FOURIER TRANSFORM ON THE HYPERCUBE

JONAS SJÖSTRAND

Definitions

Let \(F \) be the real vector space of real functions on \(2^{[n]} \) (the set of subsets of \([n] = \{1, \ldots, n\} \)). Define an inner product on \(F \) by

\[
\langle f, g \rangle = \frac{1}{2^n} \sum_{A \subseteq [n]} f(A)g(A).
\]

For \(S \subseteq [n] \), let \(x^S \in F \) be the function \(x^S(A) = (-1)^{|A \cap S|} \). Now we compute

\[
\langle x^S, x^T \rangle = \frac{1}{2^n} \sum_{A \subseteq [n]} (-1)^{|A \cap S|}(-1)^{|A \cap T|} = \frac{1}{2^n} \sum_{A \subseteq [n]} (-1)^{|A \cap (S \triangle T)|} = \delta(S, T),
\]

where \(S \triangle T \) denotes the symmetric difference. There are as many \(x^S \)'s as there are \(\mathbb{R} \)-dimensions of \(F \), namely \(2^n \). Thus, the \(x^S \)'s form an orthonormal basis for \(F \).

For \(f \in F \) we define the Fourier transform \(\hat{f} \in F \) of \(f \) as

\[
\hat{f}(S) = \langle f, x^S \rangle.
\]

The relation to the Fourier transform on \(\mathbb{R}^n \)

The usual inverse Fourier transform on \(\mathbb{R}^n \) is

\[
f(x) = \int_{\mathbb{R}^n} \hat{f}(s)e^{ix \cdot s} \, ds.
\]

What is the relation between the basis functions \(e^{ix \cdot s} \) and our basis functions \(x^S \)?

Identify the hypercube \(2^{[n]} \) with the vector space \(\mathbb{Z}_2^n \) over \(\mathbb{Z}_2 \). A subset \(A \subseteq [n] \) corresponds to the element \(A = (a_1, \ldots, a_n) \in \mathbb{Z}_2^n \) where \(a_i = 1 \) if \(i \in A \) and \(a_i = 0 \) if \(i \notin A \). Define a scalar product on \(\mathbb{Z}_2^n \) by

\[
(a_1, \ldots, a_n) \cdot (b_1, \ldots, b_n) = a_1b_1 + \cdots + a_nb_n
\]

where the operations are performed in \(\mathbb{Z}_2 \). With this notation we get

\[
x^S(A) = (-1)^{|A \cap S|} = (-1)^A \cdot S = e^{i\pi(A \cdot S)}
\]

and the relation to \(e^{ix \cdot s} \) is evident.

Note that the functions \(A \mapsto A \cdot S \) for \(S \in \mathbb{Z}_2^n \) are precisely the linear functions from \(\mathbb{Z}_2^n \) to \(\mathbb{Z}_2 \).
WHY WE CALL \(x^S \chi_S \)

We can identify the hypercube \(2^{[n]} \) with the set \(Q^n = \{-1, 1\}^n \). Here a subset \(A \subseteq [n] \) corresponds to \((x_1, \ldots, x_n) \in Q^n \) where \(x_i = -1 \) if \(i \in A \) and \(x_i = 1 \) if \(i \notin A \).

In this setting the function \(x^S \) is just evaluation of the monomial \(x_{s_1} \cdots x_{s_k} \) where \(S = \{s_1 < \cdots < s_k\} \). This explains why \(x^S \) is a natural notation.

We also see that any function \(f \in \mathcal{F} \) can be written uniquely as a real polynomial in the symbols \(x_1, \ldots, x_n \) where all monomials are squarefree. The coefficient of the monomial \(x^S = x_{s_1} \cdots x_{s_k} \) is \(\hat{f}(S) \). In fact, as an \(\mathbb{R} \)-algebra, \(\mathcal{F} \) (with the usual multiplication of functions) is isomorphic to

\[
\mathbb{R}[x_1, \ldots, x_n]/(x_1^2 - 1, \ldots, x_n^2 - 1)
\]

where \((x_1^2 - 1, \ldots, x_n^2 - 1)\) is the ideal generated by \(x_1^2 - 1, \ldots, x_n^2 - 1 \).

