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a b s t r a c t

AdaBoost algorithms fuse weak classifiers to be a strong classifier by adaptively determine fusion

weights of weak classifiers. In this paper, an enhanced AdaBoost algorithm by adjusting inner structure

of weak classifiers (ISABoost) is proposed. In the traditional AdaBoost algorithms, the weak classifiers

are not changed once they are trained. In ISABoost, the inner structures of weak classifiers are adjusted

before their fusion weights determination. ISABoost inherits the advantages of the AdaBoost algorithms

in fusing weak classifiers to be a strong classifier. ISABoost gives each weak classifier a second chance to

be adjusted stronger. The adjusted weak classifiers are more contributive to make correct classifications

for the hardest samples. To show the effectiveness of the proposed ISABoost algorithm, its applications

in scene categorization are evaluated. Comparisons of ISABoost and AdaBoost algorithms on three

widely utilized scene datasets show the effectiveness of ISABoost algorithm.

Crown Copyright & 2012 Published by Elsevier B.V. All rights reserved.
1. Introduction

Generally speaking, it is hard to train a very robust classifier
[1–15,23–27]. It is very easy to train dozens of weak classifiers
with their performances are just better than random guessing.
How to fuse dozens of weak classifiers to be a strong one is as
important as to train a single strong classifier. AdaBoost algo-
rithms can fulfill this function by assigning appropriate weights
for the weak classifiers [31,32,35–37,39]. AdaBoost algorithms
turn out to be very effective in machine learning and pattern
recognition. In AdaBoost algorithms, weak classifiers are not
expected to be perfect. Many of them are just better than random
guessing. Weak classifiers can be fused to be a strong one by
properly determining their fusion weights [31,32,35–37,39].
Usually, the effective classifiers have large weights and the poor
classifiers have small weights. The weights of weak classifiers are
determined by AdaBoost algorithms with respect to their error
rates to the weighted training samples [31,32,35–37,39]. The
incorrectly classified samples by the previous classifiers are given
large weights during re-weighting. The training samples with
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larger weights are harder to be correctly classified by the previous
classifiers. This will allow the rest classifiers focusing on the
hardest samples. AdaBoost algorithms do not expect that all the
classifiers are robust enough but expect each classifier should
have some contribution to make correct classifications for the
hardest samples [31].

Li and Zhang proposed FloatBoost algorithm and applied it to
multi-view face detection [41]. FloatBoost uses a back-track
mechanism in each iteration of AdaBoost learning to minimize
the error rate. FloatBoost selects the best weak classifier by a
stage-wise approximation of the posterior probability. Thus,
compared to the conventional AdaBoost algorithms, FloatBoost
achieves lower error rates by fewer weak classifiers.

Tieu and Viola [42] used boosting methods for feature selec-
tion and applied them in image retrieval. Each feature corre-
sponds to a weak classifier. In the training proceeds, the algorithm
selects a new feature, determines its weights and adds it to the
ensemble. Finally, a strong classifier is computed as weighted
linear combination of the weak classifiers.

Lu et al. [43] proposed an i.Boosting approach which integrat-
ing feature re-weighting into AdaBoost. It merges AdaBoost,
feature re-weighting and relevance feedback into a unified frame-
work. In i.Boosting, not only the samples but also the feature
elements are weighted. The basic idea of often utilized AdaBoost
algorithms is training sample re-weighting.

The training sample reweighting can be carried out by resam-
pling [44,45]. In re-sampling based AdaBoost approaches, the
rights reserved.
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training data is resampled with replacement to generate a new
training set according to the weights distribution of the training
examples. Examples with larger weights are more likely to be
selected and examples with small weights are less likely to be
selected for weak classifiers’ training. Seiffert et al. [45] system-
atically evaluated the resampling and reweighting approaches
utilized in nine AdaBoost algorithms. Their empirical experimental
results show that the resampling based AdaBoost approaches out-
perform the corresponding reweighting based AdaBoost approaches.

AdaBoost algorithms can be implemented online or offline [37].
The online AdaBoost algorithms train weak classifiers and deter-
mine their fusion weights in a unified framework using the same
training set [31,32]. The block diagram of online AdaBoost
algorithm is shown in Fig. 1(a). Online AdaBoost algorithm calls
weak learner to train a weak classifier with respect to the
distribution of weighted training samples. In the offline AdaBoost
algorithm, weak classifiers are trained before assigning their
fusion weights [35–37]. The block diagram of offline AdaBoost
algorithm is shown in Fig. 1(b). The difference of online and
offline trainings are clear by comparing Fig. 1(a) and (b). The
online algorithm trains the weak classifiers and determines their
fusion weights using the same weighted training samples. There
are two independent training sets in the offline AdaBoost algo-
rithms. One is the weak classifiers training set and the other is
weak classifiers’ weights learning set. The offline algorithm works
iteratively by selecting the best weak classifier with respect to the
error rate of the weight training samples [35–37].

In the offline and online AdaBoost algorithms, the inner
structures of the weak classifiers do not changed once they are
trained. AdaBoost algorithms only determine the fusion weights
of weak classifiers. However, if weak classifiers are not well
trained, then they influence the performances of AdaBoost algo-
rithms significantly. This is often happened in the applications of
multi-class pattern classification problem [37]. Multi-class pat-
tern classification is completed by cascading several component
classifiers. Each component classifier carries out discrimination of
some patterns from the others [29].

