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Abstract—The list-decodability of random linear codes is
shown to be as good as that of general random codes. Specifically,
for every fixed finite field Fq, p ∈ (0, 1 − 1/q) and ε > 0, it is
proved that with high probability a random linear code C in F

n
q

of rate (1−Hq(p)− ε) can be list decoded from a fractionp of
errors with lists of size at most O(1/ε).

This also answers a basic open question concerning the
existence of highly list-decodable linear codes, showing that a list-
size of O(1/ε) suffices to have rate withinε of the information-
theoretically optimal rate of 1−Hq(p). The best previously known
list-size bound wasqO(1/ε) (except in theq = 2 case where a list-
size bound ofO(1/ε) was known).

The main technical ingredient in the proof is a strong upper
bound on the probability that 
 random vectors chosen from a
Hamming ball centered at the origin have too many (more than
Ω(
)) vectors from their linear span also belong to the ball.

Keywords. Linear codes, List decoding, Random coding,
Probabilistic method, Hamming bound.

I. INTRODUCTION

One of the central problems in coding theory is to under-
stand the trade-off between the redundancy built into code-
words (a.k.a. the rate of the code) and the fraction of errors
the code enables correcting. Suppose we are interested in
codes over the binary alphabet (for concreteness) that enable
recovery of the correct codeword c ∈ {0, 1}n from any noisy
received word r that differs from c in at most pn locations. For
each c, there are about

(
n
pn

) ≈ 2H(p)n such possible received
words r, where H(x) = −x log2 x−(1−x) log2(1−x) stands
for the binary entropy function. Now for each such r, the
error-recovery procedure must identify c as a possible choice
for the true codeword. In fact, even if the errors are randomly
distributed and not worst-case, the algorithm must identify c as
a candidate codeword for most of these 2H(p)n received words,
if we seek a low decoding error probability. This implies that
there can be at most ≈ 2(1−H(p))n codewords, or equivalently
the largest rate R of the code one can hope for is 1 −H(p).

If we could pack about 2(1−H(p))n pairwise disjoint Ham-
ming balls of radius pn in {0, 1}n, then one can achieve a
rate approaching 1 − H(p) while guaranteeing correct and
unambiguous recovery of the codeword from an arbitrary
fraction p of errors. Unfortunately, it is well known that such
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an asymptotic “perfect packing” of Hamming balls in {0, 1}n

does not exist, and the largest size of such a packing is at
most 2(α(p)+o(1))n for α(p) < 1 − H(p) (in fact α(p) = 0
for p � 1/4). Nevertheless it turns out that an “almost-perfect
packing” does exist: for every ε > 0 it is possible to pack
2(1−H(p)−ε)n such Hamming balls such that no more than
O(1/ε) of them intersect at any point. In fact, a random
packing has such a property with high probability.

A. List decoding

This fact implies that it is possible to achieve rate approach-
ing the optimal 1 − H(p) bound for correcting a fraction
p of worst-case errors in a model called list decoding. List
decoding, which was introduced independently by Elias and
Wonzencraft in the 1950s [1], [2], is an error-recovery model
where the decoder is allowed to output a small list of candidate
codewords that must include all codewords within Hamming
distance pn of the received word. Note that if at most pn
errors occur, the list decoder’s output will include the correct
codeword. In addition to the rate R of the code and the error
fraction p, list decoding has an important third parameter, the
“list-size,” which is the largest number L of codewords the
decoder is allowed to output on any received word. The list-
size thus bounds the maximum ambiguity in the output of the
decoder.

For codes over an alphabet of size q, all the above statements
hold with H(p) replaced byHq(p), whereHq(x) = x logq(q−
1)−x logq x−(1−x) logq(1−x) is the q-ary entropy function.

Definition 1.1 (Combinatorial list decodability): Let Σ be
a finite alphabet of size q, L � 1 an integer, and p ∈ (0, 1 −
1/q). A code C ⊆ Σn is said to be (p, L)-list-decodable,
if for every x ∈ Σn, there are at most L codewords of C
that are at Hamming distance pn or less from x. Formally,
|Bq

n(x, p) ∩C| � L for every x, where Bq
n(x, p) ⊆ Σn is the

ball of radius pn centered at x ∈ {0, 1}n.
We restrict p < 1 − 1/q in the above definition, since for a
random string differs from each codeword in at most a fraction
1 − 1/q of positions, and so over alphabet size q decoding
from a fraction 1 − 1/q or more errors is impossible (except
for trivial codes).

B. Combinatorics of list decoding

A fundamental question in list decoding is to understand
the trade-off between rate, error-fraction, and list-size. For
example, what list-size suffices if we want codes of rate within
ε of the optimal 1−Hq(p) bound? That is, if we define Lq,p(ε)
to be the minimum integer L for which there are q-ary (p, L)-
list-decodable codes of rate at least 1−Hq(p)−ε for infinitely
many lengths n, how does Lq,p(ε) behave for small ε (as we
keep the alphabet size q and p ∈ (0, 1 − 1/q) fixed)?
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In the language of list-decoding, the above-mentioned result
on “almost-perfect packings” states that for large enough
block lengths, a random code of rate 1 − Hq(p) − ε is
(p, 1

ε )-list-decodable with high probability. In other words,
Lq,p(ε) � 1/ε. This result appears in [3] (and is based on a
previous random coding argument for linear codes from [4]).
The result is explicitly stated in [3] only for q = 2, but trivially
extends for arbitrary alphabet size q. This result is also tight for
the random coding argument, in the sense that with high prob-
ability a random code of rate 1−Hq(p)− ε is not (p, cp,q/ε)-
list-decodable w.h.p. for some constant cp,q > 0 [5].