WHY THE GROUP PEOPLE CALL \(x^S \chi_S \)

From a group theoretical point of view we look at \(Q^n \) as a group under componentwise multiplication. Let \(\text{Irr}(Q^n) \) be the set of irreducible representations of \(Q^n \). Since \(Q^n \) is an Abelian group all irreducible representations are one-dimensional. Furthermore, every element in \(Q^n \) has order 1 or 2. This means that \(\text{Irr}(Q^n) \) is the set of group homomorphisms from \(Q^n \) to \(Q \).

Since the functions \(A \rightarrow A \cdot S \) for \(S \in \mathbb{Z}_2^n \) are precisely the linear functions from \(\mathbb{Z}_2^n \) to \(\mathbb{Z}_2 \), the homomorphisms from \(Q^n \) to \(Q \) are precisely the \(x^S \) for \(S \subseteq [n] \). For an Abelian group the irreducible characters are the same as the irreducible representations, so in group language \(x^S \) deserves being called \(\chi_S \).

THE TRINITY OF THE HYPERCUBE — A SUMMARY

<table>
<thead>
<tr>
<th>(2^{[n]})</th>
<th>(\mathbb{Z}_2^n)</th>
<th>(Q^n = {-1, 1}^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \subseteq [n])</td>
<td>(A = (a_1, \ldots, a_n)) where (a_i = 1 \iff i \in A)</td>
<td>(A = (x_1, \ldots, x_n)) where (x_i = -1 \iff i \in A)</td>
</tr>
<tr>
<td>(A \triangle B) (sym. diff.)</td>
<td>(A + B) (c.w. add. mod 2)</td>
<td>(AB) (c.w. mult.)</td>
</tr>
<tr>
<td>(x^S(A) = (-1)^{</td>
<td>A \cap S</td>
<td>})</td>
</tr>
</tbody>
</table>

NICE PROPERTIES OF THE FOURIER TRANSFORM

In the following we will think of the hypercube as the group \(Q^n \).

For \(f, g \in \mathcal{F} \) let the convolution (sv. falling) \(f * g \in \mathcal{F} \) be defined by

\[
(f * g)(A) = \frac{1}{2^n} \sum_{A_1 A_2 = A} f(A_1) g(A_2).
\]

Observe that \(* \) is an associative operator. A very nice property of the Fourier transform is that

\[
\hat{f} * \hat{g} = \hat{f} \hat{g}.
\]

Parseval’s identity takes the following form on the hypercube:

\[
\frac{1}{2^n} \sum_{A \subseteq Q^n} |f(A)|^2 = \sum_{S \subseteq [n]} \hat{f}(S)^2.
\]
For boolean functions, that is functions \(f \in \mathcal{F} \) which attend only the values 1 and -1, we get
\[
\sum_{S \subseteq [n]} \hat{f}(S)^2 = 1.
\]

LINEARITY TESTING

A boolean function \(f \in \mathcal{F} \) is linear if \(f(AB) = f(A)f(B) \) for all \(A, B \in Q^n \). In other words, a function is linear if it is a group homomorphism from \(Q^n \) to \(Q \). Looking at \(f \) as a function from \(\mathbb{Z}_2^n \) to \(\mathbb{Z}_2 \), \(f \) is linear if and only if \(f(A + B) = f(A) + f(B) \) — a more common definition of linearity. We know that the only such functions are \(x^S \) for \(S \subseteq [n] \).

We introduce a metric on \(\mathcal{F} \):
\[
\operatorname{Dist}(f, g) = \operatorname{Prob}_{A \in Q^n} (f(A) \neq g(A)).
\]

To measure how linear a function is we define \(\operatorname{Dist}(f) \) to be the distance from \(f \) to the nearest linear function.

A linearity test on \(f \) is the following: Choose \(A \) and \(B \) independently in \(Q^n \) with uniform distribution. Accept if \(f(AB) = f(A)f(B) \).

We let \(\operatorname{Err}(f) \) be the probability that a linearity test on \(f \) does not accept.

The function \(\operatorname{Dist}(f) \) is hard to compute in practice, but \(\operatorname{Err}(f) \) can easily be approximated by performing the linearity test several times. Thus, we would like a relation between \(\operatorname{Dist}(f) \) and \(\operatorname{Err}(f) \).