The on-line boosting algorithms train weak classifiers accord-
ing to the weighted training samples. Oza and Russell had pointed
out that [46], if off-line and on-line boosting are given the same
training set, then the weak classifiers returned by on-line boost-
ing converges statistically to the one obtained by off-line boosting
as the number of iterations tend to be infinite. Therefore, for
repeated presentation of the training set on-line boosting and
off-line boosting deliver the same result. The on-line algorithm
Fig. 1. Diagrams of (a) online AdaBoost, (
requires that the number of weak classifiers is fixed at the begin-
ning. In the off-line AdaBoost all samples are used to determine the
fusion weight of weak classifiers. In the on-line AdaBoost one
sample is used to train all weak classifiers and determine the
corresponding weights. An on-line boosting based feature selection
framework is proposed [47]. It allows on-line feature selection using
boosting. The basic idea is that the difficulties of samples can be
estimated by propagating them through the set of weak classifiers.
Given a fixed set of selectors, they are updated by estimating the
probability distributions of training samples and generated hypoth-
esis when a new training sample arrives. The weak classifier with
the smallest error is selected by the selector.

The motivation of ISABoost is based on the fact that if inner
structures of weak classifiers can be adjusted, then the influences
of the poor component classifiers to AdaBoost can be reduced. In
this paper, the inner structures of weak classifiers are adjusted
before assigning their outer weights. Thus the poor weak classi-
fiers have some chances to be adjusted more contributive in
combining a stronger classifier. The contributions of this paper are
summarized as follows: (1) the proposed ISABoost algorithm
improve traditional AdaBoost algorithm by adjusting the inner
structures of the trained weak classifiers adaptively before assigning
their fusion weights; (2) the proposed ISABoost algorithm iteratively
selects an optimal weak classifier after inner structure adjusting and
determines its weight in a unified optimization framework; (3)
ISABoost based application in scene categorization is proposed; (4)
Impacts of the type of weak classifier to ISABoost algorithms are
evaluated. Given the total number of training samples, the impacts
of the assignment of training samples numbers for weak classifier
training, inner structure adjusting and adjusting validation, and
fusion weight determination are evaluated. These are helpful for
showing the effectiveness of the proposed ISABoost algorithm and
provide some guidelines for using ISABoost.

This paper is extended from our previous works [39]. The
improvements of it over our previous work are as follows: (1)
more experiments are conducted which make the conclusion
more confidence. (2) in our previous work, the type of weak
classifier is back-propagation networks (BPN), while in this paper,
not only BPN but also support vector machines (SVM [28,38]) are
served as weak classifiers.

The rest of this paper is organized as follows: In Section 2 the
proposed ISABoost algorithm is presented. In Section 3 ISABoost
based application in scene categorization is illustrated in detail. In
Section 4 experiments and discussions are given. Finally, conclu-
sions are drawn in Section 5.
b) offline AdaBoost and (c) ISABoost.
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2. The proposed ISABoost algorithm

In this section, we firstly brief overview the traditional AdaBoost
algorithms for multi-class pattern classification. Then the pro-
posed ISABoost algorithm is illustrated in details. Block diagrams
of the traditional online AdaBoost, offline Adaboost and the
ISABoost algorithms are shown in Fig. 1(a)–(c), respectively. For
the online AdaBoost algorithm, a weak classifier is trained and its
fusion weight is determined on the weighted training samples at
a step. The training samples are utilized both for training weak
classifiers and determining their fusion weights. For the offline
AdaBoost algorithm, the weak classifiers and the fusion weights
are determined using two independent training sets. The weak
classifier training set (denoted CS) is utilized to train a set of weak
classifiers and the fusion weights training set (denoted WS) is
utilized to determine the fusion weights of learned weak classi-
fiers. The proposed ISABoost algorithm consists of four parts:
(1) weak classifiers training; (2) inner structure adjusting for the
trained weak classifiers and adjusting validation; (3) optimal
weak classifier selection and fusion weights determination;
(4) training samples re-weighting.

The unfolded drawings of the AdaBoost algorithm for multi-
class pattern classification is shown in Fig. 2(a). The N-Class
pattern classification problem can be fulfilled by cascading N

one-versus-all component classifiers. Assuming that M weak
classifiers (denoted Weak Ck, k¼ 1, � � � ,M) are trained and their
outer weights ak (k¼ 1, � � � ,M) are determined. Each weak classi-
fier consists of N component classifiers (denoted CompCn,
n¼ 1, � � � ,N). In this paper, the component classifier CompCn

(n¼ 1, � � � ,N) discriminates the n-th class and the other N�1
classes. From the unfolded drawings as shown in Fig. 2, it is clear
that the traditional AdaBoost algorithms do not change the inner
structures of the trained weak classifiers. They only determine
their outer fusion weights.

2.1. AdaBoost algorithms

AdaBoost algorithms determine the fusion weights of the
trained M weak classifiers by a set of weight training samples
[31,32,37,39]. In the classification stage, take AdaBoost.M1 for
example, each weak classifier outputs a hard decision for the test
sample x. The final output H(x) is related to weighted votes of all
weak classifiers.

