PSPACE Problems

Space Complexity: If an algorithm A solves a problem X by using O(f(n)) bits of memory where n is the size of the input we say that $X \in \mathsf{SPACE}(f(n))$.

The Class PSPACE

Def: $X \in \mathsf{PSPACE}$ if and only if $X \in \mathsf{SPACE}(n^k)$ for some k.

PSPACE Problems are interesting since:

- They form the first interesting class potentially greater than NP.
- The problem of finding winning strategies is in PSPACE.

P C **PSPACE**

Assume $X \in P$ and there is a Turing Machine that decides X in time $O(n^k)$. This algorithm can use at most $O(n^k)$ bits of memory. So we get $X \in P \Rightarrow X \in \mathsf{PSPACE}$.

In the other direction

Assume $Y \in \mathsf{PSPACE}$ and that a Turing Machine M uses cn^k bits of memory. If we have 3 possible symbols (0,1,#) on the input tape there are 3^{cn^k} possible contents on the tape and cn^k possible positions for the head. No possible combination of content/position can be repeated. (Since the machine then would be looping.) This shows that the machine must stop after at most $O(n^k 3^{cn^k})$ steps. So the time complexity cannot be worse than exponential, i.e. $Y \in \mathsf{EXPTIME}$.

NP C **PSPACE**

We know that 3-SAT is NP-Complete. So we just have to show that $3-SAT \in PSPACE$.

Given ϕ with n variables we run true all 2^n possible value assignments one at a time. The amount of space needed is $\log 2^n = n$ to keep count of the number of the assignment and +k extra bits of memory. This gives us space complexity O(n).

Different Complexity Classes

We now have the classes

 $P \subset NP \subset PSPACE \subset EXPTIME$

where EXPTIME is the class of problems that can be decided in $TIME(c^{n^k})$ for some numbers c, k. It is possible to show that $P \neq EXPTIME$. No other inequalities are known. This means that no inequalities like $P \neq NP$ eller $NP \neq PSPACE$ are known to be true.

PSPACE Complete Problems

A problem is PSPACE-Complete if

- 1. $A \in \mathsf{PSPACE}$
- 2. Every problem $B \in \mathsf{PSPACE}$ can be reduced to A, i.e. $B <_P A$.

The problem QSAT

A QSAT-formula is of the form

$$\exists x_1 \forall x_2 \exists x_3 \dots \forall x_{n-1} \exists x_n \phi(x_1, \dots, x_n)$$

where ϕ is in 3-SAT-form.

possible values for the variables are $\{0,1\}$.

 $\exists x_1 \forall x_2 \phi(x_1, x_2)$ means that there is a value for x_1 (0 or 1) such that $\phi(x_1, x_2)$ Is true for all values for x_2 (0 och 1).

We want to decide if a formula of this kind are *valid* or not.

QSAT:

Input: A QSAT-formula

Goal: Decide if the formula is valid or not.

Obs: SAT Is equivalent to the problem of deciding if a formula

$$\exists x_1 \exists x_2 \exists x_3 \dots \exists x_{n-1} \exists x_n \phi(x_1, \dots, x_n)$$

is valid or not.

QSAT ∈ **PSPACE**

Let the formulas we use be written
$$Q_i x_i Q_{i+1} x_{i+1} \dots Q_n x_n \phi_i(x_i, \dots, x_n)$$
.

QSAT
$$(\phi)$$
=
if The first quantifier is $\exists x_i$
if QSAT $(Q_{i+1} \dots \phi(0, x_{i+1}, \dots, x_n)) = 1$
or
QSAT $(Q_{i+1} \dots \phi(1, x_{i+1}, \dots, x_n)) = 1$
Erase all recursively active memory
Return 1
if The first quantifier is $\forall x_i$
if QSAT $(Q_{i+1} \dots \phi(0, x_{i+1}, \dots x_n)) = 1$

if QSAT $(Q_{i+1} \dots \phi(0, x_{i+1}, \dots x_n)) = 1$ and

QSAT
$$(Q_{i+1} \dots \phi(1, x_{i+1}, \dots x_n)) = 1$$

Erase all recursively active memory

Return 1

if ϕ does not contain any quantifier Compute the value of ϕ and return it

When we have a formula with k variables we use p(k) (polynomial) bits of memory for each variable. This shows that p(n) + p(n - $1) + \dots p(1) < np(n)$ bits of memory are used and this shows that $QSAT \in PSPACE$.