Theorem 1. If \(f \in \mathcal{F} \) is a boolean function then \(\operatorname{Dist}(f) \leq \operatorname{Err}(f) \).

The proof needs two lemmas.

Lemma 2. Suppose \(f \in \mathcal{F} \) is a boolean function and \(S \subseteq [n] \). Then \(\hat{f}(S) \leq 1 - 2 \operatorname{Dist}(f) \).

Proof.
\[
\hat{f}(S) = \langle f, x^S \rangle = \frac{1}{2^n} \sum_{A \in Q^n} f(A)x^S(A) = \operatorname{Prob}_A(f(A) = x^S(A)) - \operatorname{Prob}_A(f(A) \neq x^S(A)) = 1 - 2 \operatorname{Dist}(f, x^S) \leq 1 - 2 \operatorname{Dist}(f).
\]

Lemma 3. If \(f \in \mathcal{F} \) is a boolean function, then
\[
\operatorname{Err}(f) = \frac{1}{2}(1 - (f * f * f)(1))
\]
where \(1 = (1, \ldots, 1) \in Q^n \).

Proof. The linearity test chooses \(A, B \in Q^n \) and accepts if \(f(AB)f(A)f(B) = 1 \). Thus the expression \(\frac{1}{2}(1 - f(AB)f(A)f(B)) \) is an indicator for the rejection event in the linearity test. We get
\[
\operatorname{Err}(f) = \frac{1}{2^{2n}} \sum_{A, B \in Q^n} \frac{1}{2}(1 - f(AB)f(A)f(B)).
\]
From the definition of convolution it follows that
\[(f*f*f)(1) = \frac{1}{2^{2n}} \sum_{A,B \in Q^n} f(AB)f(A)f(B).\]

Now we are ready to prove Theorem 1.

Proof of Theorem 1. From Lemma 3 it suffices to analyze \((f*f*f)(1)\).

\[
(f*f*f)(1) = \sum_{S \subseteq [n]} (f*f*f)(S)x^S(1) = \sum_{S \subseteq [n]} f(S)^3 \\
\leq \left(\max_{S \subseteq [n]} \hat{f}(S) \right) \left(\sum_{S \subseteq [n]} \hat{f}(S)^2 \right) = \max_{S \subseteq [n]} \hat{f}(S) \quad \text{(Using Parseval’s identity)} \\
\leq 1 - 2 \text{Dist}(f) \quad \text{(Using Lemma 2)}
\]

Now using Lemma 3 we have

\[
\text{Err}(f) = \frac{1}{2} (1 - (f*f*f)(1)) \geq \frac{1}{2} (1 - (1 - 2 \text{Dist}(f))) = \text{Dist}(f).
\]

Influences

In this section we think of the hypercube as \(2^{[n]}\) and defines a function \(f \in \mathcal{F}\) to be **boolean** if it attains only the values 0 and 1.

For \(S \subseteq [n]\), the **influence of S over f**, denoted by \(I_f(S)\), is defined as

\[I_f(S) = \text{Prob}_{A \subseteq [n]}(\exists B \subseteq S : f(A \Delta B) \neq f(A)),\]

that is, the probability that the “variables” in \(S\) can affect the function value.

Theorem 4. Let \(f \in \mathcal{F}\) be a Boolean function which equals one with probability \(p \leq 1/2\). Then

\[\sum_{i=1}^{n} I_f(\{i\})^2 \geq Cp^2 \log^2 n/n\]

where \(C\) is an absolute constant (for example \(C = 1/16\) suffices for large \(n\)).

Remark. If \(p \geq 1/2\) the above theorem gives that

\[\sum_{i=1}^{n} I_f(\{i\})^2 \geq C(1-p)^2 \log^2 n/n.\]

Proof. First of all, let us write \(\beta_i := I_f(\{i\})\) for short, and introduce the convention that a summation sign \(\sum\) with nothing below it means summation over \(S \subseteq [n]\).

