [2].

We will prove the main theorem in section 5. The proof is quite technical and hence we will

give an intuitive overview of the proof in the next section.

5

3. Outline of Proof; Structure of Simulator

For the time being let us consider languages in TV PZK. Let L be such a language, let P$V

be the interactive proof recognizing L, and letM be the perfect zero-knowledge simulator for P$V ,

i.e., P$V [L] �P M [L]. Further assume that M runs in polynomial time rather than expected

polynomial time. Our goal is to show that L can also be recognized by a bounded round interactive

proof. Alice, or A, will be the prover in the bounded round proof and Bob, or B, will be the

veri�er. In conversations produced by the simulator, M , we will say that the prover-moves in the

conversation are produced by a virtual prover, P 0, and the veri�er-moves are produced by a virtual

veri�er, V 0. We will often write this as M = P 0$V 0 where the 0 indicates that P 0$V 0 is not a true
interactive prover-veri�er pair. To summarize, L is recognized by P$V ; M is the zero-knowledge

simulator which we think of as P 0$V 0; and our goal is to construct a bounded round proof, A$B,

that also recognizes L.

Recall that V 's moves are labeled x and P 's moves are labeled y. Let sk be the string produced

by the �rst k interactions of the P$V protocol, sk = x1y2 : : : qk where qk = xk for k odd or yk
for k even. Without loss of generality assume that V sends its coins to P on the very last move.

Let d(n) + 1 be the total number of interactions where d(n) is even. We will abbreviate the entire

dialogue, sd(n); r, as s; r. Recall that P$V (w) is a random variable. We will often be interested in

the event that the entire conversation is s; r, i.e., that P$V (w) = s; r. In addition, we will also be

interested in the event that the �rst k interactions are sk and V has coins r. This event is written

as P$V (w) = sk�; r. Finally, we will also be interested in the event P$V (w) = sk�; �, i.e., the
�rst k interactions yield sk. We will use similar notation to signify the same events for M(w).

Recall that the veri�er's j + 1st move is a function of the input, its random bits and the

previous 2j interactions. We denote this formally as V (w; r; s2j) = x2j+1 for 0 � 2j < d(n).

De�nition: A conversation, s; r, output by the simulator is valid if the moves of V 0 are the same

as the the moves that the real V would make if it were playing with coins r. That is s; r is valid if

V (w; r; s2j) = x2j+1 for 0 � 2j < d(n).

Let us look at the behavior of M on input w. By de�nition of perfect zero-knowledge, when

w 2 L the conversations of P$V and P 0$V 0 have the same distribution. Hence, M will output

valid conversations with probability one and output accepting conversations with probability at

least 1� 2�n. Also, the moves of P 0 must be made with the same probabilities as the moves of P .

This will be made more formal later.

When w =2 L there are two cases. Either M outputs valid accepting conversations with high

probability or it does not. The latter case immediately implies that w =2 L. Let us look at the

former case more closely. By de�nition of an interactive proof, if w =2 L then for all provers, Q, the

probability that Q$V accepts is at most 2�n. But P 0 convinces V 0 to accept with high probability.

P 0 can gain such an advantage over any real prover, Q, since P 0 can \see" r of V 0 (since P 0$V 0

is actually one machine, M , by de�nition) whereas Q can only infer certain properties of V 's coins

given the conversation so far.

Having discerned the gross behavior of M on input w we can give a very broad outline of the

interactive proof between Alice and Bob, A$B. On input w

(1) Bob will try to convince himself that M(w) outputs valid accepting conversations with high

probability, and

6

(2) Alice will try to convince Bob that P 0 is not taking advantage of the fact that P 0 \sees" the

coins of V 0.

Bob will accept w only if he is convinced of both (1) and (2).

A broad outline of the proof that A$B recognizes L is as follows. When w 2 L, M(w) does

output valid accepting conversations with high probability and so Bob will succeed in convincing

himself in (1). Furthermore, P 0 makes moves with the same distribution as the real P and so

Alice will succeed in convincing Bob in (2). When w =2 L, if M does not output valid accepting

conversations with high probability then Bob will not succeed in (1). If M does output valid

accepting conversations with high probability then by the above discussion P 0 must be taking

advantage of the fact that it \sees" r of V 0. Hence, A will not succeed in (2).

Let us make the above discussion more formal. In order to simplify notation let us state once

and for all that we will implicitely consider only nonempty sets or events with positive probability.

It follows that all conditional probabilities are well de�ned as are the logarithms of the size of sets.

