PSPACE Problems
Space Complexity: If an algorithm A solves
a problem X by using O(f(n)) bits of memory

where n is the size of the input we say that
X € SPACE(f(n)).

The Class PSPACE

Def: X € PSPACE if and only if X € SPACE(nF)
for some k.

PSPACE Problems are interesting since:

e T hey form the first interesting class po-
tentially greater than NP.

e [he problem of finding winning strategies
is in PSPACE.

P C PSPACE

Assume X € P and there is a Turing Machine
that decides X in time O(n*). This algorithm
can use at most O(n*) bits of memory. So
we get X € P = X € PSPACE.

In the other direction

Assume Y € PSPACE and that a Turing Machi-
ne M uses cnf bits of memory. If we have 3
possible symbols (0, 1,#) on the input tape
there are 3C”k possible contents on the tape
and cn® possible positions for the head. No
possible combination of content/position can
be repeated. (Since the machine then would
be looping.) This shows that the machine
must stop after at most O(nk3c’”k) steps. So
the time complexity cannot be worse than
exponential, i.e. Y € EXPTIME.

NP C PSPACE

We know that 3-SAT is NP-Complete. So we
just have to show that 3-SAT € PSPACE.

Given ¢ with n variables we run true all 2"
possible value assignments one at a time.
The amount of space needed is log2™ = n to
keep count of the number of the assignment
and +k extra bits of memory.. This gives us
space complexity O(n).

Different Complexity Classes

We now have the classes

P C NP C PSPACE C EXPTIME

where EXPTIME is the class of problems
that can be decided in TII\/IE(c”k) for so-
me numbers ¢, k. It is possible to show that
P = EXPTIME. No other inequalities are
known. This means that no inequalities li-
ke P = NP eller NP %= PSPACE are known
to be true.

PSPACE Complete Problems

A problem is PSPACE-Complete if
1. A e PSPACE

2. Every problem B € PSPACE can be re-
duced to A, i.e. B<p A.

The problem QSAT

A QSAT-formula is of the form

dxqVaodxs ... Va,_13znd(x1,...,2Tn)

where ¢ is in 3-SAT-form.

possible values for the variables are {0,1}.

Jx1Vxood(x1,22) means that there is a value
for x1 (O or 1) such that ¢(x1,zo) Is true for
all values for x> (0 och 1).

We want to decide if a formula of this kind
are valid or not.

QSAT:

Input: A QSAT-formula

Goal: Decide if the formula is valid or not.

Obs: SAT Is equivalent to the problem of
deciding if a formula

Jxqdrodxsz ... dx,_1Fxnd(xq, ..., 20)

is valid or not.

QSAT € PSPACE

Let the formulas we use be written
QixiQit1%Ti41 - - - @nxndi (i, ..., Tn).

QSAT (¢)=
iIf The first quantifier is dx;

or

QSAT (Qjx1--- (L, iq1,..-,2n)) =1
Erase all recursively active memory
Return 1
if The first quantifier is Vx;

and

Erase all recursively active memory
Return 1

iIf ¢ does not contain any quantifier Compute

the value of ¢ and return it

When we have a formula with k& variables
we use p(k) (polynomial) bits of memory for
each variable. This shows that p(n) + p(n —
1)4...p(1) < np(n) bits of memory are used

and this shows that QSAT € PSPACE.

The Planning Problem

We have a set of state variables cq,co,...,cn
with values O or 1. The values of ¢c1,c¢co,...,cn
tells us what state we are in. We have ope-
rators O1,05,...0; Which changes the state
variables. The problem is:

Input : Lists ¢q,¢c0,...,¢cn and O1,09,...0. A
start state Cp and a goal state C*.

Goal: Is there a sequence O;,,0;o, . .. Oz-j that
transforms Cy to C*7?

Savitch’ Theorem

Given a graph G with n vertices and two verti-
ces a, b there is an algorithm with space com-
plexity O((logn)?) which decides if there is a
path between a and b or not.

We define

Path(xz,y, L)
(1) if L=1and z =1y or (z,y) €
E(G)

(2) return 1

(3) iIfL>1

(4) Enumerate all vertices with a
counter using log n bits of me-
mory

(5) foreach z ¢ V(G)

(6) Compute f%wh(x,z,f%]).

Erase used memory and
return value
L
(7) Compute Path(z,y,[5]).
Erase used memory and
return value

(8) save all returned values

(9) if both computations re-
turns 1

(10) return 1

(11) return O

Compute Path(a,b,n). If the answer is 1 we
know that there is a path a — b.

In each recursive step we store the informa-
tion z,y, L. That takes 3logn bits of mem-
ory. The recursion depth is at most logn.
The space complexity is O((logn)?).

Planning € PSPACE

We use Savitch's Theorem. There can be
at most 2™ different states in Planning. We
want to know if there is a path Co — C*.
Such a path has length < 2™ —1. Use the al-
gorithm in Savitch's Theorem. It uses O(n?)
bits of memory.

NSPACE

A non-deterministic algorithm decides a lan-
qguage L if

e A(x) = Yes with probability >0 < x € L.

e A(x) = No with probability 1 <z € L.

TIME(f(n)) is the class of problems which
can be decided in time O(f(n)) by a deter-
ministic algorithm.

NTIME(f(n)) is the class of problems which
can be decided in time O(f(n)) by a non-
deterministic algorithm.

It is possible to show that A € NTIME(f(n)) =
A € TIME(cf (M)

AeP e Ae TIME(nF) for some k.
A e NP < A € NTIME(nF) for some k
In the same way we can define NPSPACE by

A € NPSPACE < A € NSPACE(nF) for some
k

PSPACE = NPSPACE

Sketch proof:

Let X be a problem in NPSPACE. Let M be a
non-deterministic Turing Machine which de-
cides X and uses O(n*) bits of memory. The
computation graph contains at most O(an)
vertices.

The algorithm in Savitch's Theorem finds
an accepting computation in the computa-
tion graph (if there is one) and uses at most
O((log ¢"™)2) = O(n2k).

So we get X € PSPACE.

The game (GENERALIZED)
GEOGRAPHY

Let G be a directed graph with a start vertex

V.

Let us assume that we have two players 1 and
I1.

I makes the first move. Then the players take
turns and make moves.

The moves allowed are moves from a vertex
x to an adjacent vertex y which has not been
visited before.

The first player that cannot move loses the
game.

Input: A graph G and a start vertex w.

Goal: Is there a winning strategy for player I7?

GEOGRAFI € PSPACE

We will look at a sketch of an algorithm
which decides if there is a winning strategy
for the first player in GEOGRAPH.

Given the start configuration < G,v > we let
G1 be G with v and all edges going from v
removed.

Compute Path(a,b,n). If the answer is 1 we
know that there is a path a — b.

In each recursive step we store the informa-
tion z,y, L. That takes 3logn bits of mem-
ory. The recursion depth is at most logn.
The space complexity is O((logn)?).

Planning € PSPACE

We use Savitch's Theorem. There can be
at most 2™ different states in Planning. We
want to know if there is a path Co — C*.
Such a path has length < 2™ —1. Use the al-
gorithm in Savitch's Theorem. It uses O(n?)
bits of memory.