For \(1 \leq i \leq n\), let \(\Delta_i : \mathcal{F} \to \mathcal{F}\) be the linear functional defined by

\[(\Delta_i f)(A) = f(A) - f(A \Delta \{i\}).\]

The reason for introducing \(\Delta_i\) is that

\[\beta_i = \|\Delta_i f\|_2^2\]

which is fairly evident.
It is easy to see that \(\Delta_i x^S = 2x^S \) if \(i \in S \) and \(\Delta_i x^S = 0 \) otherwise. By Fourier expansion we get
\[
\Delta_i f = \Delta_i \sum \hat{f}(S)x^S = \sum \hat{f}(S)\Delta_i x^S = \sum_{i \in S \subseteq [n]} 2\hat{f}(S)x^S.
\]
Parseval’s identity gives the euclidean norm of \(\Delta_i f \):
\[
\beta_i = \| \Delta_i f \|^2 = 4 \sum_{i \in S \subseteq [n]} \hat{f}(S)^2.
\]
Summing this over all \(1 \leq i \leq n \) we obtain
\[
\sum_{i=1}^{n} \beta_i = 4 \sum |S|\hat{f}(S)^2.
\]
We want to show that \(\sum_{i=1}^{n} \beta_i^2 \) is large, but this is approximately the same thing as showing that \(\sum_{i=1}^{n} \beta_i \) is large. Since we know that
\[
\sum \hat{f}(S)^2 = \| f \|^2_2 = p,
\]
in some sense we must show that the norm of \(f \) cannot be concentrated on those \(\hat{f}(S) \) with small \(|S| \). In other words we look for upper bounds on sums such as
\[
\sum_{|S| \leq b} \hat{f}(S)^2
\]
for some bound \(b \). Unfortunately, sums of this kind are not too convenient to work with. But we have the following lemma whose proof is found in the appendix.

Lemma 5. Let \(g \) be a function from \(2^{[n]} \) to \(\{-1, 0, 1\} \). Let \(t \) be the probability that \(g \neq 0 \). Then
\[
t \geq \sum \delta^{|S|} \hat{g}(S)^2
\]
for every \(0 < \delta < 1 \).

We apply this lemma with \(g = \Delta_i f \). The probability that \(\Delta_i f \neq 0 \) is exactly \(\beta_i \), so we obtain
\[
\beta_i^{1+\delta} \geq \sum \delta^{|S|} |\hat{S}f(S)|^2.
\]
Summing this over \(1 \leq i \leq n \) we have
\[
\sum_{i=1}^{n} \beta_i^{1+\delta} \geq 4 \sum \delta^{|S|} |S| \hat{f}(S)^2.
\]
Now ignoring the portion of the sum contributed by the sets \(S \) of cardinality exceeding \(b \) (a parameter which we shortly select), we obtain
\[
\sum_{i=1}^{n} \beta_i^{1+\delta} \geq 4\delta^b \sum_{|S| \leq b} |S| \hat{f}(S)^2.
\]
We also keep in mind that
\[
p = \sum \hat{f}(S)^2 = \hat{f}(\emptyset).
\]
So also
\[\sum_{i=1}^{n} \beta_i^{2+\frac{2}{\delta}} \geq 4\delta^b \left(-p^2 + \sum_{|S| \leq b} \hat{f}(S)^2 \right). \]

At the same time, since
\[\sum_{i=1}^{n} \beta_i = 4 \sum_{i=1}^{n} |S| \hat{f}(S)^2 \]
we also have
\[\sum_{i=1}^{n} \beta_i \geq 4b \sum_{|S| > b} \hat{f}(S)^2. \]

Now we combine these inequalities to obtain
\[
\delta - b \sum_{i=1}^{n} \beta_i^{2+\frac{2}{\delta}} + b^{-1} \sum_{i=1}^{n} \beta_i \geq 4 \left(-p^2 + \sum_{i=1}^{n} \hat{f}(S)^2 \right) = 4(-p^2 + p) \geq 2p
\]
where the last inequality comes from the assumption \(p \leq 1/2 \). Denote \(\sum_{i=1}^{n} \beta_i^2 \) by \(\lambda^2/n \). From Cauchy-Schwartz we have
\[\sum_{i=1}^{n} \beta_i < \lambda. \]

