
Algorithms and Complexity. Exercise session 6

NP-problems

Frequency Allocation In mobile telephony, you need to solve the frequency allocation problem,
which is stated as follows. There are a number of transmitters deployed and each of them can
transmit on any of a given set of frequencies. Di�erent transmitters have di�erent frequency
sets. Some transmitters are so close that they can not transmit at the same frequency, because
then they would interfere with each other. (This is actually not dependent on geographical
distance - it can be a mountain, a house or other structure.)
You are given the frequency range of each transmitter and the pairs of transmitters that
interfere if they send in the same frequency. The problem is to determine if there is any
possible choice of frequencies so that no transmitter interferes with any other. Formulate
this problem as a graph problem and prove that it is NP-complete!

Solution to Frequency Allocation

a) Formulate the frequency allocation problem as a graph problem. Let the vertices correspond
to transmitters and edges correspond to interference between transmitters. Every vertex is
labeled with a frequency range Fi. The question is whether one can allocate to each vertex
a frequency from its frequency range so that no vertices are connected with an edge having
the same frequency.

b) Show that the frequency allocation problem is in NP. Guess (non-deterministic) a frequency
assignment. Go through each vertex and verify that its frequency is in the frequency set. Go
also through each edge and verify that the endpoint of the frequencies are di�erent. This
takes linear time in the size of the graph.

c) Show that the frequency allocation problem is NP-hard.

Reduce k-coloring problem to frequency allocation:

k-coloring(G, k) =
for each vertex vi in the graph G

Fi ← {1, . . . , k}
return FrequencyAllocation(G, {Fi})

Now, show that there is a k-coloring of graph G i� there is a correct assignment of frequencies
to G, where every vertex has frequency set {1, . . . , k}.
Suppose we have a k-coloring of G. Number the colors from 1 to k. If a vertex has color i,
we assign to the corresponding vertex (transmitter) in the frequency allocation problem the
frequency i. This is a correct frequency assignment because we have been based on a correct
k-coloring.

In the other direction: assume that we have a correct frequency allocation. We get a k-
coloring by allowing a vertex to have color i if the corresponding transmitter have been
assigned frequency i.

2

Hamiltonian path in a graph Show that the Hamiltonian Path problem is NP-complete.
The problem is to determine if there is a simple path that visits each vertex of the graph.

1



Solution to Hamiltonian path in a graph

A Hamiltonian path is a simple open path that contains each vertex in a graph exactly once.
The Hamiltonian Path problem is the problem to determine whether a given graph contains a
Hamiltonian path.

To show that this problem is NP-complete we �rst need to show that it actually belongs to
the class NP and then �nd a known NP-complete problem that can be reduced to Hamiltonian
Path.

For a given graph G we can solve Hamiltonian Path by nondeterministically choosing edges
from G that are to be included in the path. Then we traverse the path and make sure that we visit
each vertex exactly once. This obviously can be done in polynomial time, and hence, the problem
belongs to NP.

Now we have to �nd an NP-complete problem that can be reduced to Hamiltonian Path.
A closely related problem is the problem to determine whether a graph contains a Hamiltonian
cycle, that is, a Hamiltonian path that begin and end in the same vertex. Moreover, we know that
Hamiltonian Cycle is NP-complete, so we may try to reduce this problem to Hamiltonian
Path.

Given a graph G = 〈V,E〉 we construct a graph G′ such that G contains a Hamiltonian cycle
if and only if G′ contains a Hamiltonian path. This is done by choosing an arbitrary vertex u in
G and adding a copy, u′, of it together with all its edges. Then add vertices v and v′ to the graph
and connect v with u and v′ with u′; see Figure 1 for an example.

Figur 1: A graph G and the hamiltonian path reduced graph G′.

Suppose �rst that G contains a Hamiltonian cycle. Then we get a Hamiltonian path in G′

if we start in v, follow the cycle that we got from G back to u′ instead of u and �nally end in
v′. For example, consider the left graph, G, in Figure 1 which contains the Hamiltonian cycle
1, 2, 5, 6, 4, 3, 1. In G′ this corresponds to the path v, 1, 2, 5, 6, 4, 3, 1′, v′.

Conversely, suppose G′ contains a Hamiltonian path. In that case, the path must necessarily
have endpoints in v and v′. This path can be transformed to a cycle in G. Namely, if we disregard
v and v′, the path must have endpoints in u and u′ and if we remove u′ we get a cycle in G if we
close the path back to u instead of u′.

The construction won't work when G is a single edge, so this has to be taken care of as a
special case. Hence, we have shown that G contains a Hamiltonian cycle if and only if G′ contains
a Hamiltonian path, which concludes the proof that Hamiltonian Path is NP-complete. 2

2



Spanning trees with restricted degrees Show that the following problem is NP-complete:
Given an undirected graph G = (V,E) and an integer k, determine if G contains a spanning
tree T such that each vertex of the tree has maximum degree k.

Solution to Spanning trees with restricted degrees

First note that the problem can be solved by the following nondeterministic algorithm:

1. For each edge in E, choose nondeterministically if it is to be included in T .
2. Check that T is a tree and that each vertex has degree less than k.