HðxÞ ¼ arg max
yAY

XM
t ¼ 1

at ½htðxÞ ¼ y�; Y ¼ 1,. . .,Nf g ð1Þ

where at is the weight of weak classifier ht, and

½htðxÞ ¼ y� ¼
1 htðxÞ ¼ y

0 htðxÞay
; yAY ¼ 1,. . .,Nf g

(
ð2Þ

where ht(x) outputs a hard label

htðxÞ ¼ arg max
yAY

ht x,yð Þ
� �

; Y ¼ 1,. . .,Nf g ð3Þ

where ht(x,y) is the response of weak classifier ht to the label y.
Fig. 2. Unfolded drawings of (a)
Winner takes all approach is utilized in AdaBoost.M1. It makes
a hard decision for the input sample. Generally, the hard decision
is too strict to perform better. In order to make weak classifiers
contributive to multi-class pattern classification, AdaBoost.M2
and AdaBoost.MT make full use of the responses of component
classifiers of a weak classifier to make decision. Different from
AdaBoost.M1, in AdaBoost.M2 and AdaBoost.MT each weak clas-
sifier outputs a response vector rather than a hard decision
[31,37]. Each element of the response vector is in the range [0,
1]. For a given test sample x, AdaBoost.M2 or AdaBoost.MT
outputs the estimated label as follows

HðxÞ ¼ arg max
yAY

XT

t ¼ 1

atht x,yð Þ ð4Þ

where atht(x,y) is the weighted response of weak classifier ht to
the label y.

2.2. ISABoost algorithms

Now we turn to introduce the proposed ISABoost algorithm
in details. The unfolded drawings of the weak classifiers in
ISABoost are shown in Fig. 2(b). In this paper, each weak
classifier is adjusted by an inner weight adjusting vector b

and a bias vector g. The dimensions of them are both 1�N

(note that N is the multi-class number). ISABoost fuses the
adjusted weak classifiers which have been trained under either
online or offline AdaBoost frameworks. The training samples
reweighting and weak classifiers fusion weights determination
of ISABoost algorithm are identical to the standard AdaBoost
algorithms. Thus, we only illustrate the corresponding classifi-
cation of ISABoost for a test sample, inner structure adjusting
and adjusting validation, and optimal adjusting parameters
determination.

2.2.1. Classification of ISABoost for a test sample

Let Rq ¼ oR1
q ,. . .,RN

q 4 denote the response vector of the q-th

weak classifier to the input vector x, andRk
q denote the corresponding

response of the k-th (k¼ 1,. . .,N) component classifier of the q-th
(q¼ 1,. . .,M) weak classifier. ISABoost adjusts the inner structure of a

weak classifier by finding optimal biases vector gq ¼oZ1
q ,. . .,ZN

q 4

and inner weight adjusting vector bq ¼ ob1
q ,. . .,bN

q 4 .

In ISABoost algorithm, the training samples are utilized to
fulfill weak classifiers training, inner structure adjusting and
adjusting validation, and outer weights determination as shown
in Fig. 1(c). Assume that h0t x,yð Þ is the t-th (t¼ 1,. . .,M) fused
optimal weak classifier, and H(x) is the output of ISABoost for the
test sample x is as follows

H xð Þ ¼ arg max
yAY

XM
i ¼ 1

at � h0t x,yð Þ

¼ arg max
yAY

XM
i ¼ 1

at � ½b
y
t Ry

t ðx
� �

�Zy
t Þ�; Y ¼ 1,. . .,Nf g ð5Þ
AdaBoost and (b) ISABoost.
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If we use the hard outer weights determination approach
utilized in AdaBoost.M1, then the corresponding output H(x) of
ISABoost is as follows

HðxÞ ¼ arg max
yAY

XM
t ¼ 1

at½h
0

t x,yð Þ�; Y ¼ 1,. . .,Nf g ð6Þ

where ½ht’ x,yð Þ� is a hard decision function which is expressed as
follows

½h0t x,yð Þ� ¼

1 by
t Ry

t ðx
� �

�Zy
t Þ ¼max

kAY
bk

t Rk
t ðx

� �
�Zk

t Þ

n o
0 by

t Ry
t ðx

� �
�Zy

t Þamax
kAY

bk
t Rk

t ðx
� �

�Zk
t Þ

n o ;Y ¼ 1,. . .,Nf g; t¼ 1,. . .,M

8>><
>>:

ð7Þ

2.2.2. Inner structure adjusting and adjusting validation

In order to determine the parameters of ISABoost, all the
samples in CS (the sample number is denoted as S) are utilized
for inner structure adjusting. v samples {(x1, y1),. . .,(xv, yv)} with
their labels yiAY¼{1,. . .,N} are utilized for adjusting validation.
The objective is to find the optimal adjusting para-
metershn

q ¼ ogn
q,bn

q4 , qA 1,. . .,Mf g, for each weak classifier. In
this paper, ISABoost iteratively selects an optimal inner structure
adjusted weak classifier with respect to the error rates of the
weighted training samples. The corresponding objective function
in weak classifier inner structure adjusting is to find optimal inner
structure adjusting parameters hn

q ¼ ogn
q,bn

q4 as follows

hn

q ¼ ogn
q,bn

q4 ¼ argmax
hq

f hq

� �
; hq ¼ y0

q ,y1
q ,. . .,yK

q

n o
, q¼ 1,. . .,M

s:t: adjusting validation

ð8Þ

where f hq

� �
is the correct recognition rate of the weighted

training samples. It is expressed as follows

f hq

� �
¼ 1

S

XS

s ¼ 1

½h0q xs,ys
� �

�; q¼ 1,. . .,M ð9Þ

where ½h0q xs,ysð Þ�is a function of bqand Zq as shown in Eq. (7).
In Eq. (8), h0

q (i.e., without inner structure adjusting
h0

q ¼ og0
q ,b0

q 4 ; g0
q ¼ 0; b0

q ¼ 1; q¼ 1,. . .,M ) and
hn

q n¼ 1, � � � ,Kð Þ the initial parameters of the q-th weak classifier
and the parameters of K adjusting weak classifiers for the q-th
weak classifier. To makes sure that the adjusted weak classifier q

is with the best performances among all the adjusted weak
classifiers, i.e.

