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On the Evolution of Fingertip Grasping Manifolds

K. Hang1, J. A. Haustein1, M. Li2, A. Billard2, C. Smith1 and D. Kragic1

Abstract— Efficient and accurate planning of fingertip grasps
is essential for dexterous in-hand manipulation. In this work, we
present a system for fingertip grasp planning that incrementally
learns a heuristic for hand reachability and multi-fingered
inverse kinematics. The system consists of an online execution
module and an offline optimization module. During execution
the system plans and executes fingertip grasps using Canny’s
grasp quality metric and a learned random forest based hand
reachability heuristic. In the offline module, this heuristic is
improved based on a grasping manifold that is incrementally
learned from the experiences collected during execution. The
system is evaluated both in simulation and on a Schunk-
SDH dexterous hand mounted on a KUKA-KR5 arm. We
show that, as the grasping manifold is adapted to the system’s
experiences, the heuristic becomes more accurate, which results
in an improved performance of the execution module. The
improvement is not only observed for experienced objects, but
also for previously unknown objects of similar sizes.

I. INTRODUCTION

Significant progress has been made in the area of robotic

grasping [1]–[3]. For fingertip grasping, localizing contacts

on the object that provide a stable grasp [4]–[6] and finding

a hand configuration for realizing these contacts [7]–[9] have

been addressed as separate problems. As a result, in these

approaches it is not guaranteed that the planned contacts are

kinematically feasible for a specific hand [1], [2].

To overcome this limitation, various grasp optimization

frameworks have recently been proposed that integrate both

stability and hand reachability analysis. In [10], the finger

kinematics are modeled as an optimization constraint for ef-

ficiently finding contacts on objects that can be approximated

by super-quadrics. Given a set of initial hand poses, [11]

optimizes both hand configurations and contacts to generate

a dense set of grasps offline. The framework presented in

[12] plans contact triplets on incomplete 3D point clouds

online, utilizing hand shape primitives as a heuristic to

constrain the contacts optimization. In [13], a system first

learns task related grasping parts of objects from human

demonstrations. Next, the contact points on these parts are

found by stochastic optimization, which is constrained by

closed kinematic loops between the fingertips and the object

part. In general, these systems require trade-offs between

the desired computational efficiency and the precision of

planning by either approximating the object shapes or the

hand kinematics.
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Fig. 1: A 2D-projection of the seven dimensional configuration space of the
Schunk-SDH hand with example grasps. The colored areas show a grasping
manifold that is learned from experiences. Video: http://www.csc.
kth.se/˜kaiyuh/videos/graspManifold.mp4.

In our recent work [14], we proposed a fast fingertip

grasp planner that searches stable and reachable grasps in

a hierarchical search space of fingertip contacts. To ensure

kinematic feasibility for a dexterous redundant hand, an

uniform sampling based affine-invariant hand reachability

heuristic is used. However, as a common property of sam-

pling based heuristics [15]–[18], the sampling resolution

affects the efficiency and precision of this method. To achieve

the same resolution, the number of required samples in-

creases exponentially with the dimension of the configuration

space. Further, in practice many of the samples cover invalid

or task irrelevant configurations.

Instead of sampling randomly, learning from humans

effectively excludes irrelevant hand configurations [19],

[20]. However, this requires significant effort from human

teachers and is limited by the teacher’s experience. Our

key insight in this work is that we can limit the training

set for a sampling based hand reachability heuristic to the

manifold of for grasping relevant hand configurations. In

doing so, we increase the heuristic’s accuracy in relevant

regions of the configuration space, while reducing it in

irrelevant regions, see Fig. 1. We propose that a robot

should learn this grasping manifold based on its own task

relevant experiences. The contributions of this work are:

• We present a learning framework that incrementally learns

a subspace of the hand configuration space, a grasping

manifold, that is relevant for fingertip grasping.

• We show that this allows us to incrementally train a

heuristic for hand reachability and multi-fingered inverse

kinematics, which improves as experiences are gained.

• We further show that we can extend this approach to

learning a heuristic that integrates both grasp quality and

hand reachability.

http://www.csc.kth.se/~kaiyuh/videos/graspManifold.mp4
http://www.csc.kth.se/~kaiyuh/videos/graspManifold.mp4


We define the terminology in Sec. II and introduce the

proposed approach in Sec. III. In Sec. IV, we evaluate our

approach both in simulation and on a real robot and end

in Sec. V with a conclusion and a discussion of potential

future work.

