
              

What is the course about?            

Three examples:            

How to solve problems in an algorithmic way.            

1. Sorting of numbers            
Can be solved easily. But it can 
be solved more efficiently.            

A bit tricky to solve efficiently.            

Can not be solved efficiently.            

There is a set of natural questions concerning algorithms:            

How do we measure efficiency? 
 
How do we find algorithms? 
 
How do we describe algorithms?            

Algorithms and Complexity     

2. Shortest paths in graphs            

3.  Partitioning of a set of numbers.            



                      How do we know if an algorithm works? 
 
How do we know if a problem can be solved efficiently? 
 
How do we know if a problem can be solved algorithmically at all? 
 
By the way, what is a problem?                     

We will try to provide some answers. 
 
A general picture:                    

Instance of a 
problem                    

Goal                    

Ex.                    

Algorithm                    

Algorithm                     Is 1789 a prime?                    

(Yes)                    

Yes/No                    



                            

But an algorithm is usually not designed to solve just one instance. 
Normally it solves an infinite numbers of instances:                           

Algorithm                            Given n, is n a 
prime?                           

Yes/No                            

So what is a problem?           

A problem consist of Input and Goal           

Ex: 
 
PRIME NUMBER 
 
Input: An integer n 
Goal: Is n a prime number?       



           SORTING 
 
Input: A list L =  { l₁, l₂, ... } of numbers 
Goal: A sorting L' = { l'₁, l'₂, ... } such that  l'₁, l'₂, ... is increasing 
         

How do we desribe an algorithm? 
 
An answer would be to just give a program code. 
But that can be inconvenient. 
 
Take for instance the most famous sorting algorithm: 
Insertion-Sort.         

Informal description: 
 
We start with al list A[1], A[2], ... 
Take A[1] and set L₁ = A[1]. 
Take A[2] and sort into L₁. This gives us a new list L₂. 
Take A[3] and sort into L₂.  This gives us a new list L₃. 
And so on ... 
 
We describe the algorithm with so called pseudocode.         

SHORTEST PATH 
 
Input: A graph G. Two nodes a,b 
Goal: A path from a to b with as few edges as possible         



                       

How do we know that Insertion-Sort works correctly? 
 
Think like this: At step k we know that  
 
A[1], A[2], ... , A[k] is a part of the start list and  
A[1], A[2], ... , A[k] is sorted. 
 
When the algorithm stops A[1], A[2], ... , A[n] must be the sorted list.            

Usually, the problem is to decide if a loop works 
correctly. Sometimes we can define a loop-invariant I 
that is always true for each step in the loop. 
 
Suppose the loop has the form 
 
While B do 
 ( ... ) 
           

.. 
Something happens here 
.       

 
When the  loop ends we have I and not B. If we 
have choosen I wisely, we will have reached our 
goal.                  



                   
What about efficiency? How do we measure it? 
 
 
Basic idea: 
We measure the number of steps needed as a 
function of the size of the input. This type of 
measure is called time-complexity. 
 
Insertion-Sort: If we have n elements we need 
O(n²) steps. 
 
Problem: How do we define size of input? 
 
Basic idea: We use a string to represent the input. 
We measure the size of the string. 
 
In practice, we use something that is a convenient 
approximation of the size of the string. 
 
Ex: If the input is n elements in al list we normally 
use n as a measure of the input size. 
 
Ex: If the input is just an integer n we use log₂n as 
the size of the input. 
 
But there is a problem with finding good 
representations. 
                



        

Time-complexity is not the only measure of complexity. 
 
We can measure the size of the memory space the algorithm needs to 
complete the computation. This measure is called space-complexity. 
 
Time-complexity more important but space-complexity is also important.       

Later we will show that  
 high space-complexity implies high time-complexity 
 
The opposite is not necessarily true.        

Unit cost and bit cost      

An interesting question is what counts as a step in a computation.  
 
Unit cost:  Each "algebraic operation" counts as one step 
Bit cost: Each bit operation counts as a step      

Ex: 
We want to compute 521 * 394. What is the cost? 
 
Unit cost:  Just one operation! The cost is 1. 
Bit cost: 521 has 9 bits. 394 has 8 bits. The cost is 9*8 = 72 
( The answer is 205274.)      

Unit cost is easier to work with and we 
normally use it.      

A bit more about complexity    



We will study a special problem in graph theory 
 
Input: A graph G and a node s. 
Goal: Which nodes can be reached by paths from s?                 

R {s} 
 While there is (u,v) such that u  R and v  R 
  Add v to R 
End while                         

A simple algorithm                 

When the algorithm stops, R is the set of nodes reachable from s.                

But there is an uncertainty. How shall (u,v) be choosen?                

Time-complexity is not the only measure of complexity. 
 
We can measure the size of the memory space the algorithm needs to 
complete the computation. This measure is called space-complexity. 
 
Time-complexity more important but space-complexity is also important.       

Later we will show that  
 high space-complexity implies high time-complexity 
 
The opposite is not necessarily true.        

Unit cost and bit cost      

An interesting question is what counts as a step in a computation.  
 
Unit cost:  Each "algebraic operation" counts as one step 
Bit cost: Each bit operation counts as a step      

Ex: 
We want to compute 521 * 394. What is the cost? 
 
Unit cost:  Just one operation! The cost is 1. 
Bit cost: 521 has 9 bits. 394 has 8 bits. The cost is 9*8 = 72 
( The answer is 205274.)      

Unit cost is easier to work with and we 
normally use it.      

A bit more about complexity    

What about efficiency? How do we measure it? 
 
 
Basic idea: 
We measure the number of steps needed as a 
function of the size of the input. 
 
Insertion-Sort: If we have n elements we need 
O(n²) steps. 
 
Ex: How do we represent a graph? 
 
The natural measure of the input size could be 
| V |  or  | E | or | V | + | E | 
 
Usually, the complexity is given as a function of | V | 
and | E |.                  



                 Data structures for graphs                

There are basically 3 ways to describe a graph in a form suitable for 
computation. 
                

Adjacency matrix 
 
Incidence matrix 
 
Adjacency lists                

Ex:                
adjacency matrix                A(i,j) = 0/1               

There is an edge (i,j)               A(i,j)=1               

A =              

Incidence matrix               

I =               
I (i,j) = 0/1 
 
I(i,j) = 1    <=>      nod i is on edge j               



                  
Adjacency lists 
 
L 1 :  2, 3, 4 
L 2: 1,  4 
L 3: 1 
L 4: 1, 2               

When the algorithm stops,T is a 
tree containing all nodes that can 
be reached from s.  The algorithm is 
known as Breadth-First-Search  
(BFS)

The complexity is O(  V   +  E   )               

For all v  V 
 set vis(v) = 0 
End for 
Set vis(s) = 1 
Set count = 0 
Set T = ∅ 
Set L[0] = {s} 
While L[i] is not empty 
 Set L[i+1] = ∅ 
 For each u  L[i] 
  For each edge (u,v)  
   If vis(v) = 0 
    Set vis(v) = 1 
    Add (u,v) to T 
    Add v to L[i+1] 
   End if 
  End for 
 End for 
 Set i = i+1 
End while               

We now  present an algorithm which is 
amore detailed solution to our graph 
problem.               

j is in L i    <=>     There is an edge (i,j)               



              We describe one more search algorithm for graphs: Depth-First Search 
(DFS) 
 
             

DFS(u): 
 
Set vis(u) = 1 
Add u to R 
For each v such that v is adjacent to u 
 If vis(v) = 0 
  DFS(v) 
 End if 
End for             

Set = ∅ 
For all v  V 
 Set vis(v) = 0 
End for 
DFS(s)             

The complexity is O(  V  +  E  ).  
The algorithm is defined 
recursively. A non-recursive 
definition is:             

Set R = ∅ 
Let S' be a stack and  set S = {s} 
For all v  V 
 Set vis(v) = 0 
End for 
Set vis(s) = 1 
While S ≠ ∅ 
 Take the top node u from S 
 If vis(s) = 0 
  Add u to R 
  For each v adjacent to u 
   Add v to the top of S 
  End for 
 End if 
End while             



                                               Efficient algorithms

What is an efficient algorithm? We can start by asking what an inefficient 
algorithm is.  If the size of the input is n and the algorithm works in time O(2  ) we 
say that the algorithm has exponential complexity. Such an algorithm is clearly 
very inefficient.             

In several situations where we have a problem with an input of size n, we have a 
set of possible solutions of size exponential in n. Just one (or a few) of these 
possible solutions are real solutions. If we just test all possible solutions to see if 
any of them are real solutions we get an algorithm withexponential complexity. In 
order to get a better algorithm we must find a way of "zooming in" on the real 
solutions.          

It seems natural to say that an efficient algorithm is an algorithm which is not 
exponential. But we don't do this. Instead we use the following definition:  
 
          We say that an algorithm has polynomial time-complexity if there is an 
integer k such that the algorithm, if started with input of size n, runs in 
O(n  )steps.          

Efficient algorithms: 
The standard definition is to say that an algorithm is efficient if and only if it 
has polynomial time-complexity.          

n

k



           
An outline of the course         

Complexity         

We have two parts:         

Algorithms         

Some theory         Lots of applications         

. 
Applications         

. 
Lots of theory         

Algorithms 
We describe several types of algorithms and ways to construct algorithms.         

        
Complexity 
Not all problems can be solved efficiently. 
 Some problems can not be solved at all! 
Some of the things we will do in this part are: 
        



         

Study Turing Machines and formally define 
computing 
 
Study uncomputable problems. 
 
Study NP-problems which (probably) can not be 
solved efficiently. 
 
Study so called approximation algorithms.        