f hn

q

� �
¼ max

n ¼ 0,���,K
f hn

q

� �
; q¼ 1,. . .,M ð10Þ

In order to make sure the adjusting is valid, the adjusted weak
classifiers must pass through adjusting validation. The adjusting
validation is evaluated by v samples as follows

j hn

q

� �
Zj h0

q

� �
; q¼ 1,. . .,M ð11Þ

where j hq

� �
is performances of the adjusted classifier for the v

validation samples, we have

j hq

� �
¼ 1

v

Xv

i ¼ 1

½hq’ xi,yi
� �

�; q¼ 1,. . .,M ð12Þ

If j hn

q

� �
Zjðh0

qÞ is not satisfied, then the original weak
classifier is utilized in the final fusion stage. The importance of
adjusting validation is discussed in Section 4.

2.2.3. Optimal inner structure adjusting parameters determination

To solve the optimal problem for inner structure adjusting as
shown in Eq. (8). Gradient descendent based approaches, and
genetic algorithms (GA) can be utilized [39]. GA is very flexible in
designing objective functions. In this paper, we use GA to find the
optimization solution. The inner weights are assigned in the range
bk

qA ½0:8,1:2�(q¼ 1,. . .,M; k¼ 1,. . .,N). The biases are in the range
Zk

qA ½�0:2,0:2�(q¼ 1,. . .,M; k¼ 1,. . .,N). We set the parameters in
limited ranges to save computational cost [39]. The flowchart of
GA based parameter optimization is as follows.
1)
 Initialize parameters of GA:crossover probability Pc¼0.8,
mutation probability Pm¼0.05, population size Ps¼400, max-
imum iteration times Im¼50,000, minimum error variation
Em¼10�6, initial evolution step gen¼1.
2)
 Generate Ps individuals and encode them into chromosomes;

3)
 Calculate fitness values of each chromosome according to Eq.

(9); The individuals with large fitness values correspond to the
parameters with high correct recognition rates.
4)
 Update evaluation generations gen¼genþ1; Select Ps chromo-
somes to the next generation according to the fitness. The
selection probability of each chromosome is calculated as
follows

P
�

kÞ ¼ f itðkÞ=
XPs

k ¼ 1

f itðkÞ ð13Þ

where fit(k) and P(k) are the fitness value and selection
probability of the k-th chromosome.
5)
 Generate Ps new individuals by genetic operations (crossover
and mutation) according to the crossover probability Pc and
mutation probability Pm;
6)
 Repeat step (3) to step (5) if the evaluation step gen less than
Im and the performance improvement of neighboring two
generations is larger than Em;
7)
 Select the chromosomes with highest fitness as the final
output hn

q.

For M weak classifiers, each classifier is adjusted separately.
In order to make sure the final scene categorization can benefit from
the adjusted weak classifiers, adjusting validation is needed.
We evaluate the performances of the inner structure adjusted weak
classifiers using the adjusting validation set. If j hn

q

� �
Zjðh0

qÞis not
satisfied, then the original weak classifier is utilized in the final
fusion stage.

2.3. Relationship of AdaBoost and ISABoost

From the unfolded drawings of ISABoost and AdaBoost algo-
rithms, for any weak classifier q, if bq¼1and gq¼0 (1 and 0 are
vectors with dimensions 1�N, each elements in them are with
sample values 1 and 0.), then AdaBoost is identical to ISABoost.
Thus ISABoost is a generalized case of AdaBoost.
3. ISABoost based scene categorization

In order to show the effectiveness of the proposed ISABoost
approach, its applications are test on scene categorization. Before
illustrating the proposed ISABoost based scene categorization
approach, we briefly review the related works on scene
categorization.

3.1. Related work on scene categorization

Scene categorization is a specified application of multi-class
pattern categorization. Recently BOW (Bag-of-Words) based
approaches and salient feature based approaches are often uti-
lized. The BOW based approaches are convenient to model scenes
by geometric structures. BOW based approaches model objects in
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a scene/image as geometric-free structures [1–7,11,16,24]. In
[11,14], BOW based approaches represent objects with rigorous
geometric structures by modeling the relationships of different
parts. The co-occurrences, dependences and linkages of the
salient parts of images are also modeled to improve scene
categorization performances [4,5,7,12,13,17–22]. Modeling the
spatial dependency between neighboring patches of a scene by
machine learning models, such as hidden Markov model [8],
Markov random fields [10], and conditional random field models
[11] can improve scene categorization performances. These
methods aim at training robust classifiers to fulfill scene categor-
ization. Despite of assigning an image with a category, some
research works aim at assigning more relevant labels for each
image [48–51]. For example, Zha et al. fuse multi-label and multi-
instance learning for robust image classification [48]. Semantic
distance learning and graph based approach are adopted to
determine more refined categories of the image [50,51].

Despite of constructing robust models [1–14], effective feature
representation approaches are also important for scene categor-
ization [15,23–27,40]. Salient shape [23], local scale and trans-
form invariant feature [15], local binary pattern and its extensions
in spatial pyramid spaces [40], visual appearance [24] and multi-
resolution texture descriptors [25–27] have shown their effec-
tiveness in scene categorization. Pyramid histogram of oriented
gradients (PHOG) is good at representing the shapes and spatial
layouts of scenes [23]. It has the advantages to represent image
with certain global and local shape information. Lazebnik et al.
represent the appearance feature of a scene using BOW histogram
and carry out scene categorization by spatial pyramid matching
(SPM) [24]. SPM is robust to the variations of rotation, resolution
and illumination [24]. HWVP improves the discrimination power
for images by utilizing sub-bands filtering in hierarchical wavelet
packet domain [27]. GIST is robust to represent image texture
information with oriented multiple-scale based filtering [25,26].
In this paper, we utilize the feature based approach to test the
effectiveness of the proposed ISABoost algorithm. Weak classifiers
are trained independently using those features. ISABoost and
AdaBoost based scene categorization performances are compared
in fusing the trained weak classifiers.