Since \(\frac{2}{1+\delta} < 2 \) we can use the monotonicity of \(r \)-th power averages like this:
\[\left(\frac{1}{n} \sum_{i=1}^{n} \beta_i^{2+\frac{2}{\delta}} \right)^{\frac{\delta}{2+\frac{2}{\delta}}} \leq \left(\frac{1}{n} \sum_{i=1}^{n} \beta_i^2 \right)^{\frac{\delta}{2}} = \frac{\lambda}{n}, \]
which yields
\[\sum_{i=1}^{n} \beta_i^{2+\frac{2}{\delta}} \leq \lambda^{\frac{2}{\delta+1}} n^{\frac{1-\delta}{\delta+1}}. \]

If \(p = 0 \) the theorem is trivially true, so we assume \(p > 0 \). Choose \(b \) to be \(\lambda/p \). The second term in (1) cannot exceed \(p \) and so we remain with
\[\delta - b \lambda \frac{2}{\delta+1} n^{\frac{1-\delta}{\delta+1}} \geq p. \]

Put \(\delta = 1/2 \) to get
\[2\lambda \lambda^{4/3} n^{-1/3} \geq p. \]

Define \(\mu \) so that \(\lambda = \mu p \log n \). We get
\[n^{\mu - \frac{1}{3}} (\mu p \log n)^{4/3} \geq p. \]

If this should hold for large \(n \) clearly \(\mu \geq 1/4 \). Finally we get
\[\sum_{i=1}^{n} \beta_i^2 = \frac{\lambda^2}{n} \geq \frac{1}{16} p^2 \log^2 n. \]
We can iterate the theorem about singleton influences to say something about influences of larger sets. For $S \subseteq [n]$ define the influence towards 1 of S on f, denoted by $I^f_j(S)$, as

$$I^f_j(S) = \Pr_{A \subseteq [n]}(f(A) = 0 \land \exists B \subseteq S : f(A \triangle B) = 1),$$

that is, the probability that $f = 0$ but the “variables” in S can make f attain the value 1. Similarly, define the influence towards 0 of S on f, denoted by $I^0_j(S)$, as

$$I^0_j(S) = \Pr_{A \subseteq [n]}(f(A) = 1 \land \exists B \subseteq S : f(A \triangle B) = 0).$$

Clearly

$$I^f_j(S) + I^0_j(S) = I_f(S) \tag{2}$$

and for singletons we also have

$$I^0_j(\{i\}) = I^f_j(\{i\}). \tag{3}$$

It is easy to see that $I^f_j(S) \leq 1 - p$. The following theorem tells us that there is a set S of small cardinality that almost attains this maximum.

Theorem 6. Let $f : [n] \to \{0, 1\}$ be a boolean function, let $p = \Theta(1)$ be the probability that $f = 1$ and let $\omega = \omega(n)$ be any function tending to infinity with n. Then there is a set of cardinality $\leq \frac{1}{\log n} \omega(n) = o(n)$ whose influence towards one is $1 - p - o(1)$.

Proof. We will define a sequence of boolean functions $f_k : [k] \to \{0, 1\}$ for $k = n, n - 1, \ldots$ recursively. Let p_k denote the probability that $f_k = 1$.

Start with $f_n = f$. Suppose we have already defined f_k and now we are about to define f_{k-1}. By Theorem 4 there is some $1 \leq i \leq k$ with

$$I_{f_k}(\{i\}) \geq C p_k \log k / k$$

if $p_k \leq 1/2$. Without loss of generality we assume $i = k$. Now define the function $f_{k-1} : [k-1] \to \{0, 1\}$ by

$$f_{k-1}(A) := \begin{cases} 1 & \text{if } f_k(A) = 1 \text{ or } f_k(A \cup \{k\}) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that

$$p_{k-1} = p_k + I^f_j(\{k\}) = p_k + \frac{1}{2} I_{f_k}(\{k\})$$

where the last equality comes from (2) and (3). Thus

$$p_{k-1} \geq \min \left(\frac{1}{2}, p_k \left(1 + C \frac{\log k}{2k} \right) \right).$$

Iterating l steps yields $p_{n-l} \geq 1/2$ or

$$p_{n-l} \geq p \prod_{k=n-l+1}^n \left(1 + C \frac{\log k}{2k} \right) \geq p \left(1 + C \frac{\log n}{2n} \right)^l.$$

If we choose

$$l \approx \frac{2n}{C \log n} \log \frac{1}{p}$$
the right-hand side of (4) becomes greater that 1 and we get
\[p_{n-l} \geq 1/2. \]

Now we continue defining the \(f_k \) for \(k < n-l \). We defined \(f_{n-l} \) before. Suppose we have already defined \(f_k \) with \(p_k \geq 1/2 \) and are about to define \(f_{k-1} \).