On the negative side, it is known that the list-size is
necessarily unbounded as one approaches the optimal rate
of 1 − Hq(p). In other words, Lq,p(ε) → ∞ as ε → 0.
This was shown for the binary case in [6], and his result
implicitly implies L2,p(ε) � Ω(log(1/ε)) (see [5] for an
explicit derivation of this). For the q-ary case, it was shown
that Lq,p(ε) → ∞ as ε→ 0 in [7], [8].

An interesting question is to close the exponential gap in the
lower and upper bounds on L2,p(ε), and more generally pin
down the asymptotic behavior of Lq,p(ε) for every q. At least
one of the authors believes that the upper bound of O(1/ε) is
closer to the truth.

C. Context of this work

In this work, we address another fundamental combinatorial
question concerning list-decodable codes, namely the behavior
of Lq,p(ε) when restricted to linear codes. A linear code over
an alphabet of size q is simply a subspace of F

n
q (Fq being the

field of size q; we henceforth assume that q is a prime-power).
Most of the well-studied and practically used codes are

linear codes. Linear codes admit a succinct representation in
terms of its basis (called generator matrix). This aids in finding
and representing such codes efficiently, and as a result linear
codes are often useful as “inner” codes in concatenated code
constructions.

In a linear code, by translation invariance, the neighborhood
of every codeword looks the same, and this is often a very
useful symmetry property. For instance, this property was
recently used in [9] to give a black-box conversion of linear
list-decodable codes to codes achieving capacity against a
worst-case additive channel (the linearity of the list-decodable
code is crucial for this connection). Lastly, list-decodability
of linear codes brings to the fore some intriguing questions
on the interplay between the geometry of linear spaces and
Hamming balls, and is therefore interesting in its own right.
For these and several other reasons, it is desirable to achieve
good trade-offs for list decoding via linear codes.

Since linear codes are a highly structured subclass of all
codes, proving the existence of linear codes which have list-
decodability properties similar to general codes can be viewed
as a strong “derandomization” of the random coding argument
used to construct good list-decodable codes. A derandomized
family of codes called “pseudolinear codes” were put forth
in [10] since linear codes were not known to have strong
enough list-decoding properties. Indeed, prior to this work,
the results known for linear codes were substantially weaker

than for general codes (we discuss the details next). Closing
this gap is the main motivation behind this work.

D. Status of list-decodability of linear codes

Zyablov and Pinsker proved that a random binary linear
code of rate 1 −H(p) − ε is (p, 2O(1/ε))-list-decodable with
high probability [4]. The proof extends in a straightforward
way to linear codes over Fq , giving list-size qO(1/ε) for rate
1−Hq(p)−ε. Let us define Llin

q,p(ε) to be the minimum integer
L for which there is an infinite family of (p, L)-list-decodable
linear codes over Fq of rate at least 1−Hq(p)−ε. The results
of [4] thus imply that Llin

q,p(ε) � exp(Oq(1/ε)).
Note that this bound is exponentially worse than the O(1/ε)

bound known for general codes. In [3], Elias mentions the
following as the most obvious problem left open by the
random coding results: Is the requirement of the much larger
list-size for linear codes inherent, or can one achieve list-size
closer to the O(1/ε) bound for general random codes?

For the binary case, the existence of (p, L)-list-decodable
linear codes of rate at least 1−H(p)− 1/L is proven in [11].
This implies that Llin

2,p � 1/ε. There are some results which
obtain lower bounds on the rate for the case of small fixed list-
size (at most 3) [6], [12], [13]; these bounds are complicated
and not easily stated, and as noted in [14], are weaker for the
linear case for list-size as small as 5.

The proof in [11] is based on a carefully designed potential
function that quantifies list-decodability, and uses the “semi-
random” method to successively pick good basis vectors for
the code. The proof only guarantees that such binary linear
codes exist with positive probability, and does not yield a
high probability guarantee for the claimed list-decodability
property. Further, the proof relies crucially on the binary
alphabet and extending it to work for larger alphabets (or
even the ternary case) has resisted all attempts. Thus, for
q > 2, Lq,p(ε) � exp(Oq(1/ε)) remained the best known
upper bound on list-size. A high probability result for the
binary case, and an upper bound of Lq,p(ε) � O(1/ε) for
Fq-linear codes, were conjectured in [15, Chap. 5].

II. OUR RESULTS AND METHODS

In this paper, we resolve the above open question concerning
list-decodability of linear codes over all alphabets. In particu-
lar, we prove that Llin

q,p(ε) � Cq,p/ε for a constant Cq,p <∞.
Up to constant factors, this matches the best known result for
general, non-linear codes. Further, our result in fact shows that
a random Fq-linear code of rate 1−Hq(p)−ε is (p, Cp,q/ε))-
list-decodable with high probability. This was not known even
for the case q = 2. The high probability claim implies an
efficient randomized Monte Carlo construction of such list-
decodable codes.

