Lecture 4
Almost k-wise Independent Variables

Mårten Trolin

1 The Method

We will now consider the problem of creating a set of bitstrings such that the bits are almost k-wise independent. Our method consists of two steps. In the first step we create a set of bitstrings such that parity on every fixed index set is almost even. In the second step we present a method to convert such a set into a set where the bits are almost k-wise independent.

For presentational reasons we give the steps in reverse order, i.e., we start by showing how to create almost k-wise independent bitstrings from a set with almost even parity.

2 The Vandermonde Matrix

Consider the following $n \times k$-matrix over a finite field F:

$$
M = \begin{pmatrix}
1 & \alpha_1 & \alpha_1^2 & \ldots & \alpha_1^{k-1} \\
1 & \alpha_2 & \alpha_2^2 & \ldots & \alpha_2^{k-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_n & \alpha_n^2 & \ldots & \alpha_n^{k-1}
\end{pmatrix}.
$$

This matrix can be used for evaluation of the polynomial $p(x) = \sum_{i=0}^{k-1} a_i x^i$ at $\alpha_1, \alpha_2, \ldots, \alpha_n$ by computing the product

$$
M \cdot \begin{pmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{k-1}
\end{pmatrix} = \begin{pmatrix}
p(\alpha_1) \\
p(\alpha_2) \\
\vdots \\
p(\alpha_n)
\end{pmatrix}.
$$

When $n = k$ this matrix is called the Vandermonde matrix.

Proposition 1. Every $k \times k$ submatrix of M is non-singular if $\alpha_i \neq \alpha_j$ for $i \neq j$.

Proof. Since a $k - 1$ degree polynomial is uniquely determined by values at k distinct points, the Vandermonde matrix is invertible.
Now consider the determinant of the Vandermonde matrix. By definition the determinant is a polynomial of degree at most $k - 1$ in α_i. Obviously the determinant is zero when $\alpha_j = \alpha_i$ for some $i \neq j$, which implies that $(\alpha_j - \alpha_i)$ is a factor for every $i \neq j$, and hence $\prod_{1 \leq i < j \leq k}(\alpha_j - \alpha_i)$ divides the determinant. Considering that the definitions gives degree of the monomials of the determinant of $1 + 2 + \cdots + (k - 1)$, this expression gives the determinant up to constant factors. It can be shown that this constant is indeed 1.

3 Bits that Are k-wise Independent

Now consider the problem of producing a set of bit strings of length l where the bits are k-wise independent bits. As shown in the previous lecture this can be achieved by setting $q = 2^\lceil \log n \rceil$ where n is such that $l = n \log n$ and form an $n \times k$ matrix M over $GF[q]$. This matrix can be converted into a matrix M' over $\{0, 1\}$ by using the observation that multiplication of an element in $GF[q]$ by a constant $\alpha \in GF[q]$ can be performed by multiplying the corresponding bitstring by a $\log n \times \log n$ matrix M_α. Now we can produce our sample space by computing $M'b$ for each $b \in \{0, 1\}^l$.

Our next goal is to make the sample space smaller by iterating not over all possible bitstrings, but only over a subset.

4 Bits that Are Almost k-wise Independent

In order to decrease the size of the sample space, we investigate a variant of k-wise independence, namely almost k-independence.

Definition 1. The $\{0, 1\}$-vector x is said to be almost k-wise independent in the first sense with bias ϵ if for any choice of k indices i_1, i_2, \ldots, i_k it holds that
\[
\sum_{b \in \{0, 1\}^k} |\Pr\left[\bigwedge (x_{i_j} = b_j)\right] - 2^{-k}| \leq \epsilon .
\]

Intuitively this definition says that a distribution is almost k-wise independent if each constellation of k bits takes every possible value approximately equally often. An alternative definition is to say that k-wise independence means that the expected parity of each subset of k bits or less is approximately $1/2$:

Definition 2. The $\{0, 1\}$-vector x is said to be almost k-wise independent in the second sense with bias δ if for any index set S, $|S| \leq k$, it holds that
\[
|\Pr\left[(\bigoplus_{i \in S} x_i) = 1\right] - \frac{1}{2}| \leq \delta .
\]

It can be shown that a distribution that is k-wise independent in the first sense with bias ϵ is k-wise independent in the second case the bias δ. The converse also holds with $\epsilon = 2^k \delta$. The proof will be presented at a later lecture.
Now the idea is to sample \(b \) from a set such each parity over a fixed index set is almost even, and then compute \(Mb \). The following lemma shows that this method gives almost \(k \)-wise independent bits.