II. TERMINOLOGY

A. Fingertip Grasp and Hand Kinematics

In this work, we consider a dexterous multi-fingered

robotic hand with d degrees of freedom and f fingertips.

Let C denote the d-dimensional configuration space of the

hand and accordingly Cfree ⊂ C the set of self-collision-

free hand configurations. For an object let O ⊂ R
3 denote

the object’s surface. A fingertip grasp γ = (c1, . . . , cf )
is a f -tuple of point contacts on the surface O, where ci
is the contact of fingertip i with the object. Each contact

ci = (pi, ni) consists of its position pi ∈ O and normal

ni ∈ S
2 = {x ∈ R

3 : ‖x‖ = 1} defined in the object’s

frame.

If the hand is in a configuration Θ ∈ Cfree, the fingertip

poses in the hand frame are Z = (ζ1, . . . , ζf ) = F (Θ),
where F denotes the forward kinematics of the hand. Similar

to a contact on O, a fingertip pose is a tuple ζi = (pi, ni),
where pi ∈ R

3 is the position and ni ∈ S
2 the normal of

fingertip i in the hand frame. Let H denote the pose of the

hand frame relative to the object frame. A fingertip grasp γ is

achieved by the hand configuration Θ, if TO(F (Θ),H) = γ
holds. TO(Z,H) transforms a tuple of fingertip poses, Z,

from the hand’s frame to the object’s frame.

B. Affine Invariant Grasp Encoding

We adopt an affine invariant grasp encoding as exemplified

in Fig. 2 with f = 3 fingertips to easily determine whether

a hand configuration can achieve a given grasp on an object.

Given a fingertip grasp γ = (c1, c2, c3), we compute the

grasp code as

C(γ) = (‖p1 − p2‖, ‖p2 − p3‖, ‖p3 − p1‖,

‖n1 − n2‖, ‖n2 − n3‖, ‖n3 − n1‖).
(1)

Given a hand configuration with fingertip poses

Z = (ζ1, ζ2, ζ3), we compute C(Z) in the same

way as Eq. (1). A hand configuration Θ with F (Θ) = Z
is feasible to achieve a grasp γ, if C(γ) = C(Z). Note

that this encoding allows us to check feasibility without

explicitly computing H.

C. Grasping Manifold

We wish to train a heuristic for hand reachability and

multi-fingered inverse kinematics on the set of hand config-

urations that are relevant for fingertip grasping. Let G denote

the set of all stable fingertip grasps achievable by the robot

hand on all objects. The manifold with corners [21] of hand

configurations that achieve the fingertip grasps in G is defined

as

X = {Θ ∈ Cfree|∃γ ∈ G : C(γ) = C(F (Θ))}. (2)

Fig. 2: The fingertip grasp encoding visualized for the Schunk-SDH hand
and a 2D example object. The red dot shows the center of the contacts.

Because of the wide definition of G, it is reasonable to focus

on a robot specific subset

X̄ = {Θ ∈ Cfree|∃γ ∈ G′ : C(γ) = C(F (Θ))} ⊂ X , (3)

where G′ ⊂ G is the set of fingertip grasps on the objects

the robot at hand will actually encounter during its lifespan.

Computing X̄ as well as G′ explicitly, however, is infeasi-

ble. Further, the set of objects a robot may encounter during

its lifespan may not be known beforehand. Hence, the system

we present provides an incrementally improved estimate of

X̄ based on its own experiences. Throughout this work we

denote such an estimate of X̄ as grasping manifold.

III. METHODOLOGY

An overview of our system is given in Fig. 3. It consists of

an execution module, an offline optimization module denoted

as dreaming module, a memory and a heuristic R. The exe-

cution module plans and executes grasps and, if successful,

feeds its experiences to the memory. The dreaming module

takes these experiences from the memory and evolves a

grasping manifold, which is used as training set for the

heuristic R. As the system acquires a more specialized

grasping manifold, i.e. a better estimate of X̄ , the heuristic R
becomes more accurate and in turn facilitates the execution

module in the future.