We now briefly explain the difficulty in obtaining good
bounds for list-decoding linear codes and how we circumvent
it. This is just a high level description; see the next section
for a more technical description of our proof method.

Let us recall the straightforward random coding method that
shows the list-decodability of random (binary) codes. We pick
a code C ⊆ {0, 1}n by uniformly and independently picking
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M = 2Rn codewords. To prove it is (p, L)-list-decodable, we
fix a center y and a subset S of (L + 1) codewords of C.
Since these codewords are independent, the probability that
all of them land in the ball of radius pn around y is at most(

2H(p)n

2n

)L+1
. A union bound over all 2n choices of y and at

most ML+1 choices of S shows that if R � 1−H(p)− 1/L,
the code fails to be (p, L)-list-decodable with probability at
most 2−Ω(n).

Attempting a similar argument in the case of random linear
codes, defined by a random linear map A : F

Rn
2 → F

n
2 ,

faces several immediate obstacles. The 2Rn codewords of a
random linear code are not independent of one another; in
fact the points of such a code are highly correlated and not
even 3-wise independent (as A(x+ y) = Ax+Ay). However,
any (L + 1) distinct codewords Ax1, Ax2, . . . , AxL+1 must
contain a subset of � � log2(L + 1) independent codewords,
corresponding to a subset {xi1 , . . . , xi�

} of linearly indepen-
dent message vectors. This lets one mimic the argument for
the random code case with log2(L + 1) playing the role of
L + 1. This version of the argument for linear codes appears
in the work of Zyablov and Pinsker [4]. However, this leads
to exponentially worse list-size bounds.

To get a better result, we somehow need to control the
“damage” caused by subsets of codewords of low rank. This
is the crux of our new proof. Stated loosely and somewhat
imprecisely, we prove a strong upper bound on the fraction
of such low rank subsets, by proving that if we pick �
random vectors from the Hamming ball Bn(0, p) (for some
constant � related to our target list-size L), it is rather unlikely
that more than Ω(�) of the 2� vectors in their span will
also belong to the ball Bn(0, p). (See Theorem 2.2 for the
precise statement.) This “limited correlation” between linear
subspaces and Hamming balls is the main technical ingredient
in our proof. It seems like a basic and powerful probabilistic
fact that might find other applications. The argument also
extends to linear codes over Fq after some adaptations.

A. Formal result statements

We first state our results in the case of binary codes and
then proceed to the general case.

1) Binary codes: Our main result is that with high proba-
bility, a random linear code in F

n
2 of rate 1−H(p)− ε can be

list-decoded from p-fraction errors with list-size only O(1
ε ).

We also show the analogous result for random q-ary linear
codes.

Theorem 2.1: Let p ∈ (0, 1/2). There exist constants Cp

and δ > 0, such that for all ε > 0 and all large enough
integers n, letting R = 1 −H(p) − ε, if C ⊆ F

n
2 is a random

linear code of rate R, then

Pr[C is (p, Cp

ε )-list-decodable] > 1 − 2−δn.

The proof begins by simplifying the problem to its combina-
torial core. Specifically, we reduce the problem of studying the
list-decodability of a random linear code of linear dimension
to the problem of studying the weight-distribution of certain
random linear codes of constant dimension. The next theorem
analyzes the weight distribution of these constant dimensional

random linear codes. The notation Bn(x, p) refers to the
Hamming ball of radius pn centered at x ∈ F

n
2 .

Theorem 2.2 (Span of random subset of Bn(0, p)): For
every p ∈ (0, 1/2), there is a constant C > 1, such that for all
n and all � = o(

√
n), if X1, . . . , X� are picked independently

and uniformly at random from Bn(0, p), then

Pr
[∣∣span({X1, . . . , X�})∩Bn(0, p)

∣∣ � C · �
]

� 2−(6−o(1))n.

We now give a brief sketch of the proof of Theorem 2.2.
Index the elements of span({X1, . . . , X�}) as follows: for
v ∈ F

�
2, let Xv denote the random vector

∑�
i=1 viXi. Fix

an arbitrary S ⊆ F
�
2 of cardinality C · �, and let us study the

event ES : that all the vectors (Xv)v∈S lie in Bn(0, p). If none
of the events ES occur, we know that |span({X1, . . . , X�})∩
Bn(0, p)| < C · �.

The key technical step is a Ramsey-theoretic statement
(Lemma 2.4, stated below) which says that large sets S auto-
matically have the property that some translate of S contains
a certain structured subset (which we call an “increasing
chain”)1. This structured subset allows us to give strong upper
bounds on the probability that all the vectors (Xv)v∈S lie in
Bn(0, p). Applying this to each S ⊆ F

�
2 of cardinality C� and

taking a union bound gives Theorem 2.2.
To state the Ramsey-theoretic lemma (Lemma 2.4) which

plays a central role in Theorem 2.2, we first define increasing
chains. For a vector v ∈ F

�
2, the support of v, denoted supp(v),

is defined to be the set of its nonzero coordinates.
Definition 2.3: A sequence of vectors v1, . . . , vd ∈ F

�
2 is

called a c-increasing chain of length d, if for all j ∈ [d],∣∣∣∣∣supp(vj) \
(

j−1⋃
i=1

supp(vi)

)∣∣∣∣∣ � c.