The Planning Problem

We have a set of state variables c_1, c_2, \ldots, c_n with values 0 or 1. The values of c_1, c_2, \ldots, c_n tells us what state we are in. We have operators $O_1, O_2, \ldots O_k$ which changes the state variables. The problem is:

Input: Lists c_1, c_2, \ldots, c_n and $O_1, O_2, \ldots O_k$. A start state C_0 and a goal state C^* .

Goal: Is there a sequence $O_{i_1}, O_{i_2}, \dots O_{i_j}$ that transforms C_0 to C^* ?

Savitch' Theorem

Given a graph G with n vertices and two vertices a, b there is an algorithm with space complexity $O((\log n)^2)$ which decides if there is a path between a and b or not.

We define

Path(x, y, L)

- (1) if L = 1 and x = y or $(x,y) \in E(G)$
- (2) **return** 1
- (3) **if** L > 1
- (4) Enumerate all vertices with a counter using $\log n$ bits of memory
- (5) foreach $z \in V(G)$
- (6) Compute $Path(x, z, \lceil \frac{L}{2} \rceil)$. Erase used memory and return value
- (7) Compute $Path(z, y, \lceil \frac{L}{2} \rceil)$. Erase used memory and return value
- (8) save all returned values
- (9) **if** both computations returns 1
- (10) **return** 1
- (11) return 0

Compute Path(a, b, n). If the answer is 1 we know that there is a path $a \rightarrow b$.

In each recursive step we store the information x, y, L. That takes $3 \log n$ bits of memory. The recursion depth is at most $\log n$. The space complexity is $O((\log n)^2)$.

Planning ∈ PSPACE

We use Savitch's Theorem. There can be at most 2^n different states in Planning. We want to know if there is a path $C_0 \to C^*$. Such a path has length $\leq 2^n - 1$. Use the algorithm in Savitch's Theorem. It uses $O(n^2)$ bits of memory.

NSPACE

A non-deterministic algorithm decides a language ${\cal L}$ if

- A(x) =Yes with probability $> 0 \Leftrightarrow x \in L$.
- $A(x) = \text{No with probability } 1 \Leftrightarrow x \notin L$.

TIME(f(n)) is the class of problems which can be decided in time O(f(n)) by a deterministic algorithm.

NTIME(f(n)) is the class of problems which can be decided in time O(f(n)) by a non-deterministic algorithm.

It is possible to show that $A \in \mathsf{NTIME}(f(n)) \Rightarrow A \in \mathsf{TIME}(c^{f(n)})$

 $A \in P \Leftrightarrow A \in \mathsf{TIME}(n^k)$ for some k.

 $A \in \mathsf{NP} \Leftrightarrow A \in \mathsf{NTIME}(n^k)$ for some k

In the same way we can define NPSPACE by

 $A \in \mathsf{NPSPACE} \Leftrightarrow A \in \mathsf{NSPACE}(n^k)$ for some k

PSPACE = NPSPACE

Sketch proof:

Let X be a problem in NPSPACE. Let M be a non-deterministic Turing Machine which decides X and uses $O(n^k)$ bits of memory. The computation graph contains at most $O(c^{n^k})$ vertices.

The algorithm in Savitch's Theorem finds an accepting computation in the computation graph (if there is one) and uses at most $O((\log c^{n^k})^2) = O(n^{2k})$.

So we get $X \in \mathsf{PSPACE}$.

The game (GENERALIZED) GEOGRAPHY

Let G be a directed graph with a start vertex v.

Let us assume that we have two players I and II.

I makes the first move. Then the players take turns and make moves.

The moves allowed are moves from a vertex x to an adjacent vertex y which has not been visited before.

The first player that cannot move loses the game.

Input: A graph G and a start vertex v.

Goal: Is there a winning strategy for player I?

GEOGRAFI ∈ PSPACE

We will look at a sketch of an algorithm which decides if there is a winning strategy for the first player in GEOGRAPH.

Given the start configuration < G, v > we let G_1 be G with v and all edges going from v removed.

Compute Path(a, b, n). If the answer is 1 we know that there is a path $a \rightarrow b$.

In each recursive step we store the information x, y, L. That takes $3 \log n$ bits of memory. The recursion depth is at most $\log n$. The space complexity is $O((\log n)^2)$.

Planning ∈ PSPACE

We use Savitch's Theorem. There can be at most 2^n different states in Planning. We want to know if there is a path $C_0 \to C^*$. Such a path has length $\leq 2^n - 1$. Use the algorithm in Savitch's Theorem. It uses $O(n^2)$ bits of memory.