In the following of this section, we first explain the

execution module in relation to our previous work and

discuss how our heuristic affects its performance. Thereafter,

we introduce the evolution of the grasping manifold and

describe how the system utilizes this to learn R. In the end,

we propose an extension to our system that is able to generate

stable grasps purely from learned experiences.

A. Execution Module

We adopt the grasp planner presented in our previous work

[14], which computes a grasp γ by maximizing the objective

function

Γ(γ) = Q(γ) + αR(γ) (4)

in the Hierarchical Fingertip Space (HFTS). Here, Q(γ) ∈ R

denotes the point contact based grasp quality measure Q1

from [4], R(γ) ∈ R the reachability residual that measures

the kinematic feasibility of realizing the fingertip grasp γ
with the robot hand and α ∈ R a scaling factor.

In [14], R(γ) is computed by querying a kd-tree based

data structure for a stored hand configuration Θγ that
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Fig. 3: System pipeline: The system consists of an execution module, an
offline module, denoted dreaming module, a memory M and a heuristic R.

minimizes the distance ‖C(F (Θγ)) − C(γ)‖. In general,

due to its limited sample density, for an arbitrary input

grasp γ there is no hand configuration Θγ stored in the

data structure that achieves an exact reachability residual of

zero, i.e. ‖C(F (Θγ)) − C(γ)‖ 6= 0. Therefore, after

determining a grasp γ∗ that maximizes Γ, the planner is

required to perform a post-optimization step to adjust the

hand configuration Θγ∗ to minimize the residual. Finally, the

hand pose H is computed such that the fingertip positioning

error ǫ =
∥

∥γ∗ − TO(F (Θγ∗),H)
∥

∥ is minimized. Note that

the computation of H and Θγ∗ may fail in case γ∗ is not

reachable. In this case the system needs to re-plan.

In this work in contrast to [14], we replace the kd-tree

based heuristic by our heuristic R. Similar to our previous

heuristic, R is defined as

R : γ 7→ (Θγ , R(γ)) (5)

and provides a reachability estimate R(γ) ∈ R of how well

a fingertip grasp γ is kinematically reachable, as well as an

inverse kinematics solution Θγ such that C(F (Θγ)) ≈ C(γ).
Every time the system successfully computed and ex-

ecuted a grasp on some object, the post-optimized hand

configuration for this grasp is stored in the memory ME .

In the offline dreaming phase, the system recomputes its

grasping manifold based on the collected experiences. As

the heuristic is retrained on the updated grasping manifold,

it provides a better estimate of hand reachability and hand

inverse kinematics.

B. Experience Oriented Manifold Evolution

The dreaming phase is summarized in Algorithm 1. We

represent the grasping manifold by a discrete set of Ni

hand configuration samples MM ⊂ Cfree, which is stored

in the system’s memory M. Before any experiences have

been gathered, there is no knowledge about X̄ . Hence, it is

assumed that any self-collision-free hand configuration may

lie within it and we initialize our initial estimation from an

uniform distribution, see Algorithm 1 line 2. At this point,

Algorithm 1: The dreaming phase: Evolution of grasping

manifold

Input: Memory M = (MM ,ME)
Constants: Covariance σ, Number of manifold samples Ni,

Sample parameters β and ρ
Output: Updated memory M = (MM ,ME), Heuristic R

1 if MM = ∅ then
// Bootstrap

2 MM ← SAMPLEUNIFORMLY(Cfree, Ni)

3 else
// Evolution

4 Ω←FITGMM(MM )
5 Sn ← ∅
6 for ΘE ∈ME do

7 Nr ←
β|MM |
|ME |

( 1

ρm
−

∫
C
g(Θ|ΘE , σI)p(Θ|Ω) dΘ)

8 Nr ← max(Nr, 0)
9 Sn ← Sn∪ SAMPLEGAUSSIAN(ΘE , σI,Nr )

10 MM ← SAMPLEUNIFORMLY(Sn ∪MM , Ni)
11 ME ← ∅
12 R = COMPUTER(MM )

R can be learned as detailed in Sec. III-C and the system is

similar to our previous work [14] and ready for execution.

Once the robot gathered some experiences and enters the

dreaming phase anew, we update MM to more accurately ap-

proximate X̄ . This update is performed by replacing samples

in MM with self-collision-free hand configurations scattered

around the experiences stored in ME . For each experience

ΘE , new samples are sampled from a Gaussian distribution

N (ΘE , σI) centered at ΘE with a user specified diagonal

covariance matrix σI ∈ R
d×d, see Algorithm 1 line 9.

