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1 Motivation

If a message is sent in plain text, any single error may prevent us from
recovering the original message. Such as sending �cat� and receiving �rat�. To
circumvent this, redundant bits of information can be introduced to identify
and correct errors. A simple example of encoding for this purpose would be
to send each symbol thrice. To decode a received message (possibly with
errors), one could look at every group of three symbols and taking it to mean
whichever symbol appears the most often. For example, if we wish to send
�cat�, we actually send �cccaaattt�. If the received message reads �rccaaattt�,
the decoding scheme successfully recovers �cat� since the c's still outnumber
the r 's.

This scheme is able to correct a single error at the expense of blowing
up the message size by a factor 3, or, in other words, its information rate is
1/3. This coding scheme is e�cient ; we can easily implement this encoding
and decoding scheme in, e.g., time polynomial in the original message length.
In this lecture, we will see how to e�ciently correct an arbitrary, but �xed,
number of errors with considerably better rate.

2 Introduction

Let Σ be an alphabet and k a natural number. We wish to transfer a message
m ∈ Σk from a point A to a point B over an error-prone channel. Errors in

1 of 8



KTH, CSC January 19, 2010
The Theoretician's Toolkit

transferred data manifest as symbols at certain positions being changed into
other symbols (which we assume are also in Σ). We want to, on one hand,
detect when an error has occurred during the transfer of m, and on the other
hand, be able to correct an error when it is known to have occurred. To
achieve this, we map messages to codewords in Σn, with n a natural number
greater than k, before transferring them over the channel. A depiction of our
scenario, where we let the mapping f : Σk → Σn, can be seen in Figure 1.

m enoder f(m) deoder m′ BA
Figure 1: Scenario for Coding

Suppose we only transfer messages in the set M ⊆ Σk and let the set
of codewords be C ⊆ Σn. The intuition for why it is bene�cial to transfer
f(m) ∈ C instead of simply m is that errors in f(m) more easily result in
the codeword not being in C (which should be easy to check) than errors in
m result in a message not being in M .

3 Error-Correcting Codes and Distance

A code C of length n is a subset of the language Σn of length-n strings from
an alphabet Σ. A word w ∈ Σn is called a codeword if and only if it is in the
code. For two codewords x,y ∈ C, we de�ne their distance as the Hamming
distance: the number of coordinates the words' symbols di�er at, i.e.

d(x,y) = |{1 ≤ i ≤ n | xi 6= yi}|.

For a codeword w ∈ Σn, the (minimal) distance to the code, d(w, C), is
minx∈C d(w,x). The (minimal) distance of the code, is the minimal distance
between two codewords,

∆(C) = min
x,y∈C

d(x,y).

In Hamming's model, we consider the case when up to some e number
of errors may be introduced in the sent message and we wish to be able to
retrieve the original message regardless of what these errors are. If we are
able to do this, possibly under resource constraints, then we say that the
code can correct e errors. To avoid degenerate cases, we shall assume |C| ≥ 2
and n > e.
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Lemma 1. For a code to correct e errors, a minimal distance of at least
2e+ 1 is necessary and su�cient.

Proof. We note that a word w is uniquely decodable if and only if it is at
distance at most e to a unique codeword. We also require all words at distance
at most e to the code to be uniquely decodable (these are the possible received
words). If it does not hold, w must be at a distance at most e to two distinct
codewords, making the minimum distance of the code at most e+ e = 2e. In
the other direction, if it does hold, there cannot be two codewords at distance
2e since this would imply the existence of a word at distance e to two distinct
codewords.

4 Hamming Balls

A Hamming Ball of radius e centered at a point x is the set of points whose
Hamming distance to x is at most e. In our coding terminology, it is precisely
the set of words we may receive if up to e symbols are changed in the sent
message, x. One characterization of C, correcting e errors, is as balls covering
the space Σn as shown projected onto the plane in Figure 2; the centers are
the codewords to which every sequence of symbols inside the ball is corrected.
Lemma 1 implies that the distance l between two centers is at least 2e+ 1.

c1

c2

l
Σn

c3

c4

c5

c6

Figure 2: Representation of a Code as Balls

If we let Σ = {0, 1} and suppose there are 2k messages, the size of each
ball is in fact 1 +

(
n
1

)
+
(

n
2

)
+ · · ·+

(
n
e

)
, as given by the following lemma.
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Lemma 2. For a code C over the binary alphabet such that |C| = 2k,

2k ×
(

1 +

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

e

))
≤ 2n.