3.2. ISABoost based scene categorization approach

The flowchart of training of ISABoost based scene categoriza-
tion is shown in Fig. 3(a) and the flowchart of ISABoost based
scene categorization for a test image is shown in Fig. 3(b).
ISABoost based scene categorization approach consists of the
following 4 steps: (1) low-level features extraction; (2) weak
Fig. 3. Flowcharts of ISABoost based Scene categorization. (a) Flowchart of the training

categorization for a test image.
classifier training; (3) weak classifier inner structure adjusting
and adjusting validation; (4) classifier selection and fusion weight
learning. When the training process is completed, we get ISABoost
parameters. The flowchart of the ISABoost based scene categor-
ization consists of following 2 steps: (1) low-level feature extrac-
tion; (2) Scene categorization results for the input image with
visual feature x by utilizing Eq. (5). The corresponding ISABoost
algorithm is illustrated in Section 2. Now we express the first two
steps in ISABoost based scene categorization.

ISABoost and AdaBoost share the same basic weak classifiers.
The weak classifiers are trained using the training set CS. In
ISABoost, the inner structure adjusting is carried out by using IS
and outer weight of weak classifier is determined by WS. In
AdaBoost the training samples IS and WS are both utilized for
fusion weights determination.
3.2.1. Low-level features extraction

Four features: SPM [24], PHOG [23], GIST [25,26] and HWVP
[27] are served as the input features to train weak classifiers and
to carry out scene categorization. SPM feature is a local scale
invariant descriptor by using spatial pyramid transforms [24,40].
In the extraction of SPM [24], the 128 dimensional SIFT features
[15] are converted into visual words. SPM is composed of visual
words histograms of an image at various spatial pyramids. PHOG
represents an image with histograms of orientation gradients
over spatial pyramids. Each bin in PHOG represents the number of
edges that have orientations within a certain angular range.
HWVP represents texture information of an image using hier-
archical wavelet packet transform [27]. GIST is an effective high
dimensional texture descriptor. This feature takes advantages of
Gabor transform [26].

In the extraction of SPM [24], the local appearance features are
converted into D visual vocabularies. Then the visual vocabulary
histogram of each image in spatial pyramid domain is con-
structed. In this paper, we set the spatial pyramid level to be
two and the vocabulary size D to be 300, thus the dimension of
SPM is 6300.

In the extraction of PHOG [23], the local shape is captured by
the distribution over edge orientations within a region. In this
paper we set the spatial level S¼3 and orientations J¼10, then
the dimension of PHOG is 850.

In this paper, we use the descriptor HWVP [27] under local
partitioning pattern Local5 (the image is partitioned into 2�2
grids and a centralized grid) to represent the hierarchical wavelet
packet texture. We set the wavelet packet basis to be db2. The
mean and standard deviation of each sub-band are utilized for
of ISABoost based scene categorization. (b) Flowchart of the ISABoost based scene



Table 1
ISABoost based scene categorization performances for OT dataset under various

testing conditions. Totally, T training samples per category are utilized for weak

classifiers training, inner structure adjusting and outer weights learning.

The samples numbers of weak classifiers training, inner structure adjusting

validation, and weight learning are b, a and g, respectively. g¼0 corresponds to

the AdaBoost algorithms and ga0 denotes the proposed inner structure adjusting

and outer weights leaning based approach.

T b a G ISABoost.M1 ISABoost.M2 ISABoost.MT

100 50 50 0 75.44 82.16 82.60

30 20 76.6770.43 82.3470.17 83.6970.51

20 30 76.5870.39 82.4670.29 82.9970.14

25 25 76.0170.18 83.2070.22 84.1470.62

80 50 30 0 76.01 83.20 83.39

20 10 78.0770.56 83.7270.13 84.5570.32

15 15 77.5570.34 83.8170.23 84.5670.29

10 20 77.3970.36 83.5670.19 83.7870.11

50 40 10 0 75.29 80.94 79.98

6 4 77.5770.53 81.2970.16 80.3970.13

5 5 78.1470.86 81.0870.14 80.5670.18

4 6 78.0670.55 81.2170.14 80.1270.27

25 25 0 69.60 76.50 77.28

15 10 73.1270.52 76.8370.09 77.7570.13

10 15 72.3670.48 76.9670.12 77.6270.11

30 20 10 0 65.72 73.99 74.50

8 2 70.5070.63 74.4570.21 74.8170.19

7 3 70.2770.51 74.4670.16 74.7770.15

6 4 70.1470.45 74.6270.14 75.0670.36

5 5 69.7970.97 74.5670.15 74.6870.16

4 6 68.5370.58 74.4970.18 74.7570.19

3 7 68.2470.75 74.5570.14 74.6770.13

2 8 69.3670.63 74.6770.16 74.7370.20

25 5 0 73.75 77.46 77.02

4 1 75.7470.43 77.8670.23 77.2270.28

3 2 75.8570.38 77.7170.13 77.1870.12

2 3 75.2670.46 77.6570.19 77.12 70.19

1 4 75.3570.52 78.0970.36 77.0570.16

Table 2
ISABoost based scene categorization performances for Sport Event dataset under

various testing conditions. Totally, T training samples per category are utilized for

weak classifiers training, inner structure adjusting and outer weights learning.