The covariance controls the adaptation of the manifold. A

large value leads to a diffuse, whereas a smaller value to a

more concentrated adaptation. The motivation for sampling

a neighborhood of ΘE lies in the fact that the grasp quality

measure Q is Lipschitz continuous [22]. Hence, since an

experience ΘE is a hand configuration that achieves a stable

grasp on some object with fingertip poses Z, it is reasonable

to assume that fingertip poses similar to Z can also achieve

good quality grasps on similarly shaped objects.

We need, however, to balance between evolving the grasp-

ing manifold towards new experiences and preserving the

manifold learned so far. For this, we compute a probability

distribution p(Θ|Ω), denoting the probability of a configura-

tion Θ ∈ C lying in X̄ given our current grasping manifold.

We model p(Θ|Ω) as Gaussian Mixture Model (GMM)

and use the expectation maximization (EM) algorithm to

compute the GMM parameters Ω from our sample set MM ,

see Algorithm 1 line 4. As shown in Algorithm 2 we

select Ω such that the Bayesian information criteria (BIC)

is minimized.

In order to adapt the grasping manifold, the system de-

termines for each ΘE ∈ ME its novelty utilizing p(ΘE |Ω).
Experiences that are likely given our current grasping man-

ifold should result in little adaptation, whereas experiences

that are unlikely are considered novel and should result in

significant adaptation. The degree of adaption of the grasping

manifold to an experience ΘE is governed by the number of



Algorithm 2: FITGMM: Determine parameters Ω for a set

of sampled configurations

Input: S set of samples
Output: Best fitting Ω

1 BIC =∞
2 for m = 1 . . . m̂ do

3 Ω′ = EMALGORITHM(S, m)
4 if BIC(Ω′) < BIC then

5 Ω = Ω′

6 BIC = BIC(Omega)

7 return Ω

samples Nr ∈ N
+ we sample in its neighborhood. Given

the GMM parameters Ω with m Gaussians, Nr is computed

as follows:

Nr = max(
β|MM |

|ME |
(
1

ρm
−

∫

C

g(Θ|ΘE , σI)p(Θ|Ω) dΘ), 0)

(6)

where g(Θ|ΘE , σI) is the probability density of the Gaussian

N (ΘE , σI), and p(Θ|Ω) is the probability density of the

GMM parametrized by Ω. β ∈ R controls the evolution speed

and ρ ≥ β is a relaxation parameter. Nr is large, if the

probability of samples in the neighborhood of ΘE belonging

to the current grasping manifold is small and vice versa. The

term 1
ρm in Eq. (6) denotes the probability mass we desire

this neighborhood to have.

Although the dreaming phase is performed offline, we

choose to limit its computational effort by performing batch

updates rather than updating MM for each experience

ΘE ∈ ME individually. In the rare case that all experiences

lie in the same small area of Cfree, this could lead to a rapid

adaptation of our manifold to a single mode. To prevent this,

Nr decreases as |ME | increases and vice versa.

Once all samples Sn around all new experiences are

sampled, we recompute the grasping manifold by uniformly

re-sampling Ni samples from Sn ∪ MM , see Algorithm 1

line 10. Note that while we desire MM to resemble X̄ , the

proposed method does not guarantee that the estimate MM

lies strictly within X̄ . However, as the evolution progresses,

the probability of including outliers in MM decreases.

C. Reachability Heuristic by Regression Forest

Our reachability heuristic is a function as defined in

Eq. (5), which maps a fingertip grasp γ to a hand

configuration Θγ as well as the probability R(γ) that

C(γ) = C(F (Θγ)). For modeling this high dimensional

non-linear mapping, we adopt the regression forest from

[23] consisting of T regression trees. In order to maximize

R’s accuracy for relevant hand configurations, the grasping

manifold MM serves as basis for the training set. Since

fingertip grasps are defined in an object frame and therefore

object specific, we learn a mapping from the encodings C(γ)
to hand configurations, making R object frame independent.