De�nition: Let �sk be the set of all the veri�er's coins that are consistent with the partial con-

versation sk. That is, �sk is the set of all r such that V (w; r; s2i) = x2i+1 for 0 � 2i < k.

Note that if the last move of sk is a veri�er-move, i.e., k is odd, then �sk = �sky for all y.

This is due to the fact that the prover's move y does not a�ect which coins are consistent with the

veri�er's moves in the string sk.

Observe that since V 's coins are uniformly distributed, for any partial conversation, s2k�1, all
r that are consistent with s2k�1 are equally likely. That is,

Pr[P$V (w) = s2k�1�; r j P$V (w) = s2k�1�; �] = 1

j�s2k�1 j

for all r 2 �s2k�1 and the probability is zero otherwise. Recall from above that �s2k�1 = �s2k�1y.

Hence

Pr[P$V (w) = s2k�1y�; r j P$V (w) = s2k�1y�; �] = 1

j�s2k�1 j
for all r 2 �s2k�1 and the probability is zero otherwise. The above identities imply that for all

moves y of the prover

Pr[P$V (w) = s2k�1y�; r j P$V (w) = s2k�1�; r] =

Pr[P$V (w) = s2k�1y�; � j P$V (w) = s2k�1�; �]
for all r 2 �s2k�1 . This motivates the following de�nition:

De�nition: Given partial conversation s2k�1 a move y by P 0 is honest if

Pr[P 0$V 0(w) = s2k�1y�; r j P 0$V 0(w) = s2k�1�; r] =

Pr[P 0$V 0(w) = s2k�1y�; � j P 0$V 0(w) = s2k�1�; �]
for all r 2 �s2k�1 .

In words, a move y is honest if for all r the probability that P 0 plays y given that s2k�1 has been
played so far and V 0 has coins r is equal to the probability that P 0's move is y given only that the

7

conversation thus far is s2k�1. That is, P 0's move is based only on the conversation so far and not

upon additional information about r. By de�nition of PZK, Pr[P 0$V 0 = s; r] = Pr[P$V = s; r]

for all s; r when w 2 L. It follows that all of P 0's moves are honest when w 2 L.

We will say that P 0 cheats on s2k�1y�; r if the �rst conditional probability is much greater

than the second. That is, P 0 cheats on move y if it does use additional information about r. For

the sake of the analysis we will actually take the logarithms of the probabilities.

De�nition: P 0 c-cheats on s2k�1y�; r if

log (Pr[P 0$V 0(w) = s2k�1y�; r j P 0$V 0(w) = s2k�1�; r])

� log (Pr[P 0$V 0(w) = s2k�1y�; � j P 0$V 0(w) = s2k�1�; �]) + c:

When w =2 L we will prove that if M(w) outputs valid accepting conversations with high

probability then P 0 cheats a great deal on average. This will be made precise in Lemma 5.3.

The goal of the interactive proof between Alice and Bob is to distinguish between P 0 playing
honestly everywhere and P 0 cheating a great deal on average. With Alice's help Bob will recognize

when P 0 is honest and will accept. However, Alice will not be able to fool Bob into accepting very

often when P 0 cheats a great deal on average.

Remark:It is interesting to note that reason that the proof does not work for computational

zero-knowledge is the the virtual prover cheats also in the case when w 2 L.

The probabilities used in the de�nition of cheating are actually ratios of the sizes of certain

sets, which we now de�ne. Let R be the simulator's coin, jRj = q(n) where q(n) is a polynomial.

Let �sk and �sk�;r be the sets of R for which M(w; R) = sk�; � or sk�; r respectively. With these

de�nitions, P 0 c-cheats on s2k�1y�; r if
�
log j�s2k�1y�;rj � log j�s2k�1�;rj

�� �log j�s2k�1yj � log j�s2k�1 j
� � c:

The following section deals with the aforementioned subprotocols which prove upper and lower

bounds on the size of sets.

4. Upper and Lower Bound Protocols

Let us �rst consider a subprotocol for proving lower bounds on the size of sets. It is based on

a lemma of Sipser's [S] and uses universal hashing [CW].

Suppose C � �k where membership in C is testable in polynomial time. (The protocol can

easily be modi�ed to work when membership in C is testable in nondeterministic polynomial time

but this will not concern us here.) Let H be a k� b Boolean matrix and let h:�k ! �b be de�ned

by matrix multiplication modulo 2, h(x) = xH. The protocol \P proves jCj � 2b" is as follows:

1. V picks a random k � b matrix H and a random element z of �b. V sends H and z to P .

2. P responds with c 2 �k.

3. V accepts i� c 2 C and h(c) = z.

Lemma 4.1: If P plays optimally then

8

(1) Pr[V accepts] � 1� 2b

jCj .