The samples numbers of weak classifiers training, inner structure adjusting
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texture descriptions [27]. In this paper we set L¼3, thus the
dimension of HWVP is 850.

In the extraction of GIST feature[26], firstly, each image is
segmented into 4�4 grids and each grid (with sizes 32�32) is
decomposed by a bank of multi-scale oriented filters (in this paper
8 orientations and 5 scales are utilized). Finally, the magnitude of
each sub-band is utilized for feature representation. Thus the
dimension of GIST of a gray-level image is 5�8�16¼640.

In following part of this paper, let x denote the input feature of
an image.x¼ x1,. . .,xdð ÞARd is a d dimensional vector. The dimen-
sion d is a feature related parameter. The dimensions of SPM,
PHOG, HWVP, GIST are d¼6300, 850, 850, 640, respectively
[37,39].

3.2.2. Training weak classifiers

For the N-class scene categorization problem, N one-versus-all
component classifiers are combined to determine the exact label
[30]. During training, b samples per category are randomly
selected and served as the weak classifiers’ training set CS. For
the M-class scene categorization problem, we combine the M one-
against-all classifiers to determine the accurate scene label index.

Let complexes;¼ Ck
n oM

k ¼ 1
denotes the parameters of a weak

classifier. Let Rk (k¼ 1,. . .,M) denotes the response of the k-th
one-versus-all classifier with input feature X, RkA[0,1]. We can
estimate the label k0 of the input image with its feature X by a
weak classifier as follow

k0 ¼ arg max
k ¼ 1,...,M

Rk

� �
ð14Þ

V weak classifiers for each of the four features are trained by
running the training process V times. In this paper, we set V¼20.
In each training process, b samples per category are randomly
selected from CS to train a weak classifier. For the training of the
k-th CompC of a WeakC, the b training images from the k-th class
are severed as positive samples and b� (N�1) images from the
other N�1 classes are severed as negative samples. Some of the
samples may be utilized more than once and some of them may
not be selected in each process.
validation, and weight learning are b, a and g, respectively. g¼0 corresponds to

the AdaBoost algorithms and ga0 denotes the proposed inner structure adjusting

and outer weights leaning based approach.

T b a g ISABoost.M1 ISABoost.M2 ISABoost.MT

20 15 5 0 50.90 64.29 64.69

3 2 51.4770.16 64.4870.12 66.3670.38

2 3 51.1070.13 64.8470.21 66.1670.35

50 40 10 0 57.76 77.22 74.55

6 4 60.8970.72 77.6570.16 75.4770.28

5 5 60.0270.53 77.4670.18 75.3470.13

4 6 60.6570.66 77.9970.22 75.7470.29

70 30 40 0 57.54 70.78 71.33

30 10 58.2070.31 71.2870.21 71.8070.12

25 15 58.3870.26 71.1170.16 71.9570.11

20 20 58.9370.44 71.5370.32 71.5770.08

15 25 57.7270.12 71.0670.11 72.4870.12

10 30 58.3570.27 71.3270.25 71.8370.27

70 50 20 0 77.78 97.34 95.75

15 5 81.8470.99 97.5770.15 96.0870.09

10 10 82.1471.26 97.5470.17 95.9570.12

5 15 81.5270.83 97.5970.19 95.8970.14
4. Experiments and discussion

Five experiments are conducted to evaluate the performance
of boosted scene categorization approach by adjusting the inner
structures and determining outer weights of weak classifiers. The
first three experiments are on OT [25], Scene-13 [3] and Sport
Event [34] datasets. Comparisons of AdaBoost and ISABoost based
scene categorization approaches are made. Back-propagation
networks are served as weak classifiers. ISABoost under various
outer weight determination approaches are also compared.
ISABoost.M1, ISABoost.M2 and ISABoost.MT are the ISABoost
algorithms with the weak classifiers’ fusion weights determined
by the approaches AdaBoost.M1, AdaBoost.M2 and AdaBoost.MT.
When the total training samples is fixed, the impact of number
assignment for weak classifier training, inner structure adjusting
and adjusting validation, and fusion weights determination to
ISABoost is discussed. In order to show the impacts of the type of
weak classifier to ISABoost, the fourth experiment is conducted by
utilizing SVM as basic weak classifier. And the last experiment is
to show the importance of adjusting validation. Accurate recogni-
tion rate (AR) is utilized to evaluate scene categorization perfor-
mance which is expressed as follows

AR¼
NC

NCþNM
� 100% ð15Þ

where NC and NM are the correct and missing detections.
In Tables 1–3, scene categorization performances by utilizing
totally T training samples per category are shown. The numbers of
samples for weak classifier training and inner structure adjusting,
adjusting validation, and outer weight determination are b, g, and
a, respectively. In Tables 1–3, the average accurate recognition
rates and their standard deviations of 10 times run of the



Table 3
ISABoost based scene categorization performances for Scene-13 dataset under

various testing conditions. Totally, T training samples per category are utilized for

weak classifiers training, inner structure adjusting and outer weights learning.

The samples numbers of weak classifiers training, inner structure adjusting

validation, and weight learning are b, a and g, respectively. g¼0 corresponds to

the AdaBoost algorithms and ga0 denotes the proposed inner structure adjusting

and outer weights leaning based approach.