The labeled training set for the regression forest is

T = {(Θ, C(F (Θ)))|Θ ∈ MM}. (7)

Each leaf of each tree in the forest provides a prediction

model that is learned by probabilistic linear regression with a

Gaussian distribution [24] from some subset of T . In order to

achieve a fully probabilistic output, the splits of the training

set within each regression tree are performed such that the

information gain reported in [23] is maximized.

Given an input grasp γ, the t-th tree in the forest,

t = 0, . . . , T − 1, provides the posterior pt(Θ|C(γ)). The

posterior of the whole forest is the average of the posteriors

of the individual trees

p(Θ|C(γ)) =
1

T

T
∑

t=1

pt(Θ|C(γ)). (8)

With the posterior at hand we can compute the heuristic value

R(γ) = (Θγ , R(γ)) as

Θγ = E[Θ|C(γ)] =

∫

C

p(Θ|C(γ))Θ dΘ, (9)

R(γ) = p(Θγ |C(γ)). (10)

Note that the evaluation of R(γ) is computationally inex-

pensive and thus suitable for grasp optimization.

D. Pure Manifold Based Grasp Planning

The planner as presented in Sec. III-A computes a grasp

by maximizing both the reachability of a fingertip grasp as

well as its quality, Eq. (4). As reported in [4], [5], the scaling

factor λ ∈ R
+ between the force term and the torque term

in the computation of the grasp quality Q(γ) is somehow

arbitrarily chosen. With a large value, the grasp will be more

optimized to counteract torsional disturbances, whereas a

small value makes the grasp to be more optimized towards

translational disturbances. Additionally, as we do not have

an accurate prior of friction coefficients, the planned grasps

can be vulnerable to friction changes [25].

Recall that the evolution of the grasping manifold is based

on successful stable grasps. Therefore, during the evolution,

the system learns not only the relevant grasp configurations,

it also implicitly suppresses grasps that are not robust, i.e.

grasps that are not always stable during execution. As an

extension to our system, we therefore propose a modification

of our heuristic R that not only provides a reachability

estimate, but also a quality estimate. Formally, we define

the modified heuristic as

R∗ : (r, C(γ)) 7→ (Θγ , R
∗(γ)). (11)

Additional to the contacts encoding C(γ), R∗ takes the

distance r ∈ R
+ between the center of mass of the object

and the center of the contact positions as argument.

In the execution module the system initially uses R as

described before. When a grasp γ is successfully executed,

we save both r and Θγ in an additional memory M∗
E . When

the grasping manifold evolution becomes stable, i.e. Sn is

small, the grasping manifold provides a good estimate of

X̄ . In this case, we train R∗ using the same method as in

Sec. III-C with r as additional variable in the input space.

The training set in this case is



(a) Balanced: ρ = 2.0, β = 1.0, σi,i = π/36, |ME | = 40

(b) Balanced: ρ = 2.0, β = 1.0, σi,i = π/36, |ME | ∈ rand(20, 60)

(c) Aggressive: ρ = 2.0, β = 1.5, σi,i = π/36, |ME | = 40

(d) Conservative: ρ = 2.0, β = 0.5, σi,i = π/36, |ME | = 40

Fig. 4: Evolution examples with different evolution speeds β or |ME |. The two dimensional visualization is a projection of MM using the first two
principal components. In order to compare between different evolutions, all projections are conducted under a single PCA on the 100-th generation MM

shown in (a), which captures 78% of the variance. The blue marks are the grasp experiences ME used to generate the current generation. The evolutions
took on average 5–10min per generation.

T ∗ = {(Θ, (C(F (Θ)), r))|(Θ, r) ∈ M∗
E}. (12)

Henceforth, we use R∗ as a generative model: instead of

explicitly computing the grasp quality Q(γ), the objective

function Γ for the HFTS grasp planner becomes the posterior

R∗(γ) of the R∗ prediction. Since R∗ is not generative for

new types of objects, the system falls back to R and re-

enables its evolution to adapt to the new types of objects,

when these are encountered.

IV. EXPERIMENTS

We implemented the proposed system in Python and

evaluate it for the Schunk-SDH hand with d = 7 DoFs and

f = 3 fingertips in the OpenRAVE simulation environment

[26] on a machine with an Intel Core i7-3770 CPU @

3.40GHz×8 and 32GB RAM. In the execution module, when

planning grasps using the HFTS grasp planner [14], the

maximum iteration per hierarchy level is set to 40. In the

dreaming module, the grasping manifold is represented by

Ni = |MM | = 105 samples and the GMM model Ω is

estimated using full covariance matrices. For the construction

of the random forest, the forest size is set to T = 10, the

maximum tree depth is set to 10 and the minimum samples

for splitting a decision node is 20.