The proof of Lemma 2.4 appears in Section V, where it is
proved using the Sauer-Shelah lemma.

Lemma 2.4: For all positive integers c, � and L � 2�, the
following holds. For every S ⊆ F

�
2 with |S| = L, there is a

w ∈ F
�
2 such that S +w has a c-increasing chain of length at

least 1
c (log2

L
2 ) − (1 − 1

c )(log2 �).
2) Linear codes over larger alphabets: Due to their geo-

metric nature, our arguments generalize to the case of q-ary
alphabet (for arbitrary constant q) quite easily. Below we state
our main theorem for the case of q-ary alphabet.

Theorem 2.5: Let q be a prime power and let p ∈ (0, 1 −
1/q). Then there exist constants Cp,q, δ > 0, such that for all
ε > 0, letting R = 1 − Hq(p) − ε, if C ⊆ F

n
q is a random

linear code of rate R, then

Pr[C is (p, Cp,q

ε )-list-decodable] > 1 − 2−δn .

The proof of Theorem 2.5 has the same basic outline as
the proof of Theorem 2.1. In particular, it proceeds via a
q-ary analog of Theorem 2.2. The only notable deviation
occurs in the proof of the q-ary analog of Lemma 2.4. The
traditional generalization of the Sauer-Shelah lemma to larger
alphabets turns out to be unsuitable for this purpose. Instead,

1This can broadly be viewed as coming under the umbrella of Ramsey
theory, whose underlying theme is that large enough objects must contain
structured sub-objects.
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we formulate and prove a non-standard generalization of the
Sauer-Shelah lemma for the larger alphabet case which is more
appropriate for this situation. Details appear in Section VI.

III. PROOF OF THEOREM 2.1

Let us start by restating our main theorem.

Theorem 2.1 (restated) Let p ∈ (0, 1/2). Then there exist
constants Cp, δ > 0, such that for all ε > 0 and all large
enough integers n, letting R = 1 −H(p) − ε, if C ⊆ F

n
2 is a

random linear code of rate R, then

Pr[C is (p, Cp

ε )-list-decodable] > 1 − 2−δn.

Proof: Pick Cp = 4C, where C is the constant from
Theorem 2.2. Take δ = 1 and L = �Cp

ε �. Finally, let n be
bigger than L and also large enough for the o(1) term in that
theorem to be at most 1.

Let C be a random Rn dimensional linear subspace of F
n
2 .

We want to show that

Pr
C

[∃x ∈ F
n
2 s.t. |Bn(x, p) ∩ C| � L] < 2−δn. (1)

Let x ∈ F
n
2 be picked uniformly at random. We will work

towards Equation (1) by studying the following quantity.

∆def= Pr
C,x

[|Bn(x, p) ∩ C| � L].

Note that to prove Equation (1), it suffices to show that2

∆ < 2−δn · 2−n . (2)

We first show that one can move the center to the origin, and
thus it is enough to understand the probability of the event that
too many codewords of a random linear code fall in Bn(0, p)
(i.e., have Hamming weight at most pn). To this end, we note
that

∆ = Pr
C,x

[|Bn(x, p) ∩ C| � L]

= Pr
C,x

[|Bn(0, p) ∩ (C + x)| � L]

� Pr
C,x

[|Bn(0, p) ∩ (C + {0, x})| � L]

� Pr
C∗

[|Bn(0, p) ∩ C∗| � L] (3)

where C∗ is a random Rn+1 dimensional subspace containing
C+{0, x} (explicitly, if x �∈ C, then C∗ = C+{0, x}; otherwise
C∗ = C + {0, y} where y is picked uniformly from F

n
2 \ C).

In particular, C∗ is a uniformly random Rn + 1 dimensional
subspace.

Now for each integer � in the range log2 L � � � L, let
F� be the set of all tuples (v1, . . . , v�) ∈ Bn(0, p)� such that
v1, . . . , v� are linearly independent and |span(v1, . . . , v�) ∩
Bn(0, p)| � L. Let

F =
L⋃

�=�log2 L�
F� .

2We could even replace the 2−n by 2−(1−R)n . Indeed, for every C for
which there is a “bad” x, we know that there are 2Rn “bad” x’s (the translates
of x by C).

For each v = (v1, . . . , v�) ∈ F , let {v} denote the set
{v1, . . . , v�}.

Towards bounding the probability in (3), notice that if
|Bn(0, p) ∩ C∗| � L, then there must be some v ∈ F for
which C∗ ⊇ {v}. Indeed, we can simply take v to be a
maximal linearly independent subset of Bn(0, p) ∩ C∗ if this
set has size at most L, and any linearly independent subset of
Bn(0, p) ∩ C∗ of size L otherwise.

