
 

Since  SAT and INDEPENDENT SET can be reduced to each other we might think 
that there would be some similarities between the two problems. In fact, there is one 
such similarity. 

In SAT we want to know if something exists. We are looking for aset of values for to 
coordinate such that the formula is true. It is hard to find such a set of values but if we 
have found it, it is easy to check if it makes the formula true. 
 
In INDEPENDENT SET we are looking for a set of nodes of size K such that the set 
forms an independent set. I is hard to find the set but if we have found it, it is easy to 
check if it really is an independent set. 

Both the problems have a so called yes-certificate, something that tells us that the 
answer to the problem is yes. For SAT, the certificate is the values for the 
variables. For INDEPENDENT SET, the certificate is the K-set. 

Informally, the class  NP is the set of decision problems such that if the 
answer to the problem with input x is yes, then is a certificate y, at most 
polynomial in the size of x such that it can be checked in polynomial time 
( in the size of x) that y is a yes- certificate.

We will give a more formal definition of this. The definition identify problems with 
something we will call languages. Then we will describe the property of being an NP-
problems as a property for languages. 

NP-problems continued
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Formal definition of P

A formal language L is a set of strings.

Example:

{“abc”, “qwerty”, “xyzzy”}
{binary strings of odd lenght}
{binary strings that represents prime numbers }
{syntactically correct C-programs}

A language can be describe in different ways:

• An enumeration of the strings in the lan-
guage.

• A set of rules defining the language.

• An algorithm which recognize the strings
in the language.
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To every decision problem there is a corre-
sponding language:
The language of all yes-instances.

We say that the algorithm A decides L if

A(x) = Yes if x 2 L,

A(x) = No if x 62 L.

A runs in polynomial time if A(x) runs in time
O(|x|k) for all x and some integer k.

P = {L : 9A that decides L i polynomial time}
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A formal definition of NP

A verifies the instance x of the problem L if
there is a certificate y such that |y| 2 O(|x|s)
and

A(x, y) = Yes , x 2 L

This means that A decides the language
L = {x 2 {0,1}⇤ : 9y 2 {0,1}⇤ : A(x, y) = Ja}

NP = {L : 9A that verifies L in polynomial time}

P ✓ since all problem that can be decided in
polynomial time also can be verified in poly-
nomial time.

 

NP
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A second definition of NP:

A non-deterministic algorithm is an algorithm
that makes random choices. The output is
stochastic. We say that A decides a language
L if:

x 2 L ) A(x) = Yes with probabilty > 0
x /2 L ) A(x) = No with probability 1

NP = {L : 9polynomial time non-deterministic
algorithm that decides L}
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Proving NP-Completeness

In order to show that A is NP-Complete it is
enough to show that A 2 NP and SAT P A.
Why: If X 2 we know that X  SAT . If we
also have SAT  A we know that X  A!
This shows that A is NP-Complete.

Another approach: We can form i directed
graph such that A ! B means A  B.
SAT ! A ! B ! C ! ... tells us that A,B,C, ...

are NP-Complete.

To show that A is NP-Complete we can try to
find a known NP-Complete problem B such
that B  A.
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Reductions: Case studies

We have already seen that INDEPENDENT SET is NP-Complete by reducing 
3-CNF-SAT to IS.

It can be shown that HAMILTONIAN CYCLE is NP-C by reducing 3-CNF-SAT 
to HC. This reduction is rather complicated and we don't give it here.

If we now know that HC is NP-C, we can show that some other problems X 
are NP-C by explicitly describing reductions HC < X. We will do this for  the 
problems TSP and SUBGRAPH ISOMORPHISM.

When you prove that a problem is NP-C you must remember that it is not 
enough to give a reduction. You also have to show that the problem is in NP. 
This essentially means that you have to show that solutions (certificates) can 
be verified in polynomial times. In most cases this is quite simple.



HAMILTONIAN CYCLE  TSP

TSP

Input: A weighted complete graph G and a
number K.
Goal: Is there a Hamiltonian cycle of length
at most  K in G?

HAMILTONIAN CYCLE

Input: A graph G.
Goal : Is there a Hamiltonian cycle in G?

Let x = G be input to HC. We construct a
complete graph G0 with w(e) = 0 if e 2 G and
w(e) = 1 if e /2 G. Then set K = 0. This will
be the input to the TSP.
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Subgraph isomorphism is NP-Complete

Given two graphs G1 and G2, Is G1 a
subgraph of G2?

The problem obviously belongs to NP.

We reduce from Hamilton Cycle.

A graph G = (V,E) contains a Hamiltonian
cycle if and only if it contains a subgraph that
is a cycle C with |V | nodes. So we can set
G1 = C and G2 = G. som G.
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Other NP-Complete problems

Exact Cover
Given a set of subsets of a set M , is it possible
to find a selection of the subsets such that
each element in M is in exactly one of the
subsets?

Subset Sum
Given a set P of positive integers and an
integer K, is there a subset of the numbers
in P with sum K?

Integer Programming
Given an m⇥ n-matrix A, an m-vektor b, an
n-vektor c and a number K, is there an n-
vektor x with integer coefficients such that
Ax  b and c · x � K?

If we relax the condition that the coefficients
x should be integers we get a special case of
Linear Programming.
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Some more advanced reductions

We will look at some reductions that are more complicated. We will show 
that 3-COLORABILITY, EXACT COVER and SUBSET SUM are NP-C.

3-COLORABILITY

This is the problem of deciding if a given graph G can be colored with 3 
colors or not. We will reduce 3-CNF-SAT to this problem. This means that 
given a general instance of  3-CNF-SAT, we will construct a very special 
instance of 3-COLORABILITY such that the formula is satisfiable if and only 
if the graph is 3-colorable. 

We present one possible solution, take from the literature.







3-COLORABILITY  <  EXACT COVER 







PARTITIONING 6 KNAPSACK

Let {a1, a2, ..., an} be an instance of PARTI-
TIONING. In KNAPSACK we have pairs of
numbers {(ui, wi)}, U,W and we want to know
if there is a selection of pairs such that

P
ui > U

and
P

wi 6 W . Given our instance of PAR-
TITIONING we can set A =

P
ai and give

{(ai, ai)}, A/2, A/2 as an instance to KNAPSACK.
This KNAPSACK-problem has a solution if and
only if there is a partitioning.

We already know that SUBSET SUM 6 PAR-
TITIONING. This shows that SUBSET SUM
6 KNAPSACK by transitivity. It is easy to give
a direct proof this, similar to the proof abo-
ve. We have shown that all three problems are
NP-Complete.



0/1-programming is NP-Complete

Given an m⇥ n-matris A and an m-vektor b.
Is there an n-vektor x with coefficients
2 {0, 1} such that Ax  b?

The problem is in NP since, given x, we can
check in time O(n2) if Ax  b.

We reduce from 3-CNF-SAT:
Let � be an instance of 3-CNF-SAT With
n variables. To each xi in � we define a
corresponding variable yi 2 {0,1} and let 1
Mean True and 0 mean False.

FOr each clause cj = l1 _ l2 _ l3 we define an
inequality

T (l1) + T (l2) + T (l3) � 1

where T (xi) = yi and T (¬xi) = (1� yi).

And that’s it!
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We have now showed that a set of NP problems are NP-Complete by chains 
of reductions.

CNF-SAT 3-CNF-SAT

INDEPENDENT SET

VERTEX COVER

3-COLORABILITY

EXACT COVER

SUBSET SUM

PARTITIONING

KNAPSACK

HAMILTONIAN CYCLE

TSP

SUBGRAPH ISOMORPHISM

0/1-PROGRAMMING