We first evaluate the evolution of the grasping manifold

using experiences collected in simulation. Thereafter, we

present quantitative results to evaluate the extension de-

scribed in Sec. III-D. Finally, we show real world experi-

ments with a Schunk-SDH hand mounted on a KUKA KR5

sixx 850 arm.

A. Evolution of Grasping Manifold

For the evaluation of the grasping manifold evolution, we

investigate whether we can observe the following properties:

• P.1 As the grasping manifold evolves, the number |Sn| of

new samples drawn from the neighborhoods of the gathered

experiences decreases. A larger evolution speed β results in

a faster decrease in |Sn|, but less generality across different

grasp types and vice versa.

• P.2 As the grasping manifold evolves, R provides better

predictions of hand configurations for grasps on the training

objects as well as on unexperienced objects of similar sizes.

• P.3 A grasping manifold that is learned from experiences

on some objects continues evolving towards new experiences

once it is exposed to objects requiring significantly different

grasps. By doing so, it generalizes over different objects and

R’s performance for previously experienced objects does not

deteriorate.

1) Investigation of P.1: Fig. 4 shows the evolution of four

different grasping manifolds with different choices for the

parameters β and |ME |. In all cases the system gathers

experiences by generating grasps on the two objects rivella



Fig. 5: Examples grasps on the objects used in evaluation, from left to right:
rivella, box, pen, jug, ball, key.
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Fig. 6: Number of new samples |Sn| of the evolution examples shown in
Fig. 4.

and box shown in Fig. 5. We initialize the grasping manifolds

with Ni = 105 uniformly sampled collision-free hand

configurations. Except for the evolution shown in Fig. 4b,

our system enters the dreaming phase every time it has ex-

perienced |ME | = 40 stable grasps (evaluated in simulation

using [4]), i.e. 20 per object. In case of the evolution shown

in Fig. 4b, it enters the dreaming phase every time a random

number |ME | = nr + nb of experiences has been made,

where nr, nb ∈ [10, 30] denote the number of experiences on

rivella and box respectively. The parameter β is chosen such

that in Fig. 4a and Fig. 4b we expect a balanced evolution,

whereas in Fig. 4c we expect an aggressive evolution towards

new experiences and in Fig. 4d a conservative evolution that

slowly adapts to new experiences.

As shown in Fig. 6, we observe that the number of new

samples in the evolution process is decreasing for all four

evolutions. The first three evolutions shown in Fig. 4 reach a

smaller number of new samples faster than the conservative

evolution in Fig. 4d. We can observe visually in Fig. 4 that

after generations 73, 67, 41 and 85 the grasping manifolds

do not change significantly anymore.

It is worth noticing that the more aggressive the evolution

is, the faster it achieves a stable manifold. However, as we

can see from the evolution in Fig. 4c, an aggressive evolution

results in a grasping manifold that is concentrated on few

areas, which is where early experiences originate from. The

conservative evolution in Fig. 4d takes the longest to achieve

a stable grasping manifold, however, it is more spread. The

balanced evolutions achieve a greater variety of modes than

the aggressive evolution, while reaching a stable grasping

manifold in less generations than the conservative one. The

balanced manifold from Fig. 4a is also shown in Fig. 1,

which shows the diversity of grasp configurations it contains.

In contrast, the aggressive evolution suppresses the variety

of grasps the system can generate. In summary, the above
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Fig. 7: Positioning errors ǫ for the evolution shown in Fig. 4(a). The gray
line shows the errors of the heuristic reported in [14]. The reported results
are collected from 100 simulated grasps on each object per generation.

results support our assumption about property P.1.