Proof. Let x and y be distinct codewords in C. Denote by Se(x) and Se(y)
the set of binary words that can be obtained by altering up to e bits in each
of these codewords. Adding up the possibilities for altering 0, 1, . . . , e bits we
get

|Se(x)| = |Se(y)| = 1 +

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

e

)
.

Since the codewords are distinct, Se(x) must be disjoint from Se(y), whereby
our result follows.

For the code which corrects only one error, Lemma 2 amounts to

k ≤ n− dlog(n+ 1)e.

5 Linear Codes

Let (Σ,+, ·) be a �nite �eld and C a code on Σ for messages of length k. We
say that C is linear if x,y ∈ C implies x + y ∈ C. This means that C is a
linear space of dimension k spanned by k linearly independent vectors. By
arranging these vectors into columns we form the generator matrix G (of size
k × n) for C, which allows us to obtain a codeword w from the message b
through the equation

w = bGT .

Consider the set C⊥ of all vectors orthogonal to C, which by de�nition is
also a linear code. We call C⊥ the dual code to C, and note that if H is a
generating matrix (of size (n− k)× n) for C⊥, it must be the case that

HwT = 0T ⇐⇒ w ∈ C,

with 0T a column vector of zeroes. We refer to H as a parity-check matrix
for C, since it provides a method to check code membership.

Example 1. Let n = 7 and k = 4. We are given the binary codeword
w = (1, 1, 0, 1, 1, 0, 0) and the parity-check matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .
Since HwT = [ 0 1 0 ]T 6= 0T , w does not belong to the code de�ned by H.
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6 Hamming Codes

For a codeword w in a binary code C we de�ne the weight of w as the
number of 1's w contains. Denoting weight by w, it follows that for two
binary codewords x and y,

d(x,y) = w(x− y) = w(x + y),

whence we de�ne the minimum weight for the code as wmin = minw∈C w(w)
for w 6= 0 and conclude that ∆(C) = wmin.

Consider again codes as balls in the space Σn as in Figure 2. We call
a code perfect if its balls are disjoint and all have equal radius, while still
�lling up the space. We de�ne a binary Hamming code as a linear code with a
parity-check matrix in which all columns are distinct and no column consists
of only zeroes. Such codes are interesting by virtue of the following results.

Lemma 3. Binary Hamming codes can correct one error.

Proof. By Lemma 1, the theorem follows if wmin ≥ 3. Suppose w(w) = 1
for some w ∈ C. Then we will have HwT = h, with h a column of H. By
de�nition of Hamming codes, h cannot be all-zero, but we still have h = 0′,
yielding a contradiction. Suppose w(w) = 2; then HwT = h + h′ with h
and h′ di�erent columns of H. The parity-check equation gives h = h′, while
Hamming codes require distinct columns, yielding the �nal contradiction.

Theorem 1. Binary Hamming codes are perfect.

Proof. Let r be the number of rows in the check matrix H. Note that we
then must have n = 2r−1 and k = 2r−1− r, since each column is a distinct
non-zero r-bit binary number. It su�ces to show that {0, 1}n is completely
covered by Hamming balls of radius 1 centered at the codewords. From
Lemma 3, we know that any two such balls are disjoint and hence the total
number of covered words is the number of balls times the size of a radius-1
ball. Hamming balls of radius 1 have size n + 1 by Lemma 2, making the
number of covered words 2k × (n + 1) = 2n. Hence all of {0, 1}n must be
covered and the code is therefore perfect.

7 Reed-Solomon Codes

The Reed-Solomon code is a special linear code that encodes messages as
polynomials and use that two distinct degree-d polynomials only can agree
on at most d points. The bene�t of these codes is that for every choice of
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the maximum number of errors, we can construct an error-correcting code
with optimal rate. The downside is that we require the alphabet to be of
size proportional to the size of the messages plus the number of errors. In
other words, we cannot make the alphabet independent of the length of the
message. How to map the codes to a typical binary alphabet will be covered
in the next lecture, at a cost of the code's rate.

De�nition 1 (Reed-Solomon Code). Assume |Σ| ≥ n and let α1, . . . , αn

be arbitrary distinct points in Σ. The Reed-Solomon Code (w.r.t. k, Σ and
{αi}i) of a message b ∈ Σk is (pb(α1), pb(α2), . . . , pb(αn)) where pb(α) is the
polynomial b1 + b2x

1 + b3x
2 + · · ·+ bkx

k−1.
The Reed-Solomon code for a particular k and n is also denoted RS(k, n).

