
Undecibability

Hilbert's 10th Problem: Give an algorithm that given a
polynomial decides if the polynomial has integer roots or not.

The problem was posed in 1900. In 1970 it was proved that
there can be no such algorithm.

Already in the 1930s several problems had been proved to
be unsolvable. One example is the Halting Problem.

We will talk about undecidable problems. It means that the
problem cannot be decided by an algorithm (more precise
definition later). But then, what is an algorithm?

We could replace algorithms with Computers or Programs.
But we will replace i with Turing Machines.

A Turing Machine is a very primitive type of computer. A
definition and description of Turing Machines will be given in
the next lecture.

Page 1

Why Turing Machines?

Then we use the famous Church-Turing's Thesis.

Church-Turing (one form): If there is a problem A that can be
decided by a computer then it can also be decided by a Turing
Machine.

A rough sketch:

Computer

Turing Machine

Solution
Problem Translation

Why do we want to use Turing Machines to solve problems?
The idea is that since they are so simple it is more easy to
decide what they can do or not than it would be for more
complex computers.

Page 2

We will now give a presentation of uncomputability and undecidability.
Usually these concepts are defined and analysed with the Turing Machines.
But we can replace Turing Machines with programs written in some
language. What language? Well, it doesn't matter. We will just need some
facts about programs.

1. Every program can be described by its code.
2. It is possible to enumerate the set of all program codes.
(Lexicographically for instance.)
3. This means that there are only countably many possible
programs.

Given a program P, the code c(P) of P is a string. Sometimes it is
convenient to use the code as a name for the program. (But just in this
context.) This means c(P) = P.

Page 3

Uncomputability

About functions:

Older view of functions:

A function is presented as a rule for compu-
ting.

Ex: f(x) = 2sin(x) + 3

Modern view of functions: A function is a set
of pairs {(x, y)} such that if (x, y1) and (x, y2)
are pairs in the function, then y1 = y2.

Functions can be uncomputable

What is computable?

Def: f is computable if and only if there is a
Turing Machine such that f(n) = m , T (n)
halts and returns m.

Page 4

First proof of uncomputability

The set of computable functions is enume-
rable. The set of all functions are not!

Let us see some more details:

Let f1, f2, f3, ... be a list of all computable
functions. Take the array

0

BBB@

f1(1) f1(2) f1(3) ...
f2(1) f2(2) f2(3) ...
f3(1) f3(2) f3(3) ...
...

1

CCCA

We define a function � such that

8
<

:
�(n) = fn(n) + 1 if fn(n) is defined
�(n) = 1 if fn(n) is undefined

Then � is uncomputable. (What happens if
� = fk for some k?)

Page 5

A decision problem is decidable if there is so-
me algorithm that decides the problem (correct-
ly) in finite time for every instance.

The opposite is when there, for some reason,
is no such algorithm. Then we say that the
problem is undecidable.

It is usually the case that there is an algo-
rithm that decides the problem for some, but
not all, instances.

If output is not Yes/No we normally speak
about computable and uncomputable pro-
blems.

Page 6

Ex. 1: The Post Correspondence
Problem

Given a set of pairs of words {(xi, yi)}.

Is there a sequence of integers a1, a2, . . . , a
k

such that x

a1xa2 · · ·xa

k

= y

a1ya2 · · · ya
k

?

Example:

{(abb, bbab)| {z }
1

, (a, aa)| {z }
2

, (bab, ab)| {z }
3

, (baba, aa)| {z }
4

, (aba, a)| {z }
5

}

has solution a = [2,1,1,4,1,5]:

a|{z}
x2

abb|{z}
x1

abb|{z}
x1

baba| {z }
x4

abb|{z}
x1

aba|{z}
x5

= aa|{z}
y2

bbab| {z }
y1

bbab| {z }
y1

aa|{z}
y4

bbab| {z }
y1

a|{z}
y5

but

{(bb, bab), (a, aa), (bab, ab), (baba, aa), (aba, a)}

has no solution.

Page 7

Ex. 2: The Halting Problem

Given a program P and input X

Does the program P halt when run with
input X?

It doesn’t matter what programming langu-
age we use. P could be a Turing Machine.

Page 8

Ex. 3: Some more applied problems:

Program Verification
Given a program P and a specification S

for what the program is supposed to do,
does the program in fact do it?

Behavior of programs
Can a given line in a program P be re-
ached for some input?

All these problems are undecidable due to
close relation to the Halting Problem.

But certain instances of these problems can,
of course, be decided.

Page 9

Proof of decidability/undecidability

Proof of undecidability:

Direct proof
Give a ”direct” logical proof why the pro-
blem is undecidable.

Reduction
We reduce from a known undecidable pro-
blem to our problem. If the reduction is
computable, then our problem must be
uncomputable.

Proofs of decidability:

• Give an algorithm that decides the pro-
blem and show that it works correctly and
runs in finite time.