This means that the problem is in NP. Now we need to reduce a problem known to be NP-complete
to our spanning tree problem. In this way we can state that determining whether a graph has a
k-spanning tree is at least as hard as every other problem in NP.

Consider the problem Hamiltonian Path that was shown to be NP-complete in the previous
exercise. Can we reduce this problem to the spanning tree problem? That is, can we solve Hamil-
tonian Path if we know how to solve the spanning tree problem? We claim that we can and that
G has a Hamiltonian path if and only if it has a spanning tree with vertex degree ≤ 2.

It is easy to see that such a spanning tree is a Hamiltonian path. Since it has degree ≤ 2 it
cannot branch and since it is spanning only two vertices can have degree < 2. So the spanning
tree is a Hamiltonian path. If, on the other hand, G contains a Hamiltonian path, this path must
be a spanning tree since the path visits every node and a path trivially is a tree.

We have reducedHamiltonian Path to the spanning tree problem and, therefore, our problem
is NP-complete. 2

Polynomial reduction Construct a polynomial reduction from 3Cnf-sat to Eq-gf[2], satis�-
ability problem for a system of polynomial equations over GF[2] (ie, integers modulo 2).

Solution to Polynimoal reduction

Suppose we have a formula ϕ ∈ 3Cnf-sat, for example

ϕ(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

Reducing 3Cnf-sat to Eq-gf[2] means that, for every formula ϕ, we can create an equation that
is solvable if and only if ϕ is satis�able. Now, ϕ is only satis�able if every clause can be satis�ed
simultaneously, so let's start with �nding an equation for an arbitrary clause (x ∨ y ∨ z), where
x, y and z are considered as literals rather than variables. For a start, the clause is satis�able with
one of the literals set to true, so in that case the equation x + y + z = 1 is also solved. But this
fails if two literals are true! We can �x this by adding three more terms, where one and only one
is 1 if two variables are 1. We get

x+ y + z + xy + yz + xz = 1

Again, this is not complete. if all variables are set to 1, it fails. Of course, the solution is to add a
term for this case, xyz. Our result is

x+ y + z + xy + yz + xz + xyz = 1

If one of the literals in the clause happened to be inverted, e.g. we have x instead of x, replace x
by (1 + x) in the equation. The �rst clause in the example would be turned into

x1 + x2 + (1 + x3) + x1x2 + x1(1 + x3) + x2(1 + x3) + x1x2(1 + x3) = 1

3



We are now ready to create an equation from an arbitrary 3-CNF formula ϕ. For every clause
ϕi in ϕ, create a corresponding equation Qi. Our claim is that this system of equations is solvable
if and only if ϕ is satis�able and we must prove that this is correct.

To begin with, we note that (1+x) is a proper way to handle inverses, 1+1 = 0 and 1+0 = 1,
so in the following we will only consider literal values and not variables.

1. (⇐) If an equation in Qi is satis�able, then there exists an assignment to the variables such
that each left hand expression is summed to 1. Hence, at least one of the literals is 1 and the
corresponding literal in the boolean formula set true would make it's clause satis�ed. The
equation system Qi being satis�ed means that each equation is satis�ed and consequently is
each clause in ϕ satis�ed.

2. (⇒) When ϕ is satis�ed, we have an assignment on the variables such that each clause is
satis�ed. There are three cases for the clauses, (i) one literal is true, (ii) two literals are true
and (iii) three literals are true. By construction, the corresponding equations are all satis�ed.

2

Is an Euler graph k-colourable? Many problems of the type determine whether the graph G
has the property e can be simpli�ed if we assume that the graph has any particular char-
acteristic. We will study a special case. We say that a connected graph is an Euler graph

if each vertex of the graph has even degree. We now want to determine whether a graph is
k-colourable. We have more speci�cally the following problem:

Input: An Euler graph G and an integer k.
Output: YES if the graph is k-colourable. NO otherwise.

For k ≤ 2 , there is a polynomial algorithm to determine coloring. Therefore, we assume that
k ≥ 3. Show if there is a polynomial algorithm to solve the above problem, or if the problem
is NP-complete.

Solution to Is an Euler graph k-colourable?
The problem is NP-complete. It is easy to show that the problem is in NP by guessing a coloring
and verify that it is correct. To show completeness, we reduce the general k-coloring problem to
our problem. We assume that k ≥ 3. Suppose we have a graph G. We reduce it to an Euler graph
G′ as follows: There must be an even number of vertices with odd degree. Divide the vertices of
the pair. Each pair introduces a new vertex. Add two edges to this vertex, one from each old vertex
that generated the new one. The graph G plus the new corners and edges represent the graph G′.
It is easy to see that G′ is an Euler graph.

We now show that G is k-colourable ⇔ G′ is k-colourable. Suppose that f is a coloring of G,
it means that each vertex x has a color f(x). We de�ne a k-coloring f ′ of G′ as follows: If x is
a vertex of both G′ and G then f ′(x) = f(x). If x does not belong to G, there are two adjecent
vertices y and z in G. We set then f(x) to any available color other than f(y) and f(z). (It is
possible to do so since k ≥ 3.) The implication in the other direction is trivial.

2

4