(2) Pr[V accepts] � jCj
2b .

Proof: Let us �rst prove (1). Let S be the number of elements that map onto the randomly

chosen z. S is a random variable and �(S) = jCj2�b. Since if c1 6= c2 the probability that

h(c1) = h(c2) = z is 2�2b we have that �2(S) = jCj(2�b� 2�2b). Using Chebychev's inequality this
implies that Pr[S = 0] � jCj(2�b�2�2b)

(jCj2�b)2 � 2b

jCj . This implies (1) since whenever S 6= 0 P can make

V accept. (2) follows from the fact that for a �xed element w 2 �k the probability that h(w) = z

for a �xed h and a random z is 1=2b.

Next we present a protocol developed by Fortnow [F] for proving upper bounds on the size of

sets. Suppose the veri�er has a random element, c, of the set C � �k. It is crucial that P has no

information about c other than the fact that it lies in C. De�ne \P proves jCj � 2b" as follows.

1. V picks a random k � b matrix H and calculates h(c) = z. V sends H and z to P .

2. P sends a to V .

3. V accepts i� a = c.

Lemma 4.2: If P plays optimally then

(1) Pr[V accepts] � 1� jCj�1
2b .

(2) Pr[V accepts] � g2b

jCj�1 where g = 3 +
p
5.

Proof: The proof of (1) is as follows. P will certainly be able to answer with an a equal to c

whenever none of the elements in C�fcg collide with h(c) = z. This event occurs with probability

at least 1� (jCj � 1)=2b since for a �xed c and w in �k, the probability that h(w) = h(c) is 1=2b.

The proof of (2) is as follows. Let S be the number of elements of C which map to z. Then

by a simple argument

Pr[V accepts] � �
jCj
j=1

1

j
Pr[S = j] � Pr[S � i] +

1

i

for all i. Again we will apply Chebychev's inequality. Note that �(S) = 1 + jCj�1
2b and �2 � �. So,

for i < �

Pr[S � i] � Pr[�� S � �� i] � �

(�� i)2
:

For i = 2
3+

p
5
� we get

Pr[V accepts] � (3 +
p
5)2b

jCj � 1
:

5. Proof of Main Theorem

In this section we give the proof of our main theorem. Initially we will assume that the

simulator is polynomial time and the protocol is perfect zero-knowledge. In the end of the section

we will take care of the complications which arise when the protocol is statistical zero-knowledge

and the simulator is expected polynomial time. Let us start by stating the theorem.

9

Theorem 5.1: If L is recognized by an interactive proof which is statistical zero-knowledge for a

trusted veri�er where the simulator runs in expected polynomial time then L can be recognized by

a two round interactive proof.

Call the prover and veri�er recognizing the language P0 and V0 and call the simulator M0. Recall

that the probability of error in the protocol is at most 2�n and the number of rounds is d(n) where

n is the length of the input. Run this protocol d(n) times in parallel and make the veri�er accept

if it accepts in a majority of the subprotocols. Call this new protocol P$V . Note that it is still

perfect zero-knowledge for trusted veri�er: the new simulator, M , just runs the old simulator d(n)

times and takes majority. It is easy to show that the probability of error for the new protocol is

at most 2�cnd(n) for some c > 0. We will keep this value of c �xed from now on. We denote the

number of coins that V uses by l(n) and the number of coins M uses by q(n).

Observe here that it is crucial that we are working with trusted veri�er simulations since it is

probably not true in general that running several zero-knowledge protocols in parallel will give a

zero-knowledge protocol.

For the sake of the following two lemmas, assume that M always produces valid accepting

conversations. Later we will discuss how to modify the lemmas when this assumption is removed.

Let Q(s) denote the probability that S appears as partial conversation in the conversation output

by the simulator. Here S takes any of the values (s2k�1); (s2k�1y); (s2k�1�; r) and s2k�1y�; r).
Using the notation of section 3 de�ne

F0 = E(log j��;rj � q(n))

and

Fk = E(log j�s2k�1y�;rj � log j�s2k�1�;rj)
=

X
s2k�1y�;r

Q(s2k�1y�; r)(log j�s2k�1y�;rj � log j�s2k�1�;rj):

where E is the expectation over a random partial conversation output by the simulator. Similarly

de�ne

G0 = �l(n)
and

Gk = E(log j�s2k�1yj � log j�s2k�1 j):

Also let G =
Pd(n)=2

k=0 Gk and F =
Pd(n)=2

k=0 Fk.