Lemma 1. If \(Mb = x \) and each set of \(k \) rows of \(M \) is linearly independent, then for \(S \) such that \(|S| \leq k\) it holds that \(\oplus_{i \in S} x_i = \oplus_{j \in T} b_j \) some non-empty \(T \).

Proof. Since \(x_i = \oplus_{j} M_{ij} b_j \) we can write
\[
\oplus_{i \in S} x_i = \oplus_{i \in S} (\oplus_{j} M_{ij} b_j) = \oplus_{j} ((\oplus_{i \in S} M_{ij}) b_j).
\]

Now it remains to show that \(\oplus_{i \in S} M_{ij} \neq 0 \) for at least one \(j \). Suppose this is not the case. Then we have found a \(k \times k \) submatrix that is singular, which contradicts the assumption that every set of \(k \) rows is linearly independent.

Obviously this gives a set of bit strings of length \(n \) that are \(k \)-wise independent if the set from which \(b \) is chosen is \(\{0, 1\}^k \) and \(M \) is \(n \times k \). Since we only require \(b \) to be chosen from a set where every parity is almost even one might hope to find a smaller set to choose \(b \) from and still get almost \(k \)-wise independence. In the following section we show how to create such a set.

5 Linear Feedback Shift Registers

We now use Linear Feedback Shift Registers (LFSRs) to construct bit strings where each parity is almost even. For this description let \(m \) be the length of the strings we create. Given coefficients \(a_0, a_1, \ldots, a_{r-1} \) and start values \(b_0, b_1, \ldots, b_{r-1} \) a LFSR defines a bit sequence
\[
b_i = \oplus_{j=0}^{r-1} a_j b_{i-r+j}.
\]

Since the cycles of a shift register are disjoint and the all zero vector produces a singleton cycle, the longest cycle we can hope for has length \(2^r - 1 \). Let us investigate the cycle length a little more closely.

For a shift register we can define the characteristic polynomial as \(f(t) = \sum_{j=0}^{r-1} a_j t^j \) where we define \(a_r = 1 \). Now the period of the shift register is the smallest \(s \) such that \(f(t) \) divides \(t^s + 1 \). The following proposition generalizes this observation:

Proposition 2. Let \(G \) be a linear feedback shift register with characteristic polynomial \(f(t) \). Then \(f(t) \) divides \(\sum_{j=1}^{r} t^j \) precisely when \(\oplus_{j=1}^{r} b_j = 0 \).

Proof. \(f(t) \) divides \(\sum_{j=1}^{r} t^j \) when there exists a polynomial \(g(t) \) such that \(f(t)g(t) = \sum_{j=1}^{r} t^j \). The feedback rule of \(G \) directly implies that \(\oplus_{j=0}^{r} a_j b_{i-r+j} = 0 \) for any \(i \). Now consider the corresponding rule defined by the polynomial \(t^d f(t) \), \(\oplus_{j=0}^{r} a_j b_{i-r+j+d} = 0 \). It can also verified that if the rule holds for two polynomials \(g(t) \) and \(h(t) \), it also holds for their sum \(g(t) + h(t) \). Hence it holds for the product \(f(t)g(t) \).
We now sketch a proof of the converse, that the polynomial \(g(t) \) exists if \(\oplus_{j=1}^{l} b_{ij} = 0 \). The parity of the bits \(b_{ij} \) can be recursively rewritten as parity of the bits \(\{b_0, b_1, \ldots, b_r\} \) using the feedback relation. Since this corresponds exactly to polynomial division by \(f(t) \), it gives \(\oplus_{j=1}^{l} b_{ij} = 0 = f(t)g(t) + r(t) \). The only choice of bits \(b_0, b_1, \ldots, b_r \) with even parity is bits defined by \(f(t) \), which implies \(r(t) = 0 \). Hence \(\sum_{j=1}^{l} t^{ij} \) is divisible by \(f(t) \).

We are now ready to give our construction. We let the sample space consist of the output on all start values of all shift registers of length \(r \) whose characteristic polynomial is irreducible. There are approximately \(2^r/r \) such polynomials and \(2^r \) start values, which gives a total of about \(2^{2r}/r \) samples of length \(m \). To show that each parity is almost even we examine \(\oplus b_{ij} \). Since this can be treated as a polynomial of degree at most \(m \), it is divisible by at the most \(m/r \) irreducible polynomials. This gives

\[
\left| \Pr \left[\oplus b_{ij} = 1 \right] - \frac{1}{2} \right| \leq \frac{m}{r} \frac{2^r}{r} = m2^{-r}
\]

Now we can conclude that by setting \(r = \log(\frac{m\delta}{2}) \) we achieve a bias of at most \(\delta \). The size of the sample space is approximately \(2^{2r} \approx \left(\frac{m}{2} \right)^2 \).