By the remark to Theorem 4 there is some \(1 \leq i \leq k \) with
\[I_{f_k}(\{i\}) \geq C(1-p_k)\log k/k. \]
Without loss of generality we assume \(i = k \). Now define the function \(f_{k-1} : [k-1] \rightarrow \{0,1\} \) by
\[
 f_{k-1}(A) := \begin{cases}
 1 & \text{if } f_k(A) = 1 \text{ or } f_k(A \cup \{k\}) = 1, \\
 0 & \text{otherwise}
\end{cases}
\]

exactly as before. We get
\[
 1 - p_{k-1} = 1 - (p_k + I_j^1(\{k\})) = (1 - p_k) - \frac{1}{2}I_{f_k}(\{k\})
\]
In particular \(p_{k-1} \geq 1/2 \) so that we are ready to define \(f_{k-2} \) in the next step.

Iterating \(j \) steps yields
\[
(5) \quad (1 - p_{n-l-j}) \leq (1 - p_{n-l}) \prod_{k=n-l-j+1}^{n-l} \left(1 - C \frac{\log k}{2k} \right) \leq \frac{1}{2} \left(1 - C \frac{\log n}{2n} \right)^j.
\]
If we choose \(j \approx \frac{2n}{C \log n} u(n) \),
where \(u(n) \to \infty \) as \(n \to \infty \), then the right-hand side of (5) tends to zero as \(n \to \infty \). Thus we have showed that \(p_{n-(l+j)} = 1 - o(1) \) where
\[
l + j \approx \frac{2n}{C \log n} \left(u(n) + \log \frac{1}{p} \right) = \frac{n}{\log n} \omega(n)
\]
if we choose
\[
u(n) = \frac{C}{2} \omega(n) - \log \frac{1}{p}.
\]
Let \(S = \{n, n-1, \ldots, n-(l+j)\} \). It follows from the definition of \(f_{n-(l+j)} \) that
\[
p_{n-(l+j)} = \Pr_{A \subseteq [n]\backslash S} (\exists B \subseteq S : f(A \cup B) = 1) = \Pr_{A \subseteq [n]} (\exists B \subseteq S : f(A \Delta B) = 1) = p + I_j^1(S)
\]
so we have showed that
\[
I_j^1(S) = 1 - p - o(1). \]
\[\square \]
In this section we prove Lemma 5 which was used in the proof of Theorem 4.

For a finite set X, let $L^p(X)$ denote the metric space of all real functions on X with norm

$$\|f\|_p = \left(\frac{1}{|X|} \sum_{x \in X} |f(x)|^p \right)^{1/p}.$$

Recall that $Q = \{-1, 1\}$. Let $0 < \varepsilon < 1$ be a real number. Define a functional $T : L^{1+\varepsilon^2}(Q) \to L^2(Q)$ by

$$(Tf)(x) = f(\varepsilon x).$$

Lemma 7. $\|T\| \leq 1$, that is, $\|Tf\|_2 \leq \|f\|_{1+\varepsilon^2}$ for every $f \in L^{1+\varepsilon^2}(Q)$.