The intuition behind these de�nitions is that F �G is the expectation of the total amount of

cheating by P 0 on all its moves in a random conversation of the simulator. With these de�nitions

we can characterize the behavior of the simulator with the following two lemmas.

Lemma 5.2: If w 2 L then G = F .

Lemma 5.3: If w =2 L then F �G � cnd(n).

Proofs: Lemma 5.2 follows clearly from the discussion in section 3 since when w 2 L, P 0 does not
cheat and Gk = Fk for all k. To prove Lemma 5.3 we will �rst establish the two facts described

below.

10

Fact 5.4: F =
P

s;rQ(s; r) logQ(s; r) where, according to our previous conventions, the sum is

only over conversations which have a positive probability of being produced by the simulator.

This is a consequence of the de�nitions since

F =

d(n)=2X
k=0

Fk

=

d(n)=2X
k=1

(
X
s;r

Q(s; r)(log j�s2k�1y2k�;rj � log j�s2k�1�;rj)) +
X
s;r

Q(s; r)(log j��;rj � q(n))

=
X
s;r

Q(s; r)

0
@log j��;rj � q(n) +

d(n)=2X
k=1

(log j�s2k�1y2k�;rj � log j�s2k�1�;rj)
1
A : (�)

Now since we have assumed that M always makes valid moves, it follows that j�s2k�1y2k�;rj =
j�s2k�1y2kx�;rj where x is the unique move that V would make with coins r after the partial conver-

sation s2k�1y2k. Using this fact the above sum telescopes to log j�s;rj � q(n) and this is precisely

logQ(s; r).

To get a similar formula for G let us examine the behavior of a new prover P̂ which uses the

output of the simulator to play against the veri�er V . On partial conversation s2k�1 P̂ makes

the move y2k with probability j�s2k�1y2k j=j�s2k�1 j which it can easily do since it is all powerful. If

Pr[P̂$V = s; r] is nonzero then it can be expanded as follows:

Pr[V has coins r]�
d(n)=2Y
k=1

Pr[P̂ plays y2k j P̂$V = s2k�1 and V has coins r]:

By our previous comments the probability that P̂ plays y2k given that s2k�1 has been played so far

is the same as the probability that P̂ plays y2k given that s2k�1 has been played so far and V has

coins r for any r consistent with s2k�1. Let R(s; r) = Pr[P̂$V = s; r]. It follows that logR(s; r)

is equal to

�l(n) +
d(n)=2X
k=1

(log j�s2k�1y2k j � log j�s2k�1 j):

This establishes the following fact.

Fact 5.5: G =
P

s;rQ(s; r) logR(s; r). Again, the sum is only over s; r such that Q(s; r) > 0.

Note here that whenever Q(s; r) > 0 we also have R(s; r) > 0 and hence the given sum is �nite.

Observe that when w =2 L the probability that V accepts when interacting with P̂ is at most

2�cnd(n). Hence, the
P

R(s; r) over s; r with Q(s; r) > 0 is at most 2�cnd(n). Since F � G =P
Q(s; r) log(Q(s; r)=R(s; r)) (over the appropriate s; r) Lemma 5.3 follows from Lemma 5.6 below.

Lemma 5.6: Let
Pm

i=1 pi = 1 and
Pm

i=1 qi = q where pi > 0 and qi > 0 for all i, thenPm
i=1 pi log

pi
qi
� log 1

q .

11

Proof: (Lemma 5.6) Fix qi for all i. Let us minimize the expression over all values of pi satisfyingPm
i=1 pi = 1. The ith component of the gradient is log e(ln pi

qi
+ 1) and thus the only interior

extreme point is found for pi = qi=q for all i. This is easily checked to be the global minimum.

Before we continue, let us get rid of the assumption that M always produces valid accepting

conversations. We will handle this by making B reject whenever he sees a conversation which is

not valid or not accepting. We have to analyze what e�ect this has. Say that a conversation is OK

if it is valid and accepting.

Fix t to be a polynomial. Suppose B picks jwjt(jwj) random R and runsM . If w 2 L then with

probability � 1� 2�jwjjwjt(jwj) all these conversations will be accepting. Also all conversation will

be valid and that is enough to prove Lemma 5.2, and thus in this case there is no major di�erence.

When w =2 L there are two cases, either the fraction of OK conversations is at least 1� 1
t(jwj) ,

or it is not. In the latter case B will except with exponentially small probability see a conversation

which is not OK. In the former case the previous analysis is almost correct we just need a few

minor changes.