T b A g ISABoost.M1 ISABoost.M2 ISABoost.MT

50 40 10 0 68.98 79.73 79.34

6 4 71.9170.81 79.7670.06 79.4270.07

5 5 70.7970.79 79.7370.08 79.6470.18

4 6 74.9670.97 79.7870.08 80.5370.26
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proposed ISABoost algorithms are shown. g¼0 corresponds to the
AdaBoost and ga0 corresponds to ISABoost.
4.1. Experiments on OT dataset

The OT dataset has 2688 images with eight categories [33,25]:
360 coast, 328 forest, 374 mountain, 260 highway, 308 insidecity,
410 open country, 292 street, and 356 tallbuilding. Each image in
this dataset is with the same sizes 256�256.

Table 1 shows ISABoost based scene categorization performances
(average recognition rate and its standard deviation) under T¼100,
80, 50 and 30. In the circumstance that T¼100, b¼50 and aþg¼50,
the performances of ISABoost under several combinations of a and g

are shown in Table 1. The average recognition rates of AdaBoost.M1,
AdaBoost.M2 and AdaBoost.MT are 75.44%, 82.16% and 82.60%,
respectively. The average scene categorization performances of
ISABoost algorithms outperform those of the AdaBoost algorithms
by about 0.98%, 0.47% and 1.10%, respectively.

Under T¼80, b¼50 and aþg¼30, the ISABoost algorithms
outperform the corresponding AdaBoost algorithms by about
1.66%, 0.50% and 0.91% in average, respectively. Under T¼50,
b¼40 and aþg¼10, the average performances of ISABoost.M1,
ISABoost.M2 and ISABoost.MT are improved by about 2.63%,
0.53% and 0.37%, respectively over the corresponding AdaBoost
algorithms. While under T¼50, b¼25 and aþg¼25, the improve-
ments of ISABoost algorithms over the corresponding AdaBoost
algorithms are 3.14%, 0.40% and 0.44%, respectively.

The performances of ISABoost under the case that (T,b)¼(30,25),
outperform those of the case (T,b)¼(30,20) by about 8.03%, 3.47%,
2.52%, respectively for ISABoost.M1, ISABoost.M2 and ISABoost.MT.
The average recognition rates for the proposed approach are 69.55%,
74.54% and 74.78%, respectively for the ISABoost.M1, ISABoost.M2
and ISABoost.MT algorithms under (b,aþg)¼(20,10). While under
(b,aþg)¼(25,5), the average recognition rates are 75.55%, 77.83%
and 77.14%, respectively for the original ISABoost.M1, ISABoost.M2
and ISABoost.MT algorithms.

By comparing the performances of ISABoost algorithms under the
following 4 cases: (c1) T¼50, b¼40, aþg¼10; (c2) T¼50, b¼25,
aþg¼25; (c3) T¼30, b¼20, aþg¼10; (c4) T¼30, b¼25, aþg¼5,
we find that ISABoost performances is influenced by the learning
samples significantly. For (c1) and (c2), performances of ISABoost
algorithms under (c1) outperform these of (c2) by about 5.2%, 4.3%
and 2.7%, respectively for ISABoost.M1, ISABoost.M2 and ISABoost.MT.
For (c3) and (c4), performances of ISABoost algorithms under (c4)
outperform these of (c3) by about 6.00%, 3.29% and 2.36%,
respectively for ISABoost.M1, ISABoost.M2 and ISABoost.MT.
From above comparisons, it is clear that, if and only if the weak
classifiers are well trained (i.e., more samples are utilized to
train weak classifiers), AdaBoost and ISABoost algorithms have
better performances.
4.2. Experiments on sport event dataset

The Sport Event dataset contains 1579 images of eight sport event
classes [34]: 200 badminton, 137 bocce, 236 croquet, 182 polo,
194 rock climbing, 250 rowing, 190 sailing, and 190 snowboarding.

Table 2 shows ISABoost based scene categorization perfor-
mances under T¼20, 50 and 70. When T¼20, b¼15, a¼5
and g¼0, the corresponding categorization performance of
AdaBoost.M1, AdaBoost.M2 and AdaBoost.MT are 50.9%, 64.29%
and 64.69%, respectively. ISABoost algorithms under T¼20, b¼15,
aþg¼5, get performances improvement by 0.39%, 0.37% and
1.57%, respectively over the corresponding AdaBoost algorithms.

For the cases T¼50, b¼40 and aþg¼10, ISABoost algorithms
get improvements by about 2.76%, 0.48% and 0.97% in average
over AdaBoost.M1, AdaBoost.M2 and AdaBoost.MT. For the cases
T¼70 b¼30 and aþg¼40, the average improvements are about
0.78%, 0.48% and 0.53%, respectively.

From the comparative analysis, ISABoost based scene categoriza-
tion approaches get better performances than the corresponding
AdaBoost algorithms. It is clear that the weak classifiers’ training is
very important for ISABoost. When the total numbers of the training
samples are equal, better performances are achieved for the cases
that the training sample number for weak classifiers are sufficient.

4.3. Experiments on scene-13 dataset

The Scene-13 dataset consists of the 2688 images of the eight
categories of the OT dataset and another five categories with 1071
images [3]: 241 suburb, 174 bedroom, 151 kitchen, 289 living
room, and 216 office. Totally there are 3759 images in this dataset.

For Scene13 dataset, scene categorization performances under
T¼50, b¼40, aþg¼10 are shown in Table 3. The average recogni-
tion rates of AdaBoost.M1, AdaBoost.M2 and AdaBoost.MT are
68.98%, 79.73%, and 79.34%, respectively. The ISABoost algorithms
improve scene categorization performances by about 3.57%, 0.04%
and 0.52% in average over AdaBoost algorithms. In this case, the
average recognition rates of ISABoost.M1, ISABoost.M2 and ISA-
Boost.MT are 72.55%, 79.77% and 79.86%, respectively. This also
shows that ISABoost algorithms comparatively have high perfor-
mances than their corresponding AdaBoost algorithms.