Proof. Any real function f on Q can be written $f(x) = a + bx$ where a and b are real constants. Thus we need to show that

$$\left(\frac{(a - \varepsilon b)^2 + (a + \varepsilon b)^2}{2} \right)^{1/2} \leq \left(\frac{|a - b|^{1+\varepsilon^2} + |a + b|^{1+\varepsilon^2}}{2} \right)^{1/(1+\varepsilon^2)}.$$

By an appropriate scaling we can assume that $a = 1$, so we must show that

$$\sqrt{1 + (p - 1)b^2} \leq \left(\frac{|1 - b|^p + |1 + b|^p}{2} \right)^{1/p}$$

where $p := 1 + \varepsilon^2$. Observe that proving this inequality for $0 \leq b \leq 1$ will also imply the case of $b > 1$; just divide through by a factor of b. Also, for symmetry reasons, it suffices to consider $b \geq 0$. Consider the function

$$\varphi(b) = \frac{1}{p} \ln \frac{(1 - b)^p + (1 + b)^p}{2} - \frac{1}{2} \ln(1 + (p - 1)b^2).$$

We shall show that $\varphi(b) \geq 0$ for $0 \leq b \leq 1$ and $1 < p < 2$. We compute the derivative

$$\varphi'(b) = \left[(1 - b)^p + (1 + b)^p \right]^{-1} [1 + (p - 1)b^2]^{-1} \theta(b)$$

where

$$\theta(b) = (1 + b)^{p-1} (1 - (p - 1)b) - (1 - b)^{p-1} [1 + (p - 1)b].$$

We also compute

$$\theta'(b) = p(p - 1)b[(1 - b)^{p-2} - (1 + b)^{p-2}].$$

For $0 \leq b \leq 1$ and $1 < p < 2$ we have $\theta'(b) \geq 0$ which implies $\varphi'(b) \geq 0$ which implies $\varphi(b) \geq 0$. □

The functional T was designed for Q but we are interested in the higher-dimensional hypercube Q^n. The following lemma is very useful when we increase the dimension.
Lemma 8. Let $p \leq q$ be positive real numbers. For $i = 1, 2$, let X_i and Y_i be finite sets and let $T_i : L^p(X_i) \to L^q(Y_i)$ be any two functionals. Let T'_1 and T'_2 be the functionals from $L^p(X_1 \times X_2)$ to $L^q(Y_1 \times Y_2)$ defined by

$$(T'_1 f)(x_1, x_2) = (T_1(* \mapsto f(*, x_2)))(x_1),$$

$$(T'_2 f)(x_1, x_2) = (T_2(* \mapsto f(x_1, *)))(x_2).$$

If T_1 and T_2 have norms at most 1 (i.e. $\|T_i f\|_q \leq \|f\|_p$ for every $f \in L^p(X_i)$), then the product

$$T'_1 T'_2 : L^p(X_1 \times X_2) \to L^q(Y_1 \times Y_2)$$

has norm at most 1 as well.

Proof. For any function $f \in L^p(X_1 \times X_2)$ the following holds.

$$\left(E_{X_1 \times X_2} |(T'_1 T'_2 f)(x_1, x_2)|^q \right)^{1/q} = \left(E_{X_1 \times X_2} |(T_1(* \mapsto (T'_2 f)(*, x_2))(x_1)|^q \right)^{1/q} \leq \left(E_{X_1} \left[E_{Y_1} |(T'_2 f)(*, x_2))(y_1)|^p \right]^{q/p} \right)^{1/q} \left(\text{Since } |T_1| \leq 1 \right) \leq \left(E_{X_1} \left[E_{Y_1} |T'_2f(x_2)|^q \right]^{p/q} \right)^{1/p} \left(\text{Minkowski's inequality} \right) = \left(E_{Y_1} \left[E_{X_1} |T'_2f(x_2)|^q \right]^{p/q} \right)^{1/p} \left(\text{Since } |T_2| \leq 1 \right) = \left(E_{Y_1} E_{X_1} |f(y_1, x_2)|^p \right)^{1/p} \left(\text{Parseval} \right).$$

Here we have used Minkowski’s inequality, that is, for $r \geq 1$

$$\left(E_X |E_Y |F(x, y)|^r \right)^{1/r} \leq E_Y \left(E_X |F(x, y)|^r \right)^{1/r}.$$