Fact 5.4 is no longer exactly true and we need a slight modi�cation. In the sum (�) let us
distinguish two kinds of terms, namely the ones corresponding to s; r which are OK conversations

and the ones which are not OK. The �rst kind of terms gives rise to a sum like the one in Fact 5.4

where the summation is limited to OK conversations. The other kind of terms gives a contribution

which is at most O
�
q(n)
t(n)

�
.

Fact 5.5 remains valid but here it is also convenient to split the sum into terms corresponding

to OK s; r and conversations which not OK. This second sum is as before bounded by O
�
q(n)
t(n)

�
.

On the other hand when we are summing over OK conversations we can use Lemma 5.6. Here we

need the modi�cation that the sum of Q(s; r) over all OK conversations is slightly less than 1, but

this again is an error term of size bounded by the same bound. Thus we obtain a weaker version

of Lemma 5.3 with cnd(n) replaced by cnd(n)�O
�
q(n)
t(n)

�
. For t(n)� q(n) we can ignore the error

term. Since B will see many more than q(n) conversations during the protocol and he will reject if

he sees a conversation which is not OK we can assume throughout that Lemma 5.3 holds.

Now we are ready to de�ne the protocol for recognizing L. It will consist of subprotocols

estimating upper bounds for Fk and lower bounds for Gk. On input w, jwj = n.

1) For i = 1; : : : 4q(n)2, B picks a random Ri and runs M to get an ri. B sends this ri to A and

A responds with bi and proves that j��;ri j � 2bi . B computes F̂0 =
1

4q(n)2

P4q(n)2

i=1 bi � q(n).

2) For i = 1; : : : 4q(n)2, and k = 1; : : : d(n)=2, B picks a random R
(k)
i and runs M to get an

s2k�1; y2k and r. B sends s2k�1 to A. A responds with b
(k)
i and proves that j�s2k�1 j � 2b

(k)
i .

Then B also sends y2k to A and A responds with c
(k)
i and proves that j�s2k�1y�2kj � 2c

(k)

i . B

computes Ĝk =
1

4q(n)2

P4q(n)2

i=1 (c
(k)
i � b

(k)
i).

3) For i = 1; : : : ; 4q(n)2, and k = 1; : : : ; d(n)=2, B picks a random R
(k)
i and runs M to get an

s2k�1; y2k and r. B sends s2k�1; y2k and r to A. A responds with b
(k)
i and c

(k)
i and proves that

12

j�s2k�1y2k�;rj � 2b
(k)
i and j�s2k�1�;rj � 2c

(k)
i . B computes F̂k =

1
4q(n)2

P4q(n)2

i=1 (b
(k)
i � c

(k)
i).

4) B computes F̂ =
Pd(n)=2

k=0 F̂k and Ĝ = �l(n) +Pd(n)=2
k=1 Ĝk and accepts i� F̂ � Ĝ � c

2nd(n), A

has been successful in all subprotocols and all the R that B has picked corresponds to valid

accepting conversations.

To establish that the protocol recognizes the language L, we will often use a standard Cherno�

bound. Let us prove it for the sake of completeness.

Lemma 5.7 Let X be a random variable 0 � X � K and let E(X) = �. Then given s independent

observations Xi; i = 1 : : : s of X

Pr[j1
s

sX
i=1

Xi � �j � T] � 2e�
sT2

4K2 :

Proof: To estimate the above probability we look at exponential moments.

E(e�(s��
P

s

i=1
Xi)) =

sY
i=1

E(e�(��Xi))

To estimate this quantity we use

Lemma 5.8: If a random variable Y satis�es E(Y) = 0 and jY j � c � 1 then E(eY) � ec
2

.

Proof: (Lemma 5.8) We use eY � 1 + Y + Y 2 which is valid for jY j � 1 and ex � 1 + x valid for

any x. This gives

E(eY) � 1 +E(Y 2) � 1 + c2 � ec
2

:

Now we can prove Lemma 5.7. For T � K the lemma is clear and otherwise we put � = T
2K2 .

In the calculation of the exponential moment we can apply Lemma 5.8 with Y = �(� �Xi) and

c = �K and we get E
�
e�(s��

P
s

i=1
Xi)
�
� es�

2K2

. This implies that Pr[s� �Ps
i=1Xi � sT] �

es�
2K2��sT = e�

sT2

4K2 : Using � = � T
2K2 one gets the same bound for

Ps
i=1Xi being unusually large

and Lemma 5.7 is proved.

After these preliminaries let us establish that the protocol is correct when w 2 L.