Page 10

Proving undecidability

We will use an enumeration P1, P2, ... of all pos-
sible programs taking an integer as input. We
do not know if a program Pn is ”correct” in
some sense. A question we can ask is if Pn will
halt if it starts on input m. We can even ask if
Pn halts if we start with n as input, that is, if
Pn(n) halts.

The diagonal problem

Given an integer n is Pn(n) defined?

This problem is undecidable. Let us assume
that there is a program F (n) that decides it.
This means that F always halts and returns
TRUE if Pn(n) halts and returns FALSE ot-
herwise.

We can then easily define a new function F ⇤

that behaves almost as F :

F ⇤(n) =

8
<

:
TRUE if Pn(n) and returns TRUE

FALSE otherwise

But it is easy to construct another program
G(n) that returns the opposite answer
F ⇤(n) = TRUE , G(n) = FALSE

F ⇤(n) = FALSE , G(n) = TRUE

This program G must also be in the list. Let
us assume that it has number k. What hap-
pens when we try to find G(k)? We have two
possibilities:

1. G(k) = TRUE. Then G(k) halts, that is,
Pk(k) halts and return TRUE. Then we
must have F ⇤(k) = TRUE. But that is im-
possible by the definition of G.

2. G(k) = FALSE. Then F ⇤(k) = TRUE.
This means that Pk(k) halts and returns
TRUE. But this is impossible since Pk(k) =
G(k).

The conclusion is that F can not work correct-
ly, or stated in another way, F does not exist!

More undecidability

Special halting problem

Input is a program Pn and an integer m. Does
Pn(m) halt?

It can be seen that this problem is undecidable.
Assume that there is a program F (n,m) that
decides the problem. If we run F (n, n) we would
get a solution to the diagonal problem, which
is impossible.

General halting problem

In this problem we take as input the code c(P)
of a program P and an input string x. We want
to decide if P (x) halts or not.

We can see that we can reduce the special
halting problem to this problem. Given n and
m we can find the code c(Pn) and write m as a
string and give this input to the general halting
problem.

We now give another proof of the undecidabi-
lity of the general halting problem:

The Halting Problem is undecidable

Suppose there is an algorithm H(P,X) that
decides the Halting Problem. Now consider
the following program:

M(P)
(1) if H(P, P) = Y es

(2) get into an infinite loop
(3) else
(4) return

What happens when we run M(M)?

M(M) halts: Then H(M,M) must return
No in order for Return to be reached — im-
possible.

M(M) does not halt: Then H(M,M) re-
turns Yes and then the program will go into
the infinite loop and never halt — impossible.

We reach a contradiction. The conclusion is
that H(P,X) cannot decide the Halting Pro-
blem correctly.

Page 11

Example of reduction

Almost all variants of the Halting Problem
are undecidable
for instance:

Does the program P halt on all inputs?

We can show that there cannot exist an algo-
rithm HaltAll(P) that decides this problem.
Indeed, look at the following reduction:

H(P,X)
(1) Construct the program Q :

Q(Y)
if X = Y

P (X)
else

Halt
(2) return HaltAll(Q)

If HaltAll(·) worked correctly, then we could
decide the Halting Problem — impossible.

Page 12

Another reduction

Does the program P halt on empty input?

We can again reduce the halting problem to
this problem. Assume HaltEmpty(P) decides
this problem.

H(P,X)
(1) Create the program Q:
(2) Q(Y)
(3) Regardless of input do P (X)
(4) return HaltEmpty(Q)

We see again that we can decide the halting
problem, which is impossible.

Semantically equivalent programs

We say that two programs P1 and P2 are se-
mantically equivalent if they return the same
output (including not halting) on all input. Can
we decide if two programs are semantically
equivalent? We cannot since it is possible to
reduce Halt on all inputs to this problem. Assu-
me F (P1, P2) decides the equivalence problem:

HaltAll(P)
(1) Create the program P1

(2) Run P but skip output
(3) return 1
(4) Create the program P2:
(5) return 1
(6) return F (P1, P2)

There is a famous theorem called Rice’s the-
orem that roughly says that any nontrivial se-
mantic property of programs is undecidable.

First order logic is undecidable

Assume that we have a formula � in first order
logic. We want to decide if it is logically valid
or not. This problem is undecidable. It can be
shown that the previous problems can all be
reduced to this problem. For instance, if we
have a program P and want to know if it stops
on all inputs we can construct a formula such
that the program stops on all inputs if and only
if is logically valid.

Recursive enumerability

Even if the problems we have studied are not
decidable, they have another property. They
are recursively enumerable.

A problem is recursively enumerable if there is
an algorithm F (X) such that if X is an input
to the problem we have:

If X is a yes-instance, then F (X) halts and re-
turns yes.

If X is a no-instance, then F (X) never halts.

(The problem is that if we run the algorithm
we don’t not know if it will ever stop.)

Note: Decidable problems are sometimes cal-
led recursive problems.