2) Investigation of P.2: Fig. 7 shows the development

of the positioning error ǫ =
∥

∥γ − TO(F (Θ),H)
∥

∥ between

fingertips and the desired contacts on an object surface for

different objects as the evolution of the balanced manifold

from Fig. 4a progresses. We can see that before the evolution

starts, our heuristic performs worse than the reachability

heuristic proposed in [14], since the linear regression per-

formed by the random forest performs poorly for sparse data

points. As the evolution proceeds, however, the positioning

error decreases for all six objects. Note that the evolution

is performed with the objects rivella and box, for the other

objects we only evaluate R without feeding the experiences

to the dreaming module. Nevertheless, the error also reduces

for these objects, indicating that the system is capable of gen-

eralizing. This result supports our assumption about property

P.2: as the evolution of the grasping manifold progresses, R’s

performance increases both for previously seen and unseen

objects of similar sizes.

3) Investigation of P.3: For evaluating property P.3, we

run the evolution in Fig. 4a again with a different setup: as

shown in Fig. 8, once the evolution for rivella and box is

stable at generation 73, we ask the system to additionally

plan grasps for a new object rivellabig, which is the rivella

bottle scaled up by a factor of 4.0. An object of this size

requires grasps for which the hand needs to be opened far

wider than for any of the others. We can see that since the

system has not experienced an object of this scale before,

the positioning error is initially large for rivellabig. However,

as first experiences are made, the system starts to evolve

anew, adapts its grasping manifold and eventually becomes

stable again at generation 99. Thereafter, by asking it to

plan grasps for a large disk, which requires the coupled

joint of the Schunk-SDH hand to open even further, the

system evolves further until generation 126. It is worthwhile

to note that when the new objects are introduced to the

system, the positioning errors for the previously experienced

objects do not increase. In summary, these results support

our assumption about property P.3.

B. Evaluation of R∗

As described in Sec. III-D, once the grasping manifold

evolution becomes stable, we can learn a new heuristic R∗
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Fig. 8: Positioning errors ǫ, the evolution is controlled by the parameters
shown in Fig. 4(a). Once the evolution becomes stable for rivella and box,
the new objects rivellabig and disk are introduced into the system and trigger
the continuation of the evolution. The reported results are collected from
100 simulated grasps on each object per generation.

from all gathered experiences. Next, we investigate whether

we can observe the following property:

• P.4 Once the grasping manifold becomes stable, our grasp

planner with learned heuristic R∗ is able to plan stable grasps

with a performance equal to the planner with heuristic R,

while achieving faster runtimes.

Object Err(cm) Q Time(s)

rivella
0.47 ± 0.07
0.42 ± 0.04

1.13 ± 0.24
1.13 ± 0.09

0.95 ± 0.06
0.37 ± 0.06

box
0.39 ± 0.04
0.37 ± 0.06

1.24 ± 0.37
1.22 ± 0.13

0.79 ± 0.02
0.36 ± 0.07

pen
0.55 ± 0.02
0.57 ± 0.03

0.20 ± 0.04
0.22 ± 0.02

0.99 ± 0.07
0.29 ± 0.01

jug
0.85 ± 0.13
0.83 ± 0.07

1.27 ± 0.22
1.26 ± 0.14

1.21 ± 0.27
0.33 ± 0.03

ball
0.09 ± 0.01
0.10 ± 0.01

0.42 ± 0.02
0.42 ± 0.01

0.94 ± 0.04
0.22 ± 0.01

key
0.65 ± 0.06
0.52 ± 0.04

0.22 ± 0.02
0.23 ± 0.04

1.14 ± 0.23
0.32 ± 0.04

Fig. 9: Statistics for the comparison between R and R∗(shaded). The results
reported are collected by generating 100 grasps in simulation for each object
for both heuristics respectively. Err: positioning errors, Q: grasp quality
measured by [4], Time: runtime for planning a grasp. The evaluations were
implemented in Python and run on a machine with Ubuntu 12.04 running
on an Intel Core i7-3770 @ 3.40GHz×8. with 32GB RAM

When the grasping manifold evolution shown in Fig. 4a

is stable at generation 73, the system has experienced 73×
2 × 20 = 2920 grasps. Hereafter, the system uses the 2920
experiences to learn the new heuristic R∗. From the table

shown in Fig. 9 we can see that the mean positioning errors

and the grasp qualities for both heuristics are similar. This is

expected since the stability manifold learned from the 2920
experiences tends to lead the planner to plan grasps similar

to its experiences. Note that as the computation of the grasp

quality metric is omitted, the runtime for the grasp planner

using R∗ is in general decreased by 2/3 to 3/4. This result

supports our assumption about property P.4.