Therefore, by the union bound,

∆ �
∑
v∈F

Pr
C∗

[C∗ ⊇ {v}] =
L∑

�=�log2 L�

∑
v∈F�

Pr
C∗

[C∗ ⊇ {v}] (4)

The last probability can be bounded as follows. By the linear
independence of v1, . . . , v�, the probability that vj ∈ C∗ con-
ditioned on {v1, . . . , vj−1} ⊆ C∗ is precisely the probability
that a given nonzero point in a n + 1 − j dimensional space
lies in a random Rn+2− j dimensional subspace, and hence
this conditional probability is exactly

2Rn+2−j − 1
2n+1−j − 1

,

which we will bound from above by 2Rn+1−n. We can hence
conclude that for v ∈ F�

Pr
C∗

[C∗ ⊇ {v}] �
(

2Rn+1

2n

)�

. (5)

Putting together Equations (4) and (5), we have

∆ �
L∑

�=�log2 L�

∑
v∈F�

(
2Rn+1

2n

)�

=
L∑

�=�log2 L�
|F�| ·

(
2Rn+1

2n

)�

(6)

We now obtain an upper bound on |F�|. We have two cases
depending on the size of �.

• Case 1:� < 4/ε.
In this case, note that |F�|

|Bn(0,p)|� is a lower bound on the
probability that � points X1, . . . , X� chosen uniformly at
random from Bn(0, p) are such that

|span({X1, . . . , X�}) ∩Bn(0, p)| � L .

Since L � C ·�, Theorem 2.2 tells us that this probability
is bounded from above by 2−5n. Thus, in this case

|F�| � |Bn(0, p)|�2−5n � 2n�H(p) · 2−5n .

• Case 2:� � 4/ε. In this case, we have the trivial bound
of |F�| � |Bn(0, p)|� � 2n�H(p).
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Plugging this in (6), we may bound ∆ by:

∆ �
�4/ε�−1∑
�=log2 L

|F�| ·
(

2Rn+1

2n

)�

+
L∑

�=�4/ε�
|F�| ·

(
2Rn+1

2n

)�

�
�4/ε�−1∑
�=log2 L

2n�H(p)2−5n

(
2Rn+1

2n

)�

+
L∑

�=�4/ε�
2n�H(p)

(
2Rn+1

2n

)�

� 2−5n

�4/ε�−1∑
�=log2 L

2(−εn+1)� +
L∑

�=�4/ε�
2(−εn+1)�

(since R = 1 −H(p) − ε)
� 2−5n · 4/ε+ 2L+1 · 2−(εn)·(4/ε)

� n2−5n + 2−3n (since n is large enough)

< 2−δn · 2−n ,

which gives us the Claim (2).

IV. PROOF OF THEOREM 2.2

In this section, we prove Theorem 2.2 which bounds the
probability that the span of � random points in Bn(0, p)
intersects Bn(0, p) in at least C · � points, for some large
constant C. We use the following simple fact.

Lemma 4.1: For every p ∈ (0, 1/2), there is a δp > 0 such
that for all large enough integers n and every x ∈ F

n
2 , the

probability that two uniform independent samples w1, w2 from
Bn(0, p) are such that w1 +w2 ∈ Bn(x, p) is at most 2−δpn.

Proof: The intuitive reason that this is true is that the
point w1+w2 is essentially a random point in Bn(0, 2p−2p2)
and the probability that it lies in the smaller ball Bn(x, p) is
maximal when x = 0 and is then exponentially small. Let us
argue this formally.

Suppose the probability that w1+w2 ∈ Bn(x, p) is p′. Then
there are integers i1 and i2 such that the probability that wj

has Hamming weight ij for j = 1, 2 and w1 +w2 ∈ Bn(x, p)
is at least p′n−2.

Let ε > 0 be a constant such that 2(p−ε)−2(p−ε)2 � p+ε.
Such an ε exists as 2p − 2p2 > p whenever p < 1

2 . The
value of ε depends on p but let us suppress this for notational
convenience. If i1 or i2 is smaller than (p − ε)n we can
conclude that p′ is 2−δpn as the subset of Bn(x, p) that has
Hamming weight (p − ε)n is exponentially small. Otherwise
let us consider the same probability when each coordinate of
wj is chosen to be one with probability ij/n independently.
As the probability that we get exactly ij ones in wj under this
distribution is Ω(n−1/2), we can conclude that in this case
the probability that w1 + w2 ∈ Bn(x, p) is Ω(p′n−3). Now
w1 +w2 ∈ Bn(x, p) exactly when x+w1 +w2 ∈ Bn(0, p), so
let us look at the coordinates of x+ w1 + w2. If xl = 0 then
the l’th coordinate of this vector is 1 with probability at least
2(p− ε)− 2(p− ε)2 � p+ ε and if xl = 1 the probability of
the l’th coordinate being 1 is at least 1/2. As these choices
are independent for different coordinates we conclude that the
probability that x+w1 +w2 ∈ Bn(0, p) is at most 2−δ′

pn for

some δ′p > 0. Hence p′ � O(n32−δ′
pn) � 2−δpn for suitable

δp > 0.
Let us now restate the theorem to be proved.

Theorem 2.2 (restated) For every p ∈ (0, 1/2), there is
a constant C > 1, such that for all n and all � = o(

√
n), if

X1, . . . , X� are picked independently and uniformly at random
from Bn(0, p), then

Pr
[∣∣span({X1, . . . , X�})∩Bn(0, p)

∣∣ � C · �
]

� 2−(6−o(1))n.