4.4. Impacts of weak classifier type on ISABoost

The above three experiments are carried out under the conditions
that the basic weak classifier is BP networks. In this section, the
impacts of the type of weak classifier to ISABoost performances are
discussed. Experiments for the ISABoost algorithms using SVM and
BPN as weak classifiers are carried out on OT, and Sport Event
datasets under T¼50, b¼40, aþg¼10. The performances of ISABoost
with weak classifiers BPN (denoted ISA@BPN) and SVM [28,38]
(denoted ISA@SVM)are shown in Fig. 4, respectively. For OT dataset,
performances of ISABoost algorithms outperform those of AdaBoost
(denoted BSL@BPN and BSL@SVM) by 2.56%, 0.55% and 0.72%,
respectively in average. For Sport Event dataset, scene categorization
performances improved by 2.85%, 0.57% and 0.44%, respectively. This
shows that the ISABoost algorithms under different type of weak
classifier are all better than the corresponding AdaBoost algorithms.

4.5. Impacts of adjusting validation

The above experiments, ISABoost based scene categorization is
carried out under adjusting validation. If the constraints are not
satisfied, then the original weak classifier is utilized in the fusion
stage. In order to make sure the inner structure adjusting is valid, we
use the aþg samples (randomly selected from the T training samples)
per category in our experiments. Now we turn to discuss scene



Fig. 4. The impacts of type of weak classifier to ISABoost performances on (a) OT datasete, (b) Sport Event dataset under T¼50, b¼40 and aþg¼10. BSL@BPN and

BSL@SVM are the AdaBoost algorithms with the type of weak classifier BPN and SVM. ISA@BPN and ISA@SVM are the ISABoost algorithms with the type of weak classifier

BPN and SVM.

Fig. 5. ISABoost based scene categorization performances versus validation for (a) Sport Event dataset under T¼70, b¼30, aþg¼40; (b) OT under T¼30, b¼20, aþg¼10.
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categorization performance versus different validation approaches.
The first approach is that no validation is adopted (denoted Valid:No).
The second approach is that the aþg samples (the training samples
except the samples for weak classifier training) per category are
utilized (denoted Valid:C1) for validation. The experimental results
shown in Tables 1–3, Fig. 4(a) and (b) are obtained under Valid:C1.
The third approach is that aþgþb samples per category are all
utilized for adjusting validation (denoted Valid:C2). In this circum-
stance, the weak classifiers training samples are also utilized in
validation. Correspondingly, scene categorization performances of
above 3 approaches on Sport Event dataset under T¼70, b¼30,
aþg¼40 and OT dataset under T¼30, b¼20, aþg¼10 are shown in
Fig. 5(a) and (b), respectively. ISABoost based scene categorization
performances under Valid:No are inferior to those of AdaBoost
algorithms (denoted Baseline).

The performances of ISABoost.M1 under Baseline and
Valid:No are almost the same. This is the fact that, in ISA-
Boost.M1, many weak classifiers are viewed as useless. After
inner structure adjusting, some weak classifiers with their
performances inferior to 1/2 are adjusted to be better (with
their performances higher than 1/2), while some of better
classifiers are adjusted to be poor. This makes the valid weak
classifier number of Valid:No and Baseline are almost the same.
Thus performances of ISABoost.M1 under Validation:No and
Baseline are very close.

When no inner structure adjusting validation is adopted,
performances of ISABoost.M2 and ISABoost.MT are decreased by
about 0.8%. This is caused by the fact that some of the best
classifiers are degraded after inner structures adjusting if no
adjusting validation is adopted. The validation is important to
make sure the performances of the selected optimal classifiers are
not poor than their originals. From the classifier fusion point of
view, the more samples are utilized in adjusting validation, the
less likely the inferior classifiers are selected during fusion. This is
revealed by the performances of Valid:C1 and Valid:C2. When the
training samples of weak classifiers are also utilized in adjusting
validation, further improvements are achieved. Actually it is not
strange that ISABoost under Valid:C2 outperforms ISABoost under
Valid:C1. If all the training samples are correctly classified by
the trained weak classifier, then they are useless in adjusting
validation. However, some hard samples which are incorrectly
classified by the weak classifiers have some positive contribution
for adjusting validation.

When extra samples are utilized for adjusting validation, their
performances outperform that of the Baseline. When the weak
classifiers’ training samples are also utilized for validation
(Valid:C2), performances of ISABoost can further be improved
by about 0.3% in average over Valid:C1.
5. Conclusion

In this paper, an enhanced AdaBoost aglroithm: ISABoost is
proposed. It is a generalized AdaBoost algorithm. ISABoost adjusts
inner structures of the trained weak classifiers. It selects a best
classifier from a set of adjusted weak classifiers. Adjusting validation
makes sure the ISABoost better than AdaBoost algorithm. Properly
assigning the number of weak classifier training, inner structure
adjusting and fusion weight determination is important in ISABoost.
The advantages of ISABoost over AdaBoost do no influenced by the
type of weak classifiers. Under the same testing conditions, ISABoost
is better than AdaBoost. This can be revealed by the performances of
ISABoost and AdaBoost based scene categorization. However, how to
make the proposed ISABoost algorithms to large scale dataset with
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is also a very challenge problem, because the parameters needed to
be adjusted increase linearly and the computational costs increase
exponentially.
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