In the computation above we take $r = q/p \geq 1$. □

Now we multiply T by itself n times in the sense of Lemma 8 to get

$$T_n := \underbrace{T \cdots T}_{n} \cdots T'$$

which is a functional from $L^{1+\varepsilon^2}(Q^n)$ to $L^2(Q^n)$. From Lemma 7 and 8 we know that $\|T_n\| \leq 1$. Since

$$(T_n f)(x_1, \ldots, x_n) = f(\varepsilon x_1, \ldots, \varepsilon x_n)$$

it is evident that the action of T_n on a Fourier basis function is $T_n x^S = \varepsilon^{\hat{S}} x^S$. Putting $\varepsilon^2 := \delta$ we get

$$\|T_n g\|_2 = \sqrt{\sum \overline{(T_n g)(S)}^2} = \sqrt{\sum |\varepsilon^{\hat{S}} \hat{g}(S)|^2} = \sqrt{\sum |\hat{g}^{\hat{S}}\hat{g}(S)|^2} = \sqrt{\sum \overline{|\hat{g}^{\hat{S}}(S)|^2}} = \sqrt{\sum \overline{\hat{g}(S)|^2}}.$$

On the other hand

$$\|g\|_{1+\varepsilon^2} = \|g\|_{1+\delta} = \left(\frac{1}{2^n} \sum_{A \subseteq Q^n} |g(A)|^{1+\delta} \right)^{\frac{1}{1+\delta}} = \|g\|_{1+\delta}.$$
FOURIER TRANSFORM ON THE HYPERCUBE

11

TWO USEFUL INEQUALITIES

Here we prove two inequalities that we used earlier.

Theorem 9 (Minkowski’s inequality). Let X and Y be finite probability spaces. Let $r \geq 1$ be a real number and let $F(x, y)$ be a nonnegative real function on $X \times Y$. Then

$$(E_X[E_Y F(x, y)]^r)^{1/r} \leq E_Y (E_X F(x, y)^r)$$

Proof. Let $N(y) := (E_X F(x, y)^r)^{1/r}$. We have

$$\left(\frac{E Y F(x, y)^r}{E Y N(y)} \right)^r = \left(E_y \left(\frac{N(y)}{E Y N(y)} \right) \frac{F(x, y)^r}{N(y)^r} \right)^r \leq E_Y \left(\frac{N(y)}{E Y N(y)} \right) \frac{F(x, y)^r}{N(y)^r}$$

by the strong form of Jensen below, since $\ast \mapsto \ast^r$ is a convex function. Taking E_X of this yields

$$E_X E_Y \left(\frac{N(y)}{E Y N(y)} \frac{F(x, y)^r}{N(y)^r} \right) = \frac{E Y N(y) E X F(x, y)^r}{E Y (E X F(x, y)^r)^{1/r}} = 1.$$

This means that

$$1 \geq E_X \left(\frac{E Y F(x, y)^r}{E Y N(y)} \right)^r = \frac{E X [E Y F(x, y)]^r}{(E Y (E X F(x, y)^r)^{1/r})^r}$$

which proves the theorem since $\ast \mapsto \ast^r$ is an increasing function. □

Theorem 10 (Inequality of r-th power averages). Let x be a nonnegative real random variable and let $r \leq s$ be positive real numbers. Then

$$(E(x^r))^{1/r} \leq (E(x^s))^{1/s}.$$

Proof. With $y = x^r$ and $t = s/r$ the inequality can be written

$$(E y^t)^{1/t} \leq (E y^s)^{1/s}$$

which follows from Jensen since $t \geq 1$. □

For safety reasons we also state Jensen’s inequality, but without a proof.

Theorem 11 (Jensen’s inequality (weak version)). If f is a convex function then

$$f \left(\sum \lambda_k x_k \right) \leq \sum \lambda_k f(x_k).$$

for all real x_k and nonnegative λ_k such that $\sum \lambda_k = 1$.

Theorem 12 (Jensen’s inequality (strong version)). Let f be a convex function and let x and y be random variables. If $x \leq 0$ and $E(x) = 1$ then

$$f(E(xy)) \leq E(f(y)).$$

Proof. Let Ω be the underlying probability space (which we assume is finite) and let $F_x(\omega)$ and $F_y(\omega)$ be the density functions of x and y respectively. From the weak form of Jensen we have

$$f(E(xy)) = f \left(\frac{1}{|\Omega|} \sum_{\omega \in \Omega} F_x(\omega) F_y(\omega) \right) \leq \frac{1}{|\Omega|} \sum_{\omega \in \Omega} F_x(\omega) f(F_y(\omega)) = E(f(y)).$$

□