Proof: Set L = C · � and let c = 2. Let δp > 0 be the
constant given by Lemma 4.1. Let

d =
⌊

1
c

log2

L

2
−
(
1−1

c

)
log2 �

⌋
� 1

2
log2

L

2�
−1 =

1
2

log2

C

8
.

For a vector u ∈ F
�
2, let Xu denote the random variable∑

i uiXi.
We begin with a claim which bounds the probability of a

particular collection of linear combinations of the Xi all lying
within Bn(0, p). At the heart of this claim lies the Ramsey-
theoretic Lemma 2.4.

Claim 4.2: For each S ⊆ F
�
2 with |S| = L+ 1,

Pr[∀v ∈ S,Xv ∈ Bn(0, p)] < 2n · 2−δpdn. (7)

Proof: Let w and v1, . . . , vd ∈ S be as given by
Lemma 2.4. That is, v1+w, v2+w, · · · , vd+w is a c-increasing
sequence (recall that we have set c = 2). Then,

Pr[∀v ∈ S, Xv ∈ Bn(0, p)]
� Pr[∀j ∈ [d], Xvj ∈ Bn(0, p)]
= Pr[∀j ∈ [d], Xvj +Xw ∈ Bn(Xw, p)]
= Pr[∀j ∈ [d], Xvj+w ∈ Bn(Xw, p)] (8)

We now bound the probability that there exists y ∈ F
n
2 such

that for all j ∈ [d], Xvj+w ∈ Bn(y, p). Fix y ∈ F
n
2 . We have:

Pr[∀j ∈ [d], Xvj+w ∈ Bn(y, p)]

=
d∏

j=1

Pr
[
Xvj+w ∈ Bn(y, p)

∣∣∣ Xvi+w ∈ Bn(y, p),

1 � i � j − 1
]

�
d∏

j=1

max
at∈Bn(0,p)

t∈Sj−1
i=1 supp(vi+w)

Pr
[
Xvj+w ∈ Bn(y, p)

∣∣∣∣
(
Xt = at : t ∈

j−1⋃
i=1

supp(vi + w)
) ]

�
(
2−δpn

)d
. (9)

The last inequality follows from applying Lemma 4.1 as
follows: Let i1 and i2 be two distinct elements of supp(vj +
w) \

(⋃j−1
i=1 supp(vi + w)

)
, guaranteed to exist because of

the 2-increasing property. We then apply Lemma 4.1 with
w1 and w2 being vectors Xi1 and Xi2 , and with x =
y +

∑
k∈[�],k �∈{i1,i2}(vj + w)kXk.
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Taking a union bound of Equation (9) over all y ∈ F
n
2 , we

see that

Pr[∃y ∈ Fn
2 s.t. ∀j ∈ [d], Xvj+w ∈ Bn(y, p)] � 2n · 2−δpnd.

Combining this with Equation (8) completes the proof of the
claim.

Given this claim, we now bound the probability that more
than L elements of span({X1, . . . , X�}) lie inside Bn(0, p).
This event occurs if and only if for some set S ⊆ F

�
2 with

|S| = L + 1, it is the case that ∀v ∈ S, Xv ∈ Bn(0, p).
Taking a union bound of (7) over all such S, we see that the
probability that there exists some S ⊆ F

�
2 with |S| = L + 1

such that ∀v ∈ S,Xv ∈ Bn(0, p) is at most 2�(L+1) · 2n ·
2−δpdn. Taking C to be a large enough constant so that d �
1
2 log2

C
8 >

12
δp

, the theorem follows.

V. PROOF OF LEMMA 2.4

In this section, we will prove Lemma 2.4, which finds a
large c-increasing chain in some translate of any large enough
set S ⊆ F

�
2.

We will use the Sauer-Shelah Lemma.
Lemma 5.1 (Sauer-Shelah [16], [17]): For all integers �, c,

and for any set S ⊆ {0, 1}�, if |S| > 2�c−1, then there exists
some set of coordinates U ⊆ [�] with |U | = c such that3

{v|U | v ∈ S} = {0, 1}U .
Lemma 2.4 (restated) For all positive integers c, � and L �
2�, the following holds. For every S ⊆ F

�
2 with |S| = L, there

is a w ∈ F
�
2 such that S+w has a c-increasing chain of length

at least 1
c (log2

L
2 ) − (1 − 1

c )(log2 �).
Proof: We prove this by induction on �. The claim holds

trivially for � � c, so assume � > c.
If L � 2�c−1, then again the lemma holds trivially.

Otherwise, by the Sauer-Shelah lemma, we get a set U of
c coordinates such that for each u ∈ F

U
2 , there is some v ∈ S

such that v|U = u. We will represent elements of F
�
2 in the

form (u, v′) where u ∈ F
U
2 and v′ ∈ F

[�]\U
2 .

