1 (20 p) Let \(S \subseteq \{0, 1\}^n \) be a set of strings that can be recognized in polynomial time. For concreteness let us say that \(S \) is the set of satisfying assignment for a Boolean formula \(\phi \). Let us consider an interactive proof where an all powerful prover, \(P \) wants to convince a polynomial time verifier, \(V \), that the size of \(S \) is at least \(2^s \) for some parameter \(s \). Let \(H_\alpha : \{0, 1\}^n \rightarrow \{0, 1\}^s \) be a family of pairwise independent hash functions. Consider the following protocol:

1. \(V \) chooses a random \(\alpha_0 \) and a random value \(z \in \{0, 1\}^s \) and sends \(\alpha_0 \) and \(z \) to \(P \).
2. \(P \) responds with \(x \).
3. \(V \) accepts if \(x \in S \) and \(H_{\alpha_0}(x) = z \) and rejects otherwise.

Analyze this protocol! Show that if the size of \(S \) is significantly larger than \(2^s \) then an optimal \(P \) can make \(V \) accept with high probability while if \(|S| \) is significantly smaller than \(2^s \) then this probability is small. Try to get good bounds for both probabilities as a function of the size \(|S| \).

2 (20 p) Let \(S \subseteq \{0, 1\}^n \) be a set of strings that can be recognized in polynomial time. For concreteness let us say that \(S \) is the set of all \(x \) such that \(f(x) = y \) for some given value of \(y \) and a one-way function \(f \). Assume that \(V \) holds a random element \(x_0 \in S \). This could have been achieved by a procedure where \(V \) actually defined \(S \) by picking a random \(x \) and then computing \(y = f(x) \). Let us consider an interactive proof where an all powerful prover, \(P \) wants to convince the polynomial time verifier \(V \), that the size of \(S \) is at most \(2^s \) for some parameter \(s \). Let \(H_\alpha : \{0, 1\}^n \rightarrow \{0, 1\}^s \) be a family of pairwise independent hash functions. Consider the following protocol:

1. \(V \) chooses a random \(\alpha_0 \) and computes \(z = H_{\alpha_0}(x_0) \) and sends \(\alpha_0 \) and \(z \) to \(P \).
2. \(P \) responds with \(x \).
3. \(V \) accepts if \(x = x_0 \) and rejects otherwise.

Analyze this protocol! Show that if the size of \(S \) is significantly smaller than \(2^s \) then an optimal \(P \) can make \(V \) accept with high probability while if \(|S| \) is significantly larger than \(2^s \) then this probability is small. Try to get good bounds for both probabilities as a function of the size \(|S| \).