Lemma 5.9: If w 2 L then for su�ciently large n the probability that A can make B accept is

� 8
10 .

Proof: First observe that the probability that B sees a conversation which is not OK is exponen-

tially small and hence for su�ciently large n this is less than 1
10 .

We present a strategy for A that, given that B never sees a conversation which is not OK, will

make B accept 9 times out of 10. Whenever A is supposed to prove an upper bound for the size

13

of a set whose true size is T , A states that the size of the set is at most 240q(n)2d(n)T and the

proceeds to follow the protocol given in section 4. Similarly when A is asked for a lower bound she

states the bound max(1; T
240q(n)2d(n)

) and then follows the protocol of section 4.

Given that A follows this strategy let us analyze the probability that B will accept. Since A

proves bounds on 8q(n)2d(n) + 4q(n)2 � 12q(n)2d(n) sets, the probability that she will ever fail in

one of the protocols is by Lemmas 4.1 and 4.2 bounded by 1
240q(n)2d(n)

�12q(n)2d(n) = 1
20
. Whenever

Alice is successful in all these protocols B will get a value of F̂k which is within 2 log(240q(n)2d(n))

of 1
4q(n)2

P4q(n)2

i=1

�
log j�

s
(i)

2k�1
y�;rj � log j�

s
(i)

2k�1
�;rj
�
. By Lemma 5.7 this implies that

Pr[(F̂k � Fk) � 2 log(240q(n)2d(n)) + 4 log d(n)] � 2d(n)�2:

By a similar argument we get that

Pr[(Gk � Ĝk) � 2 log(240q(n)2d(n)) + 4 log d(n)] � 2d(n)�2:

Thus with probability at least 1� 4
d(n)

the reverse inequalities hold for all k and since F = G we get

by summing that F̂ � Ĝ � O(d(n) log q(n)d(n)) with this probability. Since log(q(n)d(n)) = o(n)

this completes the proof of Lemma 5.9.

Next we establish that the protocol is correct also for w =2 L.

Lemma 5.10: If w =2 L then for su�ciently large n the probability that A can make B accept is

� 1
10 .

Proof: As noted in the discussion before we de�ned the protocol we can assume that most con-

versations are valid and accepting and hence that Lemma 5.3 is true.

For A to succeed in convincing B to accept with high probability either R
(k)
i must be favorable

to A or A must claim lower (upper) bounds which are much larger (smaller) than the actual size

of the sets. The former happens with very small probability and the latter will cause B to reject

the lower (upper) bound protocol with high probability.

Suppose that A during the protocol claims a bound which is a factor 128 better than the true

bound (this refers to either upper or lower bounds). Then the probability that A will get caught

in trying to prove this bound is by Lemmas 4.1 and 4.2 at least 19
20 . Thus if A tries to make F̂k

smaller than 1
4q(n)2

P4q(n)2

i=1

�
log j�

s
(i)

2k�1
y�;rj � log j�

s
(i)

2k�1
�;rj
�
� 14 she will fail with probability 19

20 .

On the other hand by Lemma 5.7

Pr[
1

4q(n)2

4q(n)2X
i=1

�
log j�

s
(i)

2k�1
y�;rj � log j�

s
(i)

2k�1
�;rj
�
� Fk � 4 log d(n)] � 2d(n)�2:

Thus if A has probability at least 1
20 of succeeding in her upper and lower bounds proofs we have

F̂k � Fk � 14 � 4 log d(n) with probability 1 � d(n)�2. Thus F̂ � F � O(d(n) log d(n)) with

probability at least 1� 1
d(n) . Similarly we get Ĝ � G+O(d(n) log d(n)) with the same probability.

If both these inequalities hold F̂ � Ĝ � F � G � O(d(n) log d(n)) and now Lemma 5.3 implies

Lemma 5.10.

14

Lemmas 5.9 and 5.10 imply Theorem 5.1 in the case of perfect zero-knowledge and M being

polynomial time. To see this we have only to verify that the protocol can be implemented in two

rounds. However, by the result of Babai [B] it is su�cient to show that one can implement the

protocol in a constant number of rounds. But this is clear since we run all the subprotocols for

di�erent i and k in parallel.

Remark: Our constant round protocol for L and subsequent analysis are much more complicated

than Fortnow's protocol for �L. This is for a fundamental reason. In order for a prover, A, to

convince a veri�er, B, that x =2 L, A need only show that the simulator occasionally cheats. A can

simply show B a few partial conversations and prove that the simulator cheats on these. However,

in order for A to convince B that x 2 L, A must convince B that the simulator is behaving honestly

almost everywhere.