Let u0 ∈ F
U
2 be a vector such that |{v ∈ S | v|U = u0}|

is at least L/2c (we know that such a u exists by averaging).
Let S′ ⊆ F

[�]\U
2 be given by S′ = {v|[�]\U | v|U = u0}. By

choice of u0, we have |S′| � L/2c.
By the induction hypothesis, there exist w′ ∈ F

�−c
2 and

v′1, . . . , v
′
d′ ∈ S′ such that for each j ∈ [d′],

∣∣∣supp(v′j + w′) \
(j−1⋃

i=1

supp(v′i + w′)
)∣∣∣ � c.

for d′ � 1
c log2(L/2

c+1) − (1 − 1
c ) log2(�− c).

Let d = d′+1. Note that d � 1
c log2(L/2)−(1− 1

c ) log2(�−
c) � 1

c log2(L/2) − (1 − 1
c ) log2 �. For i ∈ [d′], let vi =

(u0, v
′
i) ∈ F

�
2. Let vd be any vector in S with (vd)|U = ¬u0,

the bitwise complement of u0. Let w = (u0, w
′). We claim

that w and v1, . . . , vd satisfy the desired properties.

3For sets A, B, we use the notation AB to denote B-indexed tuples of
elements from A.

Indeed, for each j ∈ [d′], we have

∣∣∣∣supp(vj + w)\
(j−1⋃

i=1

supp(vi + w)
)∣∣∣∣

=
∣∣∣∣supp(v′j + w′) \

(j−1⋃
i=1

supp(v′i + w′)
)∣∣∣∣

� c.

Also ∣∣∣∣supp(vd + w)\
(d−1⋃

i=1

supp(vi + w)
)∣∣∣∣

�
∣∣∣∣supp(vd + w) \ ([�] \ U)∣∣∣∣

= |U | = c.

Thus for all j ∈ [d], we have

∣∣∣supp(vj + w) \ (j−1⋃
i=1

supp(vi + w)
)∣∣∣ � c ,

as desired.

VI. LARGER ALPHABETS

As mentioned in the introduction the case of q-ary alphabet
is nearly identical to the case of binary alphabet. We only
highlight the differences. As before, the crux turns out to be the
problem of studying the weight distribution of certain random
constant-dimensional codes.

Theorem 6.1 (Span of random points in Bq
n(0, p)): For ev-

ery prime power q and every p ∈ (0, 1 − 1/q), there is a
constant C > 1, such that for all n and all � = o(

√
n), if

X1, . . . , X� are picked independently and uniformly at random
from Bq

n(0, p), then

Pr[|span({X1, . . . , X�}) ∩Bq
n(0, p)| > C · �] � q−(6−o(1))n.

The proof of Theorem 6.1 proceeds as before, by bounding
the probability via a large c-increasing chain. The c-increasing
chain itself is found in an analog of Lemma 2.4 for q-ary
alphabet. We first need a definition.

Definition 6.2: A sequence of vectors v1, . . . , vd ∈ [q]� is
called a c-increasing chain of length d, if for all j ∈ [d],∣∣∣∣∣supp(vj) \

(
j−1⋃
i=1

supp(vi)

)∣∣∣∣∣ � c.

Now we have the following lemma.
Lemma 6.3 (q-ary increasing chains): For all positive inte-

gers c, �, every prime power q, and L � q�, the following
holds. For every S ⊆ F

�
q with |S| = L, there is a w ∈ F

�
q

such that S + w has a c-increasing chain of length at least
1
c logq

(
L
2

)− (1 − 1
c ) logq((q − 1)�).

The proof of Lemma 6.3 needs a non-standard generaliza-
tion of the Sauer-Shelah lemma to larger alphabet described
in the next section.
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A. A q-ary Sauer-Shelah lemma

The traditional generalization of the Sauer-Shelah lemma to
large alphabets is the Karpovsky-Milman lemma [18], which
roughly states that given S ⊆ [q]� of cardinality at least (q −
1)llc−1, there is a set U of c coordinates such that for every
u ∈ [q]U , there is some v ∈ S such that the restriction v|U
equals u. Applying this lemma in our context, once q > 2,
requires us to have a set S > 2�, which turns out to lead to
exponential list-size bounds. Fortunately, the actual property
needed for us is slightly different. We want a bound B (ideally
polynomial in �) such that for any set S ⊆ [q]� of cardinality
at least B, there is a set U of c coordinates such that for every
u ∈ [q]U , there is some v ∈ S such that the restriction v|U
differs from u in every coordinate of U . It turns out that this
weakened requirement admits polynomial-sized B.

We state and prove this generalization of the Sauer-Shelah
lemma below.

Lemma 6.4 (q-ary Sauer-Shelah): For all integers q, �, c,
with c � �, for any set S ⊆ [q]�, if |S| > 2 · ((q − 1) · �)c−1,
then there exists some set of coordinates U ⊆ [�] with |U | = c
such that for every u ∈ [q]U , there exists some v ∈ S such
that u and v|U differ in every coordinate.

Proof: We prove this by induction on � and c.
If c = 1, then |S| > 2 and the result holds by letting U

equal any coordinate on which not all elements of S agree.
If � = c, then |S| > �(q − 1)�−1, and the result follows
from the observation that for every u ∈ [q]�, there are at most
�(q − 1)�−1 vectors v such that v and u agree in at least one
coordinate.