Fig. 10: Top: As experimental setup we utilize a Schunk-SDH hand
mounted on a KUKA-KR5 industrial arm. For localizing objects in the
robot’s workspace, we use SimTrack [27] in combination with a Microsoft
KinectTM. Bottom: Stable fingertip grasps executed on the five different
objects used in our experiments.

C. Evaluation on a Real Robot

Finally, we wish to ensure that our system produces

grasps that can be executed successfully on a real robot. In

particular, we assume the following property:

• P.5 Grasps generated with the learned heuristic R∗ are

stable in the real world.

For this, we execute grasps on the system illustrated in

Fig. 10. The grasp planner uses R∗ which was trained on the

shown five objects in simulation. For each experiment, we

place one of the objects at an arbitrarily chosen reachable

pose on a table in front of the robot. The robot is tasked

with picking up the object and placing it in a bin located

next to the table. We execute this sequence for each object

six times and record the number of successful placements.

As our grasp planner does not consider collisions with

the environment nor the kinematics of the robot arm, we

repeatedly plan grasps anew until a reachable grasp has been

found. To execute grasps, we utilize a position controller for

the finger joints. To exert some force on the grasped object,

we additionally close the fingers approximately 0.1cm along

the contact normals.

Object #Trials #Success Notes

rivella 7.3 ± 9.1 5/6 1 unstable

glue 9.5 ± 6.0 6/6
crayola 3.0 ± 3.95 6/6

toblerone 12.2 ± 10.69 4/6 tip over & unstable

cheezit 11.0 ± 9.7 6/6

Fig. 11: Statistics of running R∗ on a real robot system, where six grasps
were tested on each object. #Trials: number of grasps planned until a
reachable grasp was found. #Success: number of successful pick-and-place
executions. Notes: reason of failures.

The results are summarized in Fig. 11. In total, we only

observed three failures. In two cases the executed grasps

were unstable and the objects slipped, in the third case

the object tipped over before all contacts were reached.

Overall, the results support our assumption that the system

has property P.5. However, in most cases the planner had to

be executed several times to find a grasp that was reachable

by the robot. This highlights a weakness of the current state

of the proposed system. For fast fingertip grasp planning, a



system needs to take an object’s environment as well as the

robot arm’s kinematics into account.

V. DISCUSSION & CONCLUSION

In this work, we presented a system that integrates a ran-

dom forest based heuristic for hand reachability and multi-

finger inverse kinematics with the fingertip grasp planner

presented in [14]. The training set of the heuristic, the

grasping manifold, is incrementally adapted by the system

based on the experiences it gathered online. This allows

to focus the heuristic’s limited accuracy on the regions of

the robot hand’s configuration space that are task relevant.

We showed that our system creates grasping manifolds that

facilitate the performance of the grasp planner, while being

able to generalize and continuously adapt to new types of

experiences.

We further extended the proposed system to learn a

heuristic from a grasping manifold that integrates both grasp

quality and hand reachability, rendering the use of an analytic

grasp quality metric unnecessary. As a result, we show that

the planner’s runtime is reduced, while it is still capable of

generating stable grasps.

The system was evaluated both in simulation as well

as on a real robot, whereas training was only performed

in simulation. Ideally our system would learn its grasping

manifold from experienced grasps that were successful in

the real world. However, our current implementation of the

system does not take the environment nor the kinematics of

the robot’s arm into account. As a result, the planner often

produces grasps that are not kinematically reachable by the

arm or in collision with the environment. Therefore, since the

training requires a large number of executions, our evaluation

on the real robot was limited to testing a system that was

trained in simulation. In future work, we wish to explore

the system’s performance when its experiences are gathered

in the real world. As the grasping manifold is learned from

successfully executed grasps, it would implicitly emphasize

grasps that have been stable and suppress grasps that have

falsely been predicted to be stable. This may occur due to

errors in the used model, such as the simplified modeling

of contacts and unknown friction coefficients. A grasping

manifold trained from real world examples could overcome

these limitations of analytic grasp quality metrics. Moreover,

we would like to look into the scalability of the proposed

method with respect to the DoFs of the hand and the range

of different object shapes it is able to cover. Here, it is inter-

esting to investigate the possibility of adaptively evolving the

number of samples used to represent the grasping manifold.
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