Example 2. Let us work in Σ = F5 with k = 2, n = 5 and α1 = 0, α2 =
1, α3 = 2, α4 = 3, α5 = 4. In other words, we are going to encode two symbols
using �ve. Let us consider the three messages �00�, �13�, and �32�. The
polynomial for these three messages will be, respectively, p00(α) = 0, p13(α) =
1 + 3α, and p32(α) = 3 + 2α. The messages encoded, (p(α1), . . . , p(α5)), will
be (0, 0, 0, 0, 0) for the message �00�, (1, 4, 2, 0, 3) for the message �13�, and
(3, 0, 2, 4, 1) for the message �32�. One can show that this encoding can in
fact correct a single error.

Theorem 2. Reed-Solomon codes are linear.

Proof. C consists of all degree-k polynomials and the sum of two degree-k
polynomials is also a degree-k polynomial.

Theorem 3. The minimum distance of a Reed-Solomon code is n− k + 1.

Proof. Since two di�erent codewords of a Reed-Solomon Code must represent
two di�erent messages and thereby have been produced by two di�erent
polynomials of degree k − 1, the two codewords can agree on at most k − 1
distinct points. Since the encoded messages are merely the evaluation of the
respective polynomials at n distinct points, the two codewords must di�er
on at least n− k + 1 points. This is furthermore strict since every degree-k
polynomial produces a codeword.

Corollary 1. A Reed-Solomon code can correct up to (n− k)/2 errors.

In the next section, we will describe how to do so e�ciently.
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7.1 Decoding Reed-Solomon

Let b be the original message, x = C(b) = (pb(αi))i its encoding and y the
received message. We are guaranteed that yi = pb(αi) for all but e of the
values of i and wish to recover b.

We consider a degree-e polynomial N that zeroes the points for which
yi 6= pb(αi) (and possibly some arbitrary points if fewer than e errors). One
choice of N is to let Z be a set of cardinality e containing all the error
locations and de�ne N(x) =

∏
x0∈Z(x− x0).

We form a degree-(k + e − 1) polynomial R = Npb and note that for
every i = 1, . . . , n, N(αi)yi = R(yi) since pb(αi) = yi whenever yi was
properly transmitted and otherwise N makes both sides 0. This may be
interpreted as a system of linear equations with the coe�cients of R and N
as unknowns. If we could recover these unknowns, we could get pb through
polynomial division: pb = R/N .

By construction, we know that the system has a solution so we are done
if we can argue that any solution to the system, giving polynomials N ′ and
R′, in fact entails N ′pb = R′. Since N ′pb and R′ are degree-(k + e − 1)
polynomials, it su�ces to show that they agree on at least k + e points to
claim that the polynomials are identically equal. For the n− e points which
were sent correctly, i.e. yi = pb(αi), the equations of the linear system,
N(αi)yi = R(αi), gives N

′(αi)pb(αi) = R′(αi) and the polynomials agree.
Hence, as long as

k + e ≤ n− e ⇐⇒ e ≤ (n− k)/2,

we can �nd pb.

7.2 Complexity of Reed-Solomon

The polynomial evaluation of the coding procedure as described can be done
in O(n2) time in the unit-cost model. The decoding procedure is essentially
Gaussian elimination plus a polynomial division. Since we have up to n
equations and n unknowns, the Gaussian elimination can be done in O(n3).
Polynomial long division demands up to e+ 1 iterations, each of cost O(n).

8 Applications

The Reed-Solomon codes that will just covered are widely used for error-
correction in storage and transmission in our modern society. They allow us
to, e.g., read CDs, DVDs, and Blu-Rays with a serious errors in the form of
scratches. Other applications include RAID, DSL, and satellite transmission.
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9 Further Reading

The book Algebraic Codes for Data Transmission [Bla03] covered most of
the material of the lecture and more. Section 3 covers the de�nition of and
the properties of linear codes. The Reed-Solomon code is treated in Sections
6 and 7 but reasons di�erently about how to decode Reed-Solomon.

The introductory sections of Chapter 24 in Discrete Mathematics [Big02]
gives a motivation for error-correcting codes and concisely covers linear codes,
although not Reed-Solomon codes.

An in-depth treatment of the computational complexity for arithmetic on
polynomials can be found in Prime Numbers: A Computational Perspective
[CP05], Section 9.6.

For more applications of Reed-Solomon codes, see Wikipedia [Wik10].
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