We will now execute the induction step. Assume c > 1.
Represent an element x of [q]� as a pair (y, b), where y ∈
[q]�−1 consists of the first �− 1 coordinates of x and b ∈ [q]
is the last coordinate of x.

Consider the following subsets of [q]�−1.

S1 = {y ∈ [q]�−1 | for at least 1 value of b ∈ [q], (y, b) ∈ S}.
S2 = {y ∈ [q]�−1 | for at least 2 values of b ∈ [q], (y, b) ∈ S}.
Note that |S| � (|S1|− |S2|)+ q|S2| = |S1|+(q− 1)|S2|. By
assumption,

|S| > 2 · ((q − 1) · �)c−1

� 2 · ((q − 1) · (�− 1))c−1

+ (q − 1)
(
2 · ((q − 1) · (�− 1))c−2

)
,

(using the elementary inequality �c−1 � (� − 1)c−1 + (� −
1)c−2). Thus, either |S1| > 2 · ((q − 1) · (� − 1))c−1, or else
|S2| > 2 · ((q − 1) · (�− 1))c−2.
We now prove the desired claim in each of these cases.

Case 1:|S1| > 2 · ((q − 1) · (�− 1))c−1. In this case, we can
apply the induction hypothesis to S1 with parameters � − 1
and c, and get a subset of U of [�− 1] of cardinality c. Then
the set U has the desired property.

Case 2:|S2| > 2 · ((q−1) · (�−1))c−2. In this case, we apply
the induction hypothesis to S2 with parameters �−1 and c−1,
and get a subset U of [� − 1] of cardinality c − 1. Then the
set U ∪ {�} has the desired property. Indeed, take any vector
u ∈ [q]U∪{�}. Let u′ = u|U . By the induction hypothesis, we

know that there is a v ∈ S2 such that v|U differs from u′ in
every coordinate of U . Now we know that there are at least
two b ∈ [q] such that (v, b) ∈ S. At least one of these b will be
such that (v, b) differs from u in every coordinate of U ∪{�},
as desired.

In the next section, we use the above lemma to prove the
Ramsey-theoretic q-ary increasing chain claim (Lemma 6.3).

VII. PROOF OF q-ARY INCREASING CHAIN LEMMA

In this section, we prove Lemma 6.3, which we restate
below for convenience.

Lemma 6.3 (restated) For every prime power q, and all
positive integers c, � and L � q�, the following holds. For
every S ⊆ F

�
q with |S| = L, there is a w ∈ F

�
q such that

S+w has a c-increasing chain of length at least 1
c logq

(
L
2

)−
(1 − 1

c ) logq((q − 1)�).
Proof: We prove this by induction on �. The claim holds

trivially for � � c, so assume � > c.
If L � 2((q−1)·�)c−1, then again the lemma holds trivially.

Otherwise, by Lemma 6.4 we get a set U of c coordinates such
that for each u ∈ F

U
q , there is some v ∈ S such that v|U differs

from u in every coordinate. We will represent elements of F
�
q

in the form (u, v′) where u ∈ F
U
q and v′ ∈ F

[�]\U
q .

Let u0 ∈ F
U
q be a vector such that |{v ∈ S | v|U = u0}|

is at least L/qc (we know that such a u exists by averaging).
Let S′ ⊆ F

[�]\U
q be given by S′ = {v|[�]\U | v|U = u0}. By

choice of u0, we have |S′| � L/qc.
By the induction hypothesis, for

d′ � 1
c

logq

( L
2qc

)
−
(
1 − 1

c

)
logq((q − 1)(�− c)) ,

there exist w′ ∈ F
�−c
q and v′1, . . . , v

′
d′ ∈ S′ such that for each

j ∈ [d′],

∣∣∣∣supp(v′j + w′) \
(j−1⋃

i=1

supp(v′i + w′)
)∣∣∣∣ � c.

Let d = d′ + 1. Note that

d � 1
c

logq

(L
2

)
−
(
1 − 1

c

)
logq((q − 1)�) .

For i ∈ [d′], let vi = (u0, v
′
i) ∈ F

�
q. Let vd be any vector in

S where (vd)|U differs from u0 in every coordinate of U . Let
w = (−u0, w

′). We claim that w and v1, . . . , vd satisfy the
desired properties.
Indeed, for each j ∈ [d′], we have

∣∣∣∣supp(vj + w)\
(j−1⋃

i=1

supp(vi + w)
)∣∣∣∣

=
∣∣∣∣supp(v′j + w′) \

(j−1⋃
i=1

supp(v′i + w′)
)∣∣∣∣

� c.
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Also, ∣∣∣∣supp(vd + w)\
(d−1⋃

i=1

supp(vi + w)
)∣∣∣∣

�
∣∣∣supp(vd + w) \ ([�] \ U)

∣∣∣
= |U | = c.

Thus for all j ∈ [d], we have∣∣∣∣supp(vj + w) \
(j−1⋃

i=1

supp(vi + w)
)∣∣∣∣ � c,

as desired.
Given Lemma 6.3, the proof of Theorem 6.1 is virtually

identical to the proof of its binary analog Theorem 2.2.
Theorem 2.5 can then be proved (using Theorem 6.1) in the
same manner as Theorem 2.1 was proved.
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