Not surprisingly, the present framework is general enough to prove Fortnow's result as well.

We modify our current protocol for recognizing L to get an ine�cient protocol for recognizing �L

as follows. Change every lower (upper) bound subprotocol to a upper (lower) bound subprotocol.

The goal of the new prover is to show that F̂ � Ĝ is large. The new veri�er will accept when it

is convinced that this is the case. The analysis for this new protocol is nearly identical to that

described above.

This �nishes the analysis for the cases where the simulator is polynomial time and perfect

zero-knowledge. Let us see how to take care of the complications that arise when the simulator is

statistical zero-knowledge.

Statistical zero-knowledge. For statistical zero-knowledge the same protocol will work. Even

the analysis for w =2 L is the same since the zero-knowledge constraint on the behavior of the

simulator only applies to w 2 L. However, when w 2 L the analysis does need a slight mod-

i�cation. It is no longer true that G = F since P 0 no longer behaves exactly like P . How-

ever, the di�erence is small and can be taken care of as follows. Let T (S) denote the prob-

ability that S appears as a partial conversation in a conversation between V and P . De�ne
�Fk = E (log (T (s2k�1y�; r))� log (T (s2k�1�; r))) and �Gk = E (log (T (s2k�1y))� log (T (s2k�1)))
Where the expected value is taken with respect to random s2k�1; y and r produced by P and V .

It is clear that �Fk = �Gk.

Writing everything explicitly we have

Fk = 2�q(n)
X

s2k�1;y;r

j�s2k�1y�;rj(log j�s2k�1y�;rj � log j�s2k�1�;rj)

and
�Fk =

X
s2k�1;y;r

T (s2k�1y�; r) (log (T (s2k�1y�; r))� log (T (s2k�1�; r))) :

We know that
P

s2k�1;y;r
j2�q(n)j�s2k�1y�;rj � T (s2k�1y�; r)j �

�
1

t(n)

�
for any polynomial t. Since

the derivative of p log p is log p+ log e this implies that jFk � �Fkj � o
�
q(n)
t(n)

�
for any polynomial t.

We get the same result for jGk � �Gkj and thus jG� F j � o
�

1
t(n)

�
for any polynomial t.

15

Expected polynomial time simulator. Suppose M runs in expected time q(n). The number

of coins that M uses is potentially unlimited. Hence, we do not have well de�ned �nite sets of the

simulator's coins on which to run our upper and lower bound subprotocols. We can take care of

this problem as follows.

Rede�ne Fk to be E(log Pr[y2k = yjs2k�1; r]) and similarly let Gk = E(logPr[y2k = yjs2k�1]).
These de�nitions agree with the old de�nitions in the case when M is polynomial time. For any

partial conversation S rede�ne �S to be the set of coins of length 10q(n) such that given these

coins M halts within time 10q(n) and produces the partial conversation S. Observe that with this

de�nition the new de�nitions of Fk and Gk no longer agree with the old de�nitions.

The protocol is now the same as before having A prove bounds for the �-sets with the new

de�nitions. When B picks a random R there is the possibility that M will not halt. In this case B

will just pick another R and try again. If B fails n times consecutively it gives up and rejects the

input.

B will reject for this reason with exponentially small probability since the probability of M

halting within time 10q(n) is at least 9/10. Thus this will not change the performance of the

protocol.

The intuition behind the protocol also working when using the modi�ed sets is that j�Sj
210q(n)

is

a fairly good approximation for the probability that the partial conversation S appears. Before we

analyzed all other aspects of the protocol when 2�10q(n)�S is equal to this probability; we need now

just analyze the additional problems that appear from this intuition not being exactly correct.

Let Q(S) be the probability that M outputs the partial conversation S. Thus the intuition we

need to verify is that this is close to 2�10q(n)j�S j. Observe that we always have Q(S) � 2�10q(n)j�S j.
We need to prove that A can do almost as well as before when w 2 L and not too much better

than before when w =2 L. Let us start by the former.

Alice will not do as well when she cannot prove good upper bounds on Q(s2k�1y�; r) and

Q(s2k�1) or when she cannot prove good lower bounds on Q(s2k�1�; r) and Q(s2k�1y). Since the
sizes of the � sets can only be smaller than they should be, Alice will always do as well in proving

upper bounds as she did before. For the lower bounds we claim that with probability at most 10
9D

B will pick an R which gives rise to s2k�1y which satis�es

j�s2k�1yj � D�1210q(n)Q(s2k�1y) (��):

The reason for this is that if we let
P0 denote the sum over all s2k�1; y satisfying (��) then

�0j�s2k�1yj � D�1210q(n)�0Q(s2k�1y) � D�1210q(n):

Now the above claim follows from the fact that the probability that M halts within time 10q(n) is

at least 9/10. The same statement is of course true for s2k�1y. Now if we choose D = 240q(n)2d(n)

we know that with probability 19
20 B will never choose a R

(k)
i satisfying (��). But in such a case

A will be able to get Ĝ and F̂ within O(d(n) log(q(n)d(n))) of the values she can get when M is

polynomial time. Thus Lemma 5.9 also follows in the case of expected polynomial time.

Now consider the case when w =2 L. We have to establish that A cannot do too much better

than before. This would happen if she could prove better upper bounds for Q(s2k�1y�; r) and

16

Q(s2k�1) or if she could prove better lower bounds for Q(s2k�1�; r) and Q(s2k�1y). The second

possibility can never occur and for the �rst possibility we get the same analysis as above.

Acknowledgments: We would like to thank Lance Fortnow for valuable comments.

References

[AGH] Aiello, W., S. Goldwasser, and J. Hastad, \On the Power of Interaction," to appear in

Combinatorica. A preliminary version appeared in Proc. of 27th Symposium on Foundations

of Computer Science, pp 368{379, Toronto, 1986.

[B] Babai L., \Trading Group Theory for Randomness," Proc. of 17th Symposium on Theory

of Computing, pp 421{429, Providence, 1985.

[BM] Babai L. and S. Moran, \Arthur Merlin Games: a Randomized Proof System and a Hier-

archy of Complexity Classes," JCSS, Vol. 36 (1988), No. 2, pp 254{276.

[BHZ] Boppana R., J. Hastad and S. Zachos \Does co-NP Have Short Interactive Proofs", Infor-

mation Processing Letters, Vol 25 (1987), No. 2, pp 127{132.

[BGGHKMR] Ben Or M., O. Goldreich , S. Goldwasser, J. Hastad, J. Kilian, S. Micali, and P. Rog-

away, \Everything Provable is Provable in Zero-Knowledge", Proc. of CRYPTO '88, Santa

Barabara, 1988.

[CW] Carter J.L. and N.M. Wegman.\Universal classes of hash functions", JCSS, Vol. 18 (1979),

No. 2, pp 143{154.

[F] Fortnow L., \The Complexity of Perfect Zero-Knowledge," Proc. of 19th Symposium on

Theory of Computing, pp 204{209, New York, 1987.

[GMR1] Goldwasser, S., S. Micali, and C. Racko�, \The Knowledge Complexity of Interactive

Proofs," Proc. of 17th Symposium on Theory of Computing, pp 291{305, Providence, 1985.

[GMR2] Goldwasser, S., S. Micali, and C. Racko�, \Proofs, Knowledge, and Computation," SIAM

Journal on Computing, Vol. 18 (1989), No. 1, pp 186{208.

[GMS] Goldreich, O., Y. Mansour, and M. Sipser, \Interactive Proof Systems: Provers That Never

Fail and Random Selection," Proc. of 28th Symposium on Foundations of Computer Science,

pp 449{461, Los Angeles, 1987.

[GMW] Goldreich, O., S. Micali, and A. Wigderson, \Proofs that Yield Nothing but their Valid-

ity and a Methodology of Cryptographic Protocol Design," Proc. of 27th Symposium on

Foundations of Computer Science, pp 174{187, Toronto, 1986.

[GS] Goldwasser, S., and M. Sipser, \Private Coins Versus Public Coins in Interactive Proof

Systems," Proc. of 18th Symposium on Theory of Computing, pp 59{68, Berkeley, 1986.

[IY] Impagliazzo, R., and M. Yung, \Direct Minimum-Knowledge Computations," Proc. of

CRYPTO `87, pp 40{51, Santa Barbara, 1987.

17

[O] Oren, Y., \On the Cunning Powers of Cheating Veri�ers: Some Observations about Zero-

Knowledge Proofs," Proc. of 28th Symposium on Foundations of Computer Science, pp

462{471, Los Angeles, 1987.

[TW] Tompa, M., and H. Woll,\Random Self-Reducibility and Zero-Knowledge Interactive Proofs

of Possession of Information," Proc. of 28th Symposium on Foundations of Computer Sci-

ence, pp 472{482, Los Angeles, 1987.

[S] Sipser M., \A Complexity Theoretic Approach to Randomness," Proc. of 15th Symposium

on Theory of Computing, pp 330{335, Boston